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Abstract

Motivation: Information-theoretic and compositional analysis of biological sequences, in terms of

k-mer dictionaries, has a well established role in genomic and proteomic studies. Much less so in

epigenomics, although the role of k-mers in chromatin organization and nucleosome positioning is

particularly relevant. Fundamental questions concerning the informational content and compos-

itional structure of nucleosome favouring and disfavoring sequences with respect to their basic

building blocks still remain open.

Results: We present the first analysis on the role of k-mers in the composition of nucleosome en-

riched and depleted genomic regions (NER and NDR for short) that is: (i) exhaustive and within the

bounds dictated by the information-theoretic content of the sample sets we use and (ii) informative

for comparative epigenomics. We analize four different organisms and we propose a paradig-

matic formalization of k-mer dictionaries, providing two different and complementary views of the

k-mers involved in NER and NDR. The first extends well known studies in this area, its comparative

nature being its major merit. The second, very novel, brings to light the rich variety of k-mers

involved in influencing nucleosome positioning, for which an initial classification in terms of clus-

ters is also provided. Although such a classification offers many insights, the following deserves to

be singled-out: short poly(dA:dT) tracts are reported in the literature as fundamental for nucleo-

some depletion, however a global quantitative look reveals that their role is much less prominent

than one would expect based on previous studies.

Availability and implementation: Dictionaries, clusters and Supplementary Material are available

online at http://math.unipa.it/rombo/epigenomics/.

Contact: simona.rombo@unipa.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Studies investigating the information-theoretic content and compos-

ition, in particular in terms of k-mers, of sequences are pervasive in

computational biology (Giancarlo et al., 2009, 2012, 2014). However,

although it is well established that DNA sequence has a role in

epigenomics (Whitaker, 2014; Yuan, 2012), there are very few studies

that have systematically applied compositional and linguistic techniques

for the identification of sequence features associated with epigenomic

functions. They are reviewed by Pinello et al. (2014). To the best of our

knowledge, no information-theoretic study is present in epigenomics.
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We focus on the following particular research area in epigenom-

ics: the identification of mechanisms accounting for nucleosome or-

ganization and positioning in chromatin. It was initiated more than

30 years ago by Kornberg (1981) and, thanks to advances in

microarray and sequencing technologies, it has prospered in the past

few years. An extensive overview of its many aspects is provided in

(Jiang and Pugh, 2010; Minary and Levitt, 2014; Radman-Livaja

and Rando, 2009; Segal and Widom, 2009b; Struhl and Segal,

2013). Particularly relevant for this paper are the findings outlined

next.

The chromatin organization of eukaryotic genomes has been suc-

cessfully argued that it is DNA-encoded (Kaplan et al., 2008).

Therefore, it seems natural to complement such an argument with

an information-theoretic study aiming at establishing the similarity

and differences, in terms of their information-theoretic content, be-

tween NER and NDRs on a genomic scale. Such a study is not avail-

able. It is also a well established fact that sequence motifs and

regularities influence nucleosome positioning. The ones that have

been identified are: (i) the 10 bp periodicity of the dinucleotides AA/

TT/TA that oscillate in phase with each other and out of phase with

a similar perodicity of the GC denuclotides (Segal et al., 2006); (ii)

poly(dA:dT) tracts (Segal and Widom, 2009a), i.e. stretches of A’s

or T’s and (iii) the GþC content of a genomic region, with its AþT

content also playing some role (Peckham et al., 2007; Tillo and

Hughes, 2009). In terms of specific k-mers, studies about their role

in favouring nucleosome positioning have only identified a handful

of them, e.g. (Peckham et al., 2007; Tillo and Hughes, 2009) and no

systematic study seems to be available.

The above state of the art clearly indicates that the literature has

not addressed the following foundational issues:

1. An information-theoretic characterization of the NER and

NDR, highlighting similarities and differences.

2. A structural characterization of the ‘world of k-mers’ in terms of

their involvement in the composition of genomic sequences rich

or depleted of nucleosomes, with the possible identification of

groups of similar k-mers that play a role in that composition.

We provide contributions to both issues. In particular, we pre-

sent the first information-theoretic analysis of NER and NDR.

Among the other useful insights, it establishes that the information

content of NER is surprisingly very close to that of NDR, yet such a

difference is statistically very significant. As for the second issue, we

provide a computational and statistical methodology that is used to

build epigenomic dictionaries, for the case of nucleosome position-

ing in vivo. That is, catalogues of k-mers, each having a statistical

score assessing to which extend it favours or inhibits nucleosome

formation. Based on a sound information-theoretic argument, k-

mers of at most 10 basis are considered in this study. Interestingly,

k-mers that are known to favour or inhibit nucleosome positioning

from previous studies are correctly classified in our dictionaries, and

a rich, never highlighted before, variety of k-mers involved in nu-

cleosome positioning comes to light for the first time.

A final introductory remark is in order. The only previous study,

of which this one can be seen as its natural continuation, is the one

by Peckham et al. (2007), where in vivo data have been used. We ad-

here to that choice here, pointing out the need for a genome-wide

analysis comparing k-mer preferences for nucleosome formation

in vitro and in vivo. The very discriminative and methodologically

sound techniques given here are a relevant technical step forward

for its successful realization, whose outcome would add another im-

portant tile to the puzzle of ‘sequences and nucleosomes’.

2 Methods

The statistical and computational methodologies needed to address

points (1) and (2) of the Section 1 are summarized here. In particu-

lar, Section 2.1 highlights some basic steps, either identical or vari-

ants of well known ones in sequence analysis. Section 2.2 is

dedicated to the definition of weighted k-mer dictionaries, together

with weighting schemes, i.e. procedures to assign weights to k-mers.

Such a data structure is pragmatically used in genomic research, but

it has not been formalized. Our experiments bring to light the nov-

elty that such a pragmatism hides a powerful methodological para-

digm: properly modulated via an associated weighting schema, a

weighted dictionary can provide information about the same data

on different and complementary scales. Such a somewhat surprising

modulation ability, via two apparently very similar weighting

schemes, is demonstrated in Section 3.2 by comparing the results ob-

tained via two weighting schemes, one already used in nucleosome

positioning studies (Peckham et al., 2007), the other novel.

2.1 K-mer probabilities from counts: estimation,

conservation and differences in information content
Let R be an alphabet, fix an integer k�1 and let Pk be a probability

distribution establishing how probable is the extraction of any given

k-mer in Rk, to form a set of strings. Using a sample set D for the ex-

traction process, an estimate bPk of Pk needs to be computed. This

task is nearly standard in sequence analysis (Durbin et al., 1998).

Intuitively, one would like to use the k-mer frequency counts ob-

tained from the sample set. Indeed, the corresponding empirical

probability distribution is a Maximum Likelihood estimate of Pk.

However, when the sample size is too small compared with Rk, there

may be rare or missing k-mers in the sample which, having zero or

close to zero frequency counts, give rise to k-mer probabilities with

zero value in the estimate. In those cases, in order not to rely on a

small sample size for the estimation, one resorts to the introduction

of suitably chosen pseudo counts: they are added to the frequencies

of the k-mers. They are obtained by selecting an appropriate prior

distribution encoding prior knowledge about Pk. While the book by

Durbin et al. (1998) offers a good introduction to this topic, for the

convenience of the reader and to keep the paper self-contained,

some basic technical details are given in Section 1 of the

Supplementary Material. For this study, five of the most established

priors in the literature have been used: namely Maximum

Likelihood Estimate, Uniform-Bayes-Laplace, Jeffreys (1946), Perks

(1947) and Trybula (1947) (see Table 1 of the Supplementary

Material).

Once fixed the sample set D, it is to be expected that, as k grows,

the number of k-mers rare or absent in D increases. That results in

an estimation of Pk where prior knowledge (via the pseudo-counts)

becomes more and more relevant. To avoid such a problematic esti-

mation, it is natural to ask up to which maximum value kmax a good

estimate can be granted. It is worth of mention that such a question

is usually dealt with heuristically. Here a principled and quantifiable

choice is made: the value of kmax to be selected must guarantee an

estimate of Pk that accurately represents the information-theoretic

content of D. That is, the sample size should be ‘big enough’ to

allow for a good estimation of the entropy of the source generating

the sample. The value of kmax here is computed according to a pro-

cedure recommended in (Dudok de Wit, 1999) for entropy estima-

tion. Again, for the interested reader and to keep the presentation

self-contained, technical details are given in Section 1 of the

Supplementary Material. The only thing that is needed at this stage

is that the procedure takes as input the dataset and a fixed a priori
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threshold value � in [0,1], this latter quantifying the tolerable per-

cent difference between the entropy one could estimate from the

data and the true entropy of the source emitting the data. The closer

� is to zero, the better the estimate is. The output of the procedure is

kmax, for the given � and sample set.

Finally, let Q and P be two k-mer probability distributions. To

establish how close Q and P are in terms of their ‘information con-

tent’ the following can be used: (i) the Hellinger distance DHL (Deza

and Deza, 2006), that assumes values in the interval [0,1]; (ii) a dis-

similarity measure SKL, based on the Kullback-Leibler divergence

(Cover and Thomas, 1991). They are both measures of difference in

information content in probability distributions (Csizár, 1967) and

their formal definition is provided in Section 1 of the Supplementary

Material. For completeness, we mention that those as well as analo-

gous measures have been used in related studies in epigenomics (e.g.

Pinello et al., 2011, 2014).

2.2 Weighted k-mer dictionaries: the special case of

nucleosome positioning
Let a 2 ð0; 1Þ be a real value and fix an integer k 2 ½1;kmax�. Let Dk;a

denote a set of triplets hx;w; si such that: x is a k-mer, w is a real

value such that a�w�1 and s is a symbol from the binary alphabet

fþ;�g. Intuitively, a value of s¼6means that x is a ‘characteristic/

significant feature’ of NER/NDR. In the reminder of this paper, to

refer to such an intuition, we use the shorthand ‘k-mer favouring/

disfavouring nucleosome positioning’. Again intuitively, the entire

triple states that x favours/disfavours nucleosome formation with a

‘confidence level’ w at least equal to the given threshold a. The set

Dkmax;a ¼ [
kmax

k¼1D:k;a is a weighted k-mer dictionary. When no ambi-

guity arises, it will be referred to simply as dictionary.

The ‘semantic’ of a dictionary is given by a weighting scheme,

which is a procedure that assigns weights to the k-mers in a diction-

ary suitably designed to assess via data analysis the level of involve-

ment of k-mers in nucleosome positioning.

Given two dictionaries, D
k̂max ;â

and Dk0max;a
0 , let a ¼ minðâ; a0Þ

and k ¼ minðk̂max;k
0
maxÞ. The join of those two is a new diction-

ary Dkmax ;a obtained by taking all k-mers common to both, with the

same sign and a confidence level at least a.

For a given organism, the weighted dictionary that can be built

directly from genome-wide nucleosome positioning maps (referred

to simply as maps, when no ambiguity arises) has the special role of

a base dictionary. It can also be obtained by joining several dic-

tionaries, each obtained with the use of a distinct map.

We point out that the definition given above can be easily put in

general terms. The details are left to the reader.

2.2.1 The choice of a weighting scheme for nucleosome

positioning
Intuition suggests that, given a k-mer x favouring nucleosome en-

richment (to fix ideas), one of the following, non-mutually exclusive,

things should happen: its frequency should be (a) able to classify

well F ¼ E [D into E and D when the frequency of x in f 2 F is

used as a classification score; (b) ‘significantly’ different in NER and

NDR, i.e. such a difference in frequency is not due to chance.

Intuitively (i) can be formalized via Binary Classification in

Machine Learning while (ii) via Hypothesis Test in Statistics and,

for the convenience of the reader, they are both reported next. It is

worth to mention that (i) has been used by Peckham et al. (2007) in

extracting sequence nucleosome positioning signals in S.cerevisiae

while, to the best of our knowledge, the use of (ii) to ‘rank’ k-mers

in terms of their favouring/disfavouring nucleosome positioning

preferences, is novel.

For completeness, it is worth mentioning that the identification

of an appropriate weighting scheme is strongly related to feature se-

lection in machine learning (Guyon and Elisseeff, 2003), although

neither of the two schemes outlined next can be regarded as feature

selection technique. This remark poses the problem of investigating

feature selection techniques in the context of this paper.

A weighting scheme based on Binary Classification

Fix a k-mer x. Each sequence in F is given a score equal to the fre-

quency of occurrence of x in it, normalized by its length. Those

scores are then used to evaluate how well they classify E and D, via

ROC analysis (Fawcett, 2006). To this end, the analysis is first per-

formed by assigning class label 0 to sequences in E and then class

label 1. Notice that the assignment of a class label to sequences in E

determines the assignment of the corresponding class label to se-

quences in D. The maximum of the two corresponding AUCs is as-

signed as a confidence level to x. The symbol s is set to ‘þ’ if the

AUC with class label 1 assigned to E is higher than the AUC with

class label 0 assigned to E, and to ‘–’ otherwise. The threshold a is a

real number in ½0:5; 1Þ and corresponds to the minimum AUC that a

k-mer must obtain to be included in the dictionary.

A weighting scheme based on Hypothesis Test

Let Q and P be the k-mer empirical probability distributions associ-

ated to the sample sets E and D, respectively. For each x, let

dx ¼ jpx � qxj. Such a difference is normalized via the z-score zx

(see, e.g. Triola, 2012 for the definition of z-score and its uses in

data normalization). To establish the statistical significance of zx, a

Hypothesis Test can be performed via a Montecarlo simulation. The

interested reader can find details in (Giancarlo et al., 2008;

Giancarlo and Utro, 2012; Gordon, 1996). The Null Hypothesis

that the value of zx is due to chance is formalized by the way in

which the artificial datasets E0 and D0 (corresponding to E and D,

respectively) are generated in each step of the simulation. In particu-

lar, the set F ¼ E [D is first shuffled a certain number of times

(1000 times, in this case) and then splitted in the two sets E0 and D0,

with jE0j ¼ jEj and jD0j ¼ jDj. The symbol s is set to ‘þ’ if px > qx,

and ‘–’ otherwise. The threshold a is set to the significance level used

in the test to reject the null hypothesis.

3 Results and discussion

We present here our findings in relation to the problems posed in

the Introduction. In particular, our analysis is based on the maps of

Table 1. Percentage of k-mers stored in the base dictionaries (col-

umns 2 and 3), with respect to the total number of k-mers con-

sidered in this study

HT-WD AUC-WD

ORGANISM þ – þ –

yeast 3.49 1.197 0.01 0.013

human 4.144 0.543 0.008 0.008

fly 3.128 1.56 0.005 0.006

worm 4.576 0.111 0.004 0.01

The abbreviations HT-WD and AUC-WD stand for Hypothesis Test and

Binary Classification weighted dictionaries, respectively (also in the next

tables).

Epigenomic k-mer dictionaries 2941
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four different organisms: S.cerevisiae (yeast), D.melanogaster (fly),

H.sapiens (human) and C.elegans (worm).

3.1 Distinguishability of NER and NDR based on their

information content
We adopt the methodology in Kaplan et al. (2008) (for more details,

see Section 2 of the Supplementary Material): They investigate the

intrinsic organization of eukaryotic genomes, remarkably showing

that in vitro maps can be used to reliably distinguish NER from

NDR produced from in vivo maps. Here in vivo NER and NDR are

studied, to quantify how distinguishable they are in terms of their in-

trinsic information-theoretic content. We used the normalized map

for in vivo S.cerevisiae produced by those authors and the adjusted

occupancy map for C.elegans by Valouev et al. (2008) (as in Kaplan

et al., 2008, only chromosome 2). NER and NDR sets are extracted

from those two maps.

For both S.cerevisiae and C.elegans, the sample sets of relevance

here are the NER, NDR and the genome sequence underlying the

map, respectively. For each of the mentioned sample sets, its k-mer

probability distribution has been estimated using each of the pseu-

docounts mentioned in Section 2.1 and given explicitly in Table 1 of

the Supplementary Material. The choice of one class of pseudo-

counts, rather than another, does not affect the conclusions that can

be drawn from the corresponding experiments. Therefore, the pres-

entation of our results is limited only to probability distributions ob-

tained from Jeffreys pseudocounts. The other results are available in

Section 3 of the Supplementary Material, Figures S2–S5.

To allow for a comparative analysis with the same range of k’s

on all sample sets used in this paper, the estimation of kmax has been

performed, via the procedure mentioned in Section 2.1, including

the sample sets in Section 3.2. Setting � ¼ 2:1%, i.e. a very conser-

vative estimation, the result is kmax ¼ 10. Therefore, k-mers long at

most 10 have been considered in all the experiments reported in this

paper. The details on how such a value has been obtained, and a dis-

cussion about the relation between the various values of k and �, are

in Section 3 of the Supplementary Material.

Via DHL and SKL, the following comparisons have been made,

each involving comparisons between probability distributions

computed with the Jeffreys pseudo-counts and using the regions

we list next as sample sets: (i) each of NER and NDR versus the

corresponding genome; (ii) the NER versus the NDR of each organ-

ism; (iii) the NER versus NER and the NDR versus NDR of

the two different organisms. While comparisons (i) and (ii) are

quite natural and do not need explanation, (iii) is performed be-

cause, for the first time, it would provide a quantitative assess-

ment of the extend of information-theoretic conservation between

organisms in regard to nucleosome positioning signals in genomic

DNA.

The results are reported in Figure 1. It is evident that the growth

of DHL is steeper than that of SKL and, for both, the reported differ-

ences are small. Although the first observation may be related to the

different nature of the two functions, for which no known mathem-

atical relationship is available (and in fact they were chosen exactly

for that reason: to get two independent ‘readings’ of the informa-

tional differences in the sample sets), the second fact is important

and an assessment of the statistical significance of those differences

is required. Therefore, a Hypothesis Test has been performed, where

the Null Hypothesis is that those differences are due to chance and it

is formalized according to the methodology explained in Section

2.2.1. With use of the Jeffreys pseudo-counts, a Monte Carlo simu-

lation has been performed (20 steps), to determine in which case the

Null Hypothesis can be rejected with a very high significance level,

i.e. 1% threshold. The results are reported in Tables 2 and 3 of the

Supplementary Material, where the captions specify to which dis-

tance they refer to. With a few minor exceptions at k¼10, which

may be considered a border-line case in terms of conservation of in-

formation, all of the computed difference values are highly signifi-

cant. Therefore, using two functions with no known mathematical

relation between them, we get the same consistent result: small dif-

ferences and statistically significant, yielding very robust results for

k in [1,9] that, in turn, lead to the following remarkable

conclusions:

Although the sets involved in the comparison carry essentially the

same amount of information (indeed the distance values in Fig. 1

are quite low), the Hypothesis Test shows that those small differ-

ences are statistically significant. Therefore, those sets are distin-

guishable in information-theoretic terms. Surprisingly, such an

assertion applies also to the comparison of homologous nucleo-

some enriched/depleted regions between the two organisms indi-

cating that, although small, there is a significant level of

differentiation in the information content of those regions between

organisms.

As indicated by Figure 1, the curves associated to DHL and SKL for

NER and NDR in the same organism are translated top-ward with

respect to the case of NER/NDR versus the respective genomes.

The distance values differ even by one order of magnitude for SKL.

That indicates a significant and higher level of differentiation in

Fig. 1. The results of the computation of DHL (left) and SKL (right) performed

on the NER, NDR and genomes of yeast and worm. They are depicted accord-

ing to the legend in the figure as follows. EY, DY and GY stand for NER, NDR

and genome in yeast. The abbreviations for worm have analogous meaning.

Moreover, to improve the figure ‘readability’, the arguments of both DHL and

SKL are the relevant sample sets instead of their Jeffreys pseudo counts

Table 2. Percentage of k-mers stored in the join of the base dic-

tionaries, with respect to the size of the smallest set considered for

the join

HT-WD AUC-WD

join þ – þ –

yeast, worm 24 13 50 80

yeast, fly 19 2 50 40

yeast, human 21 2 50 60

fly, worm 16 0.9 67 63

fly, human 40 13 40 83

human, worm 14 0.9 75 75

yeast, worm, human, fly 2 0 25 40
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information-theoretic terms between those regions with respect to

each of them compared with the ‘background’ genome.

Figure 1 shows a non-decreasing trend in the value of the differences

in information content, as a function of k. This behaviour is more

accentuated for the curves corresponding to homologous nucleo-

some enriched/depleted regions between the two organisms.

Although we found an analogous growth also in randomly gener-

ated sequences (see Fig. S6 in the Supplementary Material), it is

much more prominent in genomic sequences. Therefore, this estab-

lishes the following novel fact, relevant for syntactic-linguistic

studies of biological sequences. As the length of their ‘building

block’ grows, there is a growing differentiation in terms of the in-

formation content of the genomic regions studied here, indicating

a growing syntactic-linguistic difference in the organization of the

basic building blocks within those sequences.

3.2 Epigenomic dictionaries
For the extraction of NER and NDR from nucleosome positioning

maps, a valid alternative to the one proposed by Kaplan et al.

(2008) is well exemplified by Valouev et al. (2008) in which nucleo-

some core and linker regions are used to investigate the existence of

universal sequence features, specifically short k-mers, involved in

nucleosome positioning. A data set of this kind has been recently

set-up by Guo et al. (2014), for research only somewhat related to

our study, but it is an excellent choice for an up-to-date collection of

short nucleosome-favoring/disfavoring sequences. Those authors

provide three pairs of sets of short NER and NDR associated to

C.elegans, D.melanogaster and H.sapiens, respectively. Indeed, each

pair is extracted from genome-wide in vivo nucleosome positioning

maps of the corresponding organism. For this type of data set, the

NER are (typically) nucleosome core sequences and the NDR are

linker regions, each of length 147-bp. A summary of the procedure

used to extract those data sets from the corresponding maps is re-

ported in Section 2 of the Supplementary Material.

3.2.1 Weighted dictionaries: base and inter-organism

Epigenomic dictionaries, for the specific case of k-mers involved in

the composition of nucleosome forming/disfavoring sequences, are

obtained with the use of both the NER and NDR of Section 3.1 and

the ones obtained from the data by Guo et al. (2014). Moreover,

data derived by Peckham et al. (2007) for S.cerevisiae has also been

integrated in our framework, since their supplementary file ‘feature

scores’ is a de facto dictionary with a Binary Classification weight-

ing scheme. For each organism, the procedures described in Section

2.2 have been applied with thresholds at 16% and 0.55 to obtain

the corresponding weighted dictionaries, respectively. This means

that only those k-mers whose confidence level, i.e. either p-value or

AUC, is higher than or equal to the fixed thresholds are considered of

relevance and therefore stored in the corresponding dictionary.

Based on those, two different kinds of dictionaries have been built,

as follows.

• Base dictionaries with Binary Classification and Hypothesis Test

weighting schemes. For fly and human, the dictionaries men-

tioned earlier are taken as base. This applies also to yeast, but

only for the Hypothesis Test case. As for its base Binary

Classification dictionary, it is the join of the dictionaries com-

ing from the NER and NDR in Section 3.1 and the mentioned

file by Peckham et al. (2007). As for the worm, for both types of

dictionary, we take as base the join between the dictionary

coming from the NER and NDR in Section 3.1 and that coming

from the NER and NDR obtained from the data in (Guo et al.,

2014).
• Inter-organism. For each subset of at least two of the four organ-

isms considered here, both types of dictionaries have been built

to explore conservation of k-mer involvement in different organ-

isms. They are the join of the corresponding base dictionaries.

3.2.2 Summary statistics
Table 1 shows the percentage of k-mers stored in the base diction-

aries (columns 2 and 3), with respect to the total number, i.e. � 410,

of k-mers that have been tested for inclusion. Table 2 (Columns 2

and 3) provides statistics shedding light on the level of conservation

in k-mer usage for the composition of NER and NDRs. How that is

measured is explained in the table caption. In all tables presented

here nucleosome forming k-mers are indicated with a ‘þ’, while ‘–’

denotes the nucleosome disfavouring k-mers. Additional statistics

on the number of k-mers stored in the dictionaries are given in

Tables S4 and S5 of the Supplementary Material.

Even with confidence thresholds only moderately selective, both

techniques bring to light that a very low percentage of k-mers are

involved in nucleosome formation/depletion. Moreover, nucleosome

forming k-mers are much more abundant than nucleosome disfa-

vouring ones (see Table 1 again). Among and between different or-

ganisms, there is some level of conservation on the usage of

nucleosome forming or disfavoring k-mers. However, the set(s) in

which there is agreement is rather small and quite dependent on the

organisms involved in the join.

Those two tables also bring to light the complementarity of the

two techniques used for this study. Indeed, the one based on Binary

Classification is certainly much more discriminative than the one

based on Hypothesis Test. Its main merit is its ability to identify in

the corresponding dictionaries of each organism a small kernel of k-

mers that are common in usage either between two organisms or

among all of them.

On the other hand, the Hypothesis Test technique seems to be

able to capture subtler ‘k-mer nucleosome positioning signals’, since

the k-mer percentage is larger than the one contained in the Binary

Classification homologous. As it is discussed in the remainder of this

study, such a complementarity allows to obtain additional sequence

specific information with respect to what was already known in the

literature, while opening the way to explore a variety of k-mer usage

not available before and that accounts for organism specificity.

In the next two subsections, the dictionaries will be used to show

results coming from those two complementary levels of detail.

Table 3. The k-mers in common to all organisms and coming from

the Binary Classification dictionaries

COMMON K-MERS FROM AUC-WDs

GC þ CAC þ CC þ AC þ
CAA þ ACG þ CAG þ AGTA þ
GAC þ TCAA þ GCA þ CATC þ
CA þ ACC þ G þ CGA þ
AT – TAA – AAAT – ATTTA –

AAA – AAAT – A – AATA –

ATAA – AATT – AAAAT – AAATT –

AAAAAA – AAAAAT – ATAAA – AATAT –

GAAAA – TAAAAA – ATTTA – AAAATA –

AA – AAAA – TAAA – AAAAA –

TAAAA – C þ ATAA – AAATA –
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3.2.3 Binary classification dictionaries: a high level detail

A small kernel of k-mers significantly involved in the composition of

NER and NDRs, common to all organisms is reported in Table 3. It

has been obtained via a join of the base dictionaries studied in this

section. As evident from the discussion that follows, that kernel pro-

vides high level details about the role of k-mers in nucleosome pos-

itioning, specifically addressing the somewhat neglected topic of

conservation among organisms.

Figure 2 provides the sequence logos (Schneider and Stephens,

1990) obtained by aligning with CLUSTALW (Thompson et al.,

1994) the nucleosome favouring and disfavouring k-mers. As evi-

dent from the corresponding sequence logo, a poly(dA:dT)

tract emerges as a common feature of nucleosome disfavouring

k-mers. This is well known in the literature (Segal and Widom,

2009a). On the other hand, no such a definite high level com-

mon pattern emerges for nucleosome favouring k-mers. Those

facts suggest that, while poly(dA:dT) tracts are a ‘strong signature’

of nucleosome depletion shared by organisms, no analogous ‘signa-

ture’ seems to exist for nucleosome formation, hinting that the latter

is more organism specific of the former as far as k-mers are

concerned.

At this ‘very discriminative’ level of detail, our main contribu-

tion, which consists of providing novel organism and sequence spe-

cificity, clearly emerges from the comparison of our findings with

the ones of two existing studies, those latter being summarized next

for the convenience of the reader. They are related to this part of

our study because they either use the same Binary Classification ap-

proach (Peckham et al., 2007) or closely related machine learning

techniques (Tillo and Hughes, 2009), i.e. the Lasso feature selection

method (Tibshirani, 1996) (see again Section 2.2.1 for the relation

between Binary classification and feature selection in this context).

Peckham et al. (2007), in their study of nucleosome positioning

signals in genomic DNA, sigled out 31 k-mers that found of rele-

vance there. They were obtained by analyzing S.cerevisiae position-

ing maps that are quite different than the one considered here. That

study leaves open how conserved the role of those relevant k-mers is

across organisms. Our study can be used to provide an answer to

that important question. Indeed, quite remarkably, the vast majority

(24 out of 31) of the k-mers identified in the mentioned previous

study are common to all organisms considered here in the base

Binary Classification dictionary. Details are in Table S6 of the

Supplementary Material.

On the other hand, Tillo and Hughes (2009), in their study on

the construction of a simplified model for prediction of nucleosome

positioning from sequences, singled out 14 sequence features

deemed important for their model. They were extracted by using an

in vitro nucleosome map of S.cerevisiae by Kaplan et al. (2008).

Eleven of such features are 4-mers. We find that seven of them ap-

pear in all of our Binary Classification dictionaries. Moreover ten

out of such eleven 4-mers are present in the majority of the organ-

isms considered here. The exception is the k-mer found to be ‘the

least relevant’ in the study by Tillo and Hughes (2009). It is worth

of mention that only four relevant k-mers are common to the study

by Peckham et al. (2007) and Tillo and Hughes (2009). Again, de-

tails are in Table S6 of the Supplementary Material.

In conclusion, regarding the assessment, via machine learning

techniques, of k-mer involvement in nucleosome positioning, our

study accounts for both studies just outlined on S.cerevisiae.

Moreover, it extends them both in terms of (i) organisms and (ii)

relevant k-mers common to all organisms.

3.2.4 Hypothesis test dictionaries: additional levels of detail

For the dictionaries studied in this section, we limit the analysis to a

very discriminative significance level, i.e. 2%. The level of detail

offered by this part of our study is novel.

For each of the Hypothesis Test dictionaries, the sets of k-mers

favouring/disfavouring nucleosome positioning, with the specified

significance level threshold, have been clustered separately via

DNACLUST (Ghodsi et al., 2011), with a sequence similarity

threshold of 75%, computed via standard semi-global alignment.

Table 4 reports the number of clusters so obtained, for each organ-

ism. It gives a synopsis of the variety of similar k-mers involved ei-

ther in favouring or disfavouring nucleosome positioning, with a

very high statistical significance. To the best of our knowledge, such

a classification is new in the literature.

The results of the clustering process provide a valuable hierarch-

ical access to the information contained in each Hypothesis Test dic-

tionary: the representatives and then the clusters. Those latter, being

composed of fairly similar sequences, can be used to highlight com-

mon sequence patterns for k-mers involved in nucleosome position-

ing. Significant examples of that are in Figure 3, showing the

sequence logos obtained via alignment with CLUSTALW of specific

clusters, corresponding to k-mers favouring or disfavouring nucleo-

some positioning. A more extensive set of analogous logos is pro-

vided in the Supplementary Material (Figs S7–S13). As opposed to

the high level detail reported in Figure 2 for nucleosome favouring

k-mers, patterns now emerge and they highlight that the GþC con-

tent as a determinant of nucleosome positioning is only a good ap-

proximation to a much more specific and complex set of sequence

patterns favouring nucleosome positioning (as an example, see the

first logo in Fig. 3). Likewise, the patterns that emerge for nucleo-

some disfavouring k-mers, are very much related to poly(dA:dT)

tracts only in S.cerevisiae and partly in C.elegans (see the second

and the fifth logos in Fig. 3). Although those types of patterns occur

in some of the considered organisms (e.g. fly and human), there are

patterns that substantially diverge from being poly(dA:dT) (as

shown by the third and fourth logos in Fig. 3). Quite remarkably,

this is in agreement with the finding that the 5-mer AAAAA is

strongly associated to nucleosome depletion in the yeast and in part

in the worm, but it has a much less positioning influence in both fly

and human (Radman-Livaja and Rando, 2009). Section 4.1 of the

Supplementary Material offers a quantitative assessment of this

point (Tables S7–S8).

Both qualitatively and quantitatively, our results suggest that

short poly(dA:dT) tracts are relatively important for nucleosome

Fig. 2. Sequence logos of the alignment of k-mers in Table 3, distinguishing

those favouring (left) from those disfavouring (right) nucleosome positioning

Table 4. For each Hypothesis Test dictionary, the number of clus-

ters (NC) obtained via DNACLUST, their maximum (MXS) and me-

dium (MDS) sizes

þ –

ORGANISM NC MXS MDS NC MXS MDS

yeast 335 387 31 278 382 21

human 490 1988 105 225 207 21

fly 453 687 75 373 301 36

worm 753 427 47 113 46 3
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positioning in yeast and partly worm, in relation to other k-mers,

but such an importance seems to vanish in fly and human.

Moreover, the presence of short poly(dA:dT) and poly(dC:dG)

tracts in nucleosome forming patterns argues for the need of a better

understanding of the role of DNA deformation in relation to the en-

tire spectrum of biological processes where it plays a role, in agree-

ment with findings in (Johnson et al., 2013).

4 Conclusive remarks

The analysis reported here sheds light on how sequence composition

may influence nucleosome positioning. In particular, we have found

that nucleosome enriched and depleted regions are remarkably and

unexpectedly close in terms of their information-theoretic content,

and only small differences in their composition are responsible for

their functional diversity. To understand the organization of those

k-mers that are significant in favouring/disfavouring nucleosome

positioning, we have proposed a consistent paradigm useful to dis-

tinguish them according to two different points of view: one based

on Binary Classification, able to provide a more general and high

level description, and the other one relying on Hypothesis Test in

Statistics, able to provide more detailed information with respect to

Binary Classification. Thanks to the use of those two complemen-

tary views, we have both confirmed and extended what was already

known in the literature, showing that the scenario is richer in k-mers

variety than one could have expected. This opens the way to several

further directions of analysis. Notably among them, the application

of motif discovery techniques (e.g. Rombo, 2012; Parida et al.,

2014) to single out possible regularities among significant k-mers.

Moreover, special mention deserves the need for a comparative

study of k-mer involvement in nucleosome formation coming from

in vitro and in vivo maps, as already pointed out in the

Introduction. That would be a natural complement and continu-

ation of the study reported here for in vivo maps.
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