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1. Introduction and preliminaries

Nadler [21] established a fundamental theorem that combines the ideas of multivalued
mapping and contractive condition as follows.

Theorem 1.1. Let (X, d) be a complete metric space and let T : X → CB(X) be a
multivalued mapping satisfying the contractive condition

H(Tx, Ty) ≤ kd(x, y), (1.1)

for all x, y ∈ X, where k is a constant such that k ∈ (0, 1) and CB(X) denotes the family
of non-empty closed and bounded subsets of X. Then T has a fixed point, that is, there
exists a point x∗ ∈ X such that x∗ ∈ Tx∗.

This result was successfully extended and applied by many authors [6, 7, 11, 14, 15,
18] in various abstract spaces. Here, we consider the notion of partial metric space.
Precisely, Matthews [19] introduced the concept of partial metric as a part of the study
of denotational semantics of dataflow networks. Then, the partial metric space became
an useful setting to get generalizations of fixed point theorems [1, 4, 8–10, 22, 24, 25, 28].

Recently, Aydi et al. [5] introduced the concept of partial Hausdorff metric and ex-
tended the Nadler’s fixed point theorem to such spaces. Some interesting contributions
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on multivalued mappings in partial metric spaces can be found in [2, 12, 26]. Finally,
we point out that some authors [13, 17, 27] showed that a lot of fixed point theorems in
partial metric spaces can be directly reduced to their metric counterparts.
Let R+ be the set of all non-negative real numbers and N the set of all positive integers.
Mizoguchi and Takahashi [20] introduced one of the most interesting contractive condi-
tion in the classical setting of metric spaces. Then, Mizoguchi and Takahashi proved a
generalization of Nadler’s fixed point theorem, by changing the constant k ∈ (0, 1) in
(1.1) with a function ϕ : R+ → [0, 1) such that

lim sup
r→t+

ϕ(r) < 1

for all t ∈ R+. We refer to the following fixed point theorem.

Theorem 1.2. Let (X, d) be a complete metric space and T : X → CB(X) be a
multivalued mapping. Assume that there exists a function ϕ : [0,+∞) → [0, 1), with
lim supr→t+ ϕ(r) < 1 for all t ∈ [0,+∞), such that

H(Tx, Ty) ≤ ϕ(d(x, y))d(x, y),

for all x, y ∈ X, with x 6= y. Then T has a fixed point.

Very recently, Javahernia et al. [16] used the following definition to generalize Mizoguchi-
Takahashi’s theorem to establishing the existence of a common fixed point of two multi-
valued mappings in the setting of metric spaces.

Definition 1.3. A function ϑ : R+×R+ → R is a generalized Mizoguchi-Takahashi type
function (for short, GMT-function) if the following conditions hold:

(ϑ1) 0 < ϑ(t, s) < 1 for all t, s > 0;
(ϑ2) for every bounded sequence {tn} ⊂ (0,+∞) and every non-increasing sequence
{sn} ⊂ (0,+∞), one has

lim sup
n→+∞

ϑ(tn, sn) < 1.

We denote by ̂GMT (R) the class of functions satisfying Definition 1.3.

Example 1.4 (See [16]). Let ϑ : R+ × R+ → R be the function defined by

ϑ(t, s) =


t

s2 + 1
if 1 < t < s,

ln(s+ 10)

s+ 9
otherwise.

Then, ϑ ∈ ̂GMT (R).

Moreover, Javahernia et al. [16] proved the following theorem.

Theorem 1.5. Let (X, d) be a complete metric space and let T, S : X → CB(X) and

suppose there exists ϑ ∈ ̂GMT (R) such that

H(Tx, Sy) ≤ ϑ(H(Tx, Sy),MT,S(x, y))MT,S(x, y))

for all x, y ∈ X, where

MT,S(x, y) := max

{
d(x, y), d(x, Tx), d(y, Sy),

d(x, Sy) + d(y, Tx)

2

}
.
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Then T, S have a common fixed point, that is, there exists a point x∗ ∈ X such that
x∗ ∈ Tx∗ and x∗ ∈ Sx∗.

In this paper, we investigate the possibility to extend this theorem to the setting of
partial metric spaces. Precisely, we give some common fixed point results for multivalued
mappings in the setting of complete partial metric spaces. Our results extend and com-
plement analogous results in the existing literature on metric and partial metric spaces.
Finally, we provide an example to illustrate the new theory.

2. Partial metric

We collect some definitions and results on partial metrics and partial metric spaces.

Definition 2.1 ([19]). A partial metric on a non-empty set X is a function p : X ×X →
R+ such that, for all x, y, z ∈ X, the following conditions are satisfied:

(p1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ≤ p(x, y);
(p3) p(x, y) = p(y, x);
(p4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then, a non-empty set X equipped with a partial metric p is called a partial metric space.

If p(x, y) = 0, then (p1) and (p2) imply that x = y, but the converse does not hold
true always. Each partial metric p on X generates a T0 topology γp on X which has as a
base the family of the open balls {Bp(x, ε) : x ∈ X, ε > 0} where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}
for all x ∈ X and ε > 0.

Definition 2.2 ([3, 19]). Let (X, p) be a partial metric space. Then a sequence {xn} is
called:

(i) convergent, with respect to γp, if there exists some x in X such that p(x, x) =
lim

n→+∞
p(x, xn);

(ii) Cauchy sequence if there exists (and is finite) lim
n,m→+∞

p(xn, xm).

A partial metric space (X, p) is said to be complete if every Cauchy sequence {xn} in
X converges, with respect to γp, to a point x ∈ X such that p(x, x) = lim

n,m→+∞
p(xn, xm).

Let CBp(X) be the collection of all non-empty closed and bounded subsets of X with
respect to the partial metric p. Consistent with Aydi et al. [5], closedness is taken from
(X, γp). Moreover, boundedness is given as follows: A is a bounded subset in (X, p)
if there exist x0 ∈ X and M ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0,M),
that is, p(x0, a) < p(x0, x0) + M . Then, for A,B ∈ CBp(X), x ∈ X, the functions
δp : CBp(X)×CBp(X)→ R+ and Hp : CBp(X)×CBp(X)→ R+ are defined as follows

p(x,A) = inf{p(x, a) : a ∈ A}, p(A,B) = inf{p(x, y) : x ∈ A, y ∈ B},
δp(A,B) = sup{p(a,B) : a ∈ A}, δp(B,A) = sup{p(b, A) : b ∈ B}

and

Hp(A,B) = max{δp(A,B), δp(B,A)}.

Proposition 2.3 ([5]). Let (X, p) be a partial metric space. For all A,B,C ∈ CBp(X),
we have the following:
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(i) δp(A,A) = sup{p(a, a) : a ∈ A};
(ii) δp(A,A) ≤ δp(A,B);

(iii) δp(A,B) = 0 implies that A ⊆ B;
(iv) δp(A,B) ≤ δp(A,C) + δp(C,B)− inf

c∈C
p(c, c).

Proposition 2.4 ([5]). Let (X, p) be a partial metric space. For all A,B,C ∈ CBp(X),
we have the following:

(h1) Hp(A,A) ≤ Hp(A,B);
(h2) Hp(A,B) = Hp(B,A);
(h3) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− inf

c∈C
p(c, c);

(h4) Hp(A,B) = 0 =⇒ A = B.

The mapping Hp : CBp(X) × CBp(X) → R+ is called the partial Hausdorff metric
induced by p. Every Hausdorff metric is a partial Hausdorff metric but the converse is
not true, see Example 2.6 in [5].

In the proofs of our theorems, we will use the following two lemmas.

Lemma 2.5 ([3]). Let (X, p) be a partial metric space and A any non-empty set in (X, p),
then

a ∈ A ⇐⇒ p(a,A) = p(a, a),

where A denotes the closure of A with respect to the partial metric p. Notice that A is
closed in (X, p) if and only if A = A.

Lemma 2.6 ([5]). Let (X, p) be a partial metric space, A,B ∈ CBp(X) and h > 1, then
for any a ∈ A, there exists b(a) ∈ B such that p(a, b(a)) ≤ hHp(A,B).

Thus, we have the following partial metric version of Nadler’s fixed point theorem.

Theorem 2.7 ([5]). Let (X, p) be a partial metric space. If T : X → CBp(X) is a
multivalued mapping such that for all x, y ∈ X, we have Hp(Tx, Ty) ≤ kp(x, y), where
k ∈ (0, 1), then T has a fixed point, that is, there exists a point u ∈ X such that u ∈ Tu.

Finally, we recall the following lemma; see [23].

Lemma 2.8. Let (X, p) be a partial metric space and T : X → CBp(X) a multivalued
mapping. If {xn} ⊂ X is a sequence, xn → u and p(u, u) = 0, then

lim
n→+∞

p(xn, Tu) = p(u, Tu).

3. Main Results

According to [16] and [20], we introduce the contractive conditions considered in this
paper.

Definition 3.1. Let (X, p) be a partial metric space. Two multivalued mappings T, S :
X → CBp(X) are a pair of generalized Mizoguchi-Takahashi type contractions (for short,

CGMT-contraction) if there exists a function ϑ ∈ ̂GMT (R) such that

Hp(Tx, Sy) ≤ ϑ(Hp(Tx, Sy), p(x, y))p(x, y), (3.1)

for all x, y ∈ X.
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Definition 3.2. Let (X, p) be a partial metric space. Two multivalued mappings T, S :
X → CBp(X) are a pair of generalized weaker Mizoguchi-Takahashi type contractions

(for short, CWGMT-contraction) if there exists a function ϑ ∈ ̂GMT (R) such that

Hp(Tx, Sy) ≤ ϑ(Hp(Tx, Sy),MT,S(x, y))MT,S(x, y), (3.2)

for all x, y ∈ X, where

MT,S(x, y) := max

{
p(x, y), p(x, Tx), p(y, Sy),

p(x, Sy) + p(y, Tx)

2

}
.

Now, we state and prove our first result.

Theorem 3.3. Let (X, p) be a complete partial metric space and T, S : X → CBp(X) be

two multivalued mappings. Assume that there exists a function ϑ ∈ ̂GMT (R) such that
the pair (T, S) is a CGMT-contraction. Then, the pair (T, S) has a common fixed point.

Proof. Let x0 ∈ X be an arbitrary point and x1 ∈ Sx0. Consequently, p(x1, x1) =
p(x1, Sx0), by Lemma 2.5.
Since Tx1 6= ∅, then we can choose x2 ∈ Tx1 (clearly, p(x2, Tx1) = p(x2, x2)).
Firstly, we assume x1 = x2. Then, by definition of partial metric, we have

p(x1, Tx1) = p(x1, x1) ≤ p(x1, Sx1) = p(x2, Sx2).

If p(x2, Sx2) = 0, then x2 ∈ Sx2, that is x2 is a common fixed point of the pair (T, S).
Also, if Hp(Tx1, Sx1) = 0, then Tx1 = Sx1 and so x1 is a common fixed point of the pair
(T, S).
Thus, we suppose Hp(Tx1, Sx2) 6= 0 and p(x2, Sx2) 6= 0. Now, by using the contractive
condition (3.1), we get

Hp(Tx1, Sx2) ≤ ϑ(Hp(Tx1, Sx2), p(x1, x2))p(x1, x2),

and hence, by property (ϑ1), we have

p(x1, x2) = p(x2, x2) ≤ p(x2, Sx2) ≤ Hp(Tx1, Sx2) < p(x1, x2),

that is a contradiction.
Now, we assume x1 6= x2, Hp(Tx1, Sx2) > 0 and p(x1, x2) > 0. Let

h1 =
1√

ϑ(Hp(Tx1, Sx2), p(x1, x2))
> 1

so that, by Lemma 2.6, there exists x3 ∈ Sx2 such that

p(x2, x3) ≤ h1Hp(Tx1, Sx2).

By using the contractive condition (3.1), we get

p(x2, x3) ≤ ϑ(Hp(Tx1, Sx2), p(x1, x2))p(x1, x2)√
ϑ(Hp(Tx1, Sx2), p(x1, x2))

=
√
ϑ(Hp(Tx1, Sx2), p(x1, x2))p(x1, x2).

Choose x4 ∈ Tx3 with p(x3, x4) > 0 and Hp(Tx3, Sx4) > 0. Then, put

h2 =
1√

ϑ(Hp(Tx3, Sx4), p(x3, x4))
> 1.
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Again, by Lemma 2.6, there exists x5 ∈ Sx4 such that

p(x4, x5) ≤ h2Hp(Tx3, Sx4).

By using the contractive condition (3.1), we have

p(x4, x5) ≤ ϑ(Hp(Tx3, Sx4), p(x3, x4))p(x3, x4)√
ϑ(Hp(Tx3, Sx4), p(x3, x4))

=
√
ϑ(Hp(Tx3, Sx4), p(x3, x4))p(x3, x4).

By induction, let x2k−1, x2k, x2k+1 ∈ X such that x2k ∈ Tx2k−1, x2k+1 ∈ Sx2k,
p(x2k−1, x2k) > 0 and Hp(Tx2k−1, Sx2k) > 0 with

p(x2k, x2k+1) <
Hp(Tx2k−1, Sx2k)√

ϑ(Hp(Tx2k−1, Sx2k), p(x2k−1, x2k))
.

Then, letting x2k+2 ∈ Tx2k+1 with p(x2k+1, x2k+2) > 0, Hp(Tx2k+1, Sx2k+2) > 0 and

hk+1 =
1√

ϑ(Hp(Tx2k+1, Sx2k+2), p(x2k+1, x2k+2))
> 1,

there exists x2k+3 ∈ Sx2k+2 such that

p(x2k+2, x2k+3) ≤ hk+1Hp(Tx2k+1, Sx2k+2).

By using the contractive condition (3.1) we get

p(x2k+2, x2k+3) ≤
√
ϑ(Hp(Tx2k+1, Sx2k+2), p(x2k+1, x2k+2))p(x2k+1, x2k+2).

Thus, by induction, we construct a sequence {x2n+1} in X such that, for all n ∈ N,
x2n ∈ Tx2n−1, x2n+1 ∈ Sx2n, Hp(Tx2n−1, Sx2n) > 0 and p(x2n−1, x2n) > 0 with

p(x2n, x2n+1) <
Hp(Tx2n−1, Sx2n)√

ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))
.

By using the contractive condition (3.1) we obtain

p(x2n, x2n+1) ≤
√
ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))p(x2n−1, x2n)

for all n ∈ N. A similar reasoning, by interchanging the roles of S and T , shows that
there exists x2n+2 ∈ Tx2n+1 such that

p(x2n+1, x2n+2) ≤
√
ϑ(Hp(Tx2n+1, Sx2n), p(x2n, x2n+1))p(x2n, x2n+1).

It follows that, for all n ∈ N,

p(x2n, x2n+1) ≤
√
ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))p(x2n−1, x2n)

and

p(x2n+1, x2n+2) ≤
√
ϑ(Hp(Tx2n+1, Sx2n), p(x2n, x2n+1))p(x2n, x2n+1).

Thus, {p(xn, xn−1)}n∈N is a strictly decreasing sequence. Therefore, we get

lim
n→+∞

p(xn, xn+1) = inf
n∈N

p(xn, xn+1) := λ ≥ 0.

On the other hand, it is easy to show that {Hp(Tx2n−1, Sx2n)}n∈N is a bounded
sequence. In fact, by hypothesis, we have

Hp(Tx2n−1, Sx2n) ≤ ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))p(x2n−1, x2n).
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Now, since

ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n) < 1

then

Hp(Tx2n−1, Sx2n) ≤ p(x2n−1, x2n),

and hence the sequence {Hp(Tx2n−1, Sx2n)}n∈N is bounded. Similarly, the sequence
{Hp(Tx2n+1, Sx2n)}n∈N is bounded. By the property (ϑ2),

lim sup
n→+∞

ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n)) < 1.

Next, we show that λ = 0.
From

p(x2n, x2n+1) ≤
√
ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n)) p(x2n−1, x2n),

taking the upper limit, we get the contradiction

λ ≤
√

lim supϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))λ < λ.

We show that the sequence {xn} is Cauchy in X.
Put

µ2n−1 :=
√
ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))

and

µ2n :=
√
ϑ(Hp(Tx2n+1, Sx2n), p(x2n+1, x2n)).

Clearly, µn ∈ (0, 1) for all n ∈ N. Since lim supn→∞ µn < 1, we deduce that there exist
t ∈ [0, 1) and n0 ∈ N such that µn ≤ t for all n ∈ N, n ≥ n0. Consequently, we write

p(x2n, x2n+1) ≤ µ2n−1p(x2n−1, x2n)

and

p(x2n+2, x2n+1) ≤ µ2np(x2n+1, x2n).

Therefore, we have

p(x2n, x2n+1) ≤ t2n−n0p(x1, x2)

and

p(x2n+2, x2n+1) ≤ t2n−n0+1p(x1, x2).

Also, for all m > n > n0, we have

p(x2n, x2m+1) ≤
m∑
i=n

p(x2i, x2i+1) +

m∑
i=n+1

p(x2i, x2i−1)

≤
m∑
i=n

t2i−n0p(x1, x2) +

m∑
i=n+1

t2i−n0+1p(x1, x2).

It follows that

lim sup
n→+∞

p(x2n, x2m+1) = 0

and hence the sequence {xn} is Cauchy. Since (X, p) is complete, then the sequence {xn}
converges to a point x∗ ∈ X such that

lim
n→+∞

p(x∗, xn) = p(x∗, x∗) = 0.
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Finally, we have to show that x∗ ∈ Tx∗, that is p(x∗, Tx∗) = 0. From

p(x∗, Tx∗) ≤ p(x∗, x2n+1) + p(x2n+1, Tx
∗)

≤ p(x∗, x2n+1) +Hp(Tx∗, Sx2n)

≤ p(x∗, x2n+1) + ϑ(Hp(Tx∗, Sx2n), p(x∗, x2n))p(x∗, x2n)

≤ p(x∗, x2n+1) + p(x∗, x2n),

for n to infinity, we get

p(x∗, Tx∗) ≤ 2p(x∗, x∗) = 0.

Clearly p(x∗, Tx∗) ≥ 0 and so

p(x∗, Tx∗) = p(x∗, x∗) = 0.

By Lemma 2.5 we deduce that x∗ ∈ Tx∗.
By repeating the same reasoning for the multivalued mapping S, we get x∗ ∈ Sx∗. We
conclude that x∗ is a common fixed point of the pair (T, S).

Now, we state and prove a common fixed point theorem for a CWGMT-contraction.

Theorem 3.4. Let (X, p) be a partial metric space and T, S : X → CBp(X) be two

multivalued mappings. Assume that there exists a function ϑ ∈ ̂GMT (R) such that the
pair (T, S) is a CWGMT-contraction. Then, the pair (T, S) has a common fixed point.

Proof. Let x0 ∈ X be an arbitrary point and x1 ∈ Sx0. Consequently, p(x1, x1) =
p(x1, Sx0), by Lemma 2.5.
Since Tx1 6= ∅, then we can choose x2 ∈ Tx1 (clearly, p(x2, Tx1) = p(x2, x2)). Firstly, we
assume x1 = x2. Then

MT,S(x1, x2)

= max

{
p(x1, x2), p(x1, Tx1), p(x2, Sx2),

p(x1, Sx2) + p(x2, Tx1)

2

}
= max

{
p(x1, x1), p(x1, Tx1), p(x1, Sx1),

p(x1, Sx1) + p(x1, Tx1)

2

}
≤ max {p(x1, Tx1), p(x2, Sx2)} .

By the definition of partial metric, we have

p(x1, Tx1) = p(x1, x1) ≤ p(x1, Sx1) = p(x2, Sx2)

and hence

max{p(x1, Tx1), p(x2, Sx2)} = p(x2, Sx2).

If p(x2, Sx2) = 0, then x2 ∈ Sx2, that is x2 is a common fixed point of the pair (T, S).
Also, if Hp(Tx1, Sx2) = 0, then Tx1 = Sx2. In fact, we have

0 = Hp(Tx1, Sx2) = max{δp(Tx1, Sx2), δp(Sx2, Tx1)}

implies δp(Tx1, Sx2) = 0 and δp(Sx2, Tx1) = 0, that is Tx1 ⊆ Sx2 and Sx2 ⊆ Tx1.
Thus, we deduce x2 ∈ Tx1 = Tx2 = Sx2, that is x2 is a common fixed point of the pair
(T, S). Until now, we have not used the properties of the function ϑ.
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We can assume p(x2, Sx2) 6= 0 and Hp(Tx1, Sx2) 6= 0. By using the contractive condition
(3.2), we have

p(x1, x2) = p(x2, x2)

≤ p(x2, Sx2)

≤ Hp(Tx1, Sx2)

≤ ϑ(Hp(Tx1, Sx2), p(x2, Sx2))p(x2, Sx2).

By the property (ϑ1), that is ϑ(Hp(Tx1, Sx2), p(x2, Sx2)) < 1, we get the contradiction
p(x2, Sx2) < p(x2, Sx2).
Assume that x1 6= x2 with MT,S(x1, x2) > 0 and Hp(Tx1, Sx2) > 0.
Put

h1 =
1√

ϑ(Hp(Tx1, Sx2),MT,S(x1, x2))
> 1.

By using Lemma 2.6, there exists x3 ∈ Sx2 such that

p(x2, x3) ≤ h1Hp(Tx1, Sx2).

By using the contractive condition (3.2), we get

p(x2, x3) ≤ ϑ(Hp(Tx1, Sx2),MT,S(x1, x2))MT,S(x1, x2)√
ϑ(Hp(Tx1, Sx2),MT,S(x1, x2))

=
√
ϑ(Hp(Tx1, Sx2),MT,S(x1, x2))MT,S(x1, x2).

By a similar reasoning, let x4 ∈ Tx3 such that MT,S(x3, x4) > 0 and Hp(Tx3, Sx4) > 0.
Also, put

h2 =
1√

ϑ(Hp(Tx3, Sx4),MT,S(x3, x4))
> 1.

By Lemma 2.6, there exists x5 ∈ Sx4 such that

p(x4, x5) ≤ h2Hp(Tx3, Sx4).

By using the contractive condition (3.2), we have

Hp(Tx3, Sx4) ≤ ϑ(Hp(Tx3, Sx4),MT,S(x3, x4))MT,S(x3, x4),

and hence

p(x4, x5) ≤ ϑ(Hp(Tx3, Sx4),MT,S(x3, x4))MT,S(x3, x4)√
ϑ(Hp(Tx3, Sx4),MT,S(x3, x4))

=
√
ϑ(Hp(Tx3, Sx4),MT,S(x3, x4))MT,S(x3, x4).

By induction, let x2k−1, x2k, x2k+1 ∈ X such that x2k ∈ Tx2k−1, x2k+1 ∈ Sx2k,
MT,S(x2k−1, x2k) > 0 and Hp(Tx2k−1, Sx2k) > 0 with

p(x2k, x2k+1) <
Hp(Tx2k−1, Sx2k)√

ϑ(Hp(Tx2k−1, Sx2k),MT,S(x2k−1, x2k))
.

Then, letting x2k+2 ∈ Tx2k+1, with MT,S(x2k+1, x2k+2) > 0, Hp(Tx2k+1, Sx2k+2) > 0
and

hk+1 =
1√

ϑ(Hp(Tx2k+1, Sx2k+2),MT,S(x2k+1, x2k+2))
> 1,
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there exists x2k+3 ∈ Sx2k+2 such that

p(x2k+2, x2k+3) ≤ hk+1Hp(Tx2k+1, Sx2k+2).

By using the contractive condition (3.2) we get

p(x2k+2, x2k+3) ≤
√
ϑ(Hp(Tx2k+1, Sx2k+2),MT,S(x2k+1, x2k+2))MT,S(x2k+1, x2k+2).

Thus, by induction, we construct a sequence {x2n+1} in X such that, for all n ∈ N,
x2n ∈ Tx2n−1, x2n+1 ∈ Sx2n, Hp(Tx2n−1, Sx2n) > 0 and MT,S(x2n−1, x2n) > 0 with

p(x2n, x2n+1) ≤ Hp(Tx2n−1, Sx2n)√
ϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n))

.

By using the contractive condition (3.2), we obtain

p(x2n, x2n+1) <
√
ϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n))MT,S(x2n−1, x2n)

for all n ∈ N. A similar reasoning, by interchanging the roles of S and T , shows that
there exists x2n+2 ∈ Tx2n+1 such that

p(x2n+1, x2n+2) <
√
ϑ(Hp(Tx2n+1, Sx2n),MT,S(x2n+1, x2n))MT,S(x2n+1, x2n).

Notice that

p(x2n−1, x2n)

≤MT,S(x2n−1, x2n)

= max
{
p(x2n−1, x2n), p(x2n−1, Tx2n−1), p(x2n, Sx2n),

p(x2n−1, Sx2n) + p(x2n, Tx2n−1)

2

}
≤ max

{
p(x2n−1, x2n), p(x2n, x2n+1),

p(x2n−1, x2n+1) + p(x2n, x2n)

2

}
≤ max

{
p(x2n−1, x2n), p(x2n, x2n+1),

p(x2n−1, x2n) + p(x2n, x2n+1)− p(x2n, x2n) + p(x2n, x2n)

2

}
= p(x2n−1, x2n).

It follows that

MT,S(x2n−1, x2n) = p(x2n−1, x2n).
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Also, we have

p(x2n+1, x2n)

≤MT,S(x2n+1, x2n)

= max
{
p(x2n+1, x2n), p(x2n+1, Tx2n+1), p(x2n, Sx2n),

p(x2n+1, Sx2n) + p(x2n, Tx2n+1)

2

}
≤ max

{
p(x2n+1, x2n), p(x2n+1, x2n+2),

p(x2n+1, x2n+1) + p(x2n, x2n+2)

2

}
≤ max

{
p(x2n+1, x2n), p(x2n+1, x2n+2),

p(x2n, x2n+1) + p(x2n+1, x2n+2)− p(x2n+1, x2n+1) + p(x2n+1, x2n+1)

2

}
= p(x2n+1, x2n).

Then,

MT,S(x2n+1, x2n) = p(x2n+1, x2n).

It follows that, for all n ∈ N,

p(x2n, x2n+1) <
√
ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))p(x2n−1, x2n)

and

p(x2n+1, x2n+2) <
√
ϑ(Hp(Tx2n+1, Sx2n), p(x2n, x2n+1))p(x2n, x2n+1).

Thus, the sequence {p(xn, xn−1)}n∈N is strictly decreasing.
On the other hand, it is easy to show that the sequences {Hp(Tx2n−1, Sx2n)}n∈N and

{Hp(Tx2n+1, Sx2n)}n∈N are bounded. In fact, by hypothesis, we have

Hp(Tx2n−1, Sx2n) ≤ ϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n))MT,S(x2n−1, x2n).

Since

ϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n) < 1

and

MT,S(x2n−1, x2n) = p(x2n−1, x2n),

it follows that

Hp(Tx2n−1, Sx2n) ≤ p(x2n−1, x2n),

and hence {Hp(Tx2n−1, Sx2n)}n∈N is a bounded sequence. Similarly, the sequence
{Hp(Tx2n+1, Sx2n)}n∈N is bounded.

Consequently, there exists λ ≥ 0 such that

lim
n→+∞

p(xn, xn+1) = inf
n∈N

p(xn, xn+1) := λ.

By using the property (ϑ2), we obtain

lim sup
n→+∞

ϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n)) < 1

and

lim sup
n→+∞

ϑ(Hp(Tx2n+1, Sx2n),MT,S(x2n+1, x2n)) < 1.
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Now, we show that λ = 0.
From

p(x2n, x2n+1) ≤
√
ϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n))MT,S(x2n−1, x2n),

taking the upper limit, we get the contradiction

λ ≤
√

lim supϑ(Hp(Tx2n−1, Sx2n),MT,S(x2n−1, x2n))λ < λ.

Next step is to show that the sequence {xn} is Cauchy.
Put

µ2n−1 :=
√
ϑ(Hp(Tx2n−1, Sx2n), p(x2n−1, x2n))

and

µ2n :=
√
ϑ(Hp(Tx2n+1, Sx2n), p(x2n, x2n+1)).

Clearly, µn ∈ (0, 1) for all n ∈ N. Since lim supn→+∞ µn < 1, we deduce that there exist
t ∈ [0, 1) and n0 ∈ N such that µn ≤ t for all n ∈ N, n ≥ n0. Consequently, we write

p(x2n, x2n+1) ≤ µ2n−1p(x2n−1, x2n)

and

p(x2n+2, x2n+1) ≤ µ2np(x2n+1, x2n).

Therefore, we have

p(x2n, x2n+1) ≤ t2n−n0p(x1, x2)

and

p(x2n+2, x2n+1) ≤ t2n−n0+1p(x1, x2).

Also, for all m > n > n0, we have

p(x2n, x2m+1) ≤
m∑
i=n

p(x2i, x2i+1) +

m∑
i=n+1

p(x2i, x2i−1)

≤
m∑
i=n

t2i−n0p(x1, x2) +

m∑
i=n+1

t2i−n0+1p(x1, x2).

It follows that

lim sup
n→+∞

p(x2n, x2m+1) = 0

and hence the sequence {xn} is Cauchy. Since (X, p) is complete, then the sequence {xn}
converges to a point x∗ ∈ X such that

lim
n→+∞

p(x∗, xn) = p(x∗, x∗) = 0.

We show that x∗ ∈ Tx∗ and hence p(x∗, Tx∗) = 0. Reasoning by absurd, suppose
p(x∗, Tx∗) 6= 0. By using the properties of ϑ, of p and the contractive condition (3.2), we
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write

p(x∗, Tx∗)

≤ p(x∗, x2n+1) + p(x2n+1, Tx
∗)

≤ p(x∗, x2n+1) +Hp(Tx∗, Sx2n)

≤ p(x∗, x2n+1) + ϑ(Hp(Tx∗, Sx2n),MT,S(x∗, x2n))MT,S(x∗, x2n)

≤ p(x∗, x2n+1) + ϑ(Hp(Tx∗, Sx2n),MT,S(x∗, x2n)) max
{
p(x∗, x2n),

p(x∗, Tx∗), p(x2n, Sx2n),
p(x∗, Sx2n) + p(x2n, Tx

∗)

2

}
.

Taking the limit as n to infinity, we get the contradiction

p(x∗, Tx∗) < p(x∗, Tx∗)

and hence p(x∗, Tx∗) = 0. Then, we have

p(x∗, Tx∗) = p(x∗, x∗).

By using Lemma 2.5, we deduce that x∗ ∈ Tx∗. The analogous reasoning for the multi-
valued mapping S shows that x∗ ∈ Sx∗. We conclude that x∗ is a common fixed point of
the pair (T, S).

4. Consequences and example

As consequences of Theorem 3.4 we give two corollaries, which are generalizations of
Nadler’s theorem and Mizoguchi-Takahashi’s theorem, respectively.

Corollary 4.1. Let (X, p) be a complete partial metric space and T, S : X → CBp(X)
be two multivalued mappings such that, for all x, y ∈ X, we have

Hp(Tx, Sy) ≤ kMT,S(x, y)

with k ∈ (0, 1). Then, the pair (T, S) has a common fixed point.

Proof. Consider the function ϑ : R+ × R+ → R given by

ϑ(t, s) = k

for all t, s ∈ R. Clearly, ϑ ∈ ̂GMT (R) and so the proof follows by an application of
Theorem 3.4.

Corollary 4.2. Let (X, p) be a complete partial metric space and T, S : X → CBp(X)
be two multivalued mappings such that, for all x, y ∈ X, we have

Hp(Tx, Sy) ≤ ϕ(MT,S(x, y))MT,S(x, y),

where ϕ : R+ → [0, 1) is a function such that lim supr→t+ ϕ(r) < 1 for all t ∈ R+. Then,
the pair (T, S) has a common fixed point.

Proof. Consider the function ϑ : R+ × R+ → R given bye

ϑ(t, s) = ϕ(s)

for all t, s ∈ R. Clearly, ϑ ∈ ̂GMT (R) and so the proof follows by an application of
Theorem 3.4.
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Also, if we assume T = S in Definitions 3.1 and 3.2, then we retrieve the following
definitions.

Definition 4.3. Let (X, p) be a partial metric space. A multivalued mapping T : X →
CBp(X) is a GMT-contraction if there exists a function ϑ ∈ ̂GMT (R) such that

Hp(Tx, Ty) ≤ ϑ(Hp(Tx, Ty), p(x, y))p(x, y),

for all x, y ∈ X.

Definition 4.4. Let (X, p) be a partial metric space. A multivalued mapping T :
X → CBp(X) is a weaker generalized Mizoguchi-Takahashi type contraction (for short,

WGMT-contraction) if there exists a function ϑ ∈ ̂GMT (R) such that

Hp(Tx, Ty) ≤ ϑ(Hp(Tx, Ty),MT (x, y))MT (x, y),

for all x, y ∈ X, where

MT (x, y) := max

{
p(x, y), p(x, Tx), p(y, Ty),

p(x, Ty) + p(y, Tx)

2

}
.

Clearly, by using the Definitions 4.3 and 4.4, we can state (without proofs) the following
particular case of Theorems 3.3 and 3.4, respectively.

Corollary 4.5. Let (X, p) be a complete partial metric space and T : X → CBp(X) be a

multivalued mapping. Assume that there exists a function ϑ ∈ ̂GMT (R) such that T is a
GMT-contraction (resp., WGMT-contraction). Then, T has a fixed point.

Finally, we give an illustrative example of Theorem 3.4.

Example 4.6. Let X = [0, 1] ∪ {4}. Let T, S : X → CBp(X) be two multivalued
mappings defined by

Tx =
[
0,
x

4

]
, for all x ∈ X

and

Sy =
{y

4

}
, for all y ∈ X.

Clearly, (X, p) is a complete partial metric space, where the partial metric p : X×X → R+

is given by

p(x, y) =
1

4
|x− y|+ 1

2
max{x, y}, for all x, y ∈ X.

Let ϑ : R+ × R+ → R be defined by

ϑ(t, s) =


2

3
if s ∈ [0, 1],

1

3
otherwise,

for all t ∈ R+. Clearly ϑ ∈ ̂GMT (R). Now, we show that the pair (T, S) is a CWGMT-
contraction. Then, we distinguish the following four cases:

Case 1. If x = 4 and y ∈ [0, 1], then T4 = [0, 1] and Sy =
{y

4

}
. Then

MT,S(4, y) ≥ p(4, y) = 3− 1

4
y
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and hence

Hp

(
[0, 1],

{y
4

})
=

3

4
− 1

16
y

≤ 1

3
·
(

3− 1

4
y

)
≤ ϑ

(
Hp

(
[0, 1],

{y
4

})
,MT,S(4, y)

)
MT,S(4, y).

It follows that the contractive condition (3.2) holds true.

Case 2. If x ∈ [0, 1] and y = 4, then Tx =
[
0,
x

4

]
and S4 = {1}. Then

MT,S(x, 4) ≥ p(x, 4) = 3− 1

4
x

and hence the contractive condition (3.2) holds true. In fact

Hp

([
0,
x

4

]
, {1}

)
=

3

4

≤ 1

3
·
(

3− 1

4
x

)
≤ ϑ

(
Hp

([
0,
x

4

]
, {1}

)
,MT,S(x, 4)

)
MT,S(x, 4).

Case 3. If x, y ∈ [0, 1], then Tx =
[
0,
x

4

]
and Sy =

{y
4

}
. Then

MT,S(x, y) ≥ p(x, y) =


3

4
x− 1

4
y if x ≥ y,

3

4
y − 1

4
x if x < y,

and hence, if x ≥ y, we have

Hp

([
0,
x

4

]
,
{y

4

})
= max

{
3

16
y,

3

16
x− 1

16
y

}
≤ 2

3
·
(

3

4
x− 1

4
y

)
≤ ϑ

(
Hp

([
0,
x

4

]
,
{y

4

})
,MT,S(x, y)

)
MT,S(x, y).

Otherwise, if x < y, we write

Hp

([
0,
x

4

]
,
{y

4

})
=

3

16
y

≤ 2

3
·
(

3

4
y − 1

4
x

)
≤ ϑ

(
Hp

([
0,
x

4

]
,
{y

4

})
,MT,S(x, y)

)
MT,S(x, y).

It follows that the contractive condition (3.2) holds true.
Case 4. If x = y = 4, then Tx = [0, 1] and Sy = {1}. Then

MT,S(4, 4) ≥ p(4, [0, 1]) =
11

4
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and hence the contractive condition (3.2) holds true. In fact

Hp ([0, 1], {1}) =
3

4

<
1

3
· 11

4
≤ ϑ (Hp ([0, 1], {1}) ,MT,S(4, 4))MT,S(4, 4).

We conclude that all the hypotheses of Theorem 3.4 are satisfied and hence the pair (T, S)
has a common fixed point.
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