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Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to dietary nutrients, which acts through a specific
receptor, the GLP-2 receptor (GLP-2R). The physiological effects of GLP-2 are multiple, involving also the intestinal adaptation to high fat
diet (HFD). In consideration of the well-known relationship between chronic HFD and impaired glucose metabolism, in the present study
we examined if the blocking of the GLP-2 signaling by chronic treatment with the GLP-2R antagonist, GLP-2 (3-33), leads to functional
consequences in the regulation of glucose metabolism in HFD-fed mice. Compared with animals fed standard diet (STD), mice at the 10th
week of HFD showed hyperglycaemia, glucose intolerance, high plasma insulin level after glucose load, increased pancreas weight and (3 cell
expansion, but not insulin resistance. In HFD fed mice, GLP-2 (3—-33) treatment for 4 weeks (from the 6th to the 10th week of diet) did not
affect fasting glycaemia, but it significantly increased the glucose intolerance, both fasting and glucose-induced insulin levels, and reduced the
sensitivity to insulin leading to insulin-resistance. In GLP-2 (3—33)-treated HFD mice pancreas was significantly heavier and displayed a
significant increase in B-cell mass in comparison with vehicle-treated HFD mice. In STD mice, the GLP-2 (3-33) treatment did not affect
fasted or glucose-stimulated glycemia, insulin, insulin sensitivity, pancreas weight and beta cell mass. The present study suggests that
endogenous GLP-2 may act as a protective factor against the dysregulation of the glucose metabolism that occurs in HFD mice, because
GLP-2 (3-33) worsens glucose metabolism disorders.
J. Cell. Physiol. 230: 3029-3036, 2015. © 2015 Wiley Periodicals, Inc.

Glucagon-like peptide-2 (GLP-2) is a 33- amino acid
proglucagon-derived peptide, related in sequence to
glucagon-like peptide-1 (GLP-1) and co-secreted in response
to nutrients, and specifically fat and carbohydrates, from
intestinal endocrine L cells (for review see Marathe et al., 2013;
Baldassano and Amato, 2014; Drucker and Yusta, 2014). While
GLP-1 is one of the most potent insulinotropic substances
known, GLP-2 mainly acts to maintain intestinal homeostasis
and to enhance barrier function (Holst, 2004; Janssen et al.,
2013). GLP-2 also promotes the rapid stimulation of hexose
transport (Cheeseman et al., 1997), reduces short-term food
intake (Tang-Christensen et al., 2000; Baldassano et al., 2012)
and can modulate the gastrointestinal functions, such as gastric
emptying, intestinal motility, and intestinal enteric secretion
(Wgjdemann et al., 1998; Nagell et al., 2004; Amato et al., 2009;
Baldassano et al., 2009; Amato et al., 2010; Cinci et al., 201 I).
The peptide acts through a specific G protein-coupled
receptor (GLP-2R) that is expressed in central and enteric
neurons, vagal sensory neurons, pancreatic a cells,
enteroendocrine cells and myofibroblasts (Lovshin et al., 2004;
Qrskov et al., 2005; Guan et al., 2006; Nelson et al., 2007;
Baldassano et al., 2009).

GLP-2 has been reported to play a beneficial role in obesity
condition (Cani et al., 2009). In general, obesity may be due to
an high fat diet (HFD), nutritional condition that may lead to
metabolic syndrome which is defined as a cluster of obesity,
glucose intolerance, insulin resistance, hypertension, and
dyslipidemia (Buettner et al., 2007; Shin et al., 2013). GLP-2, in
genetically obese mice, lowers endotoxemia, reduces gut
permeability, and decreases systemic and hepatic inflammation,
oxidative stress and macrophage infiltration markers (Cani
et al.,, 2009). We showed that GLP-2 is involved in the
regulation of the small intestine morphological changes
following chronic HFD (Baldassano et al., 2013). Indeed, the
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chronic treatment with the GLP-2R antagonist, GLP-2 (3-33),
reduces the increase in crypt—villus height and in the cell
number per villus in HFD mice. However, the functional
consequences of the blocking of the GLP-2 signaling by GLP-2
(3—33) in this animal model, if any, have not been explored yet.
It is likely to hypothesize that changes in mucosal morphology
induced by GLP-2R antagonist chronic treatment are
associated with changes in metabolic homeostasis, in
consideration of the key role played by the gut for disposal of
nutrient.

Thus, our aim was to investigate the role of endogenous
GLP-2 signaling in the glucose homeostasis in HFD-fed
mice by chronic treatment with the GLP-2R antagonist,
GLP-2 (3-33).
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Materials and Methods
Animals

The animal studies were approved by Ministero della Sanita‘ (Rome,
Italy). All of the animal procedures for the care and use of laboratory
animals were in conformity with the Italian D.L. no. | 16 of 27
January 1992 and subsequent variations and the recommendations
of the European Economic Community (86/609/ECC).

Male C57BL/6J (B6) mice, purchased from Harlan Laboratories
(San Pietro al Natisone Udine, Italy), 4 weeks of age, were housed
under standard conditions of light (12 h light:12 h darkness cycle)
and temperature (22-24°C), with free access to water and food.
After acclimatization (| week), the animals were weighed and
divided in two groups, which were fed a standard diet (STD)
(4RF25, Mucedola, Milan, Italy), or a high fat diet (HFD) (PF4051/D,
Mucedola) for 10 weeks. Throughout the 10 weeks of the study,
food intake was measured daily while body weight was measured
once every 3 days. Initially, 6 animals of each group were used to
characterize the glucose metabolic state of mice fed differently for
10 weeks.

Peptide

Synthetic GLP-2 (3—33) was provided by Caslo Laboratory
(Lyngby, Denmark). Purity (>95%) and correctness of structure
were confirmed by mass, sequence, and HPLC analysis.

Glucose and insulin tolerance tests

Intraperitoneal glucose tolerance test (IPGTT) and insulin
tolerance test (ITT) were carried out in mice fasted for 6 h with
free access to water. For IPGTT, the mice were injected
intraperitoneally (i.p.) with glucose (2 g/lkg body weight)
(D-glucose, Sigma Aldrich, Milan, Italy) in 0.9% saline. Because
gastric emptying rate, glucose absorption and incretin effects are
major factors determining the insulin secretion response to the
glucose oral, we ruled out the oral glucose tolerance test. For ITT
mice were given an i.p. injection of insulin (1.2 U/kg body weight)
(Insuman Rapid, Sanofi Aventis, Italy) in 0.9% saline. Blood glucose
was measured up to 120 min (0, 15, 30, 60, 90, 120) by tail vein
using a glucometer (GlucoMen LX meter, Menarini, ltaly).

For measurement of plasma insulin blood samples were
collected during the IPGTT by tail vein puncture at 0, 15, 60, and
120 min, immediately transferred into chilled tubes containing a
final concentration of | mg/ml EDTA, and centrifuged at 825 g at
4° Cfor 10 min to obtain plasma, which was stored at —80°C until
analysis.

Quantification of plasma insulin was carried out by ELISA kit for
mouse (Alpco diagnostics, Salem, NH) according to the
manufacturer’s instructions. The experimental detection limit of
the assay was 0.1 ng/ml. Glucose and insulin tolerance tests and
biochemical analysis were conducted before and after chronic
treatment with GLP-2 (3-33).

Tissue processing

The pancreases were removed, weighted and subsequently were
cut into approximately 10 pieces, fixed in formalin and embedded
in paraffin for histological and immunomorphological analyses.

Histological analysis

Samples of total pieces of pancreas were processed for light
microscopy examination. Sections with a thickness of 5 um were
obtained from paraffin blocks and were stained with hematoxylin
and eosin. After the slides were observed using an automated Leica
DM5000 B microscope (Leica, Milan, Italy) connected to a
high-resolution camera, Leica DC300 F (Leica), to measure total
pancreas area and islet area.
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Immunomorphological analyses

The immunomorphological analyses were performed by
immunofluorescence experiments. Five-micrometer sections
were dewaxing in xylene, rehydration in ethanol, washing in
phosphate-buffered solution (PBS), incubated with unmasking
solution (tri-sodium citrate |10 mM, 0.05% Tween 20) for 10 min at
60°C and treated with blocking solution (3% albumin bovine serum
in PBS) for 30 min. Then, the sections were incubated with the
primary antibody, rabbit anti-insulin (Insulin H-86, code sc-9168,
Santa Cruz Biotecnology, Europe) diluted 1:50, overnight at 4°C.
Sections were rinsed twice for 10 min in PBS and thereafter
incubated with secondary antibody with specificity for rabbit-IgG
conjugated with fluorescein isothiocyanate (FITC; diluted 1:200;
Sigma-Aldrich, Milan, Italy). Nonimmune rabbit serum was used for
negative controls.

The sections were examined using an automated Leica DM5000
B microscope (Leica, Milan, Italy) connected to a high-resolution
camera, Leica DC300 F (Leica). Images were processed using
Image] software (Image) 1.43u, National Institute of Mental Health,
Bethesda, Maryland). The number of positive pixels indicative of
insulin staining was summed with the use of the optimixed positive
pixel count algorithm and normalized per total pancreas area for
each mouse. Total 3 cell mass was calculated by multiplying this
value by the weight of the pancreas (Bahrami et al., 2010). A total of
six pancreas from each group of animals was analyzed. The
examination and the computer analysis of the histological sections
were performed without knowledge of the origin of the tissue
samples.

GLP-2 (3-33) treatment

After 6 weeks of feeding with the respective diets, a subgroup of
mice on each diet was injected once a day i.p. with 100 pl of GLP-2
(3—33) (60 ng) or PBS (vehicle control) for 4 weeks, as previously
reported (Baldassano et al., 2013). After 4 weeks period
treatment, IPGTT and ITT and pancreatic analysis were carried
out.

Statistical analysis

Results are shown as means & S.E.M. The letter n indicates the
number of experimental animals. The comparison between the
groups was performed by ANOVA followed by Bonferroni’s
post-test or by Student’s t-test when appropriate using Prism
Version 6.0 Software (Graph Pad Software, Inc., San Diego, CA).
Areas under the curve (AUC) values for the glucose and plasma
insulin were calculated using the trapezoidal rule. A P value <0.05
was considered to be statistically significant.

Results
Impact of a chronic HFD on glycemic control, insulin
sensitivity and pancreas morphology

After 10 weeks on high fat diet, mice had greater mass gain
compared to STD mice, being the body weight 28 + 0.8. and
24+ 1.2(P<0.0l,n= [2/group), respectively. The food intake
was not different between groups (HFD: 2.33 0.2 g/day and
STD: 2.67 £ 0.3 g/day), but the energy intake was greater in
HFD mice (14 £ 1.2 Kcal/day) than in STD mice (9.3 Kcal £ 1.0
Kcal/day P < 0.05; n= 12/group).

Mice on high fat diet displayed hyperglycemia. The basal
fasting glucose level was 173.8 &= 5.9 mg/dl in HFD mice and
123.5 £ 12.8 mg/dl in STD mice (P <0.05). HFD mice displayed
also an impaired glycemic response following intaperitoneal
glucose load. In the IPGTT the plasma glucose increased to a
maximum after |15 min of glucose administration in both
groups, but this maximun was significantly higher and remained
more elevated in HFD mice than in STD mice (Fig. 1A). This is
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Fig. I. Glucose tolerance, plasma insulin and insulin sensitivity in standard diet (STD)- and high fat diet (HFD) fed mice. (A) Blood glucose
concentration during intraperitoneal glucose tolerance test (IPGTT). (B) AUC for blood glucose concentrations during IPGTT. (C) Plasma
insulin during IPGTT. (D) AUC for plasma insulin during IPGTT. (E) blood glucose concentrations during insulin tolerance test (ITT). (F) AUC
for blood glucose concentrations during ITT. To measure glucose tolerance and plasma insulin mice were given an intraperitoneal injection of
glucose (2 g/kg body weight) while to measure insulin sensitivity mice were given an intraperitoneal injection of insulin (1.2 U/kg body weight).
Data are mean values + S.E.M. (n =6 mice/group). "P < 0.05.

also illustrated by the measurement of the glucose area under during the course of the intraperitoneal glucose load (Fig. | C),
the curve (AUC) (Fig. IB). as reflected by the AUC for insulin (Fig. 1D).

Plasma insulin level in fasted states was similar between the HFD mice did not lose insulin sensitivity. No difference in
two groups of animals while it was more elevated in HFD mice glucose excursion was detected after intraperitoneal
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administration of exogenous insulin in HFD compared with
STD mice (Fig. |E and F).

In HFD mice pancreas was heavier (+-44% P < 0.05).
Moreover HFD mice showed larger pancreatic islets (islet size
varied from 13,392.5 +936.91 Mmz in STD to
19,960 + 767.023 wm? in HFD mice, + 49% P < 0.05) and
significantly greater 3 cell mass than STD mice (Fig. 2).

Effects of GLP-2 (3-33) treatment on glucose tolerance
and plasma insulin in HFD Mice

In HFD mice, the chronic treatment with GLP-2R antagonist,
GLP-2 (3-33) (60 ng), did not modify food intake/die and body
weight (Fig. 3). Moreover, the GLP-2 (3-33) treatment did not
affect fasting glycemia, but it significantly reduced glucose
tolerance. Blood glucose levels after intraperitoneal glucose
load were significantly increased in GLP-2 (3-33) treated mice
(Fig. 4 A and B). Moreover, the chronic treatment affected the
plasma insulin levels in both fasted and glucose stimulated
states. In GLP-2 (3—33) treated mice, the insulin level was
significantly increased both in fasted state and in response to
intraperitoneal glucose load at all-time points (Fig. 4C and D).

Effects of GLP-2 (3-33) treatment on insulin sensitivity in
HFD Mice

The chronic treatment with GLP-2 (3—33), (60 ng) significantly
reduced the sensitivity to insulin. In GLP-2 (3—-33) treated mice
the levels of blood glucose decreased less in comparison with

PBS-treated HFD animals after intraperitoneal exogenous
administration of insulin (fig. 4 E and F).

Effects of GLP-2 (3-33) treatment on pancreas in HFD
Mice

In HFD mice, the chronic treatment with GLP-2 (3-33) affected
pancreatic islets. We found that pancreas was significantly

heavier and displayed significant increase in 3-cell mass in HFD
GLP-2 (3-33)-treated mice (Fig. 5).

Effects of GLP-2 (3-33) treatment on glucose metabolic
parameters in STD-fed mice

In STD mice, the GLP-2 (3-33) treatment did not affect fasted
or glucose-stimulated glycemia, insulin, insulin sensitivity,
pancreas weight and beta cell mass (data not shown).

Discussion

Our study shows that endogenous GLP-2 is not essential in the
control of glucose homeostasis or pancreas endocrine function
under normal conditions, but it can participate as a favorable
factor to the maintenance of glucose in HFD mice. Indeed, the
blockade of the GLP-2R signaling accelerates the process
leading to insulin resistance in HFD mice.
Up to date the GLP-2 action on glucose homeostasis has

been scarcely explored and the importance of GLP-2R signaling
is not clear (Guan, 2014). In fact, GLP-2R global deficiency is
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(A) Pancreas weight and 3 cell mass in mice fed a standard diet (STD) or high fat diet (HFD). Data are mean values + S.E.M. (n=6

mice/group). *P < 0.05. (B) Representative immunofluorescence staining of insulin from pancreatic sections of mice fed a standard diet or a

high fat diet. Scale bar 50 pm.
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Fig. 3. Effects of chronic treatment with GLP-2 (3-33) (60 ng) on

food intake and body weight in mice fed and high fat diet (HFD). (A)
Time course of the effect on food intake during 4 weeks of GLP-2 (3-
33) treatment. (B) Time course of the effect on body weight during
4 weeks of GLP-2 (3-33) treatment. Data are mean values + S.E.M.
(n =6 micel/group).

not critical for glucose homeostasis in normal or lean diabetic
mice, while it accentuates hyperglycemia and impaired glucose
tolerance in genetic (ob/ob) obese mice (Bahrami et al., 2010).
However, recent evidence have shown that mice lacking
GLP-2R in pro-opiomelacortin (POMC) neurons of
hypothalamic arcuate nucleus display glucose intolerance and
hepatic insulin resistance suggesting that GLP-2 can function as
a key neural transmitter in the hypothalamic-brainstem
neurocircuits to fine-tune glucose homeostasis (Shi et al.,
2013). In addition, GLP-2 is considered as a key signal to
contribute to glycemic improvement after bariatric surgery,
particularly Roux-en-Y gastric bypass (RYGB) (Saeidi et al.,
2013).

In C57BL/6) mouse model a chronic exposure to HFD
induces obesity and a progressive deterioration of metabolic
control, characterized by hyperglycemia, hyperinsulinemia, and
insulin resistance (Surwit et al., 1988; Lee et al., 1995; Ahrén
etal., 1997). Accordingly, this animal model is used in studies on
pathophysiology of impaired glucose and type Il diabetes
(Winzell et al., 2007) and for the development of new
treatments (Reimer et al., 2002). The high fat-fed mouse model
is a dynamic model in which compensatory adaptations may
change by time (Winzell et al., 2007), then we focused our
study on glucose control at 10 weeks of HFD to establish the
consequence of GLP-2 (3-33) treatment. In our experiments,
mice at the 10th week of HFD showed hyperglycemia, glucose
intolerance and high plasma insulin level after glucose load.
However, they did not present reduced insulin sensitivity, at
least at the maximal dose we tested, in according to previous
studies (Lamont and Drucker, 2008; Baharami et al., 2010).
Likewise, we detected increased pancreas weight and 3 cell
expansion. Increase in islets mass, which begins early in HFD
exposure, coincident with the onset of hyperglycemia and
glucose intolerance, but before the onset of insulin resistance
has been reported (Stamateris et al., 2013). Therefore, the
higher increase in insulin secretion in response to glucose load
in HFD mice may be correlate with increased pancreatic beta
cell mass, consistent with previous study (Collins et al., 2010;
Fraulob et al., 2010; Li et al,, 201 |; Wu et al., 2013).

After having characterized the metabolic state of mice after
10 weeks of HFD feeding, we asked whether endogenous
GLP-2 was involved in the glucose homeostasis. To reach this
goal, we blocked the signal mediated by the GLP-2R by treating
the animals for 4 weeks (from the 6th to the 10th week of diet)
with the GLP-2R antagonist, GLP-2 (3—33). The dose, the route
of administration and treatment period were based on
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previous studies describing the intestinotrophic properties of
the GLP-2 in mouse (lakoubov et al., 2009; Baldassano et al.,
2013). On the other, the GLP-2R antagonist has enabled
experiments delineating the importance of endogenous GLP-2
action in vivo (Nelson et al., 2008; Shin et al., 2005).

The first finding was that the blockade of the GLP-2R
signaling deteriorates glucose control only in HFD mice, as
suggested by increased glucose intolerance, significantly higher
insulin levels in both fasted state and after glucose load and less
sensitivity to exogenous insulin in comparison with HFD mice
treated with PBS. In contrast, the chronic treatment with
GLP-2 (3-33) did not affect glycemic parameters, glucose
tolerance, insulin sensitivity or pancreas weight and beta cell
mass in STD mice, ruling out a crucial role for the endogenous
GLP-2 in glucose homeostasis in normal conditions. Indeed,
GLP-2R deletion only in pro-opiomelanocortin neurons
impairs postprandial glucose tolerance and hepatic insulin
resistance (Shi et al., 2013) indicating that GLP-2 is involved in
the control of glucose homeostasis by acting centrally.
Although we did not detect evidence for significant changes in
glucose metabolic parameters in STD mice, we have no
indication if GLP-2R located in central neurons are blocked in
our experimental protocol and we cannot exclude the
possibility that central nervous system GLP-2 is important for
the maintenance of glucose homeostasis.

Data from our experiments allow us to hypothesize that
endogenous GLP-2 would act as a protective factor against the
dysregulation of the glucose metabolism that occurs in HFD
mice, because GLP-2 (3—33) exacerbates glucose metabolism
disorders. Our results are in line with previous studies which
do not support a role for endogenous basal GLP-2R signaling in
the control of glucose homeostasis or islet function under
normal or lean diabetic mice, but elimination of GLP-2R
signaling in genetically obese mice impairs the normal islet
adaptative response required to maintain glucose homeostasis
(Bahrami et al., 2010). Indeed, the Authors did not observed
any difference in glucose homeostasis in GLP-2R ™" versus
GLP-2R '~ mice fed a high fat diet for 5 months (Bahrami et al.,
2010). Compensation in transgenic model is common and the
mouse model apart from the elimination of GLP-2R signaling
was also leptin-deficient. Thus, the discrepancy with our result
may be due to compensatory factors that could mask the effect
of loss of endogenous GLP-2R signaling. Alternatively,
difference in the period of diet (10 weeks vs. 5 months) may
also account for differences between our data and the finding
reported by Baharami et al. (2010). The diabetes/obesity
syndrome worsens with time and with increasing obesity
(Collins et al., 2004) and the beneficial effect exerted by
GLP-2R activation could be hampered. Indeed, within |6 weeks
of high-fat diet, the diabetes/obesity syndrome is completely
reversible at this stage in these mice (Parekh et al., 1998)
suggesting that the regulatory mechanisms are still working.

To confirm further that the chronic treatment with GLP-2
(3—33) more rapidly leaded the mice to a pre-diabetic stage we
also evaluated {3 cell mass. We found, in conjunction with the
reduced glucose tolerance and increased plasma insulin
secretion, that the blockade of the GLP-2R signaling further
increases 3 cells mass in HFD mice, suggesting that mice are
still in a pre-diabetic stage. We interpreted the increase in 3
cell mass induced by GLP-2R blockade as being the
consequence of the islet adaptation to the potent stimuli
exerted on hyperglycemia and hyperinsulinemia. Thus, the
blockade of the GLP-2 signaling indirectly affects 3 cell mass
through impairing glucose and insulin levels. Indeed, it is known
that high plasma levels of insulin and glucose increase {3 cell
mass in rodents (Flier et al., 2001; Jetton et al., 2005; Jetton
et al.,, 2008; Levitt et al., 201 I; Stamateris et al., 2013).

On the basis of our results, we cannot establish at which
level the endogenous peptide exerts its action, but we can just

3033
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Fig. 4. Effects of chronic treatment with GLP-2 (3-33) (60 ng) on glucose tolerance, plasma insulin and insulin sensitivity in mice fed and high
fat diet (HFD). (A) Blood glucose concentration during intraperitoneal glucose tolerance test (IPGTT). (B) AUC for blood glucose
concentrations during IPGTT. (C) Plasma insulin during IPGTT. (D) AUC for plasma insulin during IPGTT. (E) Blood glucose concentrations
during insulin tolerance test ITT. (F) AUC for blood glucose concentrations during ITT. To measure glucose tolerance and plasma insulin
mice were given an intraperitoneal injection of glucose (2 g/kg body weight) while to measure insulin sensitivity mice were given an
intraperitoneal injection of insulin (1.2 U/kg body weight). Data are mean values + S.E.M. (n =6 mice/group). "P < 0.05.
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speculate about the mechanistic insight. We can rule out that
GLP-2 controls glucose parameters indirectly by influencing
food intake because it was not affected. A direct action on 3 cell
function appears unlikely because the GLP-2R mRNA
transcript was not detected in mouse islets but only in whole
pancreas (Bahrami et al., 2010) or rat pancreatic alpha cells (de
Heer et al,, 2007). However, GLP-2 and GLP-2R expression
could changes in obesity conditions, as previously reported
(Rotondo et al., 201 I; Baldassano et al., 2013). Moreover, the
block of the GLP-2R might directly affect hepatic function and
lipid accumulation, since the GLP-2R is expressed in mouse
liver (El-Jamal et al., 2014). Hepatic steasosis has been reported
HFD mice (de Meijer et al., 2010; Fraulob et al., 2010) and fatty
liver is strongly associated with obesity and insulin resistance
(Asrih and Jornayvaz, 2013). Another potential explanation for
the effects of GLP-2 blockade on insulin resistance is related to
GLP-2 ability to reduce gut permeability and consequently the
leakage of bacterial endotoxins into the portal blood
circulation (Benjamin et al., 2000). Previously studies have
shown that the block of the GLP-2R can exacerbate
inflammation in genetically obese mice (Cani et al., 2009) and
endotoxemia and low-grade inflammation are associated with
insulin resistance (Hotamisligil, 2006; Cani et al., 2007).
Therefore, further studies are necessary to resolve this issue.

Anyway, the results support a potential protective and
beneficial role of GLP-2 in HFD fed mice and in this view, there
has been reported that the glutamine-induced GLP-2 secretion
from ileal tissue is decreased in diabetic rats (Shan etal., 2013).

In conclusion, the findings of the present study suggest that
endogenous GLP-2 is functionally important for the
maintenance of glucose homeostasis in HFD mice because loss
of the GLP-2R signaling worsens glucose control leading to
insulin resistance.
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