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Abstract. In this paper, we provide a method to estimate the space-time intensity of a branching-type
point process by mixing nonparametric and parametric approaches. The method accounts simultane-
ously for the estimation of the different model components, applying a forward predictive likelihood
estimation approach to semi-parametric models.
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1 Processes with evolutionary features

A better comprehension and interpretation of real natural phenomena described by evolutionary process
often requires the identification, and then the estimation, of a function used to specify how the present
depends on the past. A simplest process is a memoryless process, that has an evolution without after-
effects: the number of arrivals occurring in any bounded interval of time after time t is independent of
the number of arrivals occurring before time t. This assumption is sometimes unrealistic and unuseful in
real contexts, where the dependence on the past is crucial also in order to make prediction (e.g. seismic
data, diseases data, etc.). Moreover, if any one realisation of a type of random process consists of a set
of isolated points either in time or geographical space, point processes provide a very useful theoretical
tool to represent the evolution of some random value, or system, over time. In such kind of processes it
is assumed that what happens now may depend on the past, but not on the future. This identifies a natural
ordering for temporal point processes. However, if the space component can not be ignored, a space-time
point process is defined, by specifying a stochastic model for the space component that is based on the
space “coordinates” of the considered phenomenon and the time of the next event given the known times
of previous events. The past in a point process is captured by the concept of the history of the process
and to specify the mean number of events in a region conditional on the past the conditional intensity
function is considered [8]. Therefore the importance of getting a reliable estimation of the conditional
intensity function is obvious.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53300674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Adelfio, Chiodi Point Processes estimation with predictive measure

In exploratory contexts or to assess the adequacy of a specific parametric model, some kind of non-
parametric estimation procedure could be useful [13] [7], though this can not be considered when we
look for predictive properties of the estimated intensity function.

Among the processes that model and describe the evolutionary features of the reproduction observed
process we can consider the branching models. In probability theory, a branching process is a Markov
process in which each individual in the n− th generation produces some random number of individuals
in the (n+1)−th generation, according to a probability distribution that does not vary from individual to
individual. These models have been recently considered for the description of different applicative fields:
biology ([4]), demography ([9]; [10]), epidemiology ([3]; [2]), wildfires distribution and size ([12]; [11]).

In general, the conditional intensity function of the branching model is defined as the sum of a
term describing the large-time scale variation (spontaneous activity or background) and one relative
to the small-time scale variation due to the interaction with the events in the past (induced activity or
offsprings):

λθ(t,s|Ht) = µ f (s)+ τφ(t,s) (1)

with θ = (φ,µ)′, the vector of parameters of the induced intensity (φ) together with the parameter of the
background general intensity (µ), f (s) the space density, and τφ(t,s) the induced intensity, given by:

τφ(t,s) = ∑
t j<t

νφ(t− t j,s− s j).

In such models, we have to simultaneously estimate the different components of the intensity function
(large-time scale and small-time scale). If the large-time scale component µ f (s) in (1) is known, the
parameters φ can be usually estimated by Maximum Likelihood method. In applications, the large-time
scale component µ f (s) is usually estimated trough non parametric techniques, like kernel estimators.

In this paper, we provide a method to estimate the space-time intensity of the generating point process
of the different components like above, by mixing nonparametric and parametric approaches.

Therefore, we propose an estimation method of the space-time intensity of a branching-type point
process (described in section 2 and named FLP, Forward Likelihood Predictive), that accounts simultane-
ously for the estimation of parametric and nonparametric ones, applying a forward predictive likelihood
estimation approach to semi-parametric models [5].

Moreover, we have collected the new computing tools in an R package (etasFLP, [6]) wich fits a
branching-type model to an earthquake catalog with a mixed estimation technique: FLP for nonparamet-
ric background seisimicity and maximum likelihood for the parametric components. The two estimation
steps are alternated until convergence is obtained and for each event the probability of being a back-
ground event is estimated.

2 Forward predictive likelihood

Suppose that in a space-time point process the intensity function λ(·) depends on a set of parameters ψ,
such that λ(z,ψ).
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Let denote by ψ̂(Htk) ≡ ψ̂(z1,z2, ...,zi, ...,zk) a generic estimator of ψ, based on observations until
tk.

Assume that a realization of the process is observed in the space region Ωs and the time interval
(T0;Tmax). The log-Likelihood for the point process, given the k observed values zi and computed using
the estimator ψ̂(z1,z2, ...,zi, ...,zk) is:

logL(ψ̂(Htk);Htk) =
k

∑
i=1

logλ(zi;ψ̂(Htk))−
∫ Tmax

T0

∫
Ωs

λ(z;ψ̂(Htk))dsdt (2)

The ML estimation can not be directly used in a semi-parametric context: in fact, for example,
considering the intensity (1), which contains a component that is usually estimated nonparametrically,
the likelihood (2) would be maximized putting all the mass on the observed points.

In this paper, we use the method proposed in [5] and developed in [1] that measures the ability of the
observations and estimation until tk to give information on the next observation.

Let ψ̂(Htk) be a vector of estimators, that could include smoothing constants in a semi-parametric
context, based on the observed history up to tk. Let logL(ψ̂(Htk);Htk+1) be the likelihood computed on
the first k+1 observations, but using the estimates based on first k, defined as:

logL(ψ̂(Htk);Htk+1) =
k+1

∑
i=1

logλ(zi;ψ̂(Htk))−
∫ tk+1

T0

∫
Ωs

λ(z;ψ̂(Htk))dsdt (3)

For example, in equation (3), λ(zk+1;ψ̂(Htk)) could be the intensity of the (k+1)th point estimated
by a kernel method using the centers given by the previous k points.

Then, we use the difference between (2) and (3) to measure the predictive information of the first k
observations on the k+1-th as:

δk,k+1(ψ̂(Htk);Htk+1)≡
= logL(ψ̂(Htk);Htk+1)− logL(ψ̂(Htk);Htk) =

=
k+1

∑
i=1

logλ(zi;ψ̂(Htk))−
∫ tk+1

T0

∫
Ωs

λ(z;ψ̂(Htk))dsdt−

−
k

∑
i=1

logλ(zi;ψ̂(Htk))−
∫ tk

T0

∫
Ωs

λ(z;ψ̂(Htk))dsdt =

= logλ(zk+1;ψ̂(Htk))−
∫ tk+1

tk

∫
Ωs

λ(z;ψ̂(Htk))dsdt. (4)

This leads to a technique similar to cross-validation, but applied only to the future observations: in
fact, each contribution δk,k+1 is based only on the past observations t1, ..., tk.

Therefore, given n the number of observations, we choose ψ̃(Htk) which maximizes:
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FLPk1,k2(ψ̂)≡
n−1

∑
k=k1

δk,k+1, (5)

where k1 is a fixed constant, for example k1 =
[n

2

]
.

The quantity in (5) can be used also to compare different kinds of intensity estimates obtained by
considering the optimized values of the quantities FLPk1,k2(ψ).

In this paper, we use the measure defined in (5) to estimate the nonparametric component of models
like (1), providing, on the basis of the measure in (5), better kernel estimates (in terms of MISE) of
space-time intensity functions than classical methods.
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