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ABSTRACT. Microarray technology allows to collect a large amount of genetic data, such as gene
expression data. The activity of the genes are coordinate by a complex network that regulates their
expressions controlling common functions, such as the formation of a transcriptional complex or the
availability of a signalling pathway. Understanding this organization is crucial to explain normal cell
physiology as well as to analyse complex pathological phenotypes. Graphical models are a class of
statistical models that can be used to infer gene regulatory networks. In this paper, we examine a class
of graphical models: the strongly decomposable graphical models for mixed variables. Among oth-
ers properties, explicit expressions of maximum likelihood estimators are available for decomposable
graphical models. This property makes the use of decomposable model suitable for high-dimensional
data. We apply decomposable graphical models to a real dataset example.

1 INTRODUCTION

Microarray technology has become more prevalent in biology over the last decade. A microar-
ray is a collection of microscopic DNA spots attached to a solid surface. Microarrays are used
to measure the expression levels of large numbers of genes, simultaneously. The activity of
the genes can be described by a complex network that regulates their expressions controlling
common functions, such as the formation of a transcriptional complex or the availability of a
signalling pathway. Understanding how our genes work together as a network could i) hold
the potential for new treatments and preventive measures in disease, ii) add a new level of
complexity to scientists’ knowledge of how DNA works to integrate and regulate cell func-
tionality. So, the need of statistical tools to analyse and extract information from such data
has become crucial.

Graphical models are useful to infer conditional independence relationships between ran-
dom variables. The conditional independence relationships can be visualized as a network
with a graph. Graphs are object with two components: nodes and links. Nodes are in one-to-
one correspondence with random variables and links represent relations between genes. If a
link between two genes is absent this means that these two genes are conditional independent
given the rest. Pairwise, local and global Markovian properties are the connections between
graph theory and statistical modelling. Unfortunately, classic graphical models cannot be ap-
plied to high-dimensional data due to computational reasons. Recently, different techniques
have been proposed to overcome this computational limitation.
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A branch of research works on penalized graphical models. The idea is to penalize the
maximum likelihood function, for example with the `1-norm, to produce sparse solutions.
The main assumption of these models is that the networks are sparse, which means many
of the variables are conditionally independent from the others. The most known algorithm
to estimate sparse graphs is probably the graphical lasso (glasso) proposed by Friedman et

al. (2008). This models cannot deal with dataset which include mixed variables. A dataset
contains mixed variables if both qualitative and quantitative variables have been collected
which is a common situation in microarray studies.

One approach to deal with mixed data, where the measurements can be binary, ordinal
and continuous, is the semiparametric Bayesian copula graphical models (Hoff (2007)). The
semiparametric Bayesian copula graphical model uses the assumption of copula Gaussianity
on the multivariate latent variables which are in one-to-one corresponds with the observed
variables. So, the methodology can also be seen as a latent variable method for non-Gaussian
multivariate data. Furthermore, the model can deal with missing data at random. Conditional
dependence and regression coefficients as well as credible intervals can be obtained from the
analysis. Moreover, copula Gaussian graphical models allow to impute missing data. Imputa-
tion of missing data is essential in microarray analysis since the number of statistical units is
usually very small. This means that every piece of information becomes precious. For exam-
ple, in the analysis of breast cancer data 65 measurements were collected over 62 units. If we
remove the missing data, we would reduce the units to 25. However, for higher-dimensional
problems the Bayesian copula approach becomes problematic due to its computational com-
plexity and convergences of the proposal distribution.

In this paper, we examine strongly decomposable graphical models for analysing mixed
data. A strongly decomposable graphical model is a graphical model whose graph neither
contains cycles of length more than three nor forbidden path. A path exits between nodes A
and B if one can reach A from B in a finite number of steps. A forbidden path is a path between
two not adjacent discrete nodes which pass through continuous nodes. The distributional
assumption is that random variables are conditional Gaussian distributed. Even tough, this
assumption could be too restrictive, there exits some techniques to transform the data, for
example Box and Cox transformation. A model selection procedure is necessary in order to
obtain a parsimonious graph which fits the data. A modification of the Chow and Liu’s (1968)
algorithm can be used to do model selection for this class of models. This procedure is based
on an initial estimation of a forest. A forest is a disjoint union of trees. A tree is a connected
acyclic undirected graph.

The rest of this paper is organized as follows. In Section 2, we briefly recall the method-
ology used to infer decomposable graphical models for mixed data. In Section 3, we show an
application of the methodology to a real dataset which contains mixed variables that are the
expression level of genes collected in a microarray experiment and some clinical information
of the patients. Finally, we conclude with a discussion.

2 METHODOLOGY

A graph is a couple G = (V,E) where V is a finite set of nodes and E ⇢V ⇥V is a subset of
ordered couples of V . Nodes are in one-to-one correspondence with random variables. Sup-



pose we have p discrete and q continuous nodes and write the sets of nodes as D and G, where
V = {D[G}. Let the corresponding random variables be (I,Y ), and a typical observation
be (i,y). Here, i is a p-tuple containing the values of the discrete variables, and y is a real
vector of length q. Let ¡ indicates the set of possible i. Let the probability that I = i be p
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are called canonical parameters. This models are also called mixed interaction models and
are defined by constrained canonical parameters of the CG-distribution. For example, let
D = {A,B} and G = {X ,Z}, and let the levels of the factors A and B be denoted j and k. So
in this case i = ( j,k) and y = (x,z). The joint density can be written:
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and we can write the unrestricted (or saturated) model as
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In our example the covariance matrix S(i) is constant over i and we refereed to such models
as homogeneous. More details on the conditional Gaussian distribution can be found in Lau-
ritzen and Wermuth (1989). Explore the space of all possible models is infeasible even for
low-dimensional problems. The number of possible graphs is 2(

n

2), so for example we would
have to explore 1024 with 5 nodes.

Model selection for high-dimensional mixed data can be carried out through the method-
ology proposed by Edwards et al. (2010). This technique uses a modification of the Chow
and Liu’s (1968) algorithm. This algorithm requires a square matrix of weights of dimension
(p+q)⇥ (p+q) which indicates the magnitude of the relation between the nodes. Edwards
et al. (2010) proposed measures based on the minimization of a measure such as BIC-type or
AIC penalized mutual information criteria.

Next, we give some details on this procedure. Firstly, the maximum weights spanning tree
is found. Chow and Liu showed that finding the maximum likelihood tree can be formulated
as finding a maximum weight spanning tree, a task for which highly efficient algorithms
exist. This approach requires that all edges-weights are calculated. Then, Kruskal’s algorithm
(Kruskal (1956)) is applied to find a maximum weight spanning tree. This algorithm starts
with the null graph and successively selects edges {e1, . . . ,er
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edges e1, . . . ,er

are selected, the algorithm selects an edge e such that: 1) e /2 {e1, . . . ,er

} and
{e1, . . . ,er

,e} is a forest, and 2)e has maximum weight among all edges satisfying the first
point.

Secondly, the forest is used as a starting point in order to find the best decomposable
graphical model according to a measure. The estimation strategy then consists in restricting
the search space to models with explicit estimates, i.e. decomposable models. A key result
is that: if M0 ⇢ M1 are decomposable models differing by one edge e = (v
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is contained in one clique C of M1 only, and the likelihood ratio test for M0 versus M1 can
be performed as a test of v
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}. These computations only involve the variables in
C. It follows that for likelihood-based scores such as AIC or BIC, score differences can be
calculated locally which is far more efficient then fitting both M0 and M1 and then stored,
indexed by v

i

,v
j

and C, so that they can be reused again if needed in the course of the search.
This can lead to considerable efficiency gains.

3 ANALYSIS OF BREAST CANCER DATA

In this section we analyse breast cancer data. The data comes from a study performed on
62 biopsies of breast cancer patients over 59 genes. These genes were identified using com-
parative genomic hybridization. Continuous measures of expression levels of those 59 genes
were collected. In order to link gene amplification/deletion information to the aggressiveness
of the tumours in this experiment, clinical information is available about each of the patients:
age at diagnosis (AGE), follow-up time (Surv.Time), whether or not the patient died of breast
cancer (C.Death), the grade of the tumour (C.Grade), the size of the tumour (Size.Lesion),
and the Nottingham Prognostic Index (NPI). C.Death is a dichotomous variable, C.Grade is
ordinal with three categories and NPI is a continuous index used to determine prognosis fol-
lowing surgery for breast cancer. NPI values are calculated using three pathological criteria:
the size of the lesion; the number of involved lymph nodes; and the grade of the tumour.
The complete dataset results in 62 units and 65 variables with a 3.6% of missing data which
are imputed by using the semiparametric Bayesian copula graphical model proposed by Hoff
(2007). The advantage of using this methodology to impute missing data is that it takes into
account the multivariate structure of the data and it can deal with binary, ordinal and contin-
uous measurements.

Our aim is to find a network which could describe the relationships between the 65 vari-
ables which are the nodes of the graph and highlight the relationships between gene ex-
pression levels and clinical variables. We use the package gRapHD (Abreu et al. (2010)) to
analysis the breast cancer data. Firstly, the forest that minimize the BIC is found by applying
the function minForest. This result in a quite simple graph with at last p+q�1 links. A
more complex model can be found by applying the function stepw. This function performs
a forward search strategy through strongly decomposable models starting from a given de-
composable graphical model. At each step, the edge giving the greatest reduction in BIC is
added. The process ends when no further improvement is possible. A convenient choice of
the starting model is the minimal BIC forest, but other arbitrary decomposable models may
be used.



We start the analysis by selecting the minimal BIC forest. Then, we use the stepwise func-
tion. The estimated graph appears to be incoherent with our expectation. NPI is a linear com-
bination of Size.Lesion, C.Grade and N.lymph. So, we expect a graph which contains links
between NPI and Size.Lesion and NPI and C.Grade. Instead, the links between Size.Lesion
and NPI were missing in the estimated graph. These missing links were due to a forbidden
path. The forbidden path C.Death - Size.Lesion - NPI - C.Death would had appeared if we
connect NPI with Size.Lesion. So, we use a different graph as a starting point. We add a link
between C.Grade and C.Death to the minimal BIC forest. Note that the probability of dying
due to cancer given that the cancer grade is at level three is 11 times greater with respect to
the probability of dying due to cancer given that the cancer grade is at level one.

Figure 1 shows the heterogeneous strongly decomposable graphical model with starting
point the minimum BIC forest with the addition of the link between C.Grade and C.Death.
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Figure 1. Graph obtained by applying the heterogeneous strongly decomposable graphical model to
breast cancer data with starting point a minimum BIC forest with a link between C.Grade and C.Death.
Black nodes indicate discrete variables while grey nodes represent continuous variables.

Even though the addition of this link in the starting graph creates a path between NPI
and Surv.time, the expected link between Size.Lesion and NPI is still missing. This is due



to another model limitation which is no cycle of length more than three can be estimated.
The most connected node is C.Grade which is connected with 9 other nodes namely: NPI,
Gene 41, Gene 40, Gene 19, Gene 15, Gene 57, Gene 35 and Gene 25. Other high connected
nodes are Gene 9 and Gene 12 which are connected with 8 other nodes and Gene 49 which
is connected with other 7 nodes. Unfortunately, we do not have the names of the genes but
only the labels, so we can only highlight some of the characteristics of the graph. None of
the gene resulted isolated from the other. Gene 23 and 26 are conditional independent given
C.Death of the rest. Although from graphs inspection, we could be tempted to say that a
relation emerges between the 59 genes and of the clinical conditions of the patients, robust
statistical procedures should be used to investigate the credibility of such relation.

4 DISCUSSION

In this paper, we have explored a class of graphical models, the strongly decomposable graph-
ical models, which can be used to infer networks for high-dimensional mixed data. The algo-
rithm performances is feasible and the theory of decomposable graphs have been investigated.
There are some limitations due to the assumption of decomposable models. This means that
neither cycle of length more than 3 nor forbidden path can be estimated. We have shown in
a real example on breast cancer data that this can bring at wrong interpretation of the net-
work. So, careful attention should be paid during the analysis. In this case, the identification
of a missing important link was possible due to the way we construct the NPI index but in
general case this identification could be a very difficult task. The algorithm cannot deal with
missing data so we have used a Bayesian approach in order to impute such data. In future
works we will try to extend the algorithm to manage dataset with missing data. In our opin-
ion, model selection and robustness of the networks are other two points that deserve further
investigations.
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