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Abstract The aim of this study is to describe the fre-
quency of isolated, subtle, neurological abnormalities

(ISNAs) in a large population of neurologically and cog-

nitively healthy subjects and to compare ISNAs to various
types of MRI-detected cerebrovascular lesions and sub-

cortical brain atrophy in different age classes. 907 subjects

were selected from a large, prospective hospital-based
study. At baseline neurological examination, 17 ISNAs

were selected. Primitive reflexes were the most common

ISNAs (35.8 %), while dysphagia was the most rarely en-
countered (0.3 %). Measures of small vessel disease, i.e.,

deep and subcortical white matter hyperintensity and la-

cunar infarcts as well as subcortical atrophy, were
variously associated with ISNAs. In the adult group, the

ISNAs were associated with hypertriglyceridemia, TIA,

and subcortical lacunar infarcts, while in the elderly–old
group they were associated with arterial hypertension,

subcortical white matter hyperintensity, and subcortical

atrophy. An increased risk of ISNAs was associated with
lacunae and white matter hyperintensity in the parietal

region. This study shows that white matter hyperintensity,
lacunae, and subcortical atrophy are associated with an

increased risk of ISNAs in cognitively and neurologically

healthy aging subjects. ISNAs are not benign signs.
Therefore, adults and elderly people presenting with ISNAs

should have access to accurate history and diagnosis to

prevent progression of small vessel disease and future
neurological and cognitive disabilities.
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Introduction

The growth of the aging population has resulted in an in-

creasing number of elderly people being affected by the
two most common diseases of the aging brain, i.e., stroke

and dementia [1, 2]. To increase the possibility of aging

successfully without cognitive or physical disability, there
is a pressing need for health screening in aging subjects.

When neurologists, geriatricians, and general practi-

tioners perform neurological examination on aging sub-
jects, they frequently detect isolated, subtle, neurological

abnormalities (ISNAs), which cannot individually be at-

tributed to any definite, overt neurological disease. Since
ISNAs taken in isolation or even in clusters do not have

any immediate diagnostic relevance, they are not deemed
to be significant and are simply attributed to age [3]. As a

consequence, they can easily be neglected, preventing pa-

tients from getting a diagnosis. However, the aging brain
undergoes a wide range of degenerative and vascular

changes. Evidences of amyloid b (Ab) deposition and

cerebrovascular pathology have been demonstrated at
postmortem examinations of the brain of non-demented

individuals [4]. Results from Ab PET studies show that

about 20–40 % of cognitively unimpaired subjects aged
60–90 years have high levels of Ab deposition [5, 6] and
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faster rates of cortical atrophy than those with low Ab
deposition [7]. Furthermore, 54 % of cognitively normal
subjects aged 50–89 years present a various combination of

imaging biomarkers of b-amyloidosis and neurodegen-

eration [8]. Similarly, the frequency of cerebrovascular
lesions such as white matter hyperintensities (WMH) [9]

and lacunar infarcts [10] increases with age in the general

population, and WMH is strongly associated with cortical
atrophy [11]. In non-demented elderly subjects, brain at-

rophy and vascular changes co-occur. They are related
independently to vascular risk factors [12], and have ru-

inous effects on cognition which amount to more than the

sum of their separate effects [13]. Vascular and degen-
erative changes occurring in the aging brain for many years

do not have detectable cognitive and/or functional effects

[14, 15]. Both, however, are likely to fragment brain net-
works into disconnected parts, thus altering the functional

inter-relationships between and among cortical regions and

between cortical and subcortical structures. Therefore, it is
plausible to suggest that ISNAs may be an epiphenomenon

of clinically covert brain vascular and/or degenerative

damage. Past reports on these subtle neurological abnor-
malities have primarily focused on evaluating extrapyra-

midal features [16], while very few reports [17–19] have

focused on those related to the dysfunction of other brain
structures.

The aims of this study on a large sample of adult,

elderly, and old cognitively healthy subjects with no life-
time history of neurological dysfunctions and no clinically

overt neurological diseases are: (1) to evaluate the number

and types of ISNAs using a standard neurological ex-
amination; (2) to verify whether ISNAs are related to

imaging-detected cerebrovascular pathology and to a likely

marker of brain atrophy such as subcortical atrophy; (3) to
evaluate whether these imaging findings have an indepen-

dent or synergistic effect on the presence of ISNAs, and (4)

to identify the relationship between ISNAs and the topo-
graphical location of imaging-detected cerebrovascular

lesions. In this paper, the terms ‘‘adult’’, ‘‘elderly’’, and

‘‘old’’ are used to indicate people aged 45–64, 65–74, and
[75 years, respectively.

Methods

Study participants

Data were used from the Cognitive Impairment through

Aging (CogItA) study. The CogItA study is a prospective,
hospital-based study focused on normal and pathological

aging which began in January 1999. Subjects were re-

cruited from a large sample of inpatients and outpatients
who voluntarily came for health screening at the various

clinics of the Unit of Neurology and Cognitive Disorders,

University of Palermo, Italy. The study was approved by
the Medical Ethical Committee of the Faculty of Medi-

cine and the affiliated Hospital (Azienda Ospedaliera

Universitaria ‘‘P. Giaccone’’). After a complete descrip-
tion of the study, all participants provided written in-

formed consent.

Baseline clinical assessment

Diagnostic work-up for the present study included medical

history, as well as neurological, neuropsychological, and

behavioral examinations, blood tests, carotid ultrasonog-
raphy, and imaging assessment. The vascular risk factors

evaluated were: (1) cigarette smoking which was catego-

rized as never, former (subjects who stopped smoking at
least 5 years before the observation) or current (subject

smoking at least five cigarettes daily during the last

5 years); (2) arterial hypertension (blood pressure C140/
90 mmHg or current use of antihypertensive medications)

[20]; (3) diabetes mellitus (fasting blood glucose levels

C6.1 mmol/L and/or current use of hypoglycemic drugs)
[21]; (4) hypercholesterolemia (fasting total serum

cholesterol C5.2 mmol/L, high-density lipoprotein

cholesterol \1.0 mmol/L in men and \1.3 mmol/L in
women, and low-density lipoprotein (calculated) C3.4 m-

mol/L [21]; (5) hypertriglyceridemia (fasting serum

triglycerides C1.7 mmol/L in both men and women) [21];
(6) anemia (hemoglobin level less than 13 g/L for men and

less than 12 g/L for women) [22]; (7) chronic obstructive

pulmonary disease (COPD) based on personal medical
records and/or spirometric testing coded as absent = 0 or

present = 1; 8) obesity defined as Body Mass Index (BMI)

C30 kg/m2 [23]. Furthermore, the following vascular dis-
eases were evaluated: (1) ischemic heart diseases (my-

ocardial infarction, angina, coronary artery bypass grafting

or angioplasty or stenting); (2) cardiac valvulopathies; (3)
cardiac arrhythmias; (4) atrial fibrillation; (5) chronic heart

failure and left ventricular hypertrophy; (6) TIA and stroke;

and (7) lower limb arteriopathy and aortic aneurysm. All
these diseases were assessed from each subject’s history

and had to be supported by clinical and/or instrumental

records. Blood testing and APOE genotypes were per-
formed with APOE genotypes being determined by the

polymerase chain reaction method of genomic DNA [24].

Neurological examination

All subjects underwent a standardized neurological ex-
amination usually performed in the clinical practice. We

first excluded subjects with normal tone, focal and mean-

ingful signs (campimetric defects, language deficits, cranial
nerves deficits, hemimotor and hemisensory dysfunction,
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Babinski sign, hemiplegic gait, brachial and crural weak-

ness, Parkinsonian gait, paratonic rigidity, forced laughing,
and forced crying), and peripheral sensory deficits. Then,

for the purpose of the present paper, 17 ISNAs were se-

lected including lower facial weakness, bilateral hyper-
reflexia, reflex asymmetry, hypotonia, mixed rigidity,

slurred speech, and mild dysphagia clustered as central-

based signs; resting tremor, postural tremor, hypokinesia,
plastic rigidity, finger tap slowing, and postural instability,

as well as gait abnormalities such as start hesitation,
slowness, decreased arm swing, and shuffling gait clustered

as extrapyramidal signs; dysmetria (defined liberally as

derangement of movement coordination with limbs) and
atactic-type gait (defined as a gait pattern broadly indica-

tive of cerebellar involvement) clustered as cerebellar

signs; primitive reflexes such as glabellar tap, snout reflex,
and palmomental reflex (sucking and palmar grasp reflexes

were not present in the cohort). Finger tap slowing and

postural stability were taken into consideration if they rated
1 or higher on the motor section of the Unified Parkinson’s

Disease Rating Scale (UPDRS) [25]. All neurological signs

were dichotomised as ‘‘absent’’ (score = 0) or ‘‘present’’
(score = 1). For each subject, the number of the signs

detected (NISNA) was recorded.

Neuropsychological assessment

The neuropsychological assessment included the MMSE
[26] as a test of general cognition and specific tests to

assess the following five cognitive domains: verbal mem-

ory (Story Recall Test and Rey’s Auditory Verbal Learning
Test immediate and delayed), executive functions (Raven

Coloured Matrices, Letter Fluency Test, and the Frontal

Assessment Battery), language (Token Test and Aachener
Aphasie Test denomination section), attention (Visual

Search Test), and constructional ability (Copy Drawing

Test). For each test, details of administration procedures
were available, together with Italian normative data for

score adjustment based on age and education as well as

normality cut-off scores (C95 % of the lower tolerance
limit of the normal population distribution) [27–30]. Indi-

vidual test scores were converted to z scores using the

mean and standard deviation from the enrolled subjects
with normal cognitive data available. By averaging the

z scores of individual tests within each domain, five do-

main-specific z scores were created.

Functional assessment and behavioral performances

Functional status was assessed using the Basic Activities of

Daily Living (BADL) [31] and Instrumental Activities of

Daily Living (IADL) [32] scales. Assessment of somatic
comorbidity was quantified by the Cumulative Illness

Rating Scale (CIRS) [33]. Depressive symptoms were

evaluated using the Cornell Scale for Depression [34], the
Beck Depression Inventory [35], and the depression sub-

scale of the Hospital Anxiety and Depression Scale

(HADS) [36]. Anxiety symptoms were assessed by means
of the anxiety subscale of the HADS [36], and the

Hamilton Anxiety Rating Scale (HARS) [37]. Depression

and anxiety were deemed to be present if at least one of the
depression and anxiety scores was found to be above the

cut-off level.

Carotid ultrasonography

Intimal–medial thickness (IMT) was measured in the in-

ternal, bifurcation, and common segments of both carotid

arteries, and the mean value of C0.9 mm was used as cut-
off level [38]. Stenosis of internal carotid arteries was

graded according to the NASCET trial [39]. Ultrasound

images were recorded and analyzed by the Radiology
Department of the University Hospital.

Imaging assessment

All subjects underwent brain scan using MRI scanners

operating at 0.5 and 1.5 T. In particular, there were 139
subjects (15.3 % of the whole sample) who underwent

0.5 T scan; of these 90 (16.7 %) were adults, 33 (14.3 %)

were elderly, and 16 (11.6 %) were old. The remaining 768
subjects (84.7 %) underwent 1.5 T scan; of these 449

(83.3 %) were adults, 197 (85.7 %) were elderly, and 122

(88.4 %) were old. With the MRI scanner operating at
0.5 T (Vectra; GE Medical System, Milwaukee, Wiscon-

sin, USA), the following protocol was used: sagittal and

axial T1w Fast Spin Echo (FSE; acquisition matrix
192 9 256; slice thickness 5 mm; TR 580 ms; TE 14 ms;

NEX 2), axial dual echo (Proton Density, PD and FSE-

T2w; acquisition matrix 192 9 256; slice thickness 5 mm;
TR 2500 ms; TE 25 and 100 ms; NEX 1), coronal T2w

FSE (acquisition matrix 192 9 256; slice thickness 5 mm;

TR 3300 ms; TE 98 ms; NEX 3) and axial T2w FLuid
Attenuated Inversion Recovery (FLAIR; acquisition matrix

192 9 256; slice thickness 6 mm; TR 6000 ms; TE

120 ms; IT 2000 ms; ETL 18; NEX 2). With the MRI
scanner operating at 1.5 T (Signa HDxt; GE Medical

System, Milwaukee, Wisconsin, USA), the protocol em-

ployed was as follows: sagittal and axial T2w Fast Re-
covery Fast Spin Echo (FRFSE; acquisition matrix

384 9 224; slice thickness 3 mm; TR 3740 ms; TE

103,4 ms; ETL 15; NEX 2 for sagittal and NEX 4 for axial
plane), axial and coronal T2w FLAIR (acquisition matrix

256 9 192; slice thickness 3 mm; TR 8000 ms; TE

121.4 ms; IT 2000 ms; ETL 18), axial T1w FSE (acqui-
sition matrix 256 9 192; slice thickness 3 mm; TR
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480 ms; TE 7.7 ms; ETL 2; NEX 2), axial T2*w Gradient

Echo (GE; acquisition matrix 384 9 288; slice thickness
5 mm; TR 725 ms; TE 17.1 ms; FA 20), and axial Echo-

Planar Diffusion Weighted Imaging (EP-DWI; acquisition

matrix 128 9 128; slice thickness 3 mm; TR 7000 ms; TE
98 ms; NEX 2; using a b value of 0 and 1000 s/mm2). With

both scans, axial plane was parallel to the anterior com-

missure–posterior commissure (AC–PC) line, coronal
plane was parallel to the brainstem, and sagittal plane was

parallel to the interhemispheric fissure. Both protocols
enable us to highlight details of cerebrovascular lesions.

The findings on the MRI images were evaluated by an

experienced neuroradiologist (C. G.) and two trained neu-
rologists (C. C., R. M.) who were blinded to subject di-

agnosis. Discrepancies in ratings were re-assessed in

consensus meetings with a senior neurologist (R. C.).
The presence of subcortical atrophy, WMH, and lacunae

was evaluated. Using the axial MRI images and the OsiriX

imaging software [40], subcortical atrophy (atrophy of the
basal ganglia) [41] was determined by measuring the

greatest amount of indentation of the head of the caudate

nuclei on the lateral ventricles [42]. The bicaudate ratio
(BCr) was calculated by dividing the value obtained by the

maximum width of the inner tables of the skull at the same

level as the previous measurement. Interrater reliability for
the assessment of BCr in a random sample of 10 % resulted

in a weighted Cohen’s kappa 0.93, p \ 0.001.

White matter hyperintensities were defined as areas
(C5 mm in diameter) with high signal intensities on PD,

T2-w FSE, and T2w-FLAIR images. The presence, loca-

tion, and rating of WMH were assessed using the visual
rating scale described by Walhund et al. [43]. To measure

WMH severity, the region-specific scores of both hemi-

spheres were summed to use the partial score of deep and
subcortical WMH (WMH-SC) (range 0–24), that of the

basal ganglia WMH (WMH-BG) (range 0–6), and the total

WMH score (WMH-T) (range 0–30).
Lacunae were defined as spheroid areas of tissue de-

struction, fluid-filled, of C3 and B15 mm in diameter, with

hyperintense signal on T2-weighted and hypointense signal
on FLAIR images, iso-hypointense signal on T1-weighted

images, and mostly with an hyperintense rim around the

cavity on FLAIR images [41]. A combination of FLAIR,
T2, and T2* images was used to distinguish lacunae from

dilated Virchow Robin spaces and microbleeds [44]. The

number of lacunae was categorized into none = 0,
one = 1 (1 lacuna), few = 2 (2–3 lacunae), and many = 3

(4 lacunae or more). Deep and subcortical lacunae (lacu-

nae-SC) as well as lacunae in the basal ganglia region
(lacunae-BG) were scored topographically according to

Whalund’s regions used to score WMH. Interrater re-

liability for the presence/absence of WMH and lacunae in a
random sample of 10 % showed excellent agreement

(weighted Cohen’s kappa = 0.90, p \ 0.001 and 0.92,

p \ 0.001, respectively).

Statistical analysis

Descriptive statistics were used to summarize data (per-

centages, mean and SD, median and IQR). Continuous

variables were analyzed using a t test, while categorical
variables were evaluated by means or a v2 test. The asso-

ciation between the presence of at least one ISNA and
putative risk factors/diseases was assessed using logistic

regression models in univariate and multivariable analyses

after adjustment for other covariates. For all analyses, age
and level of education (years) were used as continuous

variables, gender was employed as a dichotomous variable

while BCr, lacunae-SC, lacunae-BG, WMH-SC, and
WMH-BG were used as discrete variables. A univariate

analysis was first performed on all relevant independent

variables (i.e., age, gender, education, vascular risk factors,
vascular diseases, and MRI-derived measurements), while

the presence/absence of ISNAs was the dependent variable.

Next, the multiple logistic regression analyses were ad-
justed for age, gender, and education (years), and presence

of the variables found to be significant by the univariate

analysis. Model 2 was with additional adjustment for the
presence of the variables deemed significant by Model 1.

Furthermore, we also evaluated the putative interaction

between the presence of WMH or lacunae and subcortical
atrophy in determining the risk of ISNAs. Analyses were

also stratified into adult subjects (45–64 years) vs. elderly–

old subjects (65? years). Furthermore, multiple logistic
regression models were used to evaluate the association of

ISNAs with subcortical atrophy and the topographical lo-

cations of WMH and lacunae. All tests were two-tailed
with statistical significance being set at p B 0.05. Results

are presented as odd ratios (ORs) with 95 % confidence

intervals (95 % CI). All analyses were performed using
SPSS package, version 12.

Results

The frequency of ISNAs was computed on 907 neuro-
logically and cognitively healthy (NCH) subjects aged

45–94 years. Participants were categorized as NCH if they

had no lifetime history of neurological dysfunctions or any
clinically overt neurological diseases, normal general

cognition on the Mini Mental State Examination (MMSE

C23.83), no impairment in the domains of memory, ex-
ecutive functions, attention, language, and praxis, normal

functional status on the BADL and IADL scales, and 0 on

the Clinical Dementia Rating Scale (CDR) [45]. Further-
more, NCH subjects were CogItA participants who did not
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convert to MCI or dementia during follow-up (mean fol-

low-up = 55.3 ± 44.6 months).
Within the sample, 388 (42.8 %) subjects did not have

any of the 17 selected ISNAs, while 519 (57.2 %) pre-

sented at least one ISNA. Primitive Reflexes (PRs) were
the most frequent ISNA (35.8 %), while slurred speech

(0.6 %) and mild dysphagia (0.3 %) were the rarest

(Fig. 1). The greatest number of ISNAs (NISNA) observed
was 7. The number of subjects who had NISNA of 1, 2, 3, 4,

5, 6, and 7 was 236 (26.0 %), 141 (15.5 %), 72 (7.9 %), 36
(4.0 %), 22 (2.4 %), 7 (0.8 %), and 5 (0.6 %), respectively.

The NISNA increased with increasing age and was higher in

the elderly and old participants. The distribution of the four
clusters of ISNAs in the three age classes shows that in all

classes PRs were the most prevalent ISNAs, followed by

central-based ISNAs, extrapyramidal-based ISNAs, and
cerebellar-based ISNAs (Table 1). No significant differ-

ences were found in the distribution of the selected ISNAs

across adults, elderly, and old subjects who undergone MRI
with different scanners (0.5 vs 1.5 T) (v2 for

trend = 2.432, p = 0.296). Subsequently, dividing sub-

jects according to age classes (i.e., adult, elderly, and old)
and presence vs absence of ISNA in subjects who under-

went MRI carried out with 0.5 vs 1.5 T, no significant

differences between groups were observed (adult:
v2 = 2.914, p = 0.087; elderly: v2 = 0.602, p = 0.438;

old: v2 = 1.160, p = 0.281). Further analyses were carried

out into two age groups namely adult and elderly–old

subjects without ISNAs (ISNA-) and with at least one
ISNA (ISNA?). Table 2 shows the characteristics of the

study population. With regard to gender distribution, fe-

males significantly outnumbered males. There were sig-
nificantly more ISNA- individuals than ISNA?

individuals in the adult group, while the elderly–old group

included significantly more ISNA? individuals. The
ISNA? subjects were older and less educated, and also

yielded worse functional and comorbidity scores than
ISNA- subjects. ISNA? subjects had greater vascular risk

factors and more vascular diseases than ISNA- ones,

suggesting a higher vascular burden in the former group
than in the latter. ISNA? subjects showed a higher fre-

quency of IMT and carotid stenosis compared to ISNA-

subjects. Concerning neuroimaging, WMH and lacunae
were more frequent in ISNA? subjects. Similarly, sub-

cortical brain atrophy was significantly greater in ISNA?

subjects than in ISNA- subjects in both the two age
classes. Imaging-detected cerebrovascular lesions were

variously present in our cohort. About one-third (33.7 %,

n = 175) of ISNA? subjects had a normal brain imaging,
whereas about one-third of ISNA- subjects (37.6 %,

n = 146) showed WMH and lacunae. In both groups, the

majority of subjects were adults (63 %, n = 111 and
71.2 %, n = 104, respectively). As far as APOE was

concerned, 259 ISNA- subjects (66.8 %) and 354 ISNA?
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subjects (68.2 %) were genotyped. Neither group differed

in terms of APOE e4 carriers and APOE-e4 noncarriers.
Regarding cognitive and behavioral performances

(Table 3), although all subjects performed above age and

education-corrected cut-offs for cognitive normality,
ISNA? subjects performed less well in tests evaluating

general cognition (MMSE), language, and constructional

ability. On the other hand, there were no significant dif-
ferences between the two groups in term of episodic

memory, executive functions, attention, depression, and

anxiety.
Logistic regression analyses were run in the groups of

adults (n = 539) and elderly–old (n = 368) subjects. In the

former group, after multiple adjustments (model 2)
(Table 4), subjects with hypertriglyceridemia (OR 1.7,

95 % CI 1.0–2.8), TIA (OR 2.8, 95 % CI 1.1–7.0) and

basal ganglia lacunar infarcts (lacunae-BG) (OR 1.7, 95 %
CI 1.0–3.0) were more likely to have an increased risk of

ISNA than the reference group. No interaction was found

between WMH-SC, lacunae-BG, and subcortical atrophy in
increasing this relationship. In the elderly–old subjects

(Table 5), an increased risk of ISNA was associated with

arterial hypertension (OR 2.5, 95 % CI 1.3–4.8), WMH-SC
(OR 1.2, 95 % CI 1.0–1.3), and subcortical atrophy (OR

1.9, 95 % CI 1.2–3.1). No interaction was found between

WMH-SC, lacunae-BG, and subcortical atrophy in in-
creasing this association. When analyzing all subjects

according to lesion location (Table 6), TIA (OR 2.3, 95 %

CI 1.2–4.7), parieto-occipital WMH (OR 1.5, 95 % CI
1.1–2.1), parieto-occipital lacunae (OR 1.7, 95 % CI

1.1–2.8), and subcortical atrophy (OR 1.4, 95 % CI

1.0–1.9) remained significantly associated with the risk of
ISNA. Lastly, all the previous analyses were rerun adding

the scanner (MRI 0.5 vs 1.5 T) variable as a confounder.

The results remained statistically unchanged.

Discussion

Isolated, subtle, neurological abnormalities are frequently

detected at the neurological examination of cognitively and
neurologically healthy adult and elderly–old subjects, and

increase with the increasing age. We found that hyper-

triglyceridemia, arterial hypertension, TIA, WMH-SC,
basal ganglia lacunar infarcts, and subcortical atrophy are

independently associated with an increased risk of ISNAs.

We also found that WMH and lacunae in the parietal region
are correlated with an increased risk of ISNAs. The asso-

ciation of hypertriglyceridemia, arterial hypertension, and

TIA with an increased risk of ISNAs is hardly surprising
given their well-known role as risk factors for cere-

brovascular disease. In the adults, subjects with TIA were

almost 180 % more likely to have ISNAs than the refer-
ence group. Since nearly half of the clinically defined TIA

Table 1 Number and clusters of ISNAs in the sample

Age (years) All Statistics v2 test p

45–64 65–74 75?

A

No ISNAs 319 (59.2) 54 (23.5) 15 (10.9) 388 (42.8) 281.140 <0.001

1 ISNA 138 (25.6) 73 (31.7) 25 (18.1) 236 (26.0)

2 ISNAs 58 (10.8) 53 (23.0) 30 (21.7) 141 (15.5)

3 ISNAs 16 (3.0) 26 (11.3) 30 (21.7) 72 (7.9)

4 ISNAs 5 (0.9) 12 (5.2) 19 (13.8) 36 (4.0)

5 ISNAs 3 (0.6) 7 (3.0) 12 (8.7) 22 (2.4)

6 ISNAs 0 (0.0) 4 (2.0) 3 (2.2) 7 (0.8)

7 ISNAs 0 (0.0) 1 (0.4) 4 (2.9) 5 (0.6)

At least one ISNA 220 (40.8) 176 (76.5) 123 (89.1) 519 (57.2) 151.662 <0.001

B

Primitive reflexes 104 (19.3) 115 (50.0) 106 (76.8) 325 (35.8) 184.979 <0.001

Central-based signs 117 (21.7) 86 (37.4) 68 (49.3) 271 (29.9) 48.157 <0.001

Extrapyramidal-based signs 36 (6.7) 62 (27.0) 66 (47.8) 164 (18.1) 141.971 <0.001

Cerebellar-based signs 31 (5.8) 18 (7.8) 16 (11.6) 65 (7.2) 5.839 0.054

Data presented are number (%)

ISNAs isolated, subtle, neurological abnormalities

The significant effects (p B 0.05) are shown in bold type
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Table 2 Baseline characteristics, carotid ultrasonography and MRI findings of subjects with and without ISNAs

ISNA-, n = 388 ISNA?, n = 519 Statistics t test or v2 p

Gender (female) 273 (70.4) 321 (61.8) 7.116 0.008

Age (years) 56.2 ± 8.5 66.3 ± 10.6 -15.552 <0.0001

Age classes

Adults 319 (82.2) 220 (42.4) 146.060 <0.0001

Elderly–old 69 (19.8) 299 (57.6)

Years in education 9.4 ± 4.7 8.1 ± 4.5 4.154 <0.0001

Functional assessment

Basic Activities of Daily Living (functions lost) 0.1 ± 0.3 0.2 ± 0.4 -4.191 <0.0001

Instrumental Activities of Daily Living (functions lost) 0.02 ± 1.0 0.3 ± 0.6 -5.425 <0.0001

Cumulative Illness Rating Scale (severity index) 19.0 ± 3.3 20.8 ± 3.4 -5.898 <0.0001

Cumulative Illness Rating Scale (comorbidity index) 1.9 ± 1.3 2.5 ± 1.6 -6.365 <0.0001

Vascular risk factors

Former smoking 36 (9.3) 59 (11.4) 5.416 0.067

Current smoking 102 (26.4) 104 (20.1)

Arterial hypertension 180 (49.5) 373 (73.1) 51.282 <0.0001

Diabetes mellitus 49 (15.3) 109 (23.6) 8.156 0.004

Hypercholesterolemia 143 (44.7) 213 (45.9) 0.113 0.736

High-density lipoprotein cholesterolemia 101 (31.6) 171 (36.9) 2.407 0.121

Hypertriglyceridemia 52 (16.3) 117 (25.3) 9.096 0.003

Anemia 26 (9.6) 48 (12.2) 1.112 0.292

Chronic obstructive pulmonary disease 7 (1.8) 30 (5.8) 8.971 0.003

Obesity (body mass index C30 kg/m2) 95 (27.3) 201 (40.1) 14.864 <0.0001

Vascular diseases

Ischemic hearth diseases 19 (4.9) 66 (12.7) 15.985 <0.0001

Cardiac valvulopathies 8 (2.1) 20 (3.9) 2.382 0.123

Arrhythmias (different from atrial fibrillation) 34 (8.8) 58 (11.2) 1.418 0.234

Atrial fibrillation 1 (0.3) 30 (5.8) 20.513 <0.0001

Chronic heart failure 37 (9.5) 68 (13.1) 2.758 0.097

Transient ischemic attacks 12 (3.1) 52 (10.0) 16.241 <0.0001

Lower limb arteriopathy and aortic aneurysm 1 (0.3) 12 (2.3) 6.633 0.010

Carotid ultrasonography and imaging findings

Intimal–medial thickness 139 (39.8) 382 (75.8) 112.203 <0.0001

Carotid stenosis 0 (0.0) 18 (3.6) 12.733 <0.0001

Subcortical white matter hyperintensity (WMH-SC) 51 (13.1) 165 (31.8) 42.552 <0.0001

Basal ganglia white matter hyperintensity (WMH-BG) 14 (3.6) 41 (7.9) 7.179 0.007

Subcortical lacunae (lacunae-SC) 42 (10.8) 122 (23.5) 24.107 <0.0001

Basal ganglia lacunae (lacunae-BG) 9 (2.3) 61 (11.8) 27.743 <0.0001

Bicaudate ratio (BCr) (adults) 0.11 ± 0.02 0.12 ± 0.02 -4.538 <0.0001

Bicaudate ratio (BCr) (elderly–old) 0.13 ± 0.02 0.15 ± 0.02 -5.976 <0.0001

Bicaudate ratio (BCr) (all) 0.12 ± 0.02 0.13 ± 0.02 -13.930 <0.0001

Apolipoprotein E (APOE)

APOE e4 carriers 40 (15.4) 42 (11.9) 0.004 0.198

APOE-e4 non carriers 219 (84.6) 312 (88.1)

Data presented are number (%) for categorical and mean (SD) for continuous data

ISNAs isolated, subtle, neurological abnormalities

The significant effects (p B 0.05) are shown in bold type
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show permanent ischemic injury on neuroimaging [46],

TIA might contribute to ISNAs not only through primary

local damage but also by secondary remote damage that
follows white matter retrograde and anterograde Wallerian

degeneration [47] and retrograde dying back of neurons.

Similarly, basal ganglia lacunar infarcts might contribute to
ISNAs disrupting the cortico-subcortical networks [48],

and disconnecting areas remote from the damaged struc-
tures. In the elderly–old, our new finding was that subjects

with subcortical atrophy are almost 90 % more likely to

have ISNAs than the reference group. Various different

processes may cause changes in the volume of the basal

ganglia. Basal ganglia may shrink by the age per se [49], or
because of the disruption of their connections with the

cerebral cortex caused by WMH and/or lacunae, or as a

consequence of the age-related cortical thinning [50].
Although only speculative, given that a nonnegligible

percentage of cognitively unimpaired elderly–old subjects

have an increased Ab deposition [5–8], an additional
contribution to subcortical atrophy could be caused by the

retrograde transport of Ab along axonal membranes [51] to

basal ganglia cell bodies. Interestingly, Ab deposition [52]
and atrophy [53] have been described in the striatum of

different Alzheimer disease (AD) mutation carriers and

sporadic AD [54, 55].
An important finding was that WMH and lacunae in

the parietal region are associated with an increased risk of
ISNAs with great ORs. This may suggest that these le-

sions had damaged parietal connectivity including parieto-

gangliar circuits and also, probably, long cortico-cortical
connections such as the superior longitudinal fasciculus

(SLF) [56]. The SLF which constitutes the most relevant

intrahemispheric association fiber pathway, bidirectionally
connects multiple prefrontal and frontal areas with the

parieto-temporal association areas and subserves higher

cortical functions such as language, memory, attention,
executive functions, and visuospatial and audiospatial

processing. The possibility that parietal WMH and lacu-

nae may also have damaged this tract is supported by the
fact that, even by performing neuropsychological ex-

amination well above age- and education-corrected cut-

offs for cognitive normality, subjects with ISNAs showed
poorer performance in tests evaluating general cognition,

language, and constructional ability than subjects without.

Given that our patients were not cognitively impaired, this

Table 3 Neuropsychological
and behavioral performances of
subjects with and without
ISNAs

ISNA- n = 388 ISNA?, n = 519 Statistics t test or v2 p

Neuropsychological performances

MMSE, median (IQR) 29.5 (2.0) 28.5 (3.0) 5.044 <0.0001

Cognitive domain z scores, median (IQR)

Memory -0.04 (1.13) -0.09 (1.04) 1.008 0.314

Executive 0.08 (1.07) -0.01 (1.04) 1.489 0.137

Language 0.42 (0.91) -0.03 (1.23) 7.159 <0.001

Attentive 0.11 (1.33) 0.11 (1.57) -1.024 0.306

Constructional -0.02 (1.99) -0.02 (1.32) 2.341 0.019

Behavioral performances

Depression 156 (40.2) 237 (45.7) 11.212 0.101

Anxiety 155 (39.9) 201 (38.7) 0.248 0.710

Data presented are number (%) for categorical and median (interquartile range, IQR) for continuous data

ISNAs isolated, subtle, neurological abnormalities, MMSE Mini Mental State Examination

The significant effects (p B 0.05) are shown in bold type

Table 4 Association between vascular risk factors, vascular diseases,
carotid ultrasonography and imaging findings, and ISNAs in the adult
subjects (n = 539)

Odd ratios (95 % CI)

Model 1 Model 2

Arterial hypertension 1.1 (0.7–1.6)

Hypercholesterolemia 1.4 (0.9–2.0)

Hypertriglyceridemia 1.7 (1.0–2.8) 1.7 (1.0–2.8)

Obesity (body mass index C30 kg/m2) 1.5 (1.0–2.3) 1.4 (0.9–2.2)

Intimal–medial thickness 2.0 (1.3–3.0) 1.4 (0.8–2.2)

Transient ischemic attacks 3.5 (1.5–8.2) 2.8 (1.1–7.0)

Subcortical lacunae (lacunae-SC) 1.2 (1.0–1.3) 1.1 (0.9–1.3)

Basal ganglia lacunae (lacunae-BG) 2.0 (1.2–3.4) 1.7 (1.0–3.0)

Subcortical atrophy (BCr) 1.2 (0.9–1.7)

CI confidence interval, BCr bicaudate ratio

Model 1 is adjusted for age, gender, and education (years), and
presence of the variables found to be significant by the univariate
analysis. Model 2 is with additional adjustment for the presence of the
variables deemed significant by Model 1

Bold values indicate significant p values at p B 0.05
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suggests that ISNAs may well precede the onset of cog-

nitive deficit.
It has recently been demonstrated that in non-disabled

elderly subjects, gait/stance abnormalities, upper motor

signs, finger tap slowing, and primitive reflexes are
strongly associated with severe WMH independently of

other vascular brain lesions both at baseline and at 3-year
follow-up period [19]. Our study confirms and extends

these data, since we demonstrated that besides WMH and

lacunae, subcortical atrophy is also independently associ-
ated with ISNAs and that in elderly–old subjects subcor-

tical atrophy has a stronger influence on the risk of ISNAs

than WMH. Similarly, a strong influence on the cognitive
performances of subcortical atrophy has been demonstrated

in healthy elderly, together with a synergistic interaction

with WMH [13]. In addition, it has been shown [18] that an
elevated number of subtle neurological abnormalities at

baseline is a risk factor for future cognitive and functional

decline, and predict mortality and relevant cerebrovascular
events requiring hospitalization. Unfortunately, since neu-

roimaging was not available in the previous study, infor-

mation on the possible link between these abnormalities
and imaging-detected cerebrovascular pathology and sub-

cortical atrophy is lacking.

The ISNAs, however, are not always associated with
WMH, lacunae, and subcortical atrophy as shown by the

fact that in our cohort about one-third (33.7 %; n = 175) of

ISNA? subjects had normal neuroimaging and about one-
third of ISNA- subjects (37.6 %; n = 146) showed WMH

and lacunae. These contradictory data may be explained in

two different ways. One option may be that in the brain of
these subjects there are ‘‘invisible’’ ultrastructural changes

in normal appearing white matter that precede the devel-

opment of imaging-detected WMH [57]. Another possible
explanation could be that, although identifiable in con-

ventional imaging, the burden of cerebrovascular pathol-

ogy must reach a threshold before clinical deficits become
evident [14]. It is also likely that the topography of the

cerebrovascular lesions play a role and that this threshold

may vary depending upon their locations.
The strength of the present study lies in the inclusion of

a large number of subjects neurologically and cognitively

Table 5 Association between
vascular risk factors, vascular
diseases, imaging findings, and
ISNAs in the elderly–old
subjects (n = 368)

Odd ratios (95 % CI)

Model 1 Model 2

Arterial hypertension 2.8 (1.5–5.2) 2.5 (1.3–4.8)

Ischemic hearth diseases 3.2 (0.9–11.1)

Subcortical white matter hyperintensity (WMH-SC) 1.2 (1.0–1.4) 1.2 (1.0–1.3)

Basal ganglia lacunae (lacunae-BG) 1.6 (0.9–3.1)

Subcortical atrophy (BCr) 2.2 (1.3–3.5) 1.9 (1.2–3.1)

CI confidence interval, BCr bicaudate ratio

Model 1 is adjusted for age, gender, and education (years), and presence of the variables found to be
significant by the univariate analysis. Model 2 is with additional adjustment for the presence of the
variables deemed significant by Model 1

Bold values indicate significant p values at p B 0.05

Table 6 Association between vascular risk factors, vascular diseases,
subcortical atrophy, carotid ultrasonography findings, topographical
location of WMH and lacunae, and ISNAs in the selected population
(n = 907)

Odd ratios (95 % CI)

Model 1 Model 2

Arterial hypertension 1.3 (0.9–1.8)

Diabetes mellitus 1.2 (0.8–1.9)

Hypertriglyceridemia 1.5 (0.9–2.2)

Chronic obstructive pulmonary
disease

2.1 (0.8–5.4)

Obesity (body mass index C30 kg/m2) 1.4 (0.9–1.9)

Intimal–medial thickness 1.7 (1.2–2.4) 1.4 (0.9–2.1)

Ischemic hearth diseases 1.7 (0.9–3.1)

Transient ischemic attacks 2.7 (1.4–5.4) 2.3 (1.2–4.7)

White matter hyperintensity

Frontal 1.2 (1.0–1.3) 0.9 (0.7–1.1)

Parieto-occipital 1.4 (1.1–1.7) 1.5 (1.1–2.1)

Temporal 2.2 (1.0–4.7) 1.1 (0.5–2.3)

Basal ganglia 1.1 (0.8–1.5)

Lacunae

Frontal 1.1 (0.9–1.2)

Parieto-occipital 1.7 (1.0–2.6) 1.7 (1.1–2.8)

Basal ganglia 1.7 (1.1–2.5) 1.5 (0.9–2.2)

Subcortical atrophy (BCr) 1.5 (1.1–1.9) 1.4 (1.0–1.9)

Model 1 is adjusted for age, gender, and education (years), and
presence of the variables found to be significant by the univariate
analysis. Model 2 is with additional adjustment for the presence of the
variables deemed significant by Model 1

CI confidence interval, ISNAs isolated, subtle, neurological abnor-
malities, BCr bicaudate ratio

Bold values indicate significant p values at p B 0.05
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healthy as well as in the comprehensive and uniform

assessment of the participants. However, certain limitations
of our study need to be addressed. Firstly, we acknowledge

that four subgroups among cognitively normal subjects

aged 50–89 years have been recently identified on the basis
of various combination of imaging biomarkers of b-amy-

loidosis and neurodegeneration and that 43 % only of these

subjects had normal AD biomarkers and no evidence of
subtle cognitive impairment [8]. The normality of our co-

hort was ascertained solely on the basis of the medical
history and of the cognitive and neurological evaluations,

thus we do not know which subgroup our NCH subjects

belong to. Secondly, due to the predominantly clinical
design of our study, we used MRI scanners with different

magnetic fields (0.5 and 1.5 T); however, the frequency

and type of ISNA and neuroimaging lesions did not differ
between groups. Thirdly, the fact that in the Radiology

Department of the University Hospital, sophisticated ana-

lyses were not available for clinical purposes precluded us
from quantifying cortical and regional atrophy and explains

why we assessed the subcortical atrophy by estimating the

bicaudate ratio. However, this simple measure which has
been proved to be a reliable surrogate marker of brain at-

rophy [58], does not need any expert technical assistance,

has the advantage of being inexpensive and thus easy to use
in clinical practice. Fourthly, interrater variability in the

assessment of the ISNAs by several neurologists may have

influenced our data. Reliability data are unfortunately not
available for this study. However, our neurological ex-

amination was standardized and was performed twice for

each subjects by two different trained neurologists each
blind to the other examination and to MRI data. Fifthly, our

patients are not a representative sample of the community

since they were selected in a hospital setting with inherent
implications of selection bias. Lastly, the data analyzed

here are cross-sectional and therefore only capable of

demonstrating correlations rather than causal relationships.
In conclusion, the ISNAs detected using a standard

neurological examination in adult to old neurologically and

cognitively healthy subjects are frequently neglected, as
they are considered to be just benign signs related to age.

These signs, however, are not benign at all since they are

independently associated with WMH, lacunae, and sub-
cortical atrophy, may partly be the consequence of silent

strokes ‘‘not listened to’’ by both patients and physicians

[59], thus probably constituting a red flag for future cog-
nitive decline. Therefore, it is of paramount importance

that these signs are not underestimated but assessed in

combination with an accurate history and exhaustive
imaging evaluation to prevent progression of cerebrovas-

cular disease and future neurological and cognitive dis-

abilities. Additional longitudinal observations on larger

community-based cohorts are needed to extend and clarify

the prognostic role of ISNAs.
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