brought to you by TCORE

CROSS-CONTAMINATION BY PCR-RFLP ANALYSIS OF THE CYTOCHROME B GENE

¹Di Bella S., ¹Di Marco P., ²Ferrari M., ¹Cannella V., ¹Alimena G., ¹Purpari G., ¹Guercio A.

¹IstitutoZooprofilattico Sperimentale della Sicilia, Area Diagnostica Virologica, Palermo ² Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia

INTRODUCTION

Cross-contaminations of a cell line with cells of different species represent a potential risk in laboratories handling human and animal cells. Therefore, it is necessary to control such contaminations.

Tests based on mitochondrial DNA (mtDNA) are used in forensic analysis, phylogenetic studies and in food authentication. However, the use of mtDNA in quality controls of cell cultures is recent. Mitochondrial sequence differences of closely related animal species are five- to tenfold higher than those of nuclear genes. On the contrary, intraspecies variation in mitochondrial sequences is low in most animal species. Moreover, each cell contains 100–10.000 mitochondrial genomes. The amount of mtDNA is greater than nuclear DNA, so that mtDNA can be analyzed also from small or partially degraded samples.

In the present study, a method based on a PCR-Restriction Fragment Length Polymorphism (RFLP) analysis of the mitochondrial cytochrome b gene was used (2). This gene has some stable sequences which are recognized from universal primers and some variable sequences used for animal species identification by PCR-RFLP method.

METHODS

Cells. In this study over 28 cell lines belonging to 13 different species were analyzed (Table 1). These cell lines included some human and animal cell lines among the most widely used for diagnostic and research purpose. Moreover mesenchymal stem cells of horse, dog and rat were tested.

An experimental contamination between cell lines of 2 different species (human and rat) was also performed.

Sample preparation and DNA extraction. Cell cultures stored in liquid nitrogen were thawed at $+37^{\circ}$ C, diluted with minimum essential medium containing 10% fetal calf serum, and centrifuged at 180xg; the pellets were resuspended in 200 µl of phosphate buffer saline (samples analyzed are listed in Table 1). DNA extraction was performed with DNeasy Blood & Tissue Kit (Qiagen) according to manufacturer's protocol.

PCR. Primers L14816 an H15173 (1) were used to amplificate a fragment of the cytochrome b gene (2).

RFLP analysis of PCR products. The amplification product was digested with 10U of six restriction enzymes: AluI, HinfI, HaeIII, TaqI, RsaI, MboI (3), and the derived pattern was resolved on 3% high-resolution agarose gel and visualized with a UV transilluminator.

Figure 1. PCR amplification products of all species analyzed.

Figure 2. Restriction profiles of some species and of a crosscontamination uman-rat.

opecies	Cen mie	Type	mui					macm	Tadi	ix.sui	mboi
Human	A549	ECL	358		198	160	231	106 21	217 141	358	192 115 51
	MRC5	ECL									
	CACO	ECL									
	MDA-MB-231	ECL									
	Hep-2	ECL									
Pig	PK-15	ECL	244 114		358		153	132 73	217 141	358	243 115
	MPK	ECL									
Mouse	RAW	ECL	358		313	45	358		217 141	282 76	243 115
	AML-12	ECL									
Rat	MSCs	PRC	358		358		358		358	267 60 31	245 79 34
Cow	MDBK	ECL	191 167		196	117 45	283	75	358	358	358
	REB	ECL									
	AUBEK	ECL									
Horse	MSCs	PRC	167 105	86	243	79 45	160	125 73	358	358	358
	E-DERM	ECL									
Cat	CRFK	ECL	190 114	54	117	79 45	253	75 19 11	358	215 143	358
Rabbit	RK13	ECL	358		236	122	153	128 45 32	358	358	243 115
Dog	MDCK	ECL	243 85 3	85 30	294	55 9	233	125	358	285 42	213 115 30
	A72	ECL								31	
	MSCs	PRC									
Rhesus Monkey	FRhK-4	ECL	358		198	160	159	123 76	358	204 154	358
	LLC-MK2	ECL									
African Green Monkey	VERO	ECL	358		198	160	159	123 76	358	327 31	295 63
	BGM	ECL									
	MA-104	ECL									
Chicken	Fibroblasts	PRC	358		188	160 10	159	123 76	358	204 154	358
Sheep	RFO	PRC	358		294	64	160	125 73	358	358	244 114
Hamster	BHK-21	ECL	190 114	54	358		264	74 20	217 141	327 31	326 32

 Table 1. Cell lines tested for each species (MSCs: Mesenchymal Stem Cells, ECL: Estabilished Cell Line, PRC: Primary Cell line) and restriction profiles of different species.

RESULTS

The couple of primers allowed the amplification of a 358 bp fragment of the cytochrome b gene in all species analyzed (Figure 1). For each species, RFLP produced a specific restriction pattern (Table 1) and the origin of these animal cells was confirmed by this analysis. Restriction profiles of some species are shown in Figure 2. The species of the two cell lines used for the cross-contamination were identified by the reading of the restriction profile obtained (Figure 2).

CONCLUSIONS

The obtained data showed that this method could be used in detecting the presence of cross-contamination and to identify the species of origin of cells. This allows to hypothesise the application of this method in the implementation of quality controls of cell cultures and mesenchymal stem cells.

BIBLIOGRAFIA

321-9. 3) Meyer R., Höfelein C., Lüthy J., Candrian U. (1995). Polymerase chain reactionrestriction fragment length polymorphismanalysis: a simplemethod for species identification in food. J. AOAC Int. 786: 1542–1551.

¹⁾ Bravi C. M., Lirón J. P., Mirol P. M., Ripoli M. V., Peral-Garcia P., Giovambattista G. (2004). A simple method for domestic animal identification in Argentina using PCR-RFLP analysis of cytochrome b gene. Leg. Med. 64: 246–251. 2) Losi C. G., Ferrari S., Sossi E., Villa R., Ferrari M. (2008). An alternative method to isoenzyme profile for cell line identification and interspecies cross-contaminations: cytochrome b PCR-RLFP analysis. In Vitro Cell. Dev. Biol. Anim. 44 (8-9):