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On the influence of curvature and torsion on turbulence in 
helically coiled pipes 

M Ciofalo +, M Di Liberto and G Marotta 
Dipartimento DEIM, Università degli Studi di Palermo, Italy 
+ Corresponding author; email michele.ciofalo@unipa.it, tel. +39 320 43 95 854 
 
 
Abstract. Turbulent flow and heat transfer in helically coiled pipes at Reτ=400 was investigated 
by DNS using finite volume grids with up to 2.36×107 nodes. Two curvatures (0.1 and 0.3) and 
two torsions (0 and 0.3) were considered. The flow was fully developed hydrodynamically and 
thermally. The central discretization scheme was adopted for diffusion and advection terms, and 
the second order backward Euler scheme for time advancement. The grid spacing in wall units 
was ~3 radially, 7.5 circumferentially and 20 axially. The time step was equal to one viscous 
wall unit and simulations were typically protracted for 8000 time steps, the last 4000 of which 
were used to compute statistics. The results showed that curvature affects the flow significantly. 
As it increases from 0.1 to 0.3 the friction coefficient and the Nusselt number increase and the 
secondary flow becomes stronger; axial velocity fluctuations decrease, but the main Reynolds 
shear stress increases. Torsion, at least at the moderate level tested (0.3), has only a minor effect 
on mean and turbulence quantities, yielding only a slight reduction of peak turbulence levels 
while leaving pressure drop and heat transfer almost unaffected. 

1. Introduction and literature review on flow and heat transfer in curved pipes and coils 

1.1. Problem definition and notation 
Curved pipes are commonly encountered in engineering equipment involving fluid flow and heat 
transfer. For example, helical coils are widely used for heat exchangers and steam generators in power 
plant because they easily accommodate thermal expansion and may exhibit higher heat transfer rates 
than straight pipes [1-3]. 
Figure 1 shows a schematic representation of a single coil of a helical pipe (computational domain) 
with its main geometrical parameters: coil radius c, pipe radius a, and coil pitch 2πb. Inner and outer 
sides are indicated by “I” and “O”, respectively; top and bottom sides by “T” and “D”, respectively. 
The dimensionless curvature and torsion can be defined as: 

a

c
δ =  (1) 

b

c
λ =  (2) 

Instead of the torsion λ, the torsion parameter τ (dimensionally length-1) is sometimes used:  

( )2 2

b

c b
τ =

+
 (3) 
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Figure 1. Schematic representation of a helical pipe 
with its main geometrical parameters: a, pipe radius; 
c, coil radius; 2πb, coil pitch. The inner (I), outer (O), 
top (T) and bottom (D) sides of the curved duct are 
indicated. 

 
Helical coils reduce to curved (toroidal) pipes when λ=0. Several studies, e.g. [4, 5], show that coil 
torsion λ has only a higher order effect on the flow and on global quantities, such as the friction 
coefficient, with respect to the first order effect of curvature δ. The effect of curvature is the 
occurrence of two counter-rotating vortices in the cross section, while the effect of torsion is a loss of 
symmetry with respect to the equatorial midline I-O. 
Without loss of generality, the duct can be considered as a right-handed helix. The centreline of this 
helix, i.e. the main axis of the duct, can be parameterized using the angle of rotation ϕ as: 

( ) cos sinc c bϕ ϕ ϕ ϕ= ⋅ + ⋅ + ⋅P i j k  (4) 

where i, j and k are the unit vectors of a Cartesian reference frame (x1, x2, x3), see figure 2. 
Germano [4] introduced an orthogonal reference system for helical pipes, based on the helical 
coordinates s (axial), r (radial) and θ (azimuthal), with the prescription that θ be measured from a 
reference azimuth which rotates anticlockwise (for a right-handed helix) as −τs (where τ is the torsion 
parameter defined above). The position of any point inside the helical pipe is given by the vector 

( ) sin( ) ( ) cos( ) ( )s r s s r s sθ τ θ τ= − − ⋅ + − ⋅X P N B  (5) 

where T, N and B are the unit vectors along the tangential, normal, and binormal directions of the pipe 
axis P(s). By expanding T, N and B in terms of the unit vectors i, j and k, and taking account of Eq. 
(4), Eq. (5) becomes a rule for transforming Germano coordinates into Cartesian ones. Complete direct 
and inverse transformations [6] are cumbersome and will not reported here. 
 

 

Figure 2. Sketch of the orthogonal helical 
coordinate system (s, r, θ), as introduced by 
Germano [4]. 

 
In the present study, as also discussed in section 2.3, instantaneous velocity components and their first- 
and second-order moments, computed by the code in a Cartesian reference frame, were converted in 
the Germano coordinate system where they acquire their full physical significance. 
In the following, the cross-sectional average of a generic quantity φ will be indicated by Φ and its time 
average by φavg or φ , while the fluctuation φ−φavg  will be indicated by φ' and its root mean square 

value by φrms. The notation 〈φ〉 will be used for the circumferential average of a wall quantity (e.g. the 
wall shear stress τw). The bulk Reynolds number Re will be defined on the basis of the pipe diameter 
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2a and the time- and cross-section-averaged (bulk) velocity Uavg as Re=2Uavg a/ν, ν being the 
kinematic viscosity of the fluid. The friction-velocity Reynolds number will be defined as Reτ=uτa/ν, 

where ( )1/2
/wuτ τ ρ= is the friction velocity based on the time- and circumferentially-averaged wall 

shear stress. Wall scales can be built on the basis of uτ, i.e. uτ itself for velocity, ν/uτ for length, uτ
2 for 

Reynolds stresses and turbulence energy, etc.; the corresponding normalized quantities will be denoted 
by a superscript +. The temperature wall scale will be ( )" /w pT q c uτ τρ= , "

wq  being the time- and 

wall-averaged heat flux; in this way, the wall scale for heat fluxes, including the turbulent (Reynolds) 
heat flux ' '

p ic u Tρ , will be "
w pq c u Tτ τρ= . The dimensionless temperature T+ will be computed as  

(Tw-T)/Tτ; note that T+ vanishes at the wall and is always positive in the bulk flow, provided the wall 
heat flux q w̋ is regarded as positive if entering the fluid and negative otherwise. 
The friction velocity uτ can also be used to define the Large Eddy TurnOver Time (LETOT) a/uτ, a 
scale currently used in direct and large-eddy simulations of turbulence to identify the minimum 
simulation time required for statistical significance. Since the wall time unit is ν/uτ

2, one LETOT 
corresponds to a number of wall time units equal to the friction velocity Reynolds number Reτ [7]. 
Finally, the inner (tube) side Nusselt number will be defined as: 

( )

" 2
Nu

w

w b

q a

T Tχ
=

−
 (6) 

where χ  is the fluid thermal conductivity and Tb is the bulk fluid temperature. On the basis of the 
above-mentioned definitions, one also has Nu=(2a)/(χTb

+). 

1.2. Flow field and pressure drop 
Flow in curved pipes with zero torsion is characterized by the existence of a secondary circulation in 
the cross section, caused by the local imbalance between pressure and inertial (centrifugal) forces. The 
fluid moves towards the outer bend side near the equatorial midplane, returns towards the inner side 
along two near-wall boundary layers, and then forms two symmetric secondary cells (Dean vortices) 
having a characteristic velocity scale Uavg δ1/2. This picture changes only slightly for finite but 
moderate values of the torsion. 
Experimental pressure drop results for a wide range of curvatures and Reynolds numbers were 
presented by Ito [8], who derived the following correlations for the Darcy-Weisbach friction factor f 
(four times the Fanning coefficient) in curved pipes (5×10−4≤δ ≤0.2): 

5.73
10

64 21.5 De

Re (1.56 log De)
f

⋅= ⋅
+

 (laminar flow) (7) 

0.250.304 Re 0.029f δ−= ⋅ +  (turbulent flow) (8) 

in which Re is the bulk Reynolds number and De=Re δ1/2 is the Dean number, which accounts for 
inertial, centrifugal and viscous effects. Note that Eqs. (7)-(8) do not explicitly contain torsion. 
Ito’s correlations, although dated, have been confirmed to a notable degree by a large bulk of 
experimental studies; for example, they agree well with the experiments conducted by Cioncolini and 
Santini [9] in a broad range of curvatures (0.027≤δ≤0.143) and Reynolds numbers (Re≈103-7×104). 
Several authors attempted to characterize the transition to turbulence in curved pipes. Among 
computational studies, Di Piazza and Ciofalo [10] presented detailed results on the breakdown of 
steady laminar flow and the transition to turbulence in closed toroidal pipes having curvatures δ of 0.1 
and 0.3. They observed a complex transition scenario, characterized by travelling waves, involving 
periodic, quasi-periodic and chaotic solutions depending on curvature and Reynolds number. Chaotic 
flow was obtained for Re>~7000 in the case δ =0.1 and for Re>~8000 in the case δ =0.3.  
Three-dimensional numerical simulations of unsteady flow in helical and curved pipes were also 
presented by Friedrich and co-workers [11, 12]. They compared toroidal and helical pipe results for 
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Re≈5600 (Reτ≈230) and δ=0.1. Although the authors performed a statistical processing of the 
computational results (e.g. by computing Reynolds stress), the case they studied was a time-dependent 
laminar flow rather than a truly turbulent flow [10]. 

1.3. Heat transfer 
As regards heat transfer, many experimental studies were performed in the 1960s and the 1970s on the 
average heat transfer rate in curved and helical pipes, e.g. by Seban and McLaughlin [13] and Mori 
and Nakayama [14]; only some of these investigations explored the influence of the Prandtl number on 
heat transfer, and very few investigated the local heat transfer rate distribution. 
Rogers and Mayhew [15] proposed for the Nusselt number in helical pipes the following correlation: 

0.85 0.4 0.1Nu 0.023Re Pr δ=  (9) 

This formula is basically a curvature correction to the Dittus-Bölter correlation; since it does not 
contain the pipe torsion, it does not distinguish between planar and helical curved pipes and it does not 
exhibit the correct asymptotic behaviour for small δ, predicting Nu=0 for straight pipes. 
In their experimental study on heat transfer in helical pipes, Xin and Ebadian [16] explored two values 
of curvature, i.e. δ=0.027 and 0.08, Re from 5⋅103 to 1.1⋅105, and three different fluids covering a 
broad range of Prandtl numbers, i.e. air (Pr=0.7), water (Pr=5), and ethylene glycol (Pr=175). Results 
for air and water (0.7<Pr<5) were approximated by the following correlation: 

( )0.92 0.4Nu 0.00619Re Pr 1 3.455δ= +  (10) 

with an RMS deviation of 18% for 0.7<Pr<5, 5×103<Re<105, 0.0267<δ<0.0884. Even Eq. (10) does 
not distinguish between planar and helical pipes, but, unlike Eq. (9), it exhibits a reasonable 
asymptotic behaviour for straight pipes. 
 
2. Models and methods 

2.1. Computational mesh 
As mentioned above, the computational domain was a single coil of helical pipe, shown in figure 1 for 
the case δ=0.3. In particular, two curvatures, δ=0.3 and δ=0.1, and two torsions, λ=0.3 and λ=0 
(toroidal pipe), were simulated [18]. The finite volume computational grid was hexahedral and multi-
block structured; it was characterized by the parameters NRAD and Nθ  as shown in figure 3. 
 

 

Figure 3. One fourth of the cross section with 
the computational multi-block hexahedral 
mesh. The number of cells in the whole cross 
section is 4Nθ(Nθ +2NRAD). 

 
In the fine grid used for the simulations reported here, the values NRAD=64, Nθ=32 were adopted. With 
these choices, the cross section was resolved by ~21 000 volumes. In the streamwise direction the 
domain was discretized by NS=384 cells for δ=0.3 and by NS=1152 cells for δ=0.1, so that the total 
number of control volumes was N≈7.86·106 for δ=0.3 and N≈2.36·107 for δ=0.1. Geometric refinement 
was introduced at the wall, with a consecutive cell size ratio of ~1.025 in the radial direction. For 
Reτ=400, the first near-wall grid point (volume centre) was at y+≈0.5 and the viscous sublayer (y+≤11) 
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was resolved by 10 grid cells. The Kolmogorov length scale ΛK=(ν3/ε)1/4, ε being the dissipation of 
turbulence energy per unit mass, can be expressed for the present configuration (in the average) as 
ΛK=aReτ

-1/2 Re-1/4. For Reτ=400 and Re ranging from 9450 (δ=0.3) to 11800 (δ=0.1), it can be shown 
that, in wall units, 2KΛ +

≃  so that the fine mesh provides a resolution of ∼0.5ΛK to 2.5ΛK radially, 

~10ΛK streamwise and ~5ΛK or less spanwise (of course, the largest values are attained near the wall).  

2.2. Numerical methods 
Simulations were conducted by the ANSYS CFX 13 code [17]. It uses a finite volume approach, a co-
located (non-staggered) grid layout and a coupled technique, which simultaneously solves all the 
transport equations in the whole domain. The linearized system of equations is preconditioned in order 
to reduce all the eigenvalues to the same order of magnitude. An algebraic multi-grid solver reduces 
the low frequency error, converting it to a high frequency error at the finest grid level; this results in a 
great acceleration of convergence.  
To simulate fully developed flow and heat transfer, periodic boundary conditions were imposed at 
inlet-outlet, and no slip conditions for the velocity at the wall. A uniform source term was added to the 
RHS of the axial momentum equation as the driving force per unit volume balancing pressure drop. 
At walls, a constant wall temperature Tw was imposed. A local energy source term was applied to 
compensate the wall heat flux. Taking account of the definition of the Nusselt number based on the 
bulk temperature Tb, this local source term must be proportional to the local axial velocity. With this 
treatment, the bulk temperature and the Nusselt number tend to stable values once a statistically steady 
state is reached. The Prandtl number was set to 0.86 (representative of saturated water at 58 bar). 
Simulations were protracted for ~20 LETOT's a/uτ, the last 10 of which were used to build averages 
and statistics, including RMS temperature fluctuations and turbulent heat fluxes. The time step ∆t was 
chosen equal to one wall time unit ν/uτ

2, so that one LETOT was resolved by Reτ=400 time steps and a 
typical simulation included 8000 time steps. The resulting Courant number was less than 1 almost 
everywhere in all cases; this time discretization is sufficient to capture most of the turbulent variations. 

2.3. Post-processing 
Simulations were conducted in a Cartesian reference frame (x, y, z). Instantaneous velocities, pressure 
and temperature on 8 equally spaced cross sections of the pipe were stored at each time step. 
The subsequent post-processing (by purpose written Fortran code) included the following phases: 
a. interpolating all quantities on a local 2-D polar grid (r, θ) (100 radial nodes, selectively refined 

towards the wall, and 180 circumferential nodes were used); 
b. projecting all velocity components onto the Germano reference frame (s, r, θ); 
c. computing time averages and time statistics to obtain velocity fluctuations and Reynolds stresses; 
d. further regularizing all the statistics by averaging them over the 8 cross sections stored. 
 
3. Results 

3.1. Power spectra 
Figure 4 reports spectra of the axial velocity us for δ=0.3, λ=0.3. They were computed in the frequency 
domain for two points located on the equatorial midline of a cross section in the outer and inner bend 
regions, respectively, at a dimensionless distance from the wall y+=20. The abscissa is the frequency 
f+, normalized by the viscous frequency scale uτ

2/ν which is the reciprocal of the time step ∆t=ν/uτ
2 

(see section 1.1). Therefore, spectra necessarily exhibit a computational cutoff (indicated in the 
figures) at f+max=(1/2)( ∆t+)-1=0.5. The Kolmogorov length scale ΛK=aReτ

-1/2Re-1/4 (see section 2.1) 
corresponds to a dimensionless frequency fK

+=(1/2)(Uavg/ΛK)/(uτ
2/ν)≈2.88, also indicated in the figures. 

The spectrum for the outer bend side, figure 4(a), exhibits a fairly developed inertial subrange with 
slope -5/3 extending over about one decade. This is followed by a sharp fall at f+≈0.1, well below the 
computational cutoff. This suggests that energy-containing scales are sufficiently resolved by the grid, 
and are actually far larger than the theoretical Kolmogorov scale deduced above. The spectrum for the 
inner side, figure 4(b), is different; coherently with the fact that the flow there is almost laminarized, it 
does not exhibit an inertial subrange and falls at a much lower dimensionless frequency of ~3×10-2. 
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Similar results are obtained for different values of torsion and curvature. These findings support the 
view that the grid used is sufficient to resolve all significant structures of the turbulent motion. 
 

Spectrum of u s  - outer bend side
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(b) 

Figure 4. Power spectra of the axial velocity in the frequency domain for the case δ=0.3, λ=0.3. (a) 
outer bend region; (b) inner bend region. The dimensionless distance from the nearest wall is y+=20. 
 

3.2. Influence of torsion 
Figure 5 compares, for curvature δ=0.3 and torsion λ=0.3 (helical pipe – solid lines) or λ=0 (toroidal 
pipe – broken lines), radial profiles of time-averaged streamwise velocity usavg

+, time mean 
temperature Tavg

+, total turbulence energy k+ and axial-radial Reynolds shear stress, all expressed in 
wall units, along the two orthogonal diametric lines (I-O and T-D) indicated in figure 1. Note that 
throughout this paper the cross section is assumed to be viewed from upstream, so that (see figure 1) 
the inner bend side (I) is on the left, while the outer bend side (O) is on the right. 
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Figure 5. Radial profiles of (a) usavg
+, (b) Tavg

+, (c) k+ and (d) s ru u
+
 (in wall units), along the 

diametric lines I-O and T-D, for δ=0.3 and λ=0.3 (solid lines) or λ=0 (broken lines). 
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Average parameters (usavg
+ and Tavg

+) are almost identical in the two cases, while turbulent parameters 
(k+ and usur

+) decrease significantly in the presence of torsion, especially on the outer side (“O” , 
r/a>0) where the turbulence intensity is highest. The reduction is particularly significant (20-25%) for 
the tangential Reynolds-stress. 
Figure 6 shows a similar comparison for δ=0.1. Conclusions here are similar to those given above for 
δ=0.3, with the exception that, for this smaller curvature, the reduction in the peak value of the 
Reynolds shear stress on the outer bend side induced by torsion is more significant (∼30-35%). 
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Figure 6. Radial profiles of (a) usavg
+, (b) Tavg

+, (c) k+ and (d) s ru u
+
 (in wall units), along the 

diametric lines I-O and T-D, for δ=0.1 and λ=0.3 (solid lines) or λ=0 (broken lines). 
 
Figure 7 reports vector plots of the time mean secondary flow for δ=0.3 and λ=0.3 (a) or λ=0 (b).  
 

 

 
(a) 

 
(b) 

Figure 7. Vector plots of the mean secondary flow for δ=0.3 and λ=0.3 (a) or λ=0 (b). Reference 
vectors corresponding to uτ are shown. Inner bend side (I) on the left, outer side (O) on the right. 
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The secondary flow for λ=0 (graph b on the right) exhibits the typical Dean circulation pattern, with a 
broad central region of weak centrifugal flow and two narrow returning (centripetal) secondary flow 
boundary layers, which end up turning inward and becoming the twin Dean vortices. A similar 
secondary flow pattern is obtained for λ=0.3 (graph a on the left); here, however, a slight global 
clockwise rotation of the secondary flow field due to torsion can be noticed, with a loss of the exact 
top-down symmetry with respect to the equatorial midplane. A weak clockwise recirculation pattern 
affecting the whole cross section can be observed, with its centre lying slightly below the midplane. 
In the following, only results for the cases with finite torsion will be shown. Except for the small 
differences highlighted above, the results for the cases with zero torsion are very similar. 
 

3.3. Influence of curvature 
Figure 8 reports radial profiles (in wall units) of time-mean streamwise velocity usavg

+ (a), mean 
temperature Tavg

+ (b) and rms axial, radial and azimuthal velocity fluctuations usrms
+, urrms

+, uθrms
+ (c-d), 

along the lines I-O and T-D, for λ=0.3 and δ=0.3 (solid lines) or δ=0.1 (broken lines). As in figures 4 
and 5, the inner bend side (I) lies on the left and the outer bend side (O) on the right. 
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Figure 8. Radial profiles (in wall units) of time-
average streamwise velocity usavg

+ (a), mean 
temperature Tavg

+ (b) and axial, radial and 
circumferential rms velocity fluctuations usrms

+, 
urrms

+, uθrms
+ (c-e), along the diametric lines I-O 

and T-D, for λ=0.3 and δ=0.3 (solid lines) or 
δ=0.1 (broken lines). 
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As the curvature δ increases from 0.1 to 0.3, the mean velocity (graph a) and the mean dimensionless 
temperature (graph b), once measured in wall units, decrease significantly, which corresponds to an 
increase both in friction and in heat transfer rates for a given flow rate. As the curvature increases, the 
axial velocity fluctuation decreases significantly in the central region of the channel and, less 
markedly, in both the inner and outer near-wall layers. The radial and azimuthal velocity fluctuations 
decrease in the central region of the channel and in the I near wall region, change little in the T and D 
near-wall regions, but increase considerably in the O near-wall region, where the highest fluctuation 
levels are observed. Since in pipe and channel flow turbulence is mainly produced in the form of axial 
fluctuations and is then re-distributed among the other components by pressure-strain rate correlations 
(redistribution terms), the present findings indicate that curvature enhances the importance of 
redistribution terms and yields a more isotropic turbulence structure. 
Vector plots of the in-plane turbulent (Reynolds) heat flux, for λ=0.3 and for δ=0.3 (a) and δ=0.1 (b), 
are reported in figure 9. A scale vector of length "

w pq c u Tτ τρ=  is also shown.  

 
 

(a) 

 

 
(b) 

Figure 9. Vector plots of the turbulent heat flux for λ=0.3 and δ=0.3 (a) or δ=0.1 (b). The scale 

vector represents the time- and surface-averaged wall heat flux "
wq . Inner bend side (I) on the left, 

outer side (O) on the right. 
 

The in-plane turbulent heat flux vector, of components ' '
p rc u Tρ  (radial) and ' '

pc u Tθρ  (azimuthal), for 

both cases is large only in the outer region, where its radial component attains peak values well above 
1 and contributes significantly to heat transfer from the wall. The turbulent heat flux exhibits 
negligible values not only near the inner side but also in the Dean vortex regions, which are basically 
steady structures little affected by turbulent fluctuations. 
In the outer bend region the turbulent heat flux is slightly more intense for the higher curvature. On the 
contrary, in the central and in the Dean vortex regions turbulent fluxes are stronger for the lower 
curvature, while in the case δ=0.3 these regions are characterized by an almost zero contribution of 
turbulence to heat transport. 
 

3.4. Wall quantities 
Figure 10 represents the distribution of the instantaneous wall shear stress (normalized by its time- and 
surface-averaged value) over the pipe wall for the four cases. 
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(a) 

 
(b) 

 

 
 
(c) 

 
(d) 

Figure 10. Instantaneous distribution of the wall shear stress τw. (a) λ=0.3, δ=0.3; (b) λ=0.3, δ=0.1; 
(c) λ=0, δ=0.3; (d) λ=0, δ=0.1 (inner and outer side). With reference to the legend on the left, τw is 

normalized by its time- and surface-averaged valuewτ , which is the same for all cases. 

 
All cases exhibit a peculiar pattern. The outer bend side of the pipe, where turbulence levels are high, 
is covered by a streak pattern not unlike that observed for turbulent flow in straight pipes, and 
obviously associated with a similar pattern of the near-wall streamwise velocity. The circumferential 
spacing of the streaks ranges between 100 and 200 wall length units, and their streamwise extent 
between 500 and 1000. On the other hand, the inner bend side, where turbulence levels are low, 
exhibits a flat distribution and very low values of the wall shear stress. The difference between the 
inner and outer sides is more marked for the higher curvature (δ=0.3), and seems to be little affected 
by torsion. 
Similar remarks hold for the following figure 11, which reports the distribution of the instantaneous 
wall heat flux over the pipe wall for the four cases. Here q”  is normalized by the conductive heat flux, 
q” c=χ(Tw−Tb)/a. The outer bend side of the pipe wall is covered by a pattern of thermal streaks, the 
size and general features of which are similar to those observed for the hydrodynamic streaks in figure 
10. The low-turbulence inner bend side exhibits a flat distribution of the local heat flux, which appears 
to be only slightly higher than the conductive reference heat flux q”c.  
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(a) 

 
(b) 

 

 
 
(c) 

 
(d) 

Figure 11. Instantaneous distribution of the wall heat flux q”  (a) λ=0.3, δ=0.3; (b) λ=0.3, δ=0.1; (c) 
λ=0, δ=0.3; (d) λ=0, δ=0.1 (inner and outer side). Here q”  is normalized by the conductive heat flux, 
q” c=χ(Tw−Tb)/a. 
 
4. Conclusions 
Direct numerical simulations were performed for fully developed turbulent flow with heat transfer in 
curved and helical pipes. Four cases, characterized by torsion λ=0.3 or 0 and curvature δ=0.1 or 0.3, 
were examined. In all cases, the friction velocity Reynolds number was 400 and the Prandtl number 
was 0.86. The ANSYS CFX 13 computer code was used for all the numerical simulations. 
Computational grids with up to ~23 million nodes were used; the overall CPU time required for this 
study was close to 5×108 core-seconds. 
All cases exhibited a strong asymmetry between the outer bend side, characterized by high turbulence 
levels, high shear stress and high heat transfer rates, and the inner bend side, characterized by an 
almost steady flow and by very low levels of wall shear stress and heat transfer. The time-mean flow 
exhibited a secondary recirculation pattern similar to that observed in high-Reynolds number laminar 
flow, with the appearance of twin Dean vortices having their centres in the inner region of the cross 
section.  
Increasing the curvature led to a considerable increase of frictional losses and heat transfer rates; it 
also yielded an increase in turbulence re-distribution, so that peak values of the axial velocity 
fluctuation decreased whereas peak values of the radial and azimuthal fluctuations increased. Another 
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effect of increasing the curvature was that fluctuations tended to be confined to the near-wall outer 
region, while the flow in the core of the pipe became almost laminar. 
Torsion, at least at the moderate level tested (0.3), was found to have only a minor effect on mean and 
turbulence quantities, yielding only a slight reduction of peak turbulence levels while leaving pressure 
drop and heat transfer almost unaffected. This supports the established practice of using friction and 
heat transfer correlations which contain only curvature but not torsion. 
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