ALCOHOL OXIDATION PROMOTED BY NOVEL RECYCLABLE C₆₀-TEMPO ORGANOCATALYSTS

Hazi Ahmad Beejapur,^a Francesco Giacalone,^{a*} Michelangelo Gruttadauria^{a*}

^a Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF)- Sezione di Chimica, Università degli Studi di Palermo, Viale delle Scienze s/n - Edificio 17, 90128, Palermo e-mail haziahmad,beejapur@unipa.it

Oxidation of alcohols to carbonyl compounds plays an important role in both the industrial synthesis and laboratory research.¹ In this process, use of metal free nitroxy radical TEMPO (2,2,6,6-tetramethyl piperidine-1-oxyl) as a catalyst has gained much attention in the selective oxidation of primary and secondary alcohols to carbonyl compounds.² However, the relatively high prices of such derivatives prevent their large scale employment, making recovery of the catalyst highly desirable. Herein, we show for the first time the use of [60]fullerene as a molecular platform for supporting several organocatalytic TEMPO moieties to be used in the quantitative oxidation of alcohols to their corresponding carbonyl compounds (Scheme 1).

1-Phenylethanol was oxidized and recycled up to 7 cycles using highly loaded C_{60} TEMPO₁₂ catalyst (1 mol%) and quickly isolated by short chromatography whereas, ionic liquid tagged $C_{60}IL_{10}$ TEMPO₂ catalyst (1 mol%) was recycled up to 12 cycles by using new class of multilayed covalently supported IL phase (mlc-SILP) materials with 'release and catch' approach.³ Such catalysts gave good to excellent yields in the oxidation of a wide series of different alcohols to carbonyl compounds with a loading of catalyst between 0.05 and 1 mol% with TON of up to 3000.

References:

¹Hudlicky, M. Oxidations in Organic Synthesis, ACS, Washington DC, 1990; pp 114-149.

² Tebben, L.; Studer, A. Angew. Chem. Int. Ed. 2011, 50, 5034-5068.

³ Gruttadauria, M.; Giacalone, F.; Noto, R. Green Chem. 2013, 15, 2608-2618.