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Introduction

Let A be an algebra over a field F' of characteristic zero. We say that
a polynomial f = (z1,x9, -+ ,2,) # 0 in the non-commuting variables
x1,T2, -+ ,x, of the free associative algebra F(X) = F(xi,z9,---) over
a field F' is a polynomial identity for A if and only if f(aj,as, - ,a,) =0,
for any ay, a9, ,a, € A, and we say that A is a PI-algebra. The set of all
polynomial identities of A, Id(A), is a T-ideal of the free associative algebra
F(X).

It is possible to see that any algebra A determines a T-ideal of F'(X).
On the other hand, many algebras correspond to the same T-ideal hence
the class of all algebras A such that f is a polynomial identity of A for
all f lying in a non-empty set S C F(X) is called the variety V = V(S)
determined by S. Moreover if V is a variety and A is an F-algebra such that
Id(A) = Id(V), then we say that V is the variety generated by A and we
write V = var (A). Also, Kemer in [26] proved that if the infinite dimensional
Grassmann algebra F is not an algebra of the variety V, then V is generated
by a finite dimensional algebra A.

A famous theorem of Kemer says that if A is a PI-algebra over F', then
its T-ideal is finitely generated. The explicit set of generators for the T-
ideal is well know only for a small number of algebras like the 2 x 2 matrices
over F', My(F), due to Razmylov in [31] and Drensky in [17], the infinite
dimensional Grassmann algebra E, due to Krakowsky and Regev in [27] and
the upper triangular matrices of order n, due to Malcev in [29].

It is well know that if I is a field of characteristic zero, all the polynomial
identities of an algebra A come from the multilinear ones. If we set P, to
be the set of polynomials that are linear in the variables x1,xs, -+, x,, we
can consider for any n € N, the factor space

P,

Pul4) =55 1d(A)’

We call the n-th codimension of A, the dimension of P, (A) and we denote it
with ¢, (A). In general ¢, (A) is bounded from above by n!, but Regev in [32]
proved that if A is PI-algebra, its sequence of codimensions is exponentially
bounded. Later Kemer proved in [25] that the sequence of codimensions of
any Pl-algebra is either polynomially or exponentially bounded. Moreover
Giambruno and Zaicev proved in [18] and [19] that the limit

lim /¢, (A)
n—oo
exists and is a non-negative integer called the PI-ezponent of A, exp(A).
The permutation action of S,, on the space P,, of multilinear polynomials
in the first n variables induces a structure of S,-module on P, (A), and let



Xn(A) be its cocharacter. By complete reducibility we can write

Xn(fD :ZEE:TRAXAa

A-n

where ) is the irreducible S,-character associated to the partition A of n
and my > 0 is the corresponding multiplicity.

In order to understand better the T-ideals, a useful tool consists in the
study of some weaker polynomial identities for associative algebras. In fact
let G be a group and A an algebra over F', a G-grading of A is a decompo-
sition of A, as a vector space, into the direct sum of subspaces

A=A,
geG
such that A;A, C Agp. Let X be the disjoint union UgeG Xy, where X, is a

countable set of indeterminates, then we consider the free algebra F(X)(97)
generated by X. We call the elements of F(X >(9’”) graded polynomials. A

graded polynomial f(xggl),:vgh), e ,:z:%g”)) e F(X)9) is a G-graded poly-

nomial identity for the algebra A if and only if f(aggl), aégz), e ,aﬁlg")) =0
for all aggl) € Agl,ag‘”) € Agy, - Lald) € Ayg,. Similarly to the ordinary

case, we can define the T-ideal, the G-graded codimensions and cocharac-
ter sequences, the G-PI-exponent of a G-graded PI-algebra A (see also [5],
12).

The first chapter of the thesis is introductory. We introduce the algebras
with polynomial identity by giving their basic definitions and properties.
We only deal with associative algebras over a field F' of characteristic zero.
We give a brief introduction to the classical representation theory of the
symmetric group and of the general linear group via the theory of Young
diagrams which is our main tool in the study of the T-ideals of the free
algebra. Then we introduce the sequences of codimensions, cocharacters and
colengths. We also introduce the graded algebras and the graded polynomial
identities and finally we focus our attention on the alternating polynomials
such as the standard polynomials, the Capelli polynomials and the Amitsur
Capelli-type polynomials.

In the second chapter of this thesis we study the asymptotic behaviour
of the variety satisfying Amitsur Capelli-type polynomials associated to a
hook-shaped Young diagram.

Let A be a partition of n, A - n, and let x, be the corresponding ir-
reducible S,-cocharacter, Amitsur and Regev in [1] defined the Amitsur
Capelli-type polynomials as follows:

ey [z y] = Z X (0) To () Y1T5(2)Y2 - - - To(n)Yn-
0ESH



The importance of studying the Amistur Capelli-type polynomials is
that, as the Capelli polynomials characterize the algebras having the cocha-
racter lying in a strip-shaped Young diagram [33], they characterize all the
algebras having the cocharacter contained in a hook ([1]).

More precisely, given any integers d,l > 0 we denote by H (d,l) =
Up>1 {A = (A1, A2,...) Fn | Agy1 <1} the infinite hook of arm d and leg .
We say that a partition A lies in H (d, 1) if the corresponding Young diagram
D, is contained in the H (d,l) hook. If I = 0, H (d,0) is the set of all
partitions with diagram contained in the strip of height d. Regev proved in
[33] that, if A is a PI-algebras, then A satisfies the Capelli identities ¢y = 0 if
and only if x, (A) = ZkeH(deO) myxx with A partition of n. Successively
Amitsur and Regev proved that if A is a Pl-algebra, then A satisfies the
Capelli-type polynomials €}, ; = 0 if and only if x5, (A) = Z)\GH(ML) MAX
whit A partition of n and 67\4, ; are the Capelli-type polynomials associated
to the partition A = (L + 1)M*1.

We denote by EY the set of the polynomials obtained from e} by evalua-
ting the variables y; to 1 in all the possible ways, by ' the T-ideal generated
by EX and also we say that Vy = var (E3) = var (I'y), ¢, (E}) = ¢, (I'y) and
Ey\ =exp (EY) = exp (I'y).

Giambruno-Zaicev and Benanti-Sviridova proved in [21] and [4] respec-
tively that ¢, (Ejz0) ~ ¢ (Mg (F)), cn (Eg2p2) = ¢ (Mg (E))
and ¢, (Ej24p2 911) ~ ¢n (M (E)) where E is the Grassmann algebra.

We study the variety £} where A = (N —m, 1™), with m = k> or m—1 =
k% or m — 1 = k? + k2 and we prove that the variety EY is asymptotically
equal to the k x k matrices, My(F'), over a field F' of characteristic zero,
M sor(F) © Mapxr(F), and @,z 42—, UT(s,1) respectively.

In the third chapter we study the algebra of 2 x 2 matrices over the
infinite dimensional Grassmann algebra A = My(E) with a Z-grading. In
particular we determine a subset of generators for the Z-graded identities of
A and finally we compute the nth cocharacter of the homogeneous compo-
nents of degree 0,1 and —1 and the (0,7, n —r)-graded cocharacter x (g ,5—r)
of the Z-graded algebra A, i.e. the S, x S,,_,-character of the quotient space
of multilinear graded identities Py, n—r/(Porn—r N1 d?(A)) via the represen-
tation theory of the general linear group GL x GL x GL (see also [2], [3],
[10], [11], [13]).



Chapter 1

Preliminaries

In this chapter we introduce the main objects and the main results of the
theory of the algebras with polynomial identities. We also introduce the
notion of variety of algebras which is one of the most important in PI-
theory.

We also give the basic definition of the representation theory of finite
groups over an algebraically closed field of characteristic zero and we describe
the classical representation theory of the symmetric group S, and of the
general linear group trough the theory Young tableaux and we also introduce
a relation between S,-characters and G L,,-characters.

We introduce the sequences, ordinary and graded version, of codimen-
sions, cocharacters and colengths.

Finally we introduce the alternating polynomials, Capelli polynomials
and Amitsur Capelly-type polynomials and we present some results about
the algebras satisfying these particular alternating polynomials.

1.1 Polynomial identities, P/-algebras, T-ideals and
varieties of algebras

Throughout this thesis we shell denote by F' a field of characteristic zero
and by A an associative algebra over F.

We start introducing the definition of a free algbera. Let F' be a field
and X a set. The free associative algebra on X over F' is the algebra
F(X) of polynomials in the non-commuting indeteminates z € X. The
free algebra F'(X) is defined by the following universal property: given an
associative F-algebra A, any map ¢ : X — A can be uniquely expressed to
a homomorphism of algebras ¢ : F(X) :— A. the cardinality of the set X
is called the rank of F(X).

Definition 1.1.1 Let A be an associative F-algebra and
f=flx1,29, - ,x,) € F(X). We say that f = 0 is a polynomial identity



for A if
flai,ag, -+ ,a,) =0 for all ay,as,--- ,a, € A.

We also say that A satisfies f = 0 or, sometimes, that f itself is an
identity of A.

Since the trivial polynomial identity f = 0 is an identity for any algebra
A, we make the following:

Definition 1.1.2 If the associative algebra A satisfies a non-trivial polyno-
mial identity f =0, we call A a PI-algebra.

We denote by Id(A) = {f € F(X)|f =0 on A} the set of the poly-
nomial identities for A. It is easy to check that Id(A) is a two-sided ideal
of F(X). Moreover, Id(A) is stable under all endomorphisms of F(X) i.e.
¢ (Id(A)) C Id(A), for all the endomorphisms of F'(X).

Definition 1.1.3 An ideal I of F(X) is called a T-ideal if p(I) C I for all
endomorphisms ¢ of F(X).

It follows that Id(A) is a T-ideals of F/(X). Actaully it can be easily
shown that all T-ideal of F(X) are of this type i.e., ideals of polynomial
identities for a suitable algbera A. In fact, if I is a T-ideal of F'(X), then
the ideal of polynomial identities of the factor algebra F'(X)/I is just I.

Let S be a set of polynomials identites of F(X). the T-ideal generated
by the set S, denotes by (S)r, is the smallest T-ideal containing S.

We also say that f follows from S or that f is a consequence of S if
feS)r

Two set of polynomials are equivalent if they generate the same T-ideal.

We now give some examples of Pl-algebras.

Ezxzamples 1.1.4 1. If A is a commutative algebra then [z1, z2] := x129 —
xox1 = 0 is a polynomial identities of A.

2. If A ia nilpotent algebra of index n > 1, then A is a PI-algebra. In
fact, it satisfies the polynomial identity zizs...x, = 0 since A" =0
and A" #£0.

3. If A is a finite dimensional algebra and dim A = n then A satisfies the
polynomial

Stnt1(z1, 2, , Tpy1) = Z (=1 20(1)To(2) " * * Ta(nt1)
0€Snt+1

called the standard identity of degree n + 1, where (—1)? = sgno.



4. Let V a countable dimensional vector space over the field F' of charac-
teristic non 2 and let € = {ey, ez, } be an ordered basis for V. The
Grassmann algebra E of V' over F' is the algebra generated by the set
{e1, €2, -} satisfying the relation

eiej = —eje; 1,5 =1,2,---.

As a vector space over F', E is generated by the elements e;, e;, .. .€;,
where i} < iy < --- < i, and n > 0. By [27] Id(E) = ([[z1, z2] , z3])7-

5. Let A = My(F) be the 2 x 2 matrix algebra over F, then A satisfies
the standard polynomial of degree 4, Sty(z1,z2,23,24) an the Hall
identity [[21, z2]?, x3].

Since several different algebras might have the same set of polynomial iden-
tities it is natural to introduce the notion of variety of algebras.

Definition 1.1.5 Let S C F(X) be a non-empty set of polynomials of
F(X). The class of all algebras A for which S is a set of polynomial identities,
ie. f=0on A forall f e S, is called the variety V = var(S), determined
(or generated) by S.

We remark that :
o if S = {[x1,x2]}, then var(S) is the variety of all commutative algebras;
o if S = {f =0}, then var(S) id the class of all associative algebras.

Notice that any variety V is closed under taking homomorphic images,
subalgebras and direct products. Actually, a theorem of Birkhoff shows that
these properties characterize the varieties.

T-ideals and varieties are related by the followig

Theorem 1.1.6 There is a one-to-one correspondence between T-ideals of
F(X) and varieties of algberas V. In this correspondence a variety V corre-
sponds to the T-ideal of identities Id(V) and a T-ideal I corresponds to the
variety of algebras determined by I.

A variety U is called a subvariety of V if U C V. It is clear that Y C V
if and only if Id(V) C Id(U).

1.2 Multihomogeneous and multilinear polynomi-
als
In this section we introduce the multihomogeneous and the multilinear poly-

nomials that play an important role in the study of the identities of a given
algebra when F' is a infinite field of characteristic zero. In fact, in this case,



the study of the polynomial identities of an algebra A is equivalent to the
study of the corresponding multihomogeneous or multilinear polynomials.

Definition 1.2.1 A polynomial f = f(z1,22, -+ ,2z,) € F(X) is called
homogeneous of degree k, for some k > 1, if it is a linear combination of
monomials of degree k. we also say that a polynomial f is homogeneus in
the variable x; of degree k;, if x; appears whit the same degree k; in every
monomial of f.

Moreover a polynomial f i called multihomogeneous of multidegree

(k1,ka, -, ky) if fis homogeneous in each variables 1, 2, - - , x,, of degree
ki,ko,--- , ky, respecively.

If f(x1,29, - ,x,) € F(X) is a polynomial, then f can be always decom-
posed into a sum of multihomogeneous polynomials. In fact, it can be writ-
ten as:

f — Z fk17k27“' 7kn
k120,k2>0,-+ ,kn >0
where fFuk2Fn ig the sum of all the monomials in f where x1,za, - -, Zn

appear at degree ki, ko,--- ,kp, respectively. The polynomials fF1-52: Fn

which are non-zero are called the multihomogeneous components of f.

An interesting, feature of T-ideals is that if F' is an infinite field, they
are multihomogeneous i.e., they are generated by multihomogeneous poly-
nomials. In fact, we have the following([15] ,Proposition 4.2.3):

Theorem 1.2.2 Let F' be an infinite field. If f =0 is a polynomial identi-
ties for the algebra A, then every multihomogeneous component of f is still
a polynomial identity for A.

A prominent role in characteristic zero is played by the multihomoge-
neous polynomials of multidegree (1,1,---,1).

Definition 1.2.3 A polynomial f is called linear in the variable z; if x; oc-
curs with degree 1 in every monomial of f (equivalently, if f is homogeneous
in the variable z; of degree k; = 1).

A polynomial is called multilinear if f is linear in each of its variables
(equivalently, if f is multihomogeneous of multidegree (1,1,---,1)).

It is obvious that any multilinear polynomial is always of the form

f('rlu X2, 7'%.7’1) = Z aO'mO'(l)xO'(2) o 'xa(n)7

O'ESTL
where a, € F' and S,, is the symmetric group on {1,2,--- ,n}.
Observe that if f(z1,x92, -+ ,2y) is a polynomial multihomogeneous in
the variable x; of degree k;, then
f(xl,l'Q,“ SO, 7'1:71) = akif<x17x2'” s Ly~ o ° 7xn)7



for every a € F'. In particular, if f is linear in x;, then

m m
f .%'1,.%'2,"',5 QilYiy - T :E aif(x17x27"'7yi>"'7xn)7
i=1 =1

for every o € F, y; € F(X).
This property is useful to prove the following remark.

Remark 1.2.4 Let A be an F-algebra. If a multilinear polynomial f vani-
shes on a basis of A, then f is a polynomial identity of A.

We shall show now how to reduce an arbitrary polynomial identity to a
multilinear one. By using the so-called process of multilinearization we shall
prove the following theorem.

Theorem 1.2.5 If char F = 0, every non-zero polynomial f € F(X) is
equivalent to a finite set of multilinear polynomials.

Proof. By Theorem 1.2.2 f is equivalent to the set of its multihomo-
geneous components (i.e. they generate the same T-ideal). Hence we
may assume that f = f(z1, 22, -+, 2,) is multihomogeneous of multidegree
(k1,ka,- -, k) with, for instance, k1 = deg,, f >1

Compute the polynomial:

h’(ylvyzuva'” 7$n) :f(yl +y2:x27'” 7:1:n) - f(y1,$2,"’ 7$n)
—f(9275527"‘ 7:1:71)'

Notice that h is a non-zero polynomial. Write now A in the following

form:
ki1—1

h(ye, y2, 32, an) = Y hi(yn,y2, 22, , )
i=1

where h; is the homogeneous component of degree ¢ in y;. Then, still
by Theorem 1.2.2; all the polynomials h; = h;(y1,y2, 2, ,xy,), for i =
1,2,--- k1 — 1, are consequence of h and so, consequences of f. Since
deg, hi = i < k1 = deg,, f, for i = 1,2,--- k1 — 1, by an induction
argument we obtain a set of multiliner polynomials which are consequence
of f.

We show now that these multilinear polynomials are equivalent to f. Ob-

k
serve first that, for every i, h;(y1,y1, 22, - ,Tpn) = ,1>f(y1,a:2, Cee L Tp).
1

i
1=1,2,--- ,ky — 1. By still applying induction the proof is complete O

k
Since char F' = 0 and ( ! # 0, thus f is a consequence of any h;, for



We observe that the hypothesis of characteristic zero can be changed
into char F' > deg f.

In the language of T-ideals the previous theorem takes the following
form.

Definition 1.2.6 for every n > 1 we denote by
P, = span {azg(l) S Tgmylo € Sn}
the vector space of multilinear polynomials in z1, x2,: - , Z,.

Corollary 1.2.7 If char F' = 0, every T-ideal is generated, as a T-ideal, by
the multilinear polynomials it contains. This means that if I is a T-ideal,
then is uniquelly determined by its multilinear parts INP,,, form =1,2,---.

1.3 Representations of groups

Throughout this section we denote by G a group, by V or W a vector space
over F' and GL(V) ~ GL,(F), n = dimp V the general linear group, i.e.,
the group of all invertible endomorphism of V.

Definition 1.3.1 A representation of a group G on a vector space V is a
homomorphism of groups p : G — GL(V).

The degree (or dimension) of the representation p is the dimension of the
vector space V. The representation is faithful if the kernel of p is trivial; p
is trivial if its kernel coincides with G.

Remark 1.3.2 There is a one-to-one correspondence between the represen-
tation of a group G on a finite dimensional vector space and finite dimen-
sional FG-modules (or G-modules)

Proof. Let p : G — GL(V) a representation of G. Then V is a (left)
G-module via the action defined by

gv :=p(g)(v), forall ge G,veV.

Let M be a G-module which is finite dimensional as a vector space over
F. Then p = G — GL(M) such that :

p(g)(m) :=gm forall g€ G,m € M,

defines a representation of G on M. O

Since modules and representations are equivalent notions, we shall use
the language of G-modules.



Definition 1.3.3 If p : G — GL(V) and p/ : G — W are two represen-
tations of a group G, we say that p and p’ are equivalent if V and W are
isomorphic as G-modules.

Definition 1.3.4 A representation p: G — GL(V) is irreducible if V' is an
irreducible G-module.

p is completely reducible if V is the direct sum of its irreducible submo-
dules.

A prominent role in the representation theory of finite groups is played
by Maschke’s theorem

Theorem 1.3.5 (Maschke’s) Let G be a finite group and let F be a field
of characteristic zero or p > 0 and p t |G|. Then every G-module V is
completely reducible, i.e. 'V is direct sum of a finite number of irreducible
G-modules equals to the number of simple components in the Wedderburn
decomposition of the group algebra FG.

An important tool for studying the representation of a finite group is the
theory of characters.

Definition 1.3.6 Let p: G — GL(V) be a representation of G. The func-
tion x, : G — F defined by x,(g9) = trp(g) is called the character of the
representation p and dim V' = deg x,, is called the degree of the character .

We say that the character is irreducible (or completely reducible) if p is
an irreducible representation (completely reducible, respectively). We notice
that x,(1) = deg x,.

The following theorem shows that the knowledge of the character gives
a lot of information for the representation and the number of the irreducible
representations (G- modules) is determined by a purely group property of
the group.

Theorem 1.3.7 Let G be a finite group and let F' be an algebraically closed
field.

i) Every finite dimensional representation of G is determined, up to iso-
morphism, by its character.

ii) the number of the non isomorphic irreducible representations (G-modules)
s equal to the number of conjugacy classes of G.

10



1.4 Representations of the symmetric group

In this section we deal with the representation theory of the symmetric group
Sh.

Definition 1.4.1 Let n > 1 be an integer. A partition A of n, and we write
A nor |\ =n, is a finite sequence A = (A1, Ag, -+, A;) of integers such
T

that /\12)\22~~-2)\r>0and2)\i:n.
=1

We shall also use the following notation:

(A’f17)\§27”' 7)\115%) - ()‘17"' 7A17)\27'; 7)‘27"' 7/\757"' 7At)~
kl kQ kt

Definition 1.4.2 Let n < m and let A = (A, Ae,--+) F n and p =
(1, p2, -+ ) = m, we will say that g > X if yu; > \; forall 4 =1,2,---.

It is well known that there exists a one-to-one correspondence between
partitions of n and conjugacy classes of S,. Hence by Theorem 1.3.7, all
the irreducible non-equivalent S,-module are indexed by the partitions of n.
Therefore let us denote by x, the Sp-character corresponding to A F n.

It is always possible to associate A - n a diagram.

Definition 1.4.3 Let A = (A1, Aa, -+, \y) b n. The Young diagram asso-
ciated to A, denoted by D), is the finite subset of Z x Z defined as:

Dy={(i,j) €ZxZli=1,2,---7r, j=1,2,---  \;}.

Graphically, a Young diagram is denoted as an array of boxes with the
convention that the first coordinate i (the row index) increases from top
to bottom and the second coordinate j (the column index) increases from
left to right. For example, for A = (6,4,3,2,1), the corresponding Young
diagram is : .

Di6,4,32,1)=

Definition 1.4.4 Let A = (A1, Ao, -+, A\r) b n. the conjugate partition of \
is the partition A" = (A}, Ay, -+, X)) such that N, A}, -+, A\ are the lengths
of the columns of D)

11



We shall always write h;()) instead of A, and we shall denote with h(\)
the height of D)y (i.e. the length of the first column).

For instance, if A = (6,4,3,2,1) as above, then its conjugate partition is
N =(5,4,3,2,1,1) and the corresponding Young diagram is:

Disas2i1) =

Definition 1.4.5 Let A - n and let D) be the corresponding Young dia-
gram. A Young tableau T of shape A is one of the n! arrays obtained by
filling the boxes of D) with the integer 1,2,--- ,n. We shall also say that T),
is a A\-tableau and denote the integer (a;;) in the (7, j) box, fori =1,2,--- ,r
and j=1,2,--- ,\; .

Among these Young tableaux a prominent role is played by the so-called
standard tableaux.

Definition 1.4.6 A tableau T), of shape A is standard if the integers in each
row and in each column of T) increase from top to bottom and from left to
right.

For instance, the following is a standard tableau

14
Tu32) =125
38

6]9]
7 .

It is possible to calculate the number d) of standard A-tableaux. First we
need to define the hook number.

Definition 1.4.7 For any box (i,j) € D), we define the hook number of
(i,) as:

hij=Xi+X; —i—j+1
where )\ is the conjugate partition of \.

Note that h;; counts the number of boxes in the hook with edge in (i, j),
i.e. the boxes to the right and below (i, j).
In the following we have written inside each boxes its hook number

6]5[3[1]
413[1] -
2[1

Next we give the Hook Formula (see [36]) :

12



Proposition 1.4.8 Let A n. The number dy of standard \-tableaux is:
n!
Hi,j hi,j

where the product runs over all boxes of D).

dy =

1.5 The left ideals F'S,er, and the two-sided ideals
Iy

Given A F n, a tableau T) = Dy(a;;) of shape A, the symmetric group S,
acts on T} as follows: if o € 5y, we define 0T := Dy (y,)-
For example, if o = (134)(25) would change the following tableau T:

_[1]5]4]
=113
into: ‘
31211
Ty, =
R EAV

Definition 1.5.1 The row-stabilizer of T} is the subgroup R, of S,, which
stabilizes the row of T) i.e,

RTA — S)\l(albalQa e 7a1)\1) X X S/\T(arla Ar, - 7a1“)\1)
where S),(a;1, ai2, -+, aiy,) denotes the symmetric group acting on the in-
tegers i1y A52, ° « 5 Qg ), -

Similarly, the column-stabilizer of T is the subgroup Cr, of S, which
stabilizes the columns of T) i.e.,

Cr, = Sy (a11,a12, -+ ary ) X -+ X Sy (ast, as2, - asx,).

Definition 1.5.2 Given a tableau T}, we define

er, = Z (—1)7or

O'ERT)\
TGCTA

where (—1)7 is the sign of the permutation 7.

Now the left ideals F'Sper, are minimal and for different partitions are
non-isomorphic (see [23]).
Theorem 1.5.3 Let A\, p be partitions of n with A # p.

1. Let Ty x,T5 ) be two tableauz of the same shape . Then, as left F'Sy,-
modules,
FS’neTM = FSneTM.

13



2. Let T\ and T}, be tableauz of shape X\ and v respectively. Then, as left
F'S,,-modules,
FSper, 2 FSneTM.

Moreover the following theorem (see [15]) describes the irreducible represen-
tation of the symmetric group.

Theorem 1.5.4 For any A n, let T be a fixed tableau. Then:

o {FSper,| A n} is a complete set of irreducible non-equivalent repre-
sentations of Sy.

e The degree of the irreducible representation corresponding to the par-
tition X is equal to the number dy of standard tableaux.

Definition 1.5.5 Let A be a partition of n and define I, = ZFS’neTA,
T
where the sum runs all over all n! tableaux T of shape A. ’
If we identify F'S,, with P,, we will say that a polynomial f(z1,z2,- - ,zy)
is a A-polynomial if f(x1,x9, -+ ,x,) € Ix. If, also, f(z1,z9, - ,xy,) is a
polynomial identity and wy, wa, - -+ , w41 € I\ we will say that f(z1, 22, -+, zp)
is A-identity.

Theorem 1.5.6 Let A be a partition of n, Then:

1. The above defined Iy is a two-sided ideal in F'Sy,.

2. The decomposition of F'S,, into a direct sum of simple algebras is given

by
FS, =PI,
AFn

The standard tableaux come into play if one wants to find, among the
n! essential idempotent arising from tableaux of shape A, some orthogonal
ones. In fact, we have

Proposition 1.5.7 IfT1,--- , Ty, are all the standard tableaux of shape A,
then Iy, the minimal two-sided ideal of F'S, corresponding to X\, has the

decomposition
dx

Iy = P FSner,

1
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1.6 Representations of the general linear group

In this section we give some results on the representation theory of the
general linear group by restriciting our attention to the case when GL,, =
GL,,(F) acts on the free associative algebra of rank m. We refer to ([15],
Chapter 12) for the results of this section.

Definition 1.6.1 The representation of the general linear group GL,,:
¢:GL,, - GL;

is called polynomial if the entries ¢(g)pq are polynomials of the entries a;;
of gfor g € GL,(F), 4,5 =1,2,--- ;mand p,qg=1,2,--- ,s.

When all the entries of ¢(a;;) are homogeneous polynomials of degree k,
then ¢ is a homogeneous representation of degree k.

Let F,(X) = F(x1,x2, - ,Zm,) denote the free associative algebra in m
variables and let U = spang {x1,x9, -+, Tm }.

The action of the group GL,, = GL(U) on F,,(X) can be obtained
extending diagonally the natural left action of GL,, on the space U by
defining:

g(xilvxi27' o 7$ik> - g(xll)g(xzz) g(xlk)a g S GLm7 Liys Ligs " 5y Loy, S Fm<X>

Actually, F,,(X) is a polynomial GL,,-module (i.e. the corresponding rep-
resentation is polynomial).
Let F be the space of homogeneous polynomials of degree n in the vari-

ables x1, 2, -, Tm, then F is a (homogeneous polynomials) submodule
of F,(X). We observe that:
Fn = @ Fr(rﬁlfi%“'aim)

where F{127m) ig the homogeneous subspace spanned by all monomials
of degree iy in x1, 79 in x2 and so on.

The following theorem states a result similar to Maschke’s Theorem
about the complete reducibility of GL,,-modules, valid for the polynomial
representation of GL,,.

Theorem 1.6.2 ([15], Theorem 12.4.3) FEvery polynomial G L,,-module
is a direct sum of irreducible homogeneous polynomial subspaces.

The irreducible homogeneous polynomial G L,,-modules are described by
partition of n in not more than m parts and Young diagrams.

Theorem 1.6.3 ([15], Theorem 12.4.4) Let P,,(n) denote the set of all
partitions of n with at most m parts (i.e. whose diagrams have height at
most m).

15



1. the pairwise isomorphic irreducible homogeneous polynomial G L,,-modules
of degree n > 1 are in one-to-one correspondence with the patitions
A€ Pp(n).

We denote by W an irreducible G Ly,-module related to \.

2. Let A € Py(n). Then the GLy,-module W is isomorphic to a sub-
module of F}}. Moreover, the GLy,-module F)} has a decomposition:

Fre Y W,
AEP, (n)

where dy is the dimension of the irreducible Sy,-module corresponding
to the partitio \.

3. As a subspace of F}}, the vector space W2 is multihomogeneous, i.e.

WA = @ WA sz, sim)
t1t+ig++im=n

where W (inizim) — WA o plotarin,

We want to show now that if W* C F, then W? is cyclic and generated
by a polynomial multihomogeneous of multidegree (A1, Ag, -+, A\g) with A =
(Al, PYIRER ,)\k) S Pm(n)

We observe first that the symmetric group S, acts from the right on F
by permuting the places in which the variables occurs. i.e Vz;,, x4, - i, €
F? and Vo € 5,

Lij1 Lig - T5,0 = :Ei(r(l)l'ig@) R 73

o(n)”

Let now A = (A1, A2, -+, A\g) € Pn(n). We denote by sy the following poly-
nomial of F:

A1
sy = sa(w1, w2, ) = [ [ Stayon (@1, 22, -+, 2,00,
=1

where h; () is the height of the ith column of the diagram of A and St (z1, 9, -+ , )
is the standard polynomial of degree 7.
Note that by definition sy is multihomogeneous of multidegree (A1, A, - -+ , A).

Theorem 1.6.4 ([15], Theorem 12.4.12) Let A = (A1, Ao, -+, Ag).

1. The element sy(x1,z2, - ,x)), defined above, generates an irreducible
G Ly, -submodule W of F" isomorphic to W,
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2. Every submodule W* C ET is generated by a non-zero polynomial,
called the highest weight vector of W, of the type:

= s Z Qe0, ay € F. (1.1)
O’GSn

the highest weight vectors fy is unique up to a multiplicative constant
and it is contained in the one-dimensional vector space W22 Ak)

3. Let Z a,o € FS,. If sy Z ago # 0, then it generates an irre-
c€Sn og€Sn
ducible submodule W = W*, W C Fn.

Let A = (A1, A2, , Ak) € Pp(n) and let Ty be a Young tableau. We
denote by fr, the highest weight vector obtained from (1.1) by considering
the only permutation o € S, such that the first column of T) is filled in
from top to bottom with integers o(1),0(2),--- ,0(h1(\)), in this order, the
second column is filled in with o(hi(X) + 1),0(h1(A) +2),--- ,0(hi(X) +
ha())), etc.

Proposition 1.6.5 ([15], Proposition 12.4.14) Let A = (A1, Ag, -+ , A\g) €
Pn(n) and let WA C F". The highest weight vector fy of W* can be ex-
pressed uniquely as a linear combination of the polynomials fr, with T
standard tableau.

1.7 Relation between S,-characters and GL-characters

In this section we shall see that the representation theory of the general linear
group is related to that of the symmetric group. Let A be an associative
algebra.

Definition 1.7.1 For every n > 1
P, = spany {xa(l)xa(Q) e xa(n)\ (S Sn}
is the vector space of multilinear polynomials in the free algebra F(X).
The left action of the symmetric group S, on P, is
O'f(l‘l,ﬂfg T 71"71) = f(xo(l))xo(Z)u T )xa(n))'
Since the subspace P, N1d(A) is invariant under this action,

P,

Fal4) = 55 Id(A)

has the S,,-module structure.
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Definition 1.7.2 For n > 1, the S,-character of P,(A), denoted by x,(A),
is called the nth cocharacter of A and the sequence {xn(4)},; is the co-
character sequence of A.

if we decompose the nth cocharacter into irreducibles, then we obtain

Xn(A) =) maxa (1.2)

P\

where x) is the irreducible S,-character associated to the partition A - n
and my > 0 is the corresponding multiplicity.

In the previous section we have observed that F,,,(X) is a GL,,-module.
Under the same action, the space F,,(X) NId(A) is invariant, hence

Fn(X)
F(X) N1d(A)

Fn(A) =

inherits a structure of left GL,,-module. We denote by F(A) the space

I

Fn(4) = FrnAId(A)

Clearly F'(A) is a GLy,-submodule of F,,,(A) and we denote its character
by 1, (A). Write
%(A) = Z mxY

AFn
AEPm(n)

where ¢, is the irreducible G L,,-character associated to the partition A and
m is the corresponding multiplicity. It was proved in [6] and [17] that if the
nth cocharacter of A has the decomposition given in (1.2) then my = my,
for all A+ n whose corresponding diagram has height at most m.

We also have the following.

Remark 1.7.3 If
Un(A) = D mags

AFn
AEPm(n)

is the GLy,-character of F}’(A), then my # 0 if and only if there exists a
tableau T such that the corresponding highest weight vector fr, is not a
polynomial identity for A. Moreover m) is equal to the maximal number of
linearly independent highest weight vectors fr, in F}(A).

1.8 Codimensions, colenghts and Pl-exponent

In this section we introduce the sequences of codimensions, the sequence of
colenghts and the PI-exponent of a PI-algebra A. We recall that, if A is
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an algebra over a field F' of characteristic zero the T-ideal of its identities is
determined by its multilinear parts P, NId(A), n > 1. Clearly, the bigger
are their dimension, the bigger is the T-ideal. So, these dimension, give us,
in some sense, a kind of measure of the T-ideal.

Definition 1.8.1 The non-negative integer

P,

is the so called nth codimension of A. The sequence {c,(A)},~; is the
sequence of codimensions of A.

In general the computation of such sequence for a given algebra is very
difficult. However, there exist some algebras whose sequence of codimensions
is well known.

Ezamples 1.8.2 1. If Aisnot a Pl-algebra then ¢,(A) = n!, foralln > 1.
2. If Ais a nilpotent algebra of index k > 1, then ¢, (A) = 0 for all n > k.
3. If A is commutative, but not nilpotent, then ¢,(A) = 1, for all n > 1.

4. Let UT; be the algebra of 2 x 2 upper triangular matrices over F'.
Then ¢, (UT3) = 2" 1 (n — 2) + 2 (see [28]).

5. Let E be the Grassmann algebra. Then ¢, (E) = 2! for all n > 1.
(see [27])

Definition 1.8.3 Let A, B be two algebras, or two varieties. The sequence
of codimensions are asymptotic equals if
cn(A)

nll—{go cn(B) =1

and we write ¢, (A) ~ ¢, (B).

In general, the sequence of codimensions is bounded from above n!. In
case A is a Pl-algebra, i.e. it satisfies a non trivial polynomial identity,
the following theorem, proved by Regev in [32], show that its sequence of
codimensions is exponentially bounded, i.e. exist a constants ¢ such that
cn(A) < t", for any n > 1.

Theorem 1.8.4 ([22], Theorem 4.2.4 ) Let A be a PI-algebra satisfying
a polynomial identity of degree d > 1. Then the sequence of codimensions
satisfies

cn(A) < (d—1)"", n>1.
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We now define the exponent of a PI-algebra.

Definition 1.8.5 Let A be a Pl-algebra. Then the exponent (or PI-
exponent) of A is
exp(A) = lim {/cn(A).

n—oo

In case V = var(A) is a variety of algebras, we write exp()V) = exp(A4) and
we call exp(A) the exponent of the variety V.
Recently Giambruno and Zaicev, in [18] and in [19] proved the following.

Theorem 1.8.6 Let A be a Pl-algebra over any field F' of characteristic
zero. Then the exp(A) exists and is an integer.

We now give the exponent for some algebras:

Ezamples 1.8.7 1. If A= M (F) is the algebra of k£ x k matrices over a
field F, then exp(A) = k2 (see [34]).

2. If F is the Grassmann algebra and A = M} (E) is the algebra of k x k
matrices over E, then exp(A) = 2k? (see [22], Corollary 6.6.3.).

3. Let (di,da, - ,dy,) aset of positive integer. If we denote by UT'(dy, da, - - -

the subalgebra of the matrix algebra Mg, +dy+...+d,, (F') consisting of
all matrices of the type

AL *
0 ... Ap
where A; = My, (F) fori =1,2,--- ,m, thenexp(UT'(d1,d2, - ,dm)) =

d?+d3+ -+ d>?, (see [22], Corollary 6.6.2.)

1.9 Graded algebras

Definition 1.9.1 Let I be a field and A an associative algebra over F'. Let
also G be a group. A G-grading on A is a decomposition of A, as a vector
space, into the direct sum of subspace

A=A,
geG

such that
AgAp C Agp.
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The grading is called finite if the set {g € G| Ay # 0} is finite. Any element
x € Ay is called homogeneous of degree g, degx = g. A subspace V C A

is said to be graded or homogeneous if V = EB V N A,y If e is the identity

geG
element of G then A, is called the identity or neutral component. The grading

is called trivial if A; = 0 for any g # e.
The support of a graded algebra is defined as

Suppg A = Supp A = {g € G| 4, # 0}.

Definition 1.9.2 A map p: A = @Ag — B = @ is called a homomor-
geG geG

phism (isomorphism) of graded algebras if ¢ is an ordinary homomorphism

(isomorphism) and ¢(A4y) € By, g € G.

It is easy to observe that ker ¢ is a graded ideal of A.

Definition 1.9.3 An algebra A is called Zs-graded or superalgebra with
grading (A, AM) if A has the vector space decomposition 4 = A©) @AM
such that

A A0 1 AW AW € AO) apng A© AD) 1 4D 40 ¢ 4O,

Examples 1.9.4 1. Any algebra A can be viewed as a Zo-graded with
trivial grading, i.e. A=A @AM with A = A and AD) = 0.

2. Let E be the Grassmann algebra of countable rank over F'. Recall that
E is generated by the set {ej,eg,---} satisfying the relation eje; =
—eje;, 1,7 =1,2,---. Let E©) be the subspace of E generated by the
monomials in the e;’s of even length and E™) the subspace generated
by the monomials in the e;’s of odd length. Then E = E©) ¢ F() ig
a Zs graded algebra.

Given a superalbegra A one can obtain a new superalgebra with the help
of the Grassmann algebra F.

Definition 1.9.5 Let A = A @ AM be a superalgebra. The algebra
G(A) = (AD @ EOy g (AW @ EW)

is called the Grassmann envelope of A

1.10 Identities of graded algebras

In this section we discuss the finite basis property for graded identities and
relations between graded and ordinary identities.
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Let G be a group and let F'(X) be the free associative algebra over F' on

a countable set X = U Xy where X, = {xgg),xg ), } are disjoint sets.
geG
The indeterminates from X, are said to be homogeneous degree g. The

homogeneous degree of a monomial :L‘Efl)xl(?) : (g’) € F(X) is defined to
be g192 ... g, as opposed its total degree, which is deﬁned to be t. Denote
by F(X)9) the subspace of the algebra F/(X) genrated by all the monomials
having homogeneous degree g. Since F(X)9 F(X)?) C F(X)6") for every

g,h € G, it follows that F'(X) can be naturally endowed with a G-grading

if one set:
— @F(X (9)
geG

We denote by F(X)") the algebra F(X) with this grading.

Definition 1.10.1 F(X)") is called the free G-graded algebra of countable
rank over F.

It is easy to prove that the following universal property holds: for
any G-graded algebra A = @Ag and for any set-theoretical map 1 :

geG
X — A such that ¢(X,) C Ay, there exists a homomorphism of G-graded

algebra ¢ : F(X) — A such that J‘X = 1. Let ¥ be the set of all
such homomorphism, then Id9"(A) = ﬂ ker v is called the ideal of G-
graded polynomial identities of A. Thiﬁer\fleans that a graded polynomial
f(xggl) a;;”), e ,x%g")) € F(X)9) is a graded identity for the algebra A,
and we write f = 0 in A, if f(ay (g2) ggz),--' ,aq(zg")) = 0 for all aggl) €
Al {92) ¢ Ale2) . (9n) c A(gn)

Definition 1.10.2 1d9"(A) = {f € F(X)9)| f=0on A} is the ideal of
the graded identities ofA

Clearly 1d9"(A) is stable under all graded endomorphisms of F(X), i.e.
Id9"(A) is a T9"-ideal.

It can be easily proved that any non-trivial graded identity has non-
trivial graded multilinear consequence and, in particular, if char ' = 0 the
Id9"(A) is uniquely determined by all the multilinear polynomials it contains.

There is an obvious way of relating ordinary identities and graded iden-

tities of the algebra A. Recalling that the indeterminates from X (@ are
(9)

denoted x;”’, then any multilinear graded polynomial can be written as:
_ (91) .(92) (90(1) %(2)) (go'(n))
f—f(x11,1:22,--- ZOZU J) U(n) ’

oESH
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For a fixed n-tuple (g1,92, - ,9n) € G", all the multilinear polynomials in
591) x;gz)

Y

the variable x ,xng") form the subspace n!-dimensional:

g — span (125000100 ot o ¢ 5.}

The intersection
PILgi9n 197 (A)

consists of all multilinear graded identities of A in the variables
xggl), xggQ), . ,x%g”). Define

x; = E xf

geG

for every i = 1,2,---. Then it is clear that the set {Z1, o, -} generates
the free associative algebra of countable rank. Moreover, given a polynomial
f(z1, 29, ,x,) € F(X), f is an ordinary polynomial identity of A if and
only if

f(Z1, @2, ,Tp) € IdI"(A).

This basic observation implies the following technical result.
FOI" (917927 T 7971) € an

P7g917927"'79n)

clgr9259) — dim
PT(Lgugz, gn) N1d9"(A)

is called the homogeneous nth codimension associated to (g1,92, - ,gn)-
Obviously, existence of a graded identity on a graded algebra is much weaker
condition than ordinary polynomial identity. For example, if B is an arbi-
trary algebra with the trivial G-grading, that is B, = 0 for all non-unitary
g € GG, then B satisfies any graded identities of the type x = 0 with x € X9,

g #e.

1.11 Capelli polynomials and Amitsur’s Capelli-
type polynomials

In this section we introduce the notion of alternating polynomials and we
focus our attention in particular on the Capelli polynomials and on the
Amitsur’s Capelli-type polynomials.

Definition 1.11.1 Let f(x1, 22, -, %4+ , 25, , Tn, Y1, Y2, - ,Yt) be a
polynomial linear in each variables z;’s. We say that f is alternating in the
variables x1, 29, -,y if for any 1 < i < j < n, the polynomial become
zero when we substitute x; instead of z;.
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Remark 1.11.2 If f(x1, 29, -, 2, 2j, - Tn, Y1, Y2, - ,Yz) is an alter-

nating polynomial in x1, 22, -+ ,x, then for any 1 <i < j < n we have
f(xlvaa"' s Ly Ljy 3 Tpy Y1, Y2, 7 7yt) =
_f(x17$27"' yLjyr Liy s T, Y1, Y2, 0 7yt)7

Moreover, if ¢ is a permutation of S,, and by writing ¢ as a product of
transposition, it follows that

f(xo'(l)?xo'@)? s To(n) Y1, Y2, 00 1yt) = (_1>Uf(x11 L2, 5 Tn,Y1,Y2, " 7yt)'
Definition 1.11.3 The polynomial
Ca'pm = Capm(xl, L2, 5 TmsY1,Y2, "+ 7ym+1) =

> () YT (1) V2T (2) - - - YT (m)Ym1
€Sy

is called the Capelli polynomial of rank m or the mth Capelli polynomial.

The Capelli polynomials are multilinear and alternating in x1,xs9, -+ , Tm.
It plays a central role among alternating polynomials since every polynomial
wich is alternating in x1, 22, - - , x,, can be written as a linear combination

of Capelli polynomials obtained by specializing the y;’s, in fact we have the
follow proposition

Proposition 1.11.4 (Poposition 1.5.4. [22]) If f € F(X) is a polyno-
mial alternating in x1, T2, -+ , Tm, then

E awl,wg,-n ,wm+1capm(xla T2, Lm, W1, W2, * awm+1)

W1, W2, Wm+1

is a linear combination of Capelli polynomials where wy,wa, -+ , Wyt1 are
suitable (eventually trivial) monomials in F(X).

We observe that, if we specialize all the variables y;’s to 1 the Capelli poly-
nomial is equal to standard polynomial of degree m, hence

Capm(x17$27 oy T 17 ]-a RS 1) == St(.’E]_, T2y ,I’m).
We now give the definition of the Capelli-type polynomials.

Definition 1.11.5 Let A be a partition of n, A F n, and let x) the corre-
sponding irreducible S,,-cocharacter, the Amitsur’s Capelli type polynomials
associated to a partition X is

ey = ez g = Z XAO) TV Y1T5(2)Y2 - - - To(n)Yn-
O‘ESn
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The Amitsur’s Capelli polynomials are strictly linked with the A-polynomial,
in fact we have the following

Theorem 1.11.6 ([1], Theorem B ) Let A be an algebra. A satisfies the
identity eX[Z;y] = 0 if and only if A satisfies all p-identities for all p > X
on any degree.

The Capelli polynomial and the Amitsur’s Capelli type polynomial are
very important to the study of the cocharacters of the PI-algebra in fact
Regev in [33], first, Amitsur and Regev in [1], later, proved the followings:

Theorem 1.11.7 Let A be a PI-algebra and let A be a partition of n, then A

satisfies the Capelli polynomial of rank d, i.e. cq(x1, T2, ..., Ta; Y1, Y2, s Yd+1) =
0 if and only if xn(A) = Z maxa, where
AEH (d—1,0)
H(d—1,0) = [ J{A= (A, A2,-) Ag =0}
n>1

Theorem 1.11.8 Let A be a PI-algebra and let \ be a partition of n,then
A satisfies the Amitsur’s Capelli type polynomials associated to the partition
n= (L + 1)M+17 i.e. e*M7L(x17x2a T Y1, Y2, ayn) = 07 Zf and Only lf

Xn(A) = > maxa, where
AeH(M,L)

H(M,L) = U A=A, )] A1 < L}

n>1
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Chapter 2

On the variety Var(ETN—m,lm))'

In this chapter we study the sequence of codimensions of the variety V)
of algebras satisfying E3[z;y], with A F n a partition of n such that its
associated Young tableau is a hook with the height of the arm and the
width of the leg equal to one.

In the first section we give some important results about the Amitsur’s
Capelli type polynomials and A-polynomials defined in the previous chapter,
we prove that if the A = (n —m, 1™), such that m = k2, then the sequence
of codimensions of the variety var(E3[Z;y]) and of the algebra Mj,(F) of the
k x k matrices over a field F' of characteristic zero are asymptotically equals.

We prove a similar result when m — 1 is a square or sum of two squares.

2.1 Amitsur’s Capelli type polynomials

Let P, be the set of all multilinear polynomials and let S, the symmetric
group, we can define a right and a left action of .S, on P, as follows

Definition 2.1.1 Let f(x1,x2, - ,%,) be a multilinear polynomial in
x1,%2, -+ ,Zn and let 7 be a permutation of S,, then
T flwr, w2, 20) = f(@r1), Tr2) 0 Tr(n))- (2.1)

Definition 2.1.2 Let f(z1,22, -+ ,Zn) = D cq, CoTo(1)Ta(2) ** To(n) De a
multilinear polynomial in x1, 22, - , 2, and let p be a permutation of .S,
then

f(xla T2, - axn) = Z AoZop(1)Lop(2) -+ - Lop(n)- (22)

oc€ESh

The interpretation of this action on the polynomials is that the places in
each monomial Z,(1)Zs(2) - - - To(n) are changed according to the permutation
p~ ! and independent of 0. For example, the first element Z,(1) will be placed
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in the p~1(1) place of the new monomial, the second term in the p~!(2) place
etc.

There is also a natural embedding of S, C S, for m > n , by letting S,
act on the first n variables and leaving the other m — n variables invariant.
The corresponding effect on the polynomials of P, is multiplying f € P,
by ZTpi1Znio - Tm, 1€ f(T1,22,  , Tn)Tnt1Tnt2 Tm € Ppn. We now
obtain the following lemma

Lemma 2.1.3 (Lemma 1, [1]) Let

flxy, e, ,xy) = Z AoTa(1)Te(2) - - - To(n) € Py

gESn
PO = TiyTiy---Tip, PI = TjTjy .- Tjy, =+ Pn = Ty Ty -+ Ty, be n + 1
multilinear monomials in Tpi1, Tpya, -, Tm of total degree m —n, and we

let some p; = 1. There exists a permutation p € Sy, such that

(f (xlv TR wrn) Ln+1Tn+2 - - - l’m) p= Z QoP0Lo(1)P125(2) -+ - Pn—1Lo(n)Pn-
oESy

As defined in the previous character, if A be a partition of n and let x ) be
the corresponding irreducible character, the polynomial e} is the Amitsur’s
Capelli type polynomial associated to the partition A, we set with EY =
EX[z; 7] the set of the polynomials obtained from e} evaluating to 1 the
variables y's in all the possible way.

Ezxamples 2.1.4

if A = (m), the corresponding character is x(,,) = 1 (see for instance [24]),
hence efm) = s, To()Y1Ta(2)Y2 - - - Yn—1Tg(n)

if A = (1), the corresponding character is x(m) = (—1)7 (see for instance

[24]), hence 6?17”) = C’apm = desn(—1>g%(1)y1$a(2)y2 NN yn_lxa(n).

Throughout this chapter we set by V) = var(£3) the variety of algebras
satisfying the set of polynomials EY, by I'y the T-ideal generated by EY, by
cn(EY) and by E) the codimension and the exponent, respectively.

For the sequence of codimensions of particular permutation A we have
the following result.

Theorem 2.1.5 (Theorem 3, [21]) Let m = k%. Then var(Capy1) =
var(My(F) @ B) for some finite dimensional algebra B such that
exp(B) < k2. In particular c,(Ci2yq) =~ cn(My(F)).
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Theorem 2.1.6 (Theorem 5, [4]) Let k,l € N and let E the Grassmann

algebra. Then var(Ez‘%lH)kQHQH) = var(My;(FE) ® G(D)), where D is a

nite-dimensional superalgebra such that exp(D) < (k 4+ )2, and
fi peralg p ;

My (E) = ( g g)

[ <k, where P = Mi(E©)), Q = Mp(EW), R = Myx(EW) and
Ml(E(O). In particular,

“n <E€2kz+1)’“2“2“) ~ en (M (G)).

A

0
S

Theorem 2.1.7 (Theorem 10, [4]) Lets € N, s > 0 and let E the Grass-

mann algebra. Then Var(EZ‘52+1)S2+1) = var(Ms(E) @ G(D)), where D is a

finite-dimensional superalgebra such that exp(D) < 2s2. In particular,

en (Bfppnyon ) = ca(Mi(E)).

We now focus our attention on the variety satisfying the Amitsur’s
Capelli type polynomial in the case A = (n—m, 1™), i.e. the Young tableau
associated to A is an hook which arm and leg have height and width equal
to one.

2.2 The case m = k?

Let A = (n — m,1™), in this section we study the asymptotic behaviour of
the variety of algebras satisfying the polynomials E?nfm,lm) where m = k?,
with n,k € N.

We start introducing an important tool.

Definition 2.2.1 Let A= A1 ® Ay P --- & A, + J be a finite dimensional
superalgebra where Ay, Ag, - - - , A, are simple superalgebras and J = J(A) is
the Jacobson radical of A. We say that A is reduced if A1 JAsJ ... JA, # 0.

This reduced algebras are very important because they can be used as
building blocks of any proper variety, in fact, if we recall that we may regard
an algebra as a superalgebra with trivial grading, we have the following

Theorem 2.2.2 (Corollary 1, [21]) Let A be finite dimensional algebra.
Then there exists a finite number of reduced algebras By, B, ..., B and a
finite-dimensional algebra D such that

var (A) = var (By @ By, ®--- ® B; ® D)
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where exp (A) = exp (B1) = exp (B2) = --- = exp (By), exp (D) < exp (4),
and
cn (var (A))) ~c, (B1® -+ ® By)

We start the study of the variety EY by the following

Lemma 2.2.3 Let A = (n — m,1™) b n be a partition of n and let E be the
infinite dimensional Grassmann algebra, then E & V.

Proof. We first build a polynomial which is consequence of e}. We consider
the following Young tableaux T’ associated to the diagram D)

1 2‘3‘---‘n—m‘
n—m+1
T\=|n—m+2

n

It is possible to associate to Ty two subgroups of S,,: the row-stabilizer
Ry, and the column-stabilizer Cr,, in this case:

RT/\ :S’m(1727 7n_m)7

and

CTA :Snfm(n_m+17n_m+27"' 7n)7
where S¢(ay, a9, - ,as) is the symmetric group of degree ¢ on the elements
ai,as,- - ,a;. Hence the polynomial corresponding to Ty will be

fA(i.): Z p- Z (_1>Uxa(l)$2-~-xn—m

pERT)\ O'ECT)\
Lo(n—m+1)Lo(n—m+2) - - - Lo(n)-

Now by lemma 2.1.3 we obtain the following polynomial:

f;\k (Z;9) = Z p- Z (_1)03/1Io(1)y2582 <o Yn—mTn—m

pERT/\ O’ECT)\
Yn—-m+1To(n—m+1)Yn—-m+2Lo(n—m+2) : - - YnTo(n)-

For Theorem (1.11.6) fX(Z,y) is a consequence of e} [Z,y]. Now let
E = Ey & E; be the natural Zs-grading of E, and consider the following
substitution
x; := (ho + g0) i=1,....,n—m,
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Tn—m+tj ‘= hj ]: 1,...,m,
Yi 1= G 1=1,...,n,

with ¢g; € Ep and h; € E; distinct, and g§* # 0.
Under this substitution f} take the value

2(n —m)!(n — m)mhohy ... hmgy ™™ 1 + (m — 1)hihy ... hygh # 0
and the lemma is proved. O

Throughout this section we set R = A+ J, where A = M(F) is the
algebra of k x k matrices over a field F' and J = J(A) is the Jacobson radical,
now we have the following.

Lemma 2.2.4 (Lemma 2 [21]) Let be R = A+ J, where A = M, (F) is
the algebra of k x k matrices over the field F and J = J (R) the Jacobson
radical, then J can be decomposed into the direct sum of four A-bimodules

J = Joo ® Jo1 @ J10 D J11

where, forp,q € {0,1}, Jpq is a left faithful module or a 0-left module accor-
ding as p =1 or p = 0, respectively. Similarly, Jpq is a right faithful module
or a 0-right module according as ¢ =1 or ¢ = 0, respectively. Moreover, for
P, 0,0 € {0,1}, Jpgdqi C Jpi, JpgJit = 0 for q # i and there exists a finite
dimensional nilpotent subalgebra N of J such that J;11 = AN 2 A®p N
(isomorphism of A-bimodules and of algebras).

We start studying the properties of the different subspaces J;;.

Lemma 2.2.5 Let A\ = (n — k2, 1k2> Fn be a partition of n with n,k € N
and let R = A+ J be defined as in lemma 2.2.4. If EX C Id(R) then
Jor=Jio=0

Proof. We construct the following Young tableaux T associated to the
diagram D),

n—k [1]2]- [n—k -1
n—k*+1

Th=

n

As in lemma 2.2.3, we obtain that

Ix(@,9) = Z p- Z (=1)7y1219222 - Yn_p2 T (n—k2)

pRT)\ O’ECT)\

Yn—k241Lo(n—k241) - - - YnTo(n)-
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By Theorem (1.11.6) f3 (Z,y) is a consequence of €3 (Z,7). But by hy-
pothesis E3 [z,y] C Id (R), hence f5 (z,y) € Id (R).

Since Capy2 is not a polynomial identities for My (F) then there exist
elements a1, as,...,ag2,b1,b2,...,bp2,b;2,1 such that

Capyz (a1,a2,...,a,2,b1,b2, ..., 02,012 1) = exk (2.3)

(see, for instance, Proposition 1.4.7 in [35]). Then we make the following
substitution:

Tl =Ty =" " =Tp_2 = 0aq,
. 2
Ty p2i = Qg1 1 =1,2,--- k% =1,
k
Ty = E ewdio = edip € Jio,
t=1

y]:b] j:n_k2an_k2+1)"'7ynv

and y; = e,s for j =1,2,--- ,n — k? — 1 are opportune matrix units.

By the properties of f{ and recalling that dig € Jio implies that dijpa =
0 Va € A, we have that, under this evaluation we have that f} takes the
value

ekkedlo = 0.
Hence, we can say that dig = 0, Vdig € Jig, and finally the conclusion of

the lemma, Jig = 0 holds. To prove that Jy; = 0 it is enough consider the
following Young tableau,

A+l +2]-- [ n]
1
Th=| 2
2
and we have the result. O

Lemma 2.2.6 Let A = <n — k2, 1k2> Fn be a partition of n with n,k € N,

R = A+ J be defined as in lemma 2.2.4, and let J11 ~ A®pr N as in Lemma
2.2.4. If EX C Id (R) then N is commutative.

Proof. Let p = (n— k:2,1k2+1) F (n+1), we remark that by Theorem

1.11.6 we have that R satisfies all the u-identities with u > A, so we consider
the following tableaux
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1 2[3]--- [ n—Fk
n—k?+1

T, =

n
n—+1

in the same way of lemma 2.2.3 we can associate the following polynomial

fi= Y p D (1) eyT2y2 - Yo k21 T k2 Yn k2T k241
pERTu O’GCTH (24)

Yn—k241 - - - YnTo(n+1)-

We consider an ordered basis consisting of all matrix units e;; of A,
and let vy, ..., v,2 such that vy = e;;. Consider now k? elements of A, let
a; for i =0,...,k* — 1, be such that

V1a9v2a71 . .. V2021 = €11
and for any non-trivial permutation o € Sj.2

va(l)aovg(z)al v Ua(k2)ak2_1 = 0.

We remark that if we pick two elements of J11 = A ®p N, let be e ®
dy,e ® dy € Ji1, this elements commutes with A (see the proof of lemma
2.2.4). Then we make the following substitution:

ri=n®1i=1,2--.n—k,
xj:vj®1j:2,3,---,k2
Tp211 = e ®dy,
Tp242 = €@ dy,
y=en®l j=1,2,--- ,n—k,
Ynpzrj=a;®1 j=0,1,--+ k> —1.

Using this substitution and recalling that f; it is a polynomial identities
for R, we have, up to a non-zero scalar

en ® [di,d2] =0

This implies that [dy,d2] = 0, and so the lemma is proved.
Od

Lemma 2.2.7 Let d% +ooo 4+ d? =k? and let N = (n — k2, 1’“2*’5*1), then

UT (dy,...,dt) ¢ Vi, where UT (dy,...,ds) is the upper block triangular
matrices algebra.
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Proof. To prove the lemma we build a polynomial that is a consequence of
ey, and such that is not a polynomial identities for UT (dy, ..., d;).

Let N = <n — k2, 1k2+t_1) and let Ty be the following Young tableau

associated to N

1 B4t | K+t+1]--- [ n]

P +t—1

From it we can construct the following polynomial

Fr= " P D (D Ty V2T0(2) - - Yr2t—1 T (k2+t—1) YRt
pERT/\, O'ECTA,
T2t -+ -YnTn-

which, by Theorem (1.11.6) is a consequence of €3,.
Now consider the upper triangular block matrices algebra

Ay *
0

UT (dy,...,d¢) =
0 -~ 0 A

where A; = Mgy, (F'), and we recall that J = J(UT (dy,...,d)), the
Jacobson radical of UT (dy,...,d;), consists of all strictly upper block tri-
angular matrices.

Since A1JAsJ...JA; # 0 we can take ci1,...,¢c.-1 € J, e; € A; for
i =1,...,t such that

e1¢1€9¢a ... ¢ct_1ep £ 0, (2.5)

where e; is some matrix unit from A;, ¢; € J such that A;c;A;+1 # 0 and
Ajc;Ap, =0 for j #ior k # i+ 1,also

11'61‘ = Cili+1 = C; (26)

where 1; € A; is an identity for A;.

Now, in a similar way of Lemma 2.2.6 we consider a basis uj, ... ,ufii of
matrix units of A; for i = 1,...,¢t. We can choose at, ... ,ailiﬂ € A; such
that

alulal .. .afiiuéiailiﬂ =e #0 (2.7)
and
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AU (1) - - - Qg Ug(g,) 0,41 = 0 (2.8)
for any non trivial permutation o of Sy;,.
Let D; = d? + 1 and consider the following substitution:

yz’+j:a§~ j:1,2,...d%+1, i=1,2,--- .t

Tipj = u’ j=1,2,---,d° i=1,2,---,t,

j y Wiy
Tp, = ¢ 1=1,2,.--1,

and all the other variables take the value of the identity matrix of A;. We
remark, that if z; = ey, for i = k> +t,...,n then all the summands of fx are
equal to zero except when p is trivial. under this substitution the polynomial
fx is equal, up to non zero scalar, to

ejcieacs . ..cr_1e¢ # 0,

and so the lemma holds.
Od

Theorem 2.2.8 Let \ = (n — k2, 1"‘2) Fn be a partition of n, then var (EY)

var (My, (F) + D) for some finite dimensional algebra D with exp (D) < k2.
In particular
cn (EX) = cn (Mg (F)) .

Proof.

By lemma 2.2.3 the infinite dimensional Grassmann algebra G' does not
satisfy e} and by [[26], Theorem 2.3 ] V) is generated by a finite dimensional
algebra. By theorem 2.2.2, there exist finite-dimensional reduced algebras
B1, Bs, ..., B; and a finite-dimensional algebra D such that

var (V\) = var (B1 @ By, ®--- ® B; @ D) (2.9)

where exp (V) = exp (B1) = exp (Bz) = - - = exp (B;) = k? and exp (D) <
exp (V).

Now, we analyze the structure of a finite-dimensional reduced algebra B
which satysfies EY.

Let B be a finite dimensional algebra such that £} € Id(B) and exp(B) =
K2 .

Hence by [20], B contains a subalgebra isomorphic to the upper block
triangular matrix algebra,
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UT (dy, ... dy) =

0 0 My,

where exp (B) = exp(UT (di,...,d;)) = d3 + -+ + d?
Since UT (dy, ...,d;) C B it follows that Id (B) C Id (UT (dy, ..., dy)),
but by Lemma 2.2.7, UT (dy, . . ., d;) does not satysfy E¥ ) hence

(n_k271k2+t71
t=1and dy = k. So B= A+ J, where A = M (F), J = J(B). Now
for Lemma 2.2.5, we have Jy; = Jig = 0 and Jyg is a nilpotent ideal, so we
write B=A+ J = (A+ J11) ® Joo-

By Lemma 2.2.6, A+Jij1 = A+ AN =2 A®p N*, where N* is the algebra
obtained from N by adjoining a unit element. Since N* is commutative,
it follows that A + Jj; and A satisfy the same identities and var (B) =
var (A @ Joo).

By the decomposition in (2.9), it follows that V) is generated by My, (F)®
D where D is some finite dimensional algebra and exp (D) < k2. O

2.3 The case m —1=k* and m — 1 = k? + k3

In this section we study the varieties V), where A = (n —m,1™) and m—1 =
k% or m — 1 = k? + k2. Tt plays an important role the algebra My (F), the
algebra of (k+1) x (k4 1) matrices over F' having the last [ rows and the
last k columns equal to zero. We start with the case m — 1 = k2.

Lemma 2.3.1 Let m — 1 = k? and A = (n—m,1™), R = A + J where
A = Mk (F), J = J(R), and let R € Var(E;). If J01J10 = J10J01 =
J10Joo = JooJo1 = 0, then var (R) = var (A1 @ As @ Joo) where Ay = A+Jyo
and Ay = A+ Jo1.

Proof. Clearly Id (R) C Id (A; & Aa @ Joo). Let now f = f(x1,...,2y) be
a multilinear polynomial such that f ¢ Id (R).
Suppose first that

feld(A+ Jii + Jip) N1d (A + Ji1 + Jo1) N 1d (Joo)

and let by,...,b, € R be such that f(by,...,b,) # 0. We may assume by
linearity that by, ..., b, belong to AUJ1gUJ1oUJ11UJge. By the assumption,
bi,..., b, do not belong, at the same time, to AU J11UJ1g or to AU J11 U Jy;
or to Joo. Thus there exist b;, b;, i # j, such that one of the following three

possibilities occurs:
bi S JIO and bj € J()l (2.10)
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and
b; € Jip and bj € Joo (2.11)

and

b; € Jy1 and bj € Joo. (2.12)
Since the Ji;’s are A-bimodules, Joy1J10 = J10Jo1 = J10Jo0 = JooJo1 = 0 and,
by Lemma 2.2.4 Jo1Joo = JooJ10 = JooJ11 = J11Joo = Jo1Jo1 = J10J10 = 0;
we have that each of the above three cases leads t0 by (1) - - - by(n) = 0 for all
o € Sp. Thus f € Id (R), contrary to the assumption.

We have proved that Id (R) 2 Id (A + J11 + Jip) NId (A + Ji1 + Jo1) N
Id (Joo). If we prove that Id (A + Ji1 + Jip) = Id (A + Jip) and
Id (A + Ji1 + J()l) = 1Id (A + J()l), we would get that Id (R) O Id (Al) N
Id (A2) N1d (Joo) and the proof would be complete.

In order to prove that Id (A + Ji1 + Ji9) = Id (A + Jio), suppose that
there exists f(z1,...,2,) ¢ Id(A+ J11 + J10) and let f be multilinear.
Since Ji1 = AN, A commutes with N and N is commutative by Lemma
2.2.6, we have that for all by,...,b,, € A+ J11+Jig,a € A, de N

by ...bgadbgsy ...by = dby ... bgabgss ... bm.

It follows that if by,...,b, € AU Ji1 U Jyp are such that f (b1,...,b,) # 0,

then we can write
f(bi,...,bn) :d/f( i,...,b;)

for some d’' € N, b|,..., b, € AU Jyo. Thus f ¢ Id (A + Jy0) and
Id (A + Ji1 + Jig) = Id (A + Jo)

follows. Similarly, one can show that Id (A + Ji1 + Jo1) = Id (A + Jo1) .
This completes the proof of the lemma. O

Lemma 2.3.2 Let m —1=k? and A\ = (n —m,1™), and let be R = A+ J
where A = My, (F) and J = J (R). If R € var (EY), then

var (R) = var (kagk (F) (o) M2k><k (F) D D) y
with D a finite dimensional algebra such that exp (D) < k2.

Proof. We first claim that if R € var (£}) then

J10Jor = Jo1J10 = J10Joo = JooJo1 = 0. (2.13)

We prove this for the case JigJo1, and the other can be proved in a
similar way. Suppose JigJo1 # 0 and let u € Jip and v € Jy; be such that
uv # 0.

As in the lemmas proved before, we consider the following tableau

36



1 23]~ [n—k+1
n—k?+2
Ty = n—k*+3

n

and we associate the polynomial

=" > (1) o)y - Ty k2 1 Yn k24180 (n—k212)
pERTA UGCTA

Yn—k242 """ Yn—-1To(n)Yn-

Now, let b1, ..., by2 be an ordered basis of A consisting of all matrix units
ei; such that by = e11, and aq, ..., a2 € A such that

b1a1b2 e ak2_1bk2ak2 = €11
and
ba(l)albg(Q) ce ak2_1ba(k2)ak2 =0

for any non trivial permutation o of Sje.
Using the following substitution

x1 = u € Jyo,

y1=v € Jo
Tpopegs =0 i=2,... k%
. 2
yn—k2+j:aj j:17"‘7k7

and all the other variables equal to by; recalling the property of Capelli
polynomials used in lemma 2.2.6 we have that, under this substitution, fY
take the value uvei; # 0, a contradiction.

Now by Lemma 2.2.3 and Theorem 2.2.2, we have that there exist a finite
number of reduced algebras Bj,..., B; and a finite-dimensional algebra D
such that

var(V\) =var(B1®--- @& B, & D) (2.14)

Asin the Theorem 3.3.7 it is possible to prove that var(Vy) = var (B @ D),
where B is a reduced algebra satisfying £y and B = A+J with A = M, (F).
By Lemma 2.3.1 var (B) = var (A; @ Ay @ Jyo) where Ay = A+ Jyg, A2 =
A+ Jy1 and Jy is a nilpotent algebra. We prove now that A + Jig has the
same identities of Mo (F'), and then, similarly, it is possible to prove that
A+ Jo1 has the same identities of Mok (F'). Now the left A module Jig
is isomorphic to a distinct sum of irreducible modules, hence it is isomor-
phic to say ¢ > 0 copies of an irreducible M} (F)-module. It follows that
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A = My (F)+ Jig ~ My, 4+ and, so, A has the same identities of Mj, o, (F).
Since J1pA = JipJio = 0 and A = My (F), then A + Jip has the same
identities as Myxop (F).

Hence we have proved that if B is a reduced algebra satisfying E} then

var (B) = var (kagk (F) B Mok (F) D Joo) .
Finally, by the decomposition given in (2.14), we get that
var (Vy) = (Myxar (F) © Maogxk (F) @ D)

where exp (D) < k2.
O

Lemma 2.8.3 Let m — 1 = k¥ + k3, A = (n—m,1™) + n and let R =
A®B+J where A = My, (F), B= My, (F) and J = J (R). If R € var (EY),
and AJB # 0, then var (R) = var (A1 @ As @ D) where Ay = A+B+AJA+
BJB+AJB, Ap=A+B+ AJA+ BJB+ BJA and exp (D) <m — 1.

Proof. As in a previous lemma we consider a partition u = (n + 2) and we
consider the following tableau

1 2‘3‘--"n—m‘
n—m+1

T, =

n—+1
n+2

and, as before, we obtain the following polynomial

f; = Z P Z (_1)0x0(1)y1$2y2 e Tn—mYn—m

peRr, 0O, (2.15)
Lo(n—m+1) -+ Yn+1To(n+2)-

And for theorem B of [1] f; € Id (R).
First of all, we claim that

BJAJA =0 and AJBJA =0, (2.16)

Suppose, by contradiction, that there exist x,y € J such that BxAyB #
0. If 14 and 1p denote the unit elements of A and B respectively, then we
may assume that 1gx = 21, = x and 14y = ylp = y. Hence

Ax = zB =yA = By =0. (2.17)
As in the lemma 2.2.5 we can consider the matrices

ULy ooy Ug2, G0, A1y ooy Qg2 €A vl,...,vkg,bo,bl,...,bk%_l €B
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and
Tapu1aius . . . ak%_lukflAybovlblvg . bk%_lvk% #£0

is the only combination of uq,... s U2, ULy - ooy Ug2 such that the above
product is not zero.
Now, if we consider the following substitution

Ti242 =Y,
, 2
Ypprpi =bicn 1=14,2,--- k),
, 2
Tp2y14j = V-1 J =23, ky+ 1,

and all the other variables take the value 14, we have that under this susti-
tution
fi#0

The second equality in (2.16) is proved similarly.

We show now that if zAyB # 0, with x,y € J then we may take x €
AJA. In fact, since 15 € B, we have that B # 0 and also BxAyB # 0,
and this contradicts (2.16). Hence Bz = 0. If also Az = 0, then we can
say that (2.15) is not a polynomial identity for R. Therefore Az # 0 and
x € AJA. In the same way it is possible prove that if AxBy # 0, for some
x,y € J, then we may take y € BJB.

Consider now a non-zero product of the type

ardy -+ - Am—1dm—1am

where a1,...,a,;, € AUB and dy,--- ,dy—1 € J. Then, by (2.16), either
ai, -+ ,am, € Aor ai,---,a, € B or there exists 1 < k < m such that
ay, -+ ,ap_1 €A ag, - ,am € Boray, -+ ,ap_1 € B, ag,--- ,am, € A.
Similarly, if
doardy -+ am—1dm—1am # 0

where a1,...,ax_1 € A, ag,...,ay, € B and dy,d1,...,dn—1 € J, then, by
what we proved above, we may take dy € AJA.
We next prove that
Id(R) =1d (A1) N1d (A2) N1d (A3) N1d (Ay)
where A3 = A+ J and Ay = B+ J. In this way we can affirm that

var (R) = var (A1 DAy D A3 D A4)
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and then, since exp (A3 ® Ay) < max {k},k3} < k7 + k3, the lemma will be
proved. The inclusion

Id(R) - Id(Al)ﬂ]d(AQ)ﬂId(Ag)ﬂId(A4)

is obvious, then Let f ¢ Id (R), a multilinear polynomial, and suppose that
feld(As)NId(Ay).

Since AB = BA = 0, in order to obtain a non-zero evaluation of f
we must substitute at least one y € J such that AyB # 0 or ByA #
0. As we remarked in the proof of (2.17), the element y can be taken in
AJB or BJA, respectively. Taking into account the relation (2.16) and the
above discussion, it follows that all the other variables must be evaluated in
AUBUAJAUBJB.

Thus either f ¢ Id (A2) or f ¢ Id (A2). This prove that

Id (R) o1Id (Al) N1Id (AQ) N1Id (Ag) N1Id (A4) .

And so the lemma is proved. O

Lemma 2.3.4 Letm—1=k?+k3 and let A = (n -m—1, 1’“%”“5“) Fn,
and let Ay, Ay € var (EY) be the algebras defined in Lemma 2.2.4. Then
there exist finite dimensional algebras D1 and Do such that

var (Al) = var (UT (kl, kg) (&) Dl) , var (A2> = var (UT (kl, ]{22) D DQ)

and exp (Dq) ,exp (D) <m — 1.

Proof. Consider the algebra A’ = A+ AJA. By Lemma 2.2.4 we have that
AJA = (AJA);; = AN = A® N for some nilpotent algebra N. Suppose
first that NN is non-commutative. Then, by lemma 2.2.6, we can affirm that
(2.4) is not a polynomial identities for A’. If AJAJB # 0, as in the proof of
lemma 2.3.3, we can prove that (2.4) is not a polynomial identities for A;,
a contradiction.

Hence AJAJB = 0. Since AB = BA = 0, we obtain that
var (A1) =var((A+ B+ AJB+ BJB) & (A+ AJA))

and exp (A + AJA) < k? + k3. In the case N in commutative, Id (AJA) C
Id(A;) implies that var (A;) = var (A+ B+ AJB+ BJB) ® (A+ AJA)).

Now, considering the summand BJB and using the same arguments
we obtain that var (4;) = var ((A+ B + AJB) @ D) for some finite dimen-
sional algebra D such that exp (D) < k? + k3.

The algebra A+B-+AJ B contains a subalgebra isomorphic to UT (k1, k2),
(see [20]), and so Id (A + B + AJB) C Id (UT (ki, k2)). On the other hand,
Id (UT (k1,k2)) = Id (My, (F))Id (My, (F)). Since (AJB)? = 0, it is easy
to see that if f; € Id (Mg, (F)) and f2 € Id (Mg, (F)) then
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fifo € Id(A+ B+ AJB). Hence var (A+ B+ AJB) = var (UT (k1,k2))
and the conclusion of the lemma follows for the algebra A;. In the same
way we can prove the second part of the lemma. O

Theorem 2.3.5 Let A = (n —m,1™) - n, let m # k? and suppose m — 1 is
a square or the sum of two squares. Then

var (EY) = var (A@® B@® D)

where D is a finite dimensional algebra with exp (D) < m,

A= MTX2T(F)@M2T><T(F) ifm—1:r2
0 otherwise,
and
B 0 if m — 1 is not the sum of two squares,
a D221 UT (s,t)  otherwise.

Proof. By lemma 2.2.3 and theorem 2.3 of [26], var (E}) is generated by
a finite dimensional algebra. As in the proof of theorem 3.3.7, and by the
2.2.2, we need only examine finite dimensional reduced algebras in var (E7).
We then apply lemmas 2.3.2, 2.3.3 and 2.3.4 to complete the proof of the
theorem. O
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Chapter 3

On the Z-grading of M>(FE)

Throughout this chapter we study the polynomial identities of the Z-grading
of A = My(FE), and we find a subset of generators of the corresponding 7-
ideal.

We also compute, through the representation theory of GLy X G Lo x G Lo,
the nth cocharacter of the homogeneous component of degree —1, 0 and 1
of the Z-graded algebra A and the graded cocharacter x(g,,—,) of A.

3.1 The polynomial identities of MZ(E)

Let A = M>(E) be the algebra of 2 x 2 matrices over the infinite dimensional
Grassmann algebra E and let Z(+) be the additive group of integer.
Now we define a Z-grading of A as follows:

such that
(0) [ a O
W _ (0 ¢
(-1) (00
and

M(E)=0 n¢{-1,01}.

We remark that, since F' is a field of characteristic zero, to study of the
polynomial identities of M(FE)% we may restrict ourselves to consider only
multilinear polynomials.
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We adopt the following convention: the symbol | ~indicate alternation

on a given set of variables, in particular #1249 = [z1,22] = z122 — T221.
We also adopt with [z1, 22, ,z,] = [[[1,z2] 3], -+, z,] the left normed
commutator.

Hence, if we denote by x; the variables of homogeneous degree zero,
by y; the variables of homogeneous degree 1 and by z; the variables of
homogeneous degree —1, we have the following result.

Lemma 3.1.1 The followings are Z-graded polynomial identities of A:
[21, 22, 73] =0,

y1y2 =0,

z129 = 0.

Proof. The first is an obvious consequence of [30], [27]. Since the homo-
geneous component of degree 1 and —1 are nilpotents we have y 2 = 0,
Z1729 = 0. d

We also have

Lemma 3.1.2 The followings are Z-graded polynomial identities of A:
[y121, y222] y3 — 3 [2191, 2292] = 0, (3.1)
(2191, 22y2] 23 — 23 [Y121, Yy222] = 0. (3.2)

Proof. We prove the first one, and the other can be proved in a similar way.
First we observe that two elements of the component of degree 1 and —1
satisfy the following

aeijbeji = abeii = (_1)degadegbbaeii (33)

where e;; is a matrix unit of My(F), a,b € E and where dega = 0 if
a € Ey and dega =1 if a € Ey. We remark also that (3.1) is a multilinear
polynomial, hence is sufficient prove that (3.1) is equal to zero for elements
ae;; such that a € Ej, I = 0,1. Now we use the convention (—1)d¢82 = (—1)¢
and we consider the following substitution

y1 = aei2, 21 =bey, Y2 =ceia, 22 =dea, y3= feir.

It is easy to check that the polynomial (3.1) takes the value v(abcdf)eqa,
where
y= [1 _ (_1)(a+b)(c+d)] [1 _ (_1)f(a+b+c+d)+ab+cd] '

Now v = 0 for all the 2° possibility of choice of a,b,c,d, f € E;, 1 =0,1. O

We now give a polynomial identity which is a consequence of (3.1)
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Lemma 3.1.3 For anyt,j € N
U1ziy1zy2 =0
219iz1y;22 = 0.
are polynomial identities for My (E)Z.
Proof.

Y1ZiY12jU2 = Y1ZiY12jY2 — Y2ZiY12Y1-
We remark that Z;y1Zjy1 = [2y1, 2jy1], hence by lemma 3.1.2, g1 291292 is

a polynomial identity. The second one can be proved in the same way.
O

3.2 On the Z-graded cocharacter of the matrix al-
gebra M, (FE)

In order to describe the decomposition of the nth cocharacter of the homo-
geneous component of degree 0,1,—1 of the Z-graded algebra, denoted by
A AM and ACY respectively, we shall use the representation theory of
GL2 X GL2 X GLQ.

Let A be a partition of the integer r, A F r, i a partition of the integer
s, u s and v a partition of the integer n — r — s.

Let also F}} be the space of all homogeneous polynomials of degree n in
the variables x1,x2, - , Tm, Y1, Y2, > Ym, 21,22, » Zm. Lhen

i

= )

is a GLy, X GLy, X GLy,-submodule of F,(A).

It is well know (see, for instance [15], Theorem 12.4.12) that any irre-
ducible submodule of F}(A) corresponding to the 3-tuple (A, i, v) is cyclic
and is generated by a non-zero polynomial f) ,,, called highest weight vec-
tor, of the form:

A1

f)\,,u,u(xlax2a Uy Imsy Y1, Y2, s Ymy 21,22, 0 7Z’m) = HSthi()\)(ﬂjl,l'Q,’ o 7xh¢()\))

=1

H1 V1
LI Sthico Wi vz tni) [T Sthiw) (21022 2hiw) D w0 (34)
=1

i=1 geSn

where o, € F, the right action of S,, on F) (A) is defined by place permu-
tation, h;(A)(respectively h;(u), hi(v)) is the height of the ith column of the
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diagram D) (respectively D, D,) and St,(x1,x2,--- ,2,) is the standard
polynomial of degree 7.

If 4 = v = () then the highest weight vector corresponding to the 3-tuple
(X, 0,0), denoted by fy, is the polynomial

A1
fA = f)\7(z)’® = Hsthl()\)(xl,x27 o e 7(]71,}”()\)) Z OzUO'.

i=1 ocESh

Similarly we define f, and f,, the highest weight vectors corresponding to
the 3-tuple (0, u,?) and (0,0, v) respectively.

Let Ty, T), and T, be three Young tableaux. We denote by fr, 1, 1, the
highest weight vector obtained from (3.4) by considering the only permu-
tation 7 € S, such that the integers 7(1),7(2),---,7(h1())), in this order,
fill in from top to bottom the first column of Ty, 7(h1(A) + 1),7(h1(A\) +
2),--+,7(h1(\) + h2(N)) the second column of Ty, ---, 7(hi(A) + -+ +
ha,—1(A) + 1), 7(hi(A) + -+ 4+ hyy—1(A) + 2),--- ,7(r) the last column of
Tx; 7(r+1),7(r +2),--- ,7(r + h1(n)), in this order, fill in from top to
bottom the first column of T}, -, 7(r 4+ hi(p) + -+ hy—1(p) + 1), 7(r +
hi(p) + -+ hy—1(p) +2),--- ,7(s) the last column of T),; finally (s +
1),7(s 4+ 2), - ,7(s + h1(v)), in this order, fill in from top to bottom the
first column of Ty, -+, 7(s + hi(v) + -+ hy,—1(v) + 1), 7(s + hi(v) +-- - +
hy,—1(p) +2),- -+, 7(n) the last column of T,. As above we also define fr,,
fr, and fr,.

We denote by T'(A, p,v) the set of all 3-tuple (T),7),,T,) of standard
Young tableaux and by dy ,, its cardinality. If dy (respectively d,, d,)
denotes the number of standard A-tableaux given by the hook formula [36]
(respectively p and v standard tableaux) then

Ay = dxd,dy,.
We have the following result

Proposition 3.2.1 ([16], Proposition 1) Let A\Fr, uk s, vEn—r—s.
Any highest weight vector fy ., can be expressed uniquely as a linear com-
bination of the polynomials fT)\,TM7Tu with T\,T,, and T, standard tableaux.

We start now computing the nth cocharacter of the homogeneous com-
ponent of degree 0, 1 and —1 of the Z-graded algebra A = Ms(E) denoted
by A©® AM and ACD respectively.

Let the following be the decomposition into irreducibles of the nth co-
character of A():

X(n,0,0) = ZmAX,\
AFn
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where x, is the irreducible S,,-cocharacter associated to the partition
A n and my > 0 is the corresponding multiplicity. By lemma 3.1.1 and by
theorem 4.1.8 of [22] the following theorem holds.

Theorem 3.2.2 The cocharacter sequence of A is

X(n,o,o)(MQZ(E)): Z XA

ACH(1,1)

its decomposition into irreducibles.
Since lemma 3.1.1 all multilinear polynomials f € Py 0 = span {ya(l)yg(g) e Yamylo € Sn}
of degree greater or equals 2 vanish in A, we have the following result:

Theorem 3.2.3
xa i n=1

X(O,n,O)(MQZ(E)) =
0 if n>2.

Applying the same arguments, we have the following result for x (g ,,) (MZ(E)) =

s Poon
"\ Pyon NId%(My(E))

Theorem 3.2.4

) Xy f n=1
X(o,o,n)(MQ (B)) =
0 if n>2.

Now, given any r, s € {0, 1, --n} such that r + s = n, consider the space
Py s of multilinear polynomials in r variables of homogeneous degree 1 and
s variables of homogenous degree —1.

The group S, x Ss acts on Py, s by permuting the variables of homoge-
neous degree 1 and —1 separately. This action preserves Po,mﬁldZ (My(E)),
the Z-graded identities of My(E) lying in Py, s. Then the S, x Ss-character
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PO,T,S
Pors N 107 (Ma(E))

of the quotient space is called the graded cocharacter of

My (E).

Recall that there is a one-to-one correspondence between irreducible S, x
Ss-characaters and the set of pair of partitions {(A, )| AF 7, puk s} We
denote by x) ® x, the S, x S,-character corresponding to (A, ) . We also
set my ;= mgp x4

We start the computing of the Z-graded character by the following
lemma.

Lemma 3.2.5 Let

X(O,r,s)(MQZ(E)) = ka,uXA X Xpu

A
pks

be the decomposition into irreducibles of the nth graded cocharacter of Ma(E).
If r ¢ {s,s — 1,5+ 1} then my, = 0.

Proof. Let

X(o,r,s)(M2Z(E)) = XS, xS < PO;S (E)))

= Z M XN Q Xp-

A
pks

Since y1y2 = 0 and 2129 = 0 are Z-graded identities of Ms(FE), it is clear
that, if r # s or r # s — 1 or r # s + 1, all polynomials f € Py, s vanish
in MZ(FE). Then my, = 0 for all A = r, 4 F s. Hence it follows that
Xors(ME(E)) =0ifr#sorr#s—1orr#s+ 1. Therefore the proof is
complete. O

The previous lemma gives a restriction on the number of box of the
diagrams D) and D,,, instead the following, which is a consequences of
Theorem 4.1.8 [22], gives a restriction on the shape of the two diagrams.

Lemma 3.2.6 Let

X(0,r,) (M5 (E)) =) mix uxa @ X

Abr
pks

be the decomposition into irreducibles of the nth graded cocharacter of Ma(E).
If \,pp ¢ H(1,1) then my , = 0.

At the light of the previous lemmas, we have to examine the following
cases:
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e A= —t,1"Y  p=(s)or A= (r),p=(s—t',1""1), with1 <t <r
and 1 <t <s,

e X=(r—t,1"Y, p=(s—t, 1", withl <t <r 1<t <
sand t =,
e X=(r—t,1Y, p=(s—t, 1" withl <t <r 1<t <

sand t #t/

33 M\ =1orhu =1

In this section we focus our attention on the pair of Young tableaux such
that hi(\) = 1 or hi(p) = 1. Given a pair of Young diagrams, we can obtain
a pair of standard Young tableaux by filling D) with odd numbers and D,
with even numbers or by filling Dy with even numbers and D, with odd
numbers. Throughout this chapter we consider, without loss of generality,
the first case, moreover we set hi(\) = n and h(u) = m. We also set

Irnr, = [y, 2) = 219221 . .. 21Gn21Y121 - -

that is the highest weight vector corresponding to the pair of Young tableau
obtained from D) and D,, filling the first column of D) with the odd num-
bers 1,3, -+ ,2h1(A) — 1. We start with the following

Lemma 3.3.1 Let k > 1 and let

Je = frly, 2) = ﬂlzl(ylzl)kﬂ221y1 = YLR1 Y12 - - YLRLY2R1YL
—_—
k

then
fe = (k+1)fr, 1,

Proof. We prove the lemma by induction on k. If kK = 1 we have
f1 =0z 21922191 - - -
Now, by (3.1)

(Y121, y221] y1 — y1 (2101, 2192] = 0

follows that
Y121Y121Y2 = 2Y121Y221Y1 — Y221Y121Y1- (3.5)

Hence
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Y121Y121Y2 - - - = Y121Y121Y2 - — Y221Y121Y1 - - -
= 2021 Y121Y1 - — 2Y121Y221Y1 - - -
=21 21Y221Y1 - - - -

Now suppose the lemma true for i < k and we prove it for k. By (3.5)
we have

e =2fr—1 — fr—2 =2k — (k — 1)]fT/\,Tu =(k+ 1)fTAvTu'

Lemma 3.3.2
Y121Y221 -+ Yok—121Y2621Y1 - - -
= Z Qo,kYo(1)21Y0(2) 210 (3) 21Y0 (4) 21 *** Yo (2k—1) 210 (2k) 2191 * - -
gE€Syy,

where o is a permutation of Sop such that o(1) = 1, 0(2i — 1) < o(2i),
t,s are odd numbers such that o(2i +t) < 0(2i 4+ s) where 1 < i < k —1,
0<t<sand

g = (—1)7ay
with
1 ifk=1
o =

kg1 ifk > 1.

Proof. We prove the lemma by induction on k. If & = 1 the statement is
true. Suppose now the lemma true for k and we prove the thesis for k£ + 1.
We can write

Y121Y221 * - Yok—121Y2k21Y2k4+-121Y2k 122141 *

2k+2
= Z (=D Yo (i 21Y0 () 21U (1) 21U (1) 21 * * * Yol 1) 21T (1) 21Y1  (3.6)
ij=1
i#]
where {1, 0o, lop} = {1,2,--- i — 1,0+ 1,-- ,j—1,j+1,--- 2k +2} and
such that o(ls) < o(ls41) for all 1 < s < 2k — 1. We note that for all pair
1,7 we find the polynomials

Yo (i) 1Y0 () 210 (1) 210 (10) 21 ** * Yo (log—1) Z1Y0o (1) 1Y1 " -

and
Yo (5)21Y0 () %190 (1) X190 (12) 21 " * * Yo (lag—1)Z1Y0 (1) 191~
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with the opposite sign, then we can write (3.6) as

2k+2
Z (=) To5) 2190 () 210 (1) 1o (1) 21 ** Yor(lage 1) 21T (1og ) F1YL " " * -
ij=1
a(i)<o(j)
o€Soy,

(3.7)
By induction on k we have that, modulo the identities, (3.7) is equivalent to

2%k+2
> > (D) Uk (o) 21T (o) 21T (1) 21 (1) 21
i,j=1 €S
a(;)J<a(j) T(Z(z’)ik:f(i) (3.8)
0€S2m+2 7(0(j))=0(j)
Ur(13)21Y7 (1) 71 Yo (lap1) 210 (1ox) 21YL " s
where 7 is a permutation of Soy o such that 7(I1) = Iy, 7(loy—1) < 7(lo2r),
T(lor4¢) < T(lopys) where k > 2, t, s are odd numbers such that 0 < ¢t < s
and a;j = (—1)7ay, with
1 ifk=1
o =
kap_q, if k> 1.
By
viz1yiz1Ye21 Y1 = Y1 Yi21Yiz1Yj,
for all the pairs o(i) < o(j) we find in (3.8) k4 1 equivalent polynomials to
the following

U121Yp21Yqy 21Yge 21 -+ - y%zlerHzly’a(i)zly’a(j)zl

Ugr 221904321 " * Ygop—321Ygop o 21Y1 """

hence (3.8) is equivalent to

Z Qp k+1Yp(1)21Yp(2)21Yp(3)21Up(4) 21 * * * Up(2k+1) 21U p(2k+2) Z1Y1 * *
PES2k+2

where p is a permutation Sopio such that p(1) = 1, p(2i — 1) < p(2i),
p(2i +1t) < p(2i +s) where 1 < i < k, t,s are odd numbers such that
0<t<sand appir = (—1)P(k+ 1)ay. O
Corollary 3.3.3

Y121Y221 *  Yok—121Y2k+12191 *

50



2k+1

= Z Qo kYo () 210 (11) 2190 (12) Yo (13) 21Yo (1) 21 " * Yo (log— 1) Z1Yo (12,) 2191 * * *
j=1
0ESak+1

where {lylo, -+ lox} = {1,2,--- ,j— 1,7+ 1,--- ,2k+1} and 0(2i — 1) <
0(2i), o(laiyt) < o0(laits) where 1 < i < k, t,s are odd numbers such that
0<t<sand
Qo = (—1) g
with
1 ifk=1
O[k —

kg1 ifk > 1.

Proof. 1t is sufficient explicit the first alternating variable and by the previ-
ous lemma, the corollary holds. O

Lemma 3.3.4

Y1Z1Y121Y221 * * * Yn = Y121Y221 - YnZ1Y121Y1 "~ *

Proof. We first consider the case n = 2k. Then by the previous lemma it is
possible write the polynomial

Y121Y121Y221 * * * Y2k—121Y2k21Y1 *

= Z Qo kY121Y5(1)210(2) 2190(3) 1Yo (4) 21 * * * Yo (2k—1) 210 (2k) 1YL * *
€Sy

(3.9)
where o is a permutation of Sgi such that o(1) = 1, 0(2i — 1) < o(2i),
0(2i+t) < 0(2i+s) where 1 <i < k—1,and ¢, s are odd numbers such that
0<t<sand
gk = (—1)004k

with
1 ifk=1
ak —
kap_,  if k> 1.
According to
Yin ik = yk21Giz1 G (3.10)

(3.9) is equivalent to
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Z Ao kUs(1)21Y0(2) 1Yo (3)21Y0 (4) 21 * * * Yo (2k—1) 21 Y02k 21912191 - - -
O'ESQk

= Y121Y221 - - YokZ1Y121Y1 - -
Now let be n = 2k + 1, if we explicit the first alternating variable we
have
Y121Y121Y221 ** - Y2k4121Y1
2k+1
= Z (=) 7Y121Y0 (i) 2150 (1) 21U0(12) 21 " Yor(lnp 1) 1T (o) 211 - -+ (3.11)
i=1
UGZSQk+1
where {l1,l2,- -+ ,lox} ={1,2,--- ,i—1,i+1,--- ,2k} and such that o(ls) <
0(ls41) for 1 < s <2k — 1 By the previous lemma, (3.11) is equivalent to

2k+1
> (D it 2o () 1T (o (11)) 21T (0 (1))

UESQk+1 =1

TESoK
21Y7(0(13)) A1Yr( (1)) 21 " Yr(o(lak—1)) 2107 (0 (lag)) 2LYL " "
= Z (=17 ar kY12191 2107 (0 (11)) 21T7 (0 (12))
TESok
0ESak+1
2197 (0 (13)) A1Yr( (1)) 21 " Yr(o(lak—1)) 2107 (0 (lag)) ZLYL "~
2k+1

+ Z Z (—=1)7 e kY121Y0(5) 21T (0(11)) 218 (o (1))

UESQk+1 =2
TESo

2197 (0 (13)) A1Yr( (1)) 21 " Yr(o(lak—1)) 21U (o(lag)) PLYL " "
(3.12)

where o(l2i—1) < o(l2i), 0(2i +t) < 0(2i + s) where 1 <14 < k — 1,and
t, s are odd numbers such that 0 < ¢ < s.
As in the previous case the first sumand of (3.12) is equivalent to

Z (=) 7Y1210r (0 (12)) 21U (0(12)) 21T (o (1))
TS (3.13)

0ES2k+1
21Yr(0(14))?1 " Yr(o(lap_1)) P17 (0 (log)) Y121 2191+ *

We note that the second summand of (3.12) by
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Yiz1Yjz1 = Yiz1yY;21 + Yj21yiz

is equivalent to

2k+1

Z Z (=1)7 r k912190 (i) 21U (0 (11)) 1Y (0 (12)) 21
TESe, o(i)=2

o€Sak+1
Yr(o(a) A1Tr(o(a) 1"+ Yr(o(lan-1)) A1 r(o(l20)) 21YL " (3.14)
2k+1
+ Z Z aTk’yG' z)ZlylzlgT(a(ll))ZlgT(a(lg))Zl
TESo, o(i)=2
0ES2k+1

Yr(o(15)) 1Y (0 (1)) 1 " * Yr(o(lap—1)) F1Yr(0(loy ) Z1Y1 "+

it is easy to check that the first summand of (3.14) is equivalent to zero
and, according to (3.10), (3.14) is equivalent to

2k+1
Z Z 70 kYo (1) 21U (0 (1)) 1 Ur (0 (12)) 21
TESo, o(i)=2

0ES2k+1

Yr(a(13)21Y7(0 (1) 21 " * Yr(o(lap—1)) 2197 (o (lag)) F1Y1Z1Y1 * - - -
(3.15)

Finally the sum of (3.13) and (3.15) is equal to

> () 0 k() 21T (o)) A1 T (0 (12)) 21 V(o (lag 1)) 10 (o (1)) FLYL21Y1 -
TESoK
TES2k+1

and by the previous lemma it is equivalent to

Y121Y221 " Yok Z1Y2k+121Y1 " " -

Lemma 3.3.5
1219221 - Yn—121121Yn 2101 -+ - = BYr1218221 -+ - Yn—121Yn21Y12191 * - -
where

1 if k is odd,

%N + Qr k-1
Qg k

with 0 € Sop, T € Sop—1 and oy, 1s defined as in the Lemma 3.5.2.

if k is even
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Proof. If n = 2k 4+ 1 and if we explicit the last alternating variable and we
apply lemma 3.3.2 and lemma 3.3.4, the lemma holds.
Now let be n = 2k, then if we explicit the last alternate variable we have

Y121Y221 " Yok—121Y121Y2621Y1 "

= Z (=D Uo(1)21Y0r(12) 21 - - - Yor(lap 1) Z1Y1 21 Y (i) 21Y1L * *
oE€Soy
where {l1,lo---lop—1} = {1,2,---i—1,i+1,--- ,2k} and o(l5) < o(ls41)
with 1 <s <2k —1.
Similarly to lemma 3.3.4 we can write the previous as

—Y221Y321 " Yok—121Y121Y121Y1 * (3.16)
2%
+ Z Yo (1) 210 (12)21 " * Yo (lop_1) A1Y121Y o (i) 21Y1 - "+ -
o(i)=2

For the previous lemma, the second summand of (3.16) is equivalent to

2k

> (DY To 1) 1T (12)21 * * To(lar 1) LYo (i) 1YL - (3.17)
o(i)=2
i,

We remark that
Y221Y321 -+ YA 21U - - = Y121Y221Y321 -+ - Yawzah 2y - -+ (3.18)

FYY121Y121Y221Y321 - Y2k21Y1 - -

for some scalar «, in fact by lemma 3.3.2 we have

Y221Y321 " Y2k —121Y121Y121Y1 *

2k

= Z Or k—1Y7(5) 2197 (1) 2197 (1) 2197 (13) 217 (L) * ** Yr(log—_o)
—
TG]Szk—1

Z1Y7 (lop_1) P1Y121Y121Y1 -

where 7(l1) = 2, 7(l2i—1) < 7(l2:), T(l2i+¢) < T(l2545) where 1 <i < k—1
and t,s are odd numbers such that 0 < ¢ < s. According to (3.10), the
previous is equivalent to

2k

Z Qr k—1Y7(j) 2191219 (1) 21Yr (12) 219r (15) 2197 (14) (3.19)
j=2
TEJSzk—1

54



21 Yo(log—1) 210 (loy ) F1Y121Y1 * * *
according to y;z1y;j21 = Uiz1Y;21 + Y2121, (3.19) is equivalent to

2%

D k112 () 21T (1) 21T (1) 21 (1) 21 i (1) (3.20)

=2

T€J~92k71
21 Yo (lyor) 210 (1) A1Y121Y1 -
2%
- Z Q7 k—19121Y7(j) 217 (1) 2197 (12) 2197 (15) 219 (1)

J=2
TESoK_1

21 Yo (lop_1)21Y0 (19) 21Y121Y1 * "+

Now, the first summand of (3.19) is equivalent to

Y121Y221 - Y2k Z1Y12191 - -

the second one, by (3.10) is equivalent to

QOrk—1 _ _
——— Y121Y221 - Y2kc1Y1z1Yr e,
Qg
Or k—1

g k
(3.18) is equivalent to

if v = — we obtain (3.18). Hence, according to (3.16) and (3.17),

2k

Z (=1 Y121U0() 1Yo (12) 21 * * * Yor(lop 1) 21 (i) 2191 " "
o(1)=2
og€Syy,

— Y121Y221Y321 - - Y26 21Y1 — VY121Y121Y221 - - - Y2k 21Y1 - - -
= (1 =)z 219221 - - Yor21y1 - -

if we set f =1 — . Finally applying Lemma 3.3.4 we have the thesis.
O

Theorem 3.3.6 Letr,s,m,n € N, let

X(0,r,s) = Z M X\ @ Xp-
AFn

puEm
IfAx=(—n+1,1""Y k7 and p= (s) - s then
2 if r=s

My =
1 if |jr—s|=1
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Proof. 1t is obvious that if hy(A) = hy(p) = 1 then my , = 1.
If hi(\) = 2, by the lemma 3.3.1, we can say that the corresponding
highest weight vector fr, 1, is up to a non zero scalar equivalent to

Ir1, = 2192219121 - -

Then if we consider the substitution y13 = (h1 +g1)e12, 21 = (b} +9})e21 and
yo = hgeya, where hi, hy € E1, g1,9) € Ey and gI’LS,giHS # 0 we have that

fT)\,TM 7% 0.
Suppose now hi(A) > 2. We prove that any highest weight vector can
be written, mod IdZ(A), as a linear combination of polynomials

Y121Y221 - - - 21Yr—121YrZ1Y121 - - - (3.21)

and
Y121Y221 - - - 21Yr—121121Yr 21Y121 - - - - (3.22)

In fact we consider for any 4, j, kK € N a polynomial

f= f(y, Z) =...Y2Y1.. Y2y 2k (323)

We recall §;219;21 = [y121, y;21), and by (3.1) we have g;219; 2191 = y1219i217;-
By induction it is also possible to check that

(y121)'yi = tyi(zin)' — (¢ — D) (y121) yizam t>1. (3.24)

Now by (3.24) and (3.1) we can write (3.23) as a linear combination of
YiZ1Yj21Yk21 - - -

Yiz1yjz1y1 2 Yk21 - - -

Iterating this process we have that any highest weight vector can be
written as a linear combination of (3.21) and (3.22), but, by lemma 3.3.5
the polynomials are linearly dependent, hence up to a scalar

[ =hztpez .. 21Un-1210n219121 - = f1 10,

If we consider the substitution y; = (h; + g1)ei2, 21 = (b} + g})ea
and y; = h; i = 2,3,--- ,r where h;,h} € E1, g1,9] € Ep and g} # 0, we
have that fr, T, % 0. It is now obvious that if 7 = s then there are two
independent highest weight vectors, my, = 2 , instead if the |r — s| = 1

then my , = 1.
O
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Theorem 3.3.7 Letr,s,m,n € N, let

X(O,T‘,S) = Z m)‘nuXA ® X”'

AFn
pukEm

IfAx=)Fr andu:(s—m+1,1m_1)l—sth6n

2 if r=s
mxu =
1 if |r—s/=1

3.4 (N =h(p)

In this section we examine the pairs of Young tableaux which have the same

height, h1(\) = h1(u) = n. We set
Irt, = In1, (Y, 2) = 1215272 . UnZny121Y121 - - - -

Lemma 3.4.1 Let be n € N and let

pi=pi(y,2) = (~1)" " "pAPsE - GiZi1y1 i1 Zir1 YnFnY12n
= > (D7) Y1) 2r(1)Yo(2) 2r(2)
o,TES,
o(i)=1
Yo (i—-1) 21 (i—-1)Yo (i) () Yo (i+1) Z7(i+1) " Yo (n)Rr(n)Y121 """

then

fT)\vTu = g121g222 e gnénylzl —
k[pi + pr1)  if n=2k

Proof. Tt is obvious that

n
Ir1, = sz', (3.25)
i=1
and we prove that
2D; = pi_t + Pitt l<i<n, 1l<t<n-—1 (3.26)

in fact, by induction, if we consider a polynomial p; we have

57



pi = Z (_1)0(_1)7—:[/0'(1)ZT(l)yO'(Q)ZT(Q)“'ya'(i—l)z’r(’i—l)
0,TESY
o(i)=1
Yo (i) 21 (i)Yo (i+1) 27 (i+1) """ Yo(n)fr(n) Y121 "
= > (D)D) Y1) 2r (W) Yo(2) 2r(@)  ** Yorli—1)Zr(3)
0,TESY
o(i)=1
Yo(i+1)2r(i—1)Yo (i) ?r(i+1) " " " Yo(n)fr(n) Y121 " = *
+ D (D7) Y1) 2 () Yo (2)2r(2) ** Yorli-1) [2r(i-1) Vo)
o,TESH
cr(i)ezl
ZT(i)yJ(H—l)] Zr(i+1) " Yo(n)Rr(n)Y121 "
= > (D7 (D) Yo(1)2r (W) Yo(2) 2r(@)  ** Yorli-1) 2 (3)
o,TESH
o(i)=1

Yo (i+1)27(i—1)Yo (i) #7(i+1) " Yo (n)Zr(n)Y171 " " *

+ ) (D)D) Yo(1) 2 ()Y 2)Zr@)  * Yorli—1) 2r(i+1) Yor(i)Zr(i—1)»
yo’(i—i—l)ZT(i)] “Yo(n)Rr(n)Y121
(3.27)

if we set

p1=p1o=(0()o(i+1),  py=pr=(0-1)7()),
pr=pos= 1),  py=por;=(r(i—)r(@)r(i+1))"",

ps = pip2, Py = piph,
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we can write (3.27) as

Y YDA =D (DAY (1) 2 (1) Yo (2)
pP10ESy
pPITESR
o(i)=1
Zpy7(2) T Ypro(n)Fpy T(n)Y121
S (1)) (1) ()2
p20ESy
PLTESR
o(i)=1
Ypao(2)Zp(2) * " " Ypao(n)Zphr(n) Y121 "
= Y )P DA (1T Y0 (1) (1) Yo (2)
p30E€Sy

PLTESR
o(i)=1

zP,ST(Q) T yﬂBU(n)ngT(n)ylzl T

hence
Pi = Pi+1 + Pi—1 — Di,

and so

2pi = pi—1 + Pit1-

2pi—(t—1) = pi—t +pi — (t = 2)

and

2piy(t—1) = Ditt + Dit(t—2);

hence

Pi—t + Ditt =2 (pi—(t—l) + pi+(t—1)) - (pi—(t—2) + pi+(t—2))

= 4p; — 2p; = 2p;.

Now if n = 2k + 1, we write (3.25) in the following way

k

n
from, =Y pi=per1+ > Dk-tr1 + Prter)
i=1 =1

and by (3.26) we have

fry1, = prv1 + 2kperr = (2k + 1)prs1 = npgya-

59

(3.28)

Now suppose the observation true for s < t and we prove it for t, in fact



If n = 2k, we first observe that

Ph—t (Y, Z) + Prte41(Y, 2) = iU, 2) + pr41 (9, 2), (3.29)

In fact when ¢ = 1 we have, by (3.28)
Dk + Dk+1 = Pk—1 + D(k+1)+1-
Then, by induction,

Pk + Dkt1 = Pk—t+1 + Ditt
= —(Ph—t+1 + Pr+t) + Pr—t+2 + Phtt—1) + (Pk—t + Ptit1)

= Pr—t + Pkttr1-
Now we write (3.25) in the following way

k-1

frym, = Z(pk—t + Pr+t+1),
t=0

then by (3.29) we have

Jra1, = k(Pr—t + Pryts1)-

Lemma 3.4.2 let be n € N, then

Ji2102%2  YnZnyt = (—1)" My 21912082 -+ ZnPn

Proof. We first consider the case n = 2k + 1. By the previous lemma we
have that

Y121Y222 * ** YnZn = NP1,
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than

Y121Y222 -+ * YnZnY1

=@2k+1)- > (D)D) Yo ()2 (1) Yo @) Zr @) Yolkr1) k1)
o,TESR
U(k—l—el)zl

Yo (k+2)27(k+2) " " Yo (2k+1)#7(2k+1)Y1
=@k+1)- D (D)D) Yohr2) Zr(42) Yo 2kt 1) 2r(2k+1)
U((TI;:—el?il
Yo()2r(1)Yo(2)77(2) * " Yo (k+1)#r(k+1)Y1

+@2E+1) - > (D7D [(Yo()2r() Y@ 2r(2) ** Yolet1)) Zr(er1);
o,TESH
U(k—l—el):l

(ya(mz)zf(kw) e ya(2k+1)) ZT(2k+1)] Y1
=@2k+1)- D (D)D) Yo(hr2) Zr(i42) Yo(2ht 1) 2r(2k+1)
o,TESH

o(k+1)=1

Yo()2r(1) Yo (2)?7(2) * " Yo (k+1)#r(k+1)Y1

+(2k+1)- Z (=17 (=171 [2r (1) W) 2r()Yo2)2r(2) - ** Yo (k1)) »
o,TESH
a(k+61):1

Zr(2k+1) (yo(k+2)z7'(k+2) o 'ya(2k+1))]
(3.30)

If we assume that
pr=pro=(0(1)0(2) - ok+D)"? = p1r = (F(1)7(2) - T(2k+1))"?,

p2=p2o=(1),  ph=p2r=(T(1)7(2) - 7(k+1)) " (r(k+2)7(k+3) - 7(2k+1))

-

P3 = pP1p2 P P02,
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(3.30) is equivalent to

(Qk + 1) Z (71)’)1(71)#1(71)p10(71)p/1Tylzp’lr(l)yplcr(l)zp’lT(Z)

P1OES2K 41
PITES2k 41
o(k+1)=1

Yp1o(2) " " 2oy m(2k+1)Yp1o(2k+1)
+H2E+1) Y (CDP2 (=1 (=D (1) ATy (1) Yo (1) Z0hr(2)

p20€S2k 11
PoTES2k 41
o(k+1)=1

Ypao(2) " R (2k+1)Ypoo(2k+1)
—(2k+1) Y (=D (=D)A (=) (=) Y2 (1) Yy (1) e (2)

P30€S2K11
PETESop 41
o(k+1)=1

Ypso(2) " Zphr(2k+1)Ypso(2k+1)-

Hence

(2k + Dpra1y1 = 2k + Dyaphyp g + (2k + Dynp) — 2k + Dyipl,, (3.31)

where

P72 = > (~1)7 (1) Z )1 Zr2) o2 Zr(m)Por(n) -
By (3.26) we have

(2k + Dppy1y1 = 22k + V)ppyy — 2k + D)ppyy = (2k+ 1)pj 4

= Y121Y122¥2 * * * 22k 12k 1-
Now let be n = 2k, hence by lemma 3.4.1 we have
Y121Y222 * * * Yok+122k+1

= k[pry1 + pr+1y] s (3.32)

as in the previous case we have

62



k- E (D)7 (1) Yokt 1) Zr (k+1) * * * Yo (2k) 2y ) Yo (1) 27 (1) * ** Yor () Zr (k) Y1
o,TESo
o(k)=1

+k - Z (1) (=1)" [(4o(1)2r (1) Yo(2) Zr(2) - * Yo (k) Zr (k) »

o, 7ESo
o(k)=1

(Yo(b41) 27 (k1) * ** Yor(28)) 22k ] U1
kY (DT (D) Yo (et 1) 2k Yo k)2 oy Y (1) 22(1) Yo (k) Za (k)1

o, TESo
o(k+1)=1

+k - Z (D)7 (=1)7 [(Yo1)2r(1)Yo(2)2r@) - * Yo (k) Zr(k) »

U»T€S2k
o(k+1)=1
(ya(k+1)27(k+1) T yo(2k)) ZQk] Y1-

If we assume

pL=pro = (0(1) 0(2) - o@R)E,  ph=prs = (r)7(2)- - T(2R)),

pr=p2o=Q1),  ph=prr=(r()7(2) 7(k) 7 (r(k+1)7(k+2) - 7(2K) 7,
P3 = P1P2; p3 = p1PY;
then (3.32) is equivalent to

Eeo > (=D (=D)A(=1)P 7 (=) Y12 (1) Ypro (1) 207 (2)

p10ESay
PITES2p
o(k)=1

Yp10(2) " Zpym(2k+1)Ypro(2k+1)

+k- Z (_1)p2(_1)p/2(_l)pZU(_1)p/27—ylzpl27'(1)prO’(l)Zp/QT(Z)

p20€Say
PHTESy
o(k)=1

Ypao(2) * Zphyr(2k+1)Ypao(2k+1)
—k- ) (—1)p3(—1)”5(—1)”30(—1)’)373/12,){37(1)ypgau)ngf(z)
p30E€Say
P5TES,
o(k)=1

Ypso(2) ** Zphr(2k+1)Ypso(2k+1)
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ke D (D (=D (=D (=D Ty 2 (1) Ypro (1) 2 (@)
p10E€Say
PLTES2p
o(k+1)=1
Yp10(2) *** Zpy7m(2k+1)Yp1o(2k+1)
the D (D (=1)P(= 1) (= 1)y 2 (1) Y po (1) 2l (2)
p20€Say
PHTES,
o(k+1)=1
Ypoo(2) " Zplyr(2k+1)Ypoo(2k+1)
—k- > (D) (=1 (=1 (1)1 2 (1) Yo (1) 2l (2)
p30E€Say
P5TES,
o(k+1)=1
Ypso(2) " Zphr(2k+1)Ypso(2k+1)s
hence
kpryr = kyap, — kyipoy, — kyip)
and
kprr1y1 = kyipi — kyivhe — kyipl,
Now
k [pryr + peayn] = k [y1p, + idha] — 2k {10 — viph ]
and by (3.26) we have

k [pry1 + prravi] = =k [yipk — v1Dks1]
= —y121912292 * * * ZokY2k-

O
Lemma 3.4.3 Let be n € N, then for any 1 <i<n—1
Y121Y222 - - YiZiY121Yit1Zi1 - YnZnY121 - - = Y121Y222 - YiZilit1Zi41 - YnZnY121Y121
Proof. We set
fi= fily, 2) = A2 Yi1Zian aaGiZi - YnZnyi21 -
and we observe that
fi = 2fip1 — fivo (3.33)
In fact, if we consider
fiv1 — fi
= > (17D Yo(1) 2r(1)Yo(2) 2r(2) "+ Yorli=1)Zr(i—1) [Yor(i)Zr(i)> Y1.71]
0,TESh

Yo(i+1) 27 (i4+1) """ Yo(n)2r(n) Y121 "
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= > (17D Yo(1)2r(1)Yo(2) 2r(2) *** Yorli—1) Zri—1)Yor(i1) Zr(i+1)

0,7€Sy
[ycr(i) ZT(i)aylzl] Yo(i+2)%7(i+2) " Yo(n)Zr(n)Y121 """ -
(3.34)

Now if we set

pr=p1o=(0(i)o(i+1),  py=pir=(7())7(i+1)),
p2=pro=(0(i)o(i+1)),  py=par=(T(i)7(i+1)),
then we can write (3.34) as
Y D)2 (1 2Ty 0 (1) 2 (1) Yo (2) 2 (2) * Ypaor it 1) Zpr(i41)
PZO’ESH
pPHTESR
Y121Ypyo(i+2) ZplhT(i42) " " Zphr(n)Ypoo(n)Y121 -
= Y CDP DA D) (DT Y1) 20 (1) Yr0 ()20 7(2) Yo ()26 7(0)
P10ESH
piTESK
YL Y pro(i-+1) 20, (1) * " 2o (n) Ypro () Y121+
= fira — fir1
hence
fi = 2fix1 — fivo

By induction it is easy to check that for any 1 <i <n — 2

fi=ifi— (@ —1)firr. (3.35)
Moreover
In=2f11, — f2 (3.36)

in fact

fo= > (=D (=1) Y1) 2r (1) Yo (2)2r(@) " ** Yo (n—1) Zr(n—1) Y121 Yor () Zr(m) Y171 "
o,TES

= D (D=1 Y121Ye (1) 2 (1) Yer(2)Zr(2) "+ Yor(n1)Zr(n—1)Yor(n) Zr(n) Y1 21 - -
o, TESY

+ > (D7) Yoty Zr(n) [ o) 2r(1)Yo(2) 2r(2) -+ Yon—1)) Zr(n—1)» Y121] Y121 -+~
o, TESK
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= > (=17 (1) TY121Ye(1) 2 (1) Yo (2) Zr(2) "+ Yo(n—1) Zr(n—1)Yo(n) Zr(n) Y171 - -
o,TESR

+ Z (=1)7(=1)" [(%(1)%(1)%(2)%(2) e 'ya(n—l)) ZT(n—1),y121]

0,TESn
Yo(n)#r(n)Y1z1 -+ -
(3.37)

Now if we set

P1 = Pl = (1)7 pll =P1r = (1)
p2=p2o=(0(1)o(2)---a(n),  ph=p2r=(7(1)7(2)---7(n)),
P3 = P1P2, Pé = P/1P/27

we can write (3.37) as

Z (_1)p1 (_1)p/1(_1)010(_1)p/1Typ0(1)Zp’lf(l)ypga(Q)Zp’IT@) T

p1o0ESH
pllTGSn

Ypro(n—1)2pim(n—1)Ypio(n)?p|r(n)Y1721Y121 * = *

= ) (D=0 (=) (= 1) Y (1) 2t (1) Y121 Y por(2) Zpr(2)
p20ESn
pPHLTESR
Ypao(n—1)2phm(n—1)Ypaa(n)Zphr(n) Y121 "
+ > ()P (=1 (= 1) (= 1) Yo (1) Zpr (1) Yo (2) 2ol (2)
pSUGSn
PéTGSn
Ypso(n—1)Zplyr(n—1)Ypsor(n) Zpyr(m) YLZ1Y121
=2fr, 1, — fo

Hence by (3.35) and (3.36) we have that

In = J1y 100

Finally, by induction we have that for any 1 <¢ < n

Ji = fry 1.

66



Remark 3.4.4 If we set
Fr=Ffy.2) = Waged - Gisty1 Zifii1 Zig1 - UnZnlizr -+ -
In a similar way of the previous lemma it is possible to prove that

fi = 2fi+1 _ fi+2-

Lemma 3.4.5 Let be n € N, then for any 1 <i<n

f'=m2192% - Gizi1 Zilit1 Zig1 -+ UnZnY121 - - -

= 1219222+ Yn—12n—1Yn21Y12nY121 " * -

Proof. We consider the polynomial f", and we have

Z (=17 (=) Yo (1) 2r(1) ¥ (2) 2r(2) *** Yo (n—1)Zr(n—1)Yo(n) Z1Y1 Za(n) Y121 * * *
o,TESY

= > (=17 (1) Yo(1)2r(1)Yo(2) 2r(2) - Yorli)

0,7TESn
R1Y1Z7(35) - - - Yo (n—1)2r(n—1)Yo(n)#r(n) Y121 - *

D (=D (=1) Yo (1) 2 (1) Yo (2)2r(2) Yol
o,TESY
[(2r63) - - Yotn-1)Zr(n=1)) Yoy 2181] Zr(ypn 21 -
= > (D7) Yo(1)2r (1) Yo (2) 2r(@) *** Yorli)
o,TESY
R1Y1Z7(0) - - - Yo(n—1)Fr(n—1)Yo(n)Fr(n) Y171 * = *

> (D)D) Yo (1) 2r (1) Yo (2) 2r(2) Yol

o,TESR

27 (n) [yo(n) (ZT(Z') .- 'yU(TL—l)ZT(n—I)) 7y121] Y1z
Now if we set

p1=p1o = (1), p1=p1r= (1),

p2 = pro = (0(i+1)o(i+2)--a(n) ™!, ph=par = (T(i+1)7(i+2) -

p3=pip2, Py = pPiph,
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we can write the polynomial in the following way

> DDA (=D (D) Y (1) 2 (1) Vi (2) 2047 (2) *  Ypro(i)
plUESn
PITESK

A1Y12p,7(1) - - - Ypro(n—1)Zp} r(n—1)Yp1o(n)Zp} r(n) Y121 "+
+ Z (_1)p2(_1)p/2(_1)p20(_1)p/27yp20(1)Zpgr(l)ypga(Q)

p20ESy
PLTESR

ZphT(2) T Ypoo(n)ZphT(n)Y121Y1Z1 "
= > (P (D) (1) (= 1) Yo (1) 2y (1) Vs (2) 0 7(2) ** Ypaer(i) 0l
p30E€ESn
PETESH
Y121Yp3o(i+1)Zpyr(i+1) """ Ypso(n)Zphr(n) Y121 " " -
=U1Z1Y222 - YiZAY1ZiYi+1Zi41 " UnZnY121 - -
+Y1219222 *  Yn—12n—1YnZn21Y1Y121 * * *
—Y121Y222 * * YiZiY121Yi+1Zi+1 "+ YnZnY121 " - -
Since (sgn p2)(sgnph) = (sgnps)(sgnps) and by the lemma 3.4.3 the
lemma holds. O

Lemma 3.4.6 let ben € N and k = [g] then

Y121Y222 Yk ZkY12k+1Tk+1 "+ ZnYn21Y1 -+ = (3.38)

{ 0 if n =2k,

Y221Y322 * ** Ykt12kY12k+1Uk+2 * * * Yn—12nY1Y121 - -+ otherwise

Proof. If we explicit all the alternating variables y’s , z’s except the k-th
and the (k4 1)-th y and z, by lemma 3.1.3, it is easy to check that all the
polynomials whit y; is in the k-th and the (k4 1)-th position are equivalent
to zero. Then, if we explicit all the alternating variables y’s , z’s except
the (k — t)-th and the (k+ 1+ t)-th y; and z;, for ¢ <1, we can write the
polynomial as

—_~

Z e 'gi(zilyh Zi2)y1(zj1ylzzj2)gj T
1<j
LAl #1
= Z e 'gi(zilyl1zi2)yl(zj1ylzzj2)gj T
1<J
LAl 41
- Z Ui(20 Yo 22 )Y (i Yy Zig ) U5 -

1<)
Li#l#1
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and for the same reason of the previous case y; and y; can not be y;.

If we iterate the process for any t < k we can affirm that, if n = 2k + 1
then only the last y can be y, otherwise if n = 2k, (3.38) is a polynomial
identity. O

Lemma 3.4.7 Let be n € N and let

gi = 9i(y,2) = Y1Z210222 . . . Zic1Y1Zii - - - Yn—1ZnYnZ1Y1 - - -

then
ifn=2k+1
2k —1 )
mgn-H ift="Fk
Jk+t+1 = —GJk—t =

(_1)k+t
2k+1(2t+1)9n+1 if 0 <t <k,

if n =2k

t .
k14t = Jkt1-t = (—1)t% Gn+1 if0<t<k.

Proof. In order to prove the lemma we first check the following

9i = —2Gi41 — git+2,

in fact, if we consider

Git1 = N121Y222  + YiZiY1 Zi1Yit1 - ZnYn1Y1 - - -

= D (D7) Yo(1)2r (1) Yo (2) 2r(2) *** Yorli—1) Zr(i-1)

0,TESR
ylzT(i)ya(i)ZT(i—l—l)yo(i)ZT(i-I—Q) “Yo(n—-1)Rr(n)Yo(n)?1Y1 " -

+ ) (D)D) ()2 ()Y (2)2r(2) *** Yorli—1) Zr(i-1)

o,TESy
[yg(i)zT(i),ylzT(iH)] Yo(i+1)%7r(i+2) ** Yo(n—1)%r(n)Yo(n)?1Y1
> (D)D) Yo (1) 2r (1) Yo(2) 2r(2)  ** Yorli—1) Zr(i-1)

o, TES

Y127 Yo (i) #r(i)Yizi+1 " Yn—-12nYn21Y1 " "~

+ > (D71 Y1) 2 (1) Yo (2) 2r(2) *** Yorli—1) Zr(i—1)

o,7ESK

Yo (i+1)%7(i42) [%(i)%(i)ﬂl%(iﬂ)] © o Yn—1%0(n)Yr(n)F1Y1 -0 -
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If we assume that

P1 =Pl = (1)’ :0/1 = P1r = (7(1)7-(1 + 1))7
p2=pro=(0(i)o(i+1)),  py=por=(T(O)7(i +1)7(i +2)),
p3 = pip2, Py = pPiph,
we can write the polynomial in the following way
Z (=D (=D (=D (D)"Y 10 (1)2p, (1) Ypro(2) 20, 7(2) T Ypro(i—1) 20,7 (i-1)

plaESn
pLoESR

Y120, 7(0)Ypr0 (i) 2p(i+1) " Ypro(n—1) 20y r(n) Ypro(n) 1YL " -

+ D (=D (=1 (= 1) (= 1) Yo (1) Zpt e (1) Ypso(2) 20 7(2) * * Ypno(it1) 2ol (i+1)
p20ESy
pPLOESH

Y1200 7(i42)Ypao (i+2) 2ol r(i43) ** " Ypao (n—1)Zplyr(n) Ypaa(n)#1Y1 "

- Z (_1)p3(_1)p3 (_1)p30(_1)p37yp30(1)zpéT(l)ypga(Q)ng‘r(Z) © " Ypso (i) ZpyT(i)
p30€ESn
psoESy

Y12pLr(i+1)Yp3o(i+1)Zpym(i+2) * " Ypszo(n—1)Zpsr(n)Ypso(n)?1Y1 "+
= —0i+2 — Gi+1 — G,
hence
9i = —2gi+1 — Jit2-

Moreover by lemma 3.4.6 and 3.1.2 we have

_ (=
gk+1 = 2%k + 192k+27

and, by an easy computation, we have

2k —1 )
_mgn—f—l ift==~k
Gk+t+1 = Gk—t =
(_1)k+t

Now let be n = 2k then by lemma 3.4.6 and lemma 3.1.3 we have

gk+1 =0

and, by induction, it is easy to check that

Jk+1—t = —Gk+1+t>
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it follows that

t .
Jk+14t = —Gk+1—t = (—1)':% 92k+1 ifo<t<k.

Lemma 3.4.8 Let ben € N and 0 <1 < j <n, then

121222 Ui 1Zi—1Y12ii * ** Zj1Yj—121Yj 2  YnZnY121 -+

=y N121Y222 0 YnZnY121Y121 0,
where

(-1
2k +1

(2k+1)—2(j—4)] i n=2k+1,

Oéi’j:
(_l)tj”(k—(j—i—l—l)) if n =2k

Proof. if we consider

21222 Yi1Zi—1Y12ii * ** Zj1Yj—121Yj 25 * YnZnY121 " * *

= Z (=17 (=1)"Yo(1)2r(1)¥o(2) 2r(2) " ** Yo (i—1) Zr(i—1) Y1

0,TESn
Zr(i)Yo (i) " 2r(j—1)Yo(i—1)*1Yc(5)?7(5) * Yo (n)Zr(n)Y121 " = *

= D (D)D) Yo(1)Zr()or@)Zr(@) "+ Yorli=1) 2r(i=1) Yo (i) -

o,TESY
Zr(i—-D)Yo(i—1)F1Y127 () Yo () ?7(5) =" " Yo(n)?r(n) Y121 -~ *

+ D (D) Y1) 2 (1) Yo(2)2r(2) ** Yorli—1) 2r(i-1) (Y172 (0)>
o,TESY

Yo(i) " ZT(j*l)yO'(jfl)Zl] Yo ()27 (G) " Yo(n)Zr(n)Y121 " - *
> (D)D) Yo (1) 2r (1) Yo (2) 2r(2) * ** Yolim1)Zr(i—1)Yoli) -

o,TESR

Rr(i—D)Yo(j—1)R1Y127 (Yo () ?7(5) " Yo(n)Rr(n)Y121 " "

+ D (D1 Y1) 2 (1) Y@ 2r(2) ** Yorli—1) Zr(i— 1) Yer () 2 (7) "

o,TESK

[ylz’r(i)’ Yo(i) " ZT(j—l)yU(j—l)Zl] Y121 .

if we assume that

pm=po=01), pr=pr=T@)7r0E+1)---7( —1)),

“Yo(n)#r(n)



p2=pro = (0(Do(i+1)---a(n))’™,  ph=par = (r(i)7(i+1)---7(n))
P3 = P1pP2; p3 = P1Ps;
we can write the polynomial in the following way
> DDA (=D (D) Y (1) 2 (1) Ypro () 204 (2) *  Ypro(-2)

pP1OESH
pllTGSn

Zpi7(i-2)Yp10(i—1) P11 Zp (i —1)Yp10(5) 2oy 7(5) " Ypro(n)ZpiT(n) Y171 " -

+ > (D=1 (= 1) (= 1) Yo (1) 2 (1) Yoo (2) 20l (2) - Ypao(nkivs)
p20ESn
PLTES

Zplyr(nti—g) Y12 7(nti—j+1) Ypao (nti—j+1) " Zphr(n)Ypao(n) A1Y121 * -

- Z (_1)p3(_1)p3 (_1)p30(_1)p37yp30(1)ZpéT(l)ypga(Z)ZpgT(Q) “Ypso(n—1)
p30’€Sn
PLTES,

2o (n)F1Y12phr(n) Y121 " 5

and by the lemma 3.4.5 the polynomial is equivalent to

D (=)= (= 1) (1) 2T Y1) Zpt e (1) Yo (2) 2l (2)
p20ESy
PHLTESR

Ypoo(j—i—1)%p,7(i—i—1)Y121Ypao(j—i) Rl (i—i) * " " Ypao(n)Zphr(n)Y121 "

=121Y222  Yj—i-12j—i—1Y1Zj—ilj—i " * * ZnYnZ1,

and by lemma 3.4.7, the lemma holds. O
Lemma 3.4.9 Let be n € N then
V1219222 - * Yn—12n—-1Yn21Y12nY121 * - *
=ay, Y121Y222 *  Yn—12n—1YnZnY121Y121 " - *

where
1 if n=2k+1

Ay =

_1)\k—1
(1]2+1 if  n=2k
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Proof. If we consider k = [%}, then

Y121Y222 * * * Yn—12n—1Yn21Y12n Y121 * * -

= > (D7) Yo(1)2r(1)Yo(2) 2r(2) *** Yor(n—1)Zr(n—1) Yor(m) ALYL Zr () Y1 21 - -
o,TESR
= Y (D)D) Yo(1) 2 (1) Yor2)Zr@) " Yorlk) Zr ()

o,TESY

Yo (n)#1Yo (k+1) 27 (k+1) Yo (k+2) 27 (k+2) ** * Yo(n—1)Fr(n—1)Y12r(n) Y121 " " -

+ > (D71 (1) 2 (1) Yo(2)2r(2) ** Yorl) Zr ()
o,TESY
[(ycr(k+1)ZT(k+1)ycr(k+2)ZT(k+2) e 'ycr(nfl)) Zr(nq)ayg(n)zl] Y12rm)Y1z1 -+
= > (D7) Yo(1)2r(1)Yo(2) 2r(2) - Yorlh)Zr(h)
o,TESy

Yo (n)21Yo (k+1)#7(k+1) Yo (k+2)#r(k+2) * " Yo(n—1)2r(n—1)Y12r(n) Y121 - = *

+ ) (D)D) TYo(1)2r(1) Yo ) 2r(2) - Yolk) Zr(k)

o,TESY

Y1 [ZT(n—l) (ya(k—H)ZT(k+1)ya(k+2)ZT(k+2) T ya(n—l)) ,Zlyg(n)] Zr(n)Y121 -

If we assume that

pr=pio=(ok+Dok+2)---0(n)”",  pipir= (1),
p2=poo=1), ph=por=(T1)r(2)---m(n-1))7",
p3=pip2, Py = Pipy,
we can write the polynomial in the following way
Y GO DA D (D)0 0) 20 () Yr0(@) () Ypro () 2ol () Ypro (k1)
pP10ESH
PITESK
1Y pro(k-+2) 07 (k1) Ypro(k+3) 20, 7k +2) " Ypro(n) Zppm(n—1) Y1 Zpr(m) Y121 *
+ ) (=D (=) (= 1) (= 1) Yo (1) Zpt (1) Yo (2) 2o r(2) * * Ypao (k) Zphr (k) U
p20ESy
PLTESR

27 (k1) Yp2o (k-+1) Zplyr(k+2) Ypao (k+2) " * Zphr(n—1)Ypoo(n—1)21Ypa0(n) Zplyr(n) Y121 *

- Z (_1)p3(_1)p3 (_1)p30(_1)p37yp30(1)zpéT(l)ypga(Q)ng‘r(Z) “ Ypso(k)
p30E€ESn
PETESH

2 T(k)Y121Ypso(k+1)Zpy(k+1)Ypso(k+2) 2py(k+2) * " Ypso(n)Zpyr(n) Y121 " " -
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Now by lemma 3.4.3, 3.4.6 and 3.4.8 it is easy to check that the polyno-
mial is equivalent to

Qn Y121Y222 ** * Yn—12n—1YnZnY121Y121 " "+ ,

where
1if n=2k+1

_1k71
(/72+1 if n=2k.

Lemma 3.4.10 Let be n € N and 0 < i < j < n, then
1219222+ Ui-12i-1Ui21Yit12i -+ Yj—12j—2Y12j—1YjZj =+  YnZnY121 - " *
= ji121Y222 - YnZnY121 "

where, if n =2k +1

(—1)7—¢ o . .
(n—2(j —i-2) if  i#Fj-2
ai’j:
2k — 1 ) .
okt 1 o=
if n =2k
( )+/§ "Ple—j+i) if itj—k+1
O(iJ'Z
1 . . .
~Z if t=j—k+1

Proof. If we consider
U121Y222  * Yi-12i-1Ui21Yit12i "+ Yj—12j—2Y125—1Y5 25 = * " YnZnY121 " " -

= Y (D)D) Yo(1)Zr (1)) 2r2) " Yorli—1) Zr(i—1) Yo )
o,TESY

Zlya(i+1)ZT(i) o 'ya(j—l)zr(j—Z)ylzT(j—l)ya(j)zT(j) e ya(n)zr(n)ylzl T

= > (D7) Yo(1)2r(1)Yo(2) 2r(2) *** Yorli—1) Zr(i—1) Yor(i)

Zr@) " Yo (-1 21 (j-2) Y121 Yo (i+1) 21 (j—1) Yo () ?7(5) = Yo(n)Zr(n)YLZ1 " "~

+ Y (DT (1) Y1) 2 (1) Y2 2r(2) ** Yerli—1) Zr(i—1) Yor (i)

(2190 (i1)s (270) " Yo (i1 2r(5-2)) Y1) Zr(i=1)Yo (i) 2r(s) Yoo (m) Zr(m) Y121 "
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= > (D7) Yo()2r(1)¥o(2) 2r(2) *** Yorli—1) Zr(i—1) Yor(i)

o,TESY

T(’L) o 'ya(j 1)*7r(j—-2) Y121 Yo (i+1) 27 (j—1) Yo (5)?7(5) = " Yo(n)?r(n)Y121 " "~

+ Z ya(l)z MWYs(2)?7(2) """ Yo(i—1)27(i—1)Yo (3)

o,TESY

20 (-1 Yo(5)?r() " Yo n) 2r(n) Yo(ir1)21 Y1 (276) " Yo(j-1)2r(5—2)) ] Y121 -+

= > (=17 (D) Yo(1)2r(1)Yo(2) 2r(2) *** Yorli—1) Zr(i—1)Yor(i)

O',TGSTL

T(’L) Yo (j 1)?7(j-2) Y121 Yo (i+1) 27 (j—-1) Yo (5)?7(5) * " Yo(n)Zr(n)Y121 " "

+ Z ya(l)Z M Ys(2)?7(2) " " Yo(i—1)2r(i—1) Yo (d)

o,TESY

r(j 1)ya<j>zr<j> " Yo (n)Zr(n) Yo (4 1) F1Y127() Yo (j-1)2r(j-2) Y121+

- Z -7 ya(l)z() o(2)%7(2) " Yo(i-1)Rr(i—1)Yo (4)

o,TESY

ZT(j*l)yO'(j)zT(j) to ya(n)ZT(n)ylzﬂ'(i) T ya(jfl)Z‘r(ij)ya'(iJrl)ZlylZl T

If we assume that

P1 = Pl = (U<Z)U(Z + 1) . U(] - 1))7 pll = pP1,r = (1)7

p2=poo = (0(i+D)o(i+2) - o)y 77 ph=par = (r(@)7(i+1) -

p3s = pip2, Pz = piph,

we can write the polynomial in the following way

> (= (—1)7 (_]')plU(_]‘)pllTyplo(l)ZpllT(l)ypla(Q)Zp’lT(Q) C Ypro(—2)

pP10ESy
PITESK

Zp’lT(J 2)Y121Yp1o(j-1) %0, 7(j=1)Ypro()Zpi7(5) ** Ypro(n)ZpiT(n) Y121~ "

)

()~

+ D DR D) (D) T Y1) (1) Yo )2 r(2) " Ypar(tii—1)

PQUESH
pIQTGSn

2o r(nti—j—1)Ypao(nti—3) F1Y1Z 0 7 (nti—j) Ypoo (nti—j+1) Zpy T (nti—j+1) ©

ZpjT(n)Y121 -

“Ypao(n)

- Z (—1)P2(—1)"s (—1)”30(—1)’)37:%30(1)Zpgm)ypga(z)ngr(z)  Ypso(ntiejt2)

p30€E€Sy
PLTES,

2oy r(nti—j+2) Y12p (n+i—j+3)Ypso (nti—j+3) " Zphr(n)Ypao(n) A1Y121 * -

Now by lemma 3.4.3, 3.4.7 and 3.4.9 the lemma holds.

75



Theorem 3.4.11 Let n,r,s € N, such that r,s > n > 1, let

X(0,r,s) = Z mx XA ® Xp-

A7
pks

Ifx=r—-n+1,1"Frandp=(s—n+1,1")F s then

2 if r=s
mxu =
1 if |r—s/=1

Proof. Without loss of generality we suppose that the highest weight vector
f starts with a ¢y, hence r = s or r = s+ 1. If r + s = 2k it is obvious
that my, = 2. By lemma 3.4.7 we have that if r + s = 2k + 1 then any
highest weight vector is linearly dependent, mod IdZ(A), to fryr,. If
r+s = 2k + 2, lemma 3.4.3, 3.4.5, 3.4.8, 3.4.9 and 3.4.10 show that any
highest weight vector is linearly dependent to fr, 1,. Let r+s > 2k +2, we
prove that any highest weight vector is linearly dependent, mod IdZ(A),
to the set S of the following polynomials:

® 1Z1Y222 -+ Zi1Y12iTi - - - Yn—12nYnY121 - - -,

® Y121Y222 .. Yi-12i—1Y121YiZi - - - YnZnY121 - - -,

® Y121Y222 - . YiZ1Y1ZiYit1Zi41 - - - UnZnY121 - - -

® 121Y222 - - - Yi-1Zi-1Y12ii - - - 2j—1Yj—121YjZj * " YnZnY121 - - -,

® 1Z1Y222 . - Yi1Zi Ui Yit1Zi - - Yj—125—2Y12j—1Y5Zj - - - YnZnY121 - - -

wich are polynomials linearly dependent to fr, 7, mod Z(A). Suppose that
r = s+ 1, it follows that any highest weight vector f = f(y, z) have at least
two non-alternating y, let v}, y{. Suppose that f is not a polynomials of the
previous, hence let

1 =

f=§121...yi...y1 .. Zn
= Y DU=D)Yo)2r) - - U107 (0 )Y DT (Y 2)Yer ()

o,TESy

= > (D7) Yo)2r (1) - YD (U5 2o (myp] T (5, 2)y]
o,7ESK

+ D (D7) Yoz - BT W 20 9T (s 2]
o,TESy
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> VD) Yoy 21y - YD T (U 2o (T (05 2)Y]

o,TESy

+ Z (=17 (=1)"Yo)zr(1y - - 1 PT (U 2) Yo )Py (Y5 2)Y)
o,TESH

= > (VD) Yo ()2 (1) - - Yoy (s 2T (1, 2)y]
o, TES

=121 Y Y B Un Y
T T T/

Hence f is, mod IdZ(A), linearly dependent to a set of polynomials
whose end with a non-alternating y. Now, in a similar way, it is possi-
ble prove that every polynomial obtained before, are linearly dependent,
mod IdZ(A), to a set of polynomials whose end with z1y;, and we continue
this process till every polynomials are in S. If r = s we can obtain the same
result. Hence, up to a scalar, we have

[ = frr.,

and if we consider the substitution y1 = (h1 + g1)ei2, z1 = (b} + g})ea1,
yi = hier, zj = h;egl for 4,7 = 2,--- ,n where e¢;; are matrix units, hy #
h] € E1, gr # g, € Ey and such that g; ", g/"** # 0, we have frar, #0,
and the theorem holds.

Od

3.5 (\) > ()

Throughout this section we consider a pairs of Young tableaux whose heights
are hi(A) =n and hi(p) = m, such that n > m, and we set

fT)\aTH = fTA,TH (y,2) = 1219222 - - - UmZmYm+121Jm+221 - - - 21Gn21Y1 "« - -
Lemma 3.5.1 Let n,m € Nn >m, and let
fé&,TM = fé&,TM (y,2) = 41219222 - - - UmZmUm+121Y1210m+221 - - - 21Un 2191 - * -
Then
frnr, if n—-m=2k+1

féf‘A,TH = ‘
2fryo1, n—m =2k
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Proof. Let

fé“A,TM = fé“)\,TM (y,2) = 1219222 - - - YmZmPm+ 12191 21Ym+221 - - - 21Yn21Y1 " - -
= Z Yo(1)Zr(1) - - - Yo (m) 1 (m) Yo (m+1)R1Y121Y5(m+2)?1 - - - Z1Yg(n) 1YL " " " -
O'Egn
TEOm

Now, if we set
I ={(a1,a2, - ,a)|a; € {1,2,--- ,n} a; <a; 1<4,1<n},

we can write fr, 7 as
L

2. Y DT D D (1) (i) 2 (1) Ye(i) (@) - - - Yelim) Zr0m)

(i17i27"‘ 7i7n)el7n f,TESm
(192, Jin—m)EIn—m PESn—m

Yp(0) 1YL p(j2) #1 - - - Z1Y p( ) 1YL "7
where {i17i27 o 7imajl7j2> e 7jn—m} = {17 2, ce ,n}, and o’ is the per-

mutation of S,, such that ¢/(l) = 4; for l =1,2,--- ,m and o'(l) = j;_, for
j=n+1,n+2--- m.

> (=17 G 21 %2 - i Zmlis 2191215021 - 218 2100
(31,42, yim ) EIm
(jl»jZ:"':jn—m)eIn—m
Now if n—m = 2k+1, by lemma 3.3.2 and by (3.3), we have féFA,Tu = fr1,-
If n — m = 2k, we first observe that for any 4,5 # 1

Yiz1Y12195 = 202192191 — Y121Yi219;5, (3.39)
in fact
nxYiz1y; = nAaviay; — Yinay12a1y; + yiz1yYizi
and by (3.3)
= 2yi219j2191 — Yiz1Y1217;
hence

Yiz1Y121Y5 = 2Yiz1Yj2191 — Y121Yiz1Yj-
Then by lemma 3.3.2, by (3.3) and by (3.39) we have that f:,rA T, is equivalent
to

o’ Lo NSV .
Z (1) Op kYi1 Z21Yi3 22 - -+ Yip 2mYj1 Z1Yj0 21
(i17i27"'7im)elm
(j17j27“‘7jn—m)elm—n

Ujs21Yja 21+ - Y121 Yjp 1 21U g 2191 - + 2f15 1,
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Since the first summand is equivalent, up to a scalar, to

N21Y222 - - - YmZmYm4121 - - - 21Un21912191 - - =0

The lemma holds.

Similarly to the Lemma 3.4.7, we can prove the following.

Lemma 3.5.2 Let be n,m € N, and let

9 =01, 2) = Y (=17 (=1)Yo1) 2r(1)¥o(2)2r(2) ** * Yo (i) 1Yo (i+1) 2r(i) -

oESy
TESm

“ Yo (m+1) P (m) Yo (m42)P1Ya(m+3) ** * F1Yo(n)?1Y1 - "

and
g1/n+l = fTA,T,u
then if m = 2k then

/ — /
Jitrt+1 = " Jk—t+1

t
g;c+t+1 = (_1)t%g/2k+1 t= 07 17 e 72k - 17

and, if m =2k +1
L 2k —1 o
9§k+1(y’ zZ) = _mgék+2(yv Z)

(_1)k+t

9e(U,2) = Gy 1 (5, 2) = %7—1—1(275 + 1)g51.12(7, 2).

In a similar way it is possible to prove the following
Lemma 3.5.3 Let

t t 55 5 ~ ~ 5
9; = g; (Z/7 Z) = Y121Y122Y2 - - - Zm—i+1Ym—i+121Ym;+22m—i+2

Zm—1YmZmYm4+121 - - Y YnZ1Y1
then

0 if  m=2k

t
Ik+1 (1)
AT g§k+2 if m=2k+1.
Moreover

g1 = (0"
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where

t t =z a3 = s = =
fT,\,TH = fT,\,TH (Y, 2) = yiz11 219222 - - YmZmYm4121 - - - 21Yn21Y1 " - -

Lemma 3.5.4 The polynomials f{pA T, and fh T, 0T€ equivalent, mod Z(A).

Proof.

/ o~ o~ -~ — — .
fTA,TH = Y121Y222 - - - YmEmYm+121Y121Ym+221Ym+221 - - - 21Yn21Y1 " -

= Z (=17 (=1) Yo (1)2r(1)Yo(2) Z7(2) - - - Yo (m) Z7(m) Yo (m+1)Z1Y121

oESy
TESm

Yo(m+2)%1 - - - 21Yo(n)?1Y1 " "

= D (D)7 (D) Yo (1) 21Yer(1) (1) Yor(2) 27(2) - - - Yor(im) Zr(m) Y121

ocESy
TESM

Yo(m+2)?1 - - - 21Yo(n)?1Y1 " = *

> (D7) [Yo(1)2r(1)Yo@)2(2) - - - Yo(m) Zr(m)» Yor(m-+1) 21] Y121

0ESH
TESm

Yo(m+2)?1 - - - 21Yo(n)?1Y1 " = *

Z (=17 (1) Yo (m+1)21Yo(1) 2 (1) Yo (2) r(2) - - - Yo (m) Zr(m) Y121
s

Yo(m+2)%1 - - - Z1Yg(n)#1Y1 " = *
+ ) (D)D) Y2 (1) Yo 2)2(2) - - - Yor(m) Zr(m) Yo (1) 1Yo (m1) 2L

gESy
TESm

yo(m+2)zl v Zlya(n)zlyl te
- Z (=D (=1)"Y121Y0 (m+1)27(1) Yo (2) Z7(2) - - - Yor(m) Zr(m) Yo (1) 21

g€Sy
TESH

Yo(m+2)?1 - - - 21Yo(n) 1YL " -

If we assume that
p;:pT,j:(l) ]:17273
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pr=po1 = (0(1)o(2)---a(m+1)"",  pa=po2=(c(1)o(2) - o(m)),
p3=pip2, Py = piph,
we can write the polynomial in the following way O
Z (_1),01 (_1)/)1 (_1)p10(_1)p1Typ10(1)Zlypla(Q)Zp’l‘r(l)ypla(S)Zp’lf(Z) <+ Ypro(m+1)
pP10ESH
PLTESm
2o, r(m)Y121Yp1o(m+2) %1 - - - Z1Yp o (n)#1Y1 *
+ Y (CDP(=DP (=1 (1) 2T Y12 (1) Yo (1) 20ty (2) Upaor(2) - - - Zolyr(m)Ypsr(m)
p20ESn
PHTESm
Z1Ypra(m+1)21Ypaa(m+2)%1 - - - Z1Ypho(n)#1Y1 "
— D (FDP (=D (=D (1)U 21 Yo (1) 2ty (1) Ypser(2) 20 7(2) - - Ypser(m)
p30’€Sn
PLTESm
Zpsr(m)Yp3o(m+1)Z1Ypso(m+2)?1 - - - Z1YplLo(n)Z1Y1 " "
= (=1)"y1210221U3%2 - - - Y+ 1 ZmY1 20 Ym 4221 - - - 21n21Y1 " - -
(=D)m = 1y1 219122 - - - Um—1ZmUm A Ym4121Gm+2721 - - - 2102191 - - -
+y12191 219222 - - - ym§m§m+1zlgm+221 o 21Yn.

fror, =D+ (0" g+ fhr
|z Iz

and by lemma 3.5.3 we have f/TA,Tu = f%AvTu'
Lemma 3.5.5 Let

fi= [y, 2) = ha§eZe . .. Yim1Zi1Gi2AY1 Zi - - - YmZmPm+1210m+2 - - - 21Yn 211 - - -

and
fi=fly,2) = nz192% - Um—it1 Zm—ir19121
Um—i+22m—i+2 - - - YmZmYm+121Ym~+2 - - - 21Yn21Y1 " * 5
then
fi=1
Proof.

/ o~ o~ _ ~ _ ~ o~ _ _ _
fi =12 .. Yim1Zi1YiZ1Y1 Zi - - - YmZmYm+121Ym+221 - - - Z21Un

> (D)D) Yo (1) 2 (1) Yr(2) 2 (2) - - - Yorli—1) 2 (i—1) Yo (i) 1YL 2 (i) - - -

O'ESn
TESm

Yo (m)?r(m)Yo(m+1)?1Yo(m+2) - - - 21Yo(n)#1Y1 - "~
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= Z (_1)0(_1)7—:[/127'(@') < Yo(m)Rr(m)Yo (1) 21 (1) Yo (2)#7(2) - - » Yo (i—1) 27 (i—1)Yo (i) 1Yo (m+1) 21
gESy

TESm
Yo(m+2)%1 - - - Z1Yg(n)#1Y1 "~ *

+ ) (D7D (Yo () 2r(1)¥o(2) 27(2) - - - Yo (i—1)Zr(i—1) Yo (i) 21> Y1 (Z2(0) - - -

oES)y
TESm

ya(m)ZT(m))] Yo (m+1)*21Yo(m42)?1 - - - 1Yo (n)#1Y1 * "

= D (D7 D)TY120) - - Yor(m) 2r(m) Yor(1) 2r (1) Yo (2) Zr(2) - - Yor(i—1)Zr(i—1) Yo (i) A1 Yo (m1) 2L
TEsn
yo(m+2)zl v Zlyo(n)zlyl T
+ Z (_1)0(_1)Tya(m+1)Zlya(l)zT(l)ya@)ZT(Q) < Yo (i—1)R7(i—=1) Yo (i) 21 (3) - -+ Yo (m)#r(m)
Tesn
Y121Y0(m+2)?1 - - - Z1Y5(n)Z1Y1 * =
=Y (D)D) Yo (m1)2r(3) - - - Yorlm) Zr(m) Y1 218 (1) 27 (1) Yor ()27 (2) - - - Yor(i—1) 2 (i— 1) Yor (i)
resn
AYo(m+2)%1 - - - A1Yo(n)Z1Y1 """ -

If we assume that

pL= por = (0o (2)...o(m))',  ph = pra = (0(1)(2)...o(m)) ",

p2=poz=(0(1)o(2)...om+1)"",  ph=pro=(1),
p3 = pip2, Py = Piph,

we can write the polynomial as O

Z (_1)p1 (_1)p1 (_1)p10(_1)p1Tylzp’1T(1)ypla(1) <o Zphr(m)Ypro(m)A1Ypro(m+1)
pP1OESK
plllTESm

1Yp1o(m+2)?1 - - - Z1Ypro(n)#1Y1 * * -

+ Y DD (D)2 (1) 1Y pa0(2) Zpyr(1) - - - Ypaor (et 1) 2ol (m)
pZUGSn
PHRTESm

Z1Ypao(m+2)?1 - - - Z1Ypao(n)#1Y1 * -
— D (FDP (=D (=D (1) Yo (1) 2 (1) Vs (2) 20 7(2) - - - Ypsor(m—it ) Zplyr(m—it1)

p3U€Sn
PETESm
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Y121Y p3o(m—i+2)Zphr(m—i+2) * * - Ypso(m)Zphr(m)Ypso(m+1)#1Ypso(m+2)Z1 - - - Ypgo(n)21Y1 "+

=(—=1)"" 121512202 - - - ZmUmY1Um+ 121 Gm 221 - 21 n YL
(=)™ 51219221 - - - Um+12mY121Ym+221 « - - 21Gn21Y1 * - -
— Y1219222 - - - Ym—i+12m—i+1Y121Ym—i+2Zm—i+2 - - - YmZmUm+121Ym+2 - - - 21Yn21Y1 " - - -
Hence
fi= (=0l + (=) + ff
and by lemma 3.5.3 we have f/ = f}.

Remark 3.5.6 Let

fima1 = fimt1(y, 2) = 1210222 - . Yim1Zia1

ZiTi - Ym—1ZmYm 21 Ym+121Ym 221 - - - 21Yn21Y1 * -

then fim+1 = —2fiv1,me1 — fir2myr fori =1,2,---  m — 1.
: _ = g/ et — gt
Moreover since fim+1 = g7 = fT»Tu and fririm+1 = f5 = fTAaTu we
have that

(_1)m+1fm+1,m+1 —mfimy1 (_1)m+1 —m

f27m+1 = m = m féﬂ)\,Tu
and
(D)™ i = mfgimer _ (D)™ —m
Jmme1 = = fry 1,

m m

Lemma 3.5.7 The polynomials fzt and f/TA,T,L are, up to a non zero scalar,
equivalent.

Proof. We first consider the case m = 2k. We consider first the polynomial
fi, then

t o~ o~ _ ~ _
fre = 219222 - - Ymn—kt1 Zm—k+1Y1 21 Yrn—k42

Zm—k+2 - - - UmZmYm+121Ym+221 - - - Z21Yn21Y1 " * -
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= Z (=D (=1)"Yo(1)2r(1)Yo(2) #7(2) - - - Yor(m—k+1) r(m—k+1) Y121
oESy
TESm
Yo(m—k+2) 21 (m—k+2) -+ - Yo (m)Zr(m)Yo(m+1)21Yo(m+2)?1 - - - Yo(n)#1Y1 "

= Y D7) Yo (1) 2r(1)Yor2)2r(2) - - - Yo (m—tt1) 21 Yo (m—k+2)

oES,
TESm
T(m k+2) Yo(m)?r(m)Yo(m+1)2r(m—k+1)Y121Yo(m+2)?1 - - - Yo(n)Z1Y1 "
+ Z yo(l)z M Yo(2)27(2) - - - Yo (m—k+1) [ZT(mfk+1)y1)Zl
c€Sh
TESm

(ya(m—k+2)ZT(m—k+2) s ya(m)ZT(m)yJ(m—i—l))] Z1Yo(m+2)?1 - - - Yo(n)?1Y1 " "

= D (D)D) Yo (1) 2 (1)Yer@)21(2) - - Yo (m—ht 1)1 Yo (m—k+2) Zr(m—k+2) - - - Yor(rm)

gESy
TESm

T(m)ya(erl)ZT(mkarl)ylzlya(m«}Z)Zl < Yo(n)F1Y1 -

+ Z ) Yo (1)27(1) Yo (2) 2r(2) - - - Yo (m—k) Zr(m—k) Y1 2r(m—k+1) Yo (m—k+2)
7Es,
T(m k+2) Yo (m)?r(m)Yo(m+1)21Ym—k+121Yo(m+2)?1 - - - Yo (n)?1Y1 " "~
- ZS: ) Yo (1)2r(1) Yo (2)%r(2) - - - Yo (m—k) Zr(m—k) Yo (m—k+2) 2r(m—k+2) - - - Yo (m)
g€
TESm

Zr(m)Yo(m4+1)2P1Y1%r(m—k4+1) Yo (m—k+1) 1Yo (m+2)?1 - - - Yo(n)#1Y1 * "~

If we assume that
p1=po1 = (1), py=prq=(Tk+1)7(k+2)---7(2k)),
p2=po2=(o(k+1o(k+2)---02k+1)), py=prs=I(1),

ps=pip2, P = phos-

we can write the polynomial in the following way
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D (=D (=D (=) (= 1)AT Y 0 1) 2 (1) Ypro(2) Zpr(2) - - Ypro (ki 1) L
pP1OESH
PITESm

Yp1o(k+2)2p, Th+1 - - - Ypro(m+1)Z1 - - - Z1Ypro(n)Z1Y1 -+

+ ) (D=1 (= 1) (1) 2 Y1) 2 (1) Yoo (2) 20l (2) - - - Ypaor () 2ty () VA
p20ESn
PHTESm

2ot (k+1)Ypao(k+1) - - - Ypao(m)Zph7(m)Ypoo(m+1)21Ypao(m+2) 21 - - - Z1Ypyo(n)Z1Y1 *

— > ()P (L)1) (= )Ty (1) 2 (1) Yo (2) 2l (2) - - - Zplr (1)

ngESn
PETESm

Ypsor(m) 1YL gy (m)Ypsr (et 1) 1Y par(me42) 21 - - - 1Y () 2191

= (-V*n 51025 - . G121 Ukr2Fhri - - - U1 EmBm4221 - - - 21 Pn 2101 -
(=D ' 210270 - Gk ERY Ert 1 Ukt - - T EmTms 120 Pm 221 - - - 21 n 1YL
+ J1219222 - - - Ym—12m—-1Ym 2191 Z2mYm+1210m+221 - - - 21Yn21Y1 " "+ -

By lemma 3.4.6 and by lemma 3.5.5 we have

1
t — —
T 2%k + 1

/ t
fry 1, + for-

Moreover
ft —oft _ gt
i = 4Jit+l i+29

hence it is easy to check that, up to a scalar,

ffzfé“A,Tu
fori=1,2,...,m—1.

Suppose now m = 2k-+1, and consider the polynomial f,i 41, and consider
the polynomial f} 41, then we have

Fhpr =U1Z210222 - - U (1) 41 2m— (b 1) 419121 Ui (b )2 Em— (k4 1)42 - - U Zm

Ym4+121Ym4271 - - - 21Yn21Y1 " *

85



= Z (_1)0(_1)7—3/0(1)'27(1)1/0(2)27'(2) < Yo (m—(k+1)+1) 21 (m—(k+1)+1)Y121Yo (m—(k+1)+2)
oESy
TESm

Zr(m—(k+1)+2) - - - Yo (m)Zr(m) Yo (m+1)#1Yo(m+2)1 - - - Z1Yg(n)21Y1 " " -
= D (1) (D) Yo (1) 2(1) Yo (2) 21 Yo (m— (k+1)42) Zr(m—(k41)42) - - - Yoram) Fr(om)
s
Yo(m+1)27(2) * * - Yo (m—(k+1)+1)Zr(m—(k+1)+1)Y121Yo(m+2) Z1 - - - Z1Y5(n)Z1Y1 " *
+ ) DTN Yo )2 (1) Yo(2) [(2202) -+ Yortm— (k) 41) Zrm (bt 1) 1)) 915 21
oESy
TESm

(yaﬁn—{k+4)+2)ZTUn—(k+l)+2)"'yaﬁn)ZTOn)yaOn+&))]Zly00n+2)zl--'Zlyahwzlyl"'

D (D7 (1) (1) 2 (1) Yor(2) 21 Yo (m— (1) 42) Zr(rm— (k1) 42) - - - Yor(m) Zr(im)
Tesn
Yo(m+1)%7(2) - - - Yo (m—(k+1)+1) 21 (m—(k+1)+1)Y121Yo(m+2)?1 - - - Z1Y5(n)Z1Y1 = *
+ ) (D) (=D Yo (1) 2r(1)Y121(2) - - - Yor(im— (k1) 1) Zr(m—(h+ 1)+ 1) Yo m—(k-+1)+2)
Tesn
Zr(m—(k+1)42) - -+ Yo(m) Zr(m) Yo (m+1)21Yo(2) 1Yo (m4-2)?1 - - - 1Yo (n)#1Y1 " "
= > DY) Yo (1) 2 (1) Yo (k1) 42) Fr(m—(k41)42) - - = Yor(m) Zr(m) Yo (m41) 2191
0E8n
TS

27 (2) « - Yo (m—(k+1)+1) 27 (m—(k+1)+1) Yo (2) F1Yo (m+2) 21 - - - 1Yo (n)?1Y1 "
If we assume that
pr=pro=~01), ph=p,=Ek+rk+2)...7(2k)),
p2 = p2o = (o(k+1)o(k+2)---0(2k +1)), p2 = p2r = (1),

ps = pip2, Py = piph

we can write the polynomial in the following way
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> D D) (=) (= D) Yy (1) 20, (1) Ypro(2) Y pr0(3) 2t r(2) - - Yprar(me+1)
p10ESy
PITESm

Zphr(m)Ypro(m+2)21 - - - Z1Ypro(n)Z1Y1 -
+ Z (—1)02(—1)0'2(—1)p20(—1)P§Typla(1)zp'27(1)y1zp/27(2)yp10(2) < Ypro(m)Zplyr(m)

PQO'GSH
PHATESm

Yo10(m+1)21Yp10(m42)?1 - - - Z1Yp1o(n)?1Y1 " = *

— D (FDP (=D (=D (1) Yo (1) 2 (1) Vs (2) 0 (2) - - - Ypsorhet 1) Zptr (k1)
p30’€Sn
PETESm

Ypso(k+2)Z1Y1ZpL 7 (k+1) - - - Ypgo(m) Zphr(m)Ypso(m+1)21Yp3o(m+2) 21 - - - Z1Ypgo(n)21Y1 "
— Y121Y221Y322 -+ - Ym+1ZmYm+221 - - - 21Yn21Y1 *
+U121912292 - - - Ym—12mUm21Ym+121Ym+221 - - - 21Yn21Y1 "

+ N21Y222 « - Ykt 12k 1Uk4221Y12k41 - - - YmZmUm+121Ym+221 - - - 21Un21Y1 " "+

hence

fi1 = —go+ ha + fipo.
By remark 3.5.6 and by lemma 3.5.2, 3.5.5 we have that

4(k—1)
t ¢
Jit1 = _T_Hf/TA,TM + frto-
Moreover
fl=2ft, - i, i=0,1,---,m—2.
Hence, up to a scalar, we have that f! = fITA,Tu' O

Lemma 3.5.8 If j <i<m, let
fig = fij(W, 2) =nzageze . Yj—121053-1 - - Y1 Zioyn Zi1¥iZi - - - Ymm
gm+121§m+221 e Zlﬂn21y1 cee
ifi<j<mlet
fiyj = fivj(y’ Z) =Y121Y222 - - - Zi—1Y1Zi¥Yi - - - 5]',1@]',121]27'2]‘ e YUmZm
gm+1zlgm+221 e Zlgnzlyl e

Then, up to a scalar,

—
fig = fT)\,TM'
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Proof. Let j < i < m then
fij = fij(y,2) = 210222 ... Yj—121YjZj—1 - - - Yim1Zi—2Y1Zi-1TiZi - - - UmZm

Ym4+121Ym4271 - - - 21Yn21Y1 " *

= Z (_1)0(_1)Ty0'(1)z7'(1)y0'(2)z7'(2) Yo (§-1)P1 Yo (5) P (j—-1) -+ - Yo (i—1)*7(i—2) Y1
resn
2r(i—=1)Yo (i) 271 (i) - - - Yo (m) #r(m)Yo (m+1) 1Yo (m+2)?1 - - - 1Yo (n) 1YL " = -
= D7D Yo (1) 2r(1)Yr@)2(2) - - Yo (j—1) Zr(i—2) Y1 1Yo () Zr(j—1) - - - Yorli—1)
oESy,
TESH

ZT(i*l)ya(-)ZT() < Yo(m)Rr(m)Yo(m+1)21Ye(m+2)?1 - - - 21Yo(n)?1Y1 "+

+ Y (= ) Yo (1) 2 (1) Yo(2)77(2) - - - Yo(i—1) [21 Yo()Zr(-1) -+ Yoli-1)) s Zr(i-

O'GSn
TESm

Zr(i—1)Yo () #7(i) + - - Yo (m)Zr(m) Yo (m+1)#1Yo(m+2)?1 - - - Z1Yo(n)21Y1 * "

= D (D)D) Yo (1) 2r(1)Yer@)21(2) - - Yo (j—1) 2r(i-2) Y1 1Yo () Zr(j-1) - -  Yor(i—1)
oESy
TGSm

ZT(ifl)ya(;z.r(') < Yo(m)Zr(m)Yo(m+1)21Yo(m42)?1 - - - Z1Ya(n) 1YL~ *
+ (= ) Yor(1)2r(1)Yo(2) 27(2) - - - Yo (j—1) Zr(i—1)Yor () 27(3) - - - Yor(m)

O'ESn
TESm

T(m)ya(m—l-l)zlya( NRT(G=1) - Yo (i—-1)R7r(i—2)Y121Yo(m+2) %1 - - - L1Yo(n)R1Y1 " -

- Z ) Yo(1) 27 (1) Yo(2)27(2) - + - Yo (i—1)#r(i=1)Yo(i) 2 (i) - + Yo(m)
oESy
TESm

2)y1}

Zr(m) Yo (m+1) 27 (i-2)Y121Ye ()27 (j-1) - - - Yo (i=1)21Ya(m+2) %1 - - - 1Yo (n)Z1Y1 * " -

If we assume that

p=po=Q1), p=p,=00-D70)..  7(-2),

)

p2 = p2o = (0()o(G+1)...o(m+1))™7,  ph=ph, = (r(j=1)7(j)...7(m))"’

p3 = pip2, Py = piph,

we can write the polynomial in the following way
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Y CDP DA D (D)0 (1) 2 (1)Ypro(@) 204 7(2) - - YproG—1) 207G -1)
pP1OESK
PITESm

Y121Yp10(5) %0, 7(5) * - Ypro(m) Zpym(m)Yp1o(m+1)21Yp1o(m+2)Z1 - - - Z1Yp1o(n)Z1Y1 *

+ Z (_l)pQ(_l)pQ(_1>p20(_1)pzTypzo(l)Zp’z‘r(l)ypza@)Zp’Qq—(2) < Ypao(mti—j+1)#1
p20ESn
PoTESm

Ypao(m+i—j+2)Zphr(mti—j+1) -+ - Ypao(m+1)Zphm(m)Ypoo(m+2)?1 - - - Z1Ypy0o(n)Z1Y1 "

D (1) (=15 (= 1) (= 1) Y (1) 2t (1) Yo (2) 20ty (2) - - - Ypsor(mebimgor1)
p30€E€Sn
PETESm
2yt (mti—j+1) Y121 Y pyo(m+i—j+2) Zphr(m+i—j+2) - - - Ypzo(m)Zplr(m)Ypso(m+1)
1Y pso(m+2)21 - - - Z1Yp3o(n)Z1Y1 * * -
= ()" g 5505 P12 1121057 - - U EmUmt121Tm2
21 ... 21Yn”1Y1 - "
21 ... 21Yn?1Y1 -
— Y1219222 - - - Umti—j+12m+i—j+1Y121Umti—j4+22m+i—j+2 - - - Ym+1

2m§m+221 L R1Ynz1Y1 .

Hence
fig = (0 () T i1 — Frgiejis
by the lemma 3.5.5, 3.5.7 and 3.5.2 we have that f;; is, up to a scalar,
equivalent to fITA,Tu‘

Now let ¢ < 7 < m then

fij = N 21Y222 .. Zi A1 Zi0i - - - 25 1Yj—121TjZj - - YmZmYm+121m+221 - - - 21Yn21Y1 " * *
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= (D)D) Yo (1) 2 ()Yer@)%r(2) - - Fri-1) VL Zr @) Yo(i) - - Zr(j-1)
oESy
TGSm

Yo (—1) 2190 (3)27(3) - - - Yorm) 27 (m) Yo (m41) 1Y (4 2) 21 - - - 21Yor(n) 2191+
= Z (=17 (=1)"Yo(1)2r(1)Yo(2) 27(2) - - - Z(i=1)Yo (j—1) 2LY1Z7() Yo (i) - - - Z7(j—1)
resn
yff(j) (’) Yo (m)Zr(m)Yo(m+1)Z1Yo(m+2)%1 - - - Z1Yo(n) 1YL "
+ (= ) Yo (1) 2r(1)Yo(2)2r(2) - - - Zr(i=1) (Y1 (2r(i) Yot - - - 22(i-1)) »
resn
Yo(j-1)%1] Yo (4)%r(j) - - - Yo (m) Zr(m) Yo (m-+1) 1Yo (m+2) 21 - - - 21Yor(m) 2LYL "
= D (D)D) Yo () 2 ()Ye@)2r2) - - Fri-1) Yo (j—1) 1YL 2 ()Yo(G) - - - Zr(j—1)
0E€8n
75

ya(j) () < Yo (m)Zr(m)Yo(m+1)#1Yo(m+2)?1 - - - 1Yo (n)#1Y1 "

+ Z ) Yo (1) (1) Yo (2) 57 (2) - + - Zr(i-1)Yo(3) %7 (j) - - Yor(m)
T(m)yo(erl)yo(‘)ZT(i) < 21 (i) Y121 Yo (5) P1Yo (m+2) 21 - - - R1Yo(n)Z1YL "
N Z ) Yo(1)2r(1)Yo(2) ?7(2) - - - Zr(i=1)Yo () 27(5) - - - Yo (m) r(m) Yo (m-+1)
O'GSn
TESm

LYo (j-1)2r(0)Yo (@) - - - Zr(j—1)Y121Yo(m+2)?1 - - - 1Yo (n)Z1YL " "

If we assume that
p1=pre=(0()o(i+1)...0(j—1), p)=p\,=(1),
p2 = pao = (o(i)oi+1...o(m+1))’~",  ph=ph = (r(i)7(i+1)...7(m)),
p3 = pip2, Py = Pipa,

we can write the polynomial in the following way
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> (=D (=)A= (= D)ATY  0(1) 2 (1) Upro(2) 2 (2) - - 2 (1) Ypror(i) 21U
p1OE€ESn
PITESm

Zpir(D)Yp1o(i4+1) - - - Zpir(i—1)Yp1o(i) - - - Ypro(m)Zp, 7(m)Ypio(m+1)#1Ypi0(m+2)
A zlyplg(n)zlyl tee
+ > (=D (=1 (= 1) (= 1) (1) 2 (1) Va2 2 (2) - - - Ypar(m)

p20ESn
PYTESm

Zpgf(m)ylzlypza(m+2)zl ce zlypga(n)zlyl ce

- Z (=) (=17 (= 1) (= 1) Y pso (1) 20ty 7(1)Yps0(2) 2, 7(2) - - - Ypsor(mti—g) 21
p30’€Sn
PETESm

Ypso(metivjt1) Zplyr(meti=g) - - - Ypso (m+1) Zplyr(m) Y1 21Y pyor(m-+2)

21+ 21Ypgo(n)R1Y1 -

(1) A GeE . G Yi Zi - YmEm a1 21 Tmg 221 - - - 2101 Y1
— Y121Y222 - - Ym—it1Zm—i+1Y121Ym—i+2Zm—i+2 - - - YmZmYm+121Ym+2

21 ... 21Yn”1Y1 """

21 ... 21Yn”1Y1 - .

Hence
fij = (_1)3‘—1;1]2/ - fi+ (_1)j7igaln+ifj7
by the lemma 3.5.5, 3.5.7 and 3.5.2 we have that f;; is , up to a scalar,
equivalent to féFA,Tu‘ O

Theorem 3.5.9 Let n,m,r,s € N such that 1 < m <mn, let \ = (r—n+
L1 Y, p=(s—m+ 1,11 and let Ty, T, a pair of Young tableaux. If
f is the highest weight vector corresponding to T, T, then, up to a scalar,

[ = fnot,

Proof. We can consider without loss of generality that f starts with a y,
hence r = sor r = s+1. By lemma 3.5.3 we have that if r+s = n+m+1 then
any highest weight vector is linearly dependent, mod Id%(A), to fryo,- If
r+s=n+m+2, lemma 3.5.1, 3.5.5, 3.5.7 and 3.5.8 show that any highest
weight vector is linearly dependent to fr, 7,. Let r +s > n+m+ 2, we
prove that any highest weight vector is linearly dependent, mod IdZ(A),
to the set S of the following polynomials:
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® Y121Y222 - - - YiZ1Yit1%i - - - Ym+12mYm+221 - - - 21Yn21Y1 - - -
® U1219222 - - - Yim12i—-1Y121YiZi - - - YmZmUm+121Ym+221 - - - 21Yn21Y1 - - -
® 1219229 . . YiZ1Y1ZiYit1Zi+1 - - - YmZmUm+121Um+221 - - - 21Yn21Y1 - - -

& N1Z21Y222 - - Yio1Zi-1Y12ii - - - 2j—1Yj—121YjZj - - - YmZmYm+121
Ym+221 - - 21Yn21Y1 - - - 5

® U121Y222 . - - Yj—12j-1Yj21Yj+1%5 - - - Yi-12i—2Y12i-1YiZi - - - YmZmYm+1

Z21Ym~+221 - - - Z1YnZ1Y1 - - -

Wich are, up to a non zero scalar, equivalent to fr, 7, Suppose r = s + 1,
it follows that any highest weight vector f = f(y, z) have at least two non-
alternating vy, let ¥, v/, and suppose also

f=hz...yp ...y ... 2

hence

F=" Yoz - vi0T W, 2905 (U 2) Yo (man)
O',TGSn

= > Yoyzr() - - UDST W 2o many] (v, 2y
o,TESR

+ D Yoz U1 BT (W DY 05T (Y 2o (ma 1))
o,TESy

/"

! o,T o,T
> Yoz - Y503 (W D)Womany D] (U, 2)Yh
O',TGSn

+ Z Yo(1)Zr(1) - -+ ylllpclT’T(yﬁ Z)ya(m—i-l)pgﬂ—(ya Z)yll
o,TESY

g, T ! O, T /
= D Y2 () - - Yomr1yPs T (U 2T DT (Y, 2)Y)
o,TESH

=afiZ1. Yy Umrt - Y FBUEL Y Tmrr
+YE YUY

Hence f is, mod IdZ(A), linearly dependent to a set of polynomials
such that the non-alternating y, that we can find before the #,,+1 is in a
previous position respect to f. Now in a similar way it is possible to prove
that every polynomial obtained before are linearly dependent to a set of
polynomials such that the number of non-alternating z that we can find
before the Z,,is in a previous position respect to f, and we can continue this
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process till every polynomials are in .S. Obviously if » = s we can obtain
the same result. Now, by (3.5) and (3.39), we have that

f = fTA»Tu’

Throughout this section we consider the pairs of Young tableaux whose
heights are h1(A) = n and h;(u) = m, such that n < m, and we set

Irt, = 11, (Y, 2) = 112152722 - - - UnZnY1Zn41Y1 - - - Y1 Zm.-
Similarly to 3.5.1 it is possible to prove the following lemma
Lemma 3.6.1 Let n,m € N n <m, and let
frym, = oo, (Y 2) = 31219272 - GnZn 1 2191 204 191 204201 -+ Y1 2mY121 -
Then
o, i m—n =2k

f’il‘A,T =
Yo 2t if men=2%k+1

We can prove, similarly to lemma 3.4.7 the following result.

Lemma 3.6.2 Let be n,m € N and let

9i = 9i(y, 2) = NZ21Y222 - - Zic A1 ZiTi - - - Yn—1ZnYnZns1Y1 Zn42Y1 - - - Y1ZmY121 - - - -

then
ifn=2k+1
2k —1 .
2k 1/ i#ot=k
Jktt+1 = —Gk—t =
(_l)k—i—t , .
m(2t + 1) fT)\yT,u ’l/f 0 S t < k,
if n =2k

t )
Jk+1+t = Ght1—t = (—1)t% f/TA,TH if 0 <t <k.

93



Lemma 3.6.3 Let n,m € N, and let

fi=fily,2) = W a1ye22 . . Yi-1Zi11219i%i - - - YnZnY1 211 - - Y1ZmY121 -
then f; and f/Tx,Tu are equivalent, mod IdZ(A).

Proof.
We consider the polynomial f,,_1, then

Jn—1 =U1219222 - - Yn-1Zn—1Y121YnZnY1 Zn 191 - - - Y1ZmY121 * **
= D)D) Yo (1) 2r(1)Yer@)%r(2) - - - Yo (n-1) Zr(n—1)Y11 Yo (n)
oESy
TESm

Zrn)Y12r(n+1)Y1 - - - Y127 (m)Y121

> Yo T D01 Yo 1) 200 o)

(41,82, in—1)€In—1 gESh
(jlvj?a"' ’jm*n+1)elmfn+l £€Sn+1
pesmfnﬁ»l
Ze(in) - - Yo (1) 2 (in_1)Y151 Yo (n) 2p(31) Y120 (j>)
yl e ylzp(jm—n+l)ylzl e
= Z (=17 12, 02205 - - - Yn—12i_1Y1210n

(41,82, in—1)€ln—1
(j17j27"' 7jm7n+1)elmfn+l

Zjlylszyl cee ylzjm_n+1ylzl Ty

where I; is defined as in the lemma 3.5.1, I,,_1 U I_p+1 = {1,2,--- ,m}
and 7’ is a permutation of Sy, such that 7/(I) = 4; for [ =1,2,--- ;n—1 and
Tl)=l—-n+1forl=n,n+1,--- ,m.

Now by lemma 3.5.4, 3.5.5 and 3.5.5, we have that, up to a scalar,

!
v . .
> (=1)7 G121 Y2505 - - - Un—1Zin, InZn V1219125591 - - - Y1 Y1217
(11,92, in—1)Elm
(jl,jZ,"',jm—n)EIm—n+l

= Z Z (_1)T (_1)5(_1)p(_1)0yg(1)Zﬁ(il)yU(Q)Zi(iz) < Yo(n—1)
(7:1,7:2,'”,1'”,1)617,1 gESH
(J1:d2: Jm—n)€lm—nt1 pégii:irl

ZE(in—1) Yo (m) Y121 2p(31) Y12p(j2) Y1 - - Y12p(jm 1) Y121 "

94



= D7D Yo (1) 2r(1)Yer@)%(2) - - Yo(n-1) Zr(n—1) Yo (m) Y121
oESy
TESm

Zrn)Y12r(n+1)Y1 - - - Y127 (m)Y121

- 5. 3 = = I~ z /
=Y1z21Y222 - YnZnY121Y1 204191 - - - Y12mY121 0 = fT,\,TH

Moreover it can be easy to check, as for (3.33), that for i =2,--- ,n—1

fi =2fir1 — fivo (3.40)
Hence, up to a scalar, f; = f’TA T, O

Lemma 3.6.4 Let n,m € N, and let
=y, 2) = 151025 - - G Zi0it1 - - - UnZnY1Zn 1YL - - - Y1 ZmY121 -+

then f; and f/Tx,Tu are equivalent, mod IdZ(A).

Proof. We first observe that, as in the lemma 3.6.1,

2ff g, if m—n=2k

fn
fé},Tu if m—-n=2k+1

We consider the polynomial f*~! then

[ =0Z12%2 - Yn-121Y1 Zn—1UnZn Y1 Znp1Y1 - - Y1ZmY121 - -

= (D)D) Yo (1) 2r(1)Yor(2)2(2) - - Yo (n-1) 1YL Zr(n—1)

€Sy
TESM

Yo(n)?r(n)Y12r(n+1)Y1 - - - Y127 (m)Y121 - "~

= Z Z (=17 (=15 (= 1) (= 1) Yo (1) 2e(i1) Yo (2)

(1,82, sin—1)€Iln—1 g€Sp
(j17j27"' 7jm7n+1)elm7n+l €€S"+1
pGSm—n+1
€ (iz) - - Yo (n—1)21Y12¢ (in—1) Yo (n) Zp(j1) Y1 %p(j2)

Y1 - - Y12p(jm—ny1) Y121 """
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/
T s = _ . _
= E (=17 9120, Y2245 - - - Yn—121Y1Zi,_1 Un
(i17i27"'7in71)€[n—1
(jl7j27"' 7jm7n+1)elm7n+1
Z51Y1255Y1 - - - ylzjm_n+1y121 ceey

where I; is defined as in the previous lemma, and I, U [_pny1 =
{1,2,--- ,m} and 7’ is a permutation of S,, such that 7/(I) = 4; for | =
1,2,--- ,n—land 7(l)=l—n+1forl=nn+1,--- ,m.

Now by lemma 3.5.4, 3.5.5 and 3.5.5, we have that, up to a scalar,

!
. . _ ..
Z (=1 Y1Zi1 Y2Ziy - - - Yn—1%i,, YnZj, Y121Y1
(11,82, yin—1)€Im
(j17j27"'7jm7n)elmfn+l

ZjoY1 - - Y1Zjp 1 Y121 -

(1,82, yin—1)EIm oESy
(jlva,"',jmfn)elmfn+1 §€S"+1
P Smfnﬁ»l

e (in) - - - Yo (n—1) %€ (in—1)Yo (n) Zp(j1) Y121Y12p(j2)

YL Y1205 —ny1) Y121 " -

= E (_]‘)U(_1)Ty0'(1)ZT(1)yU(2)ZT(2) < Yo(n—1)2r(n—1)Yo(n)?r(n)
gESy
TESm

Y121Y127(n+1)Y1 - - - Y127 (m) Y121 - -

Y12192%2 - UnZnY1 Y1 20191 - - Y1 Zmn 21 = fy -
Moreover it is easy to check that for ¢ = 2,---n — 1, as for the remark
3.4.4,
fi = 2fi+1 _ fi+2

hence, up to a scalar, f; = fc’& T O
Lemma 3.6.5 Leti < j € N and let

fig = fij(,2) = 219222 i1 Zia1 Zi%i - Zj—105-1

zlgjjéj C YnZnY1Zn+l - - - Y1ZmY121

then, up to a scalar,

J— /
fig = Ira1,
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Proof. We consider the polynomial f; ;, then

121Y222 -+ Yi-1Zi-1Y12ii - 2§—1Yj—121Yj2f * ** YnZnY12n+1 - - - U1ZmY121 * * -

= > (D7) Yo(1)2r(1)Yo(2) 2r(2) *** Yorli—1) Zr(i—1) Y1 2(3)

o,TESy
Yo (i) " 2r(i—-1)Yo(j—1)"1Ya(5)?7r(5) * * * Yo(n)?r(n) Y127 (n+1)
Y1---Yzr(m)¥Y121 -+

+ Z (=17 (1) Y1) 2r(1) Yo (2) Zr(2) * ** Yor(im1) Zr(i—1) [Y122(3)> Yo (i)

o,TESy
Br(i+1) " ZT(j—l)ya(j—l)Zl] Yo #7(5) * " " Yo(n)Rr(n) Y127 (n+1)
Y- -Y12r(m)Y121 - -

= > (D7D Yo(1)2r(1)Yo(2) 2r(2) - Yorli—1) Zri—1)Yorli) "

o,TESH
Zr(j—1)Yo(j—1)R1Y1Z7 (i)Yo (5)?7(5) * Yo (n)Zr(n) Y127 (n+1)
Y1---Y12r(m)Y121 -+

+ Z (=17 (=1)"Yo(1)2r(1)¥o(2)27(2) * " Yo (i=1)Zr(i—1) Yo (j) r(j) " ** Yo (n)Zr(n)
o,TESH

[ylz’l'(i)’ Yo(i) " ZT(j—l)yo(j—l)Zl] Y1Zr(n+1)Y1 - - - Y127 (m)Y121 " " - -
if we assume that
pr=pio=01), pr=pir=T@)7r6+1)--7( —1i)),
p2 = prg = (0(D)o(i+1) o)™, py=par = (r(i)7(i+1)--7(n)) "

p3 = pip2, Py = pips,

we can write the polynomial in the following way
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Z (_1)p1 (_1)01 (_1)p10(_1)p17yp10(1)zp/lT(l)me(Q)Zp’l‘r(Z) “Ypro(5-2)

PlO’ESn
pPITESR

2o r(i—2)Yp10(—1) 1YL 20, 7(j-1)Yp10(3) 2oy 7(5) """ Ypro(n) ZpiT(n) Y1 %0, T(n+1)

Y12y r(m)Y1z1 -

+ Z (_]‘)p2(_]‘)p/2(_1)ng(_]')pIQTprU(l)Zp/QT(l)prU(Q)Zp/QT(Q)'”ypga(n%*ifj)

pQUGSn
PLTESR

Zphr(nti—) Y12 ph 7 (nti—j+1)Ypao(nti—j+1) " Zph7(n)Yp2o(n) #1Y1%p

Yi---NZphr(m)Y1z1 -

LT (n+1)

= > (FDP (D) (1) (= 1) Y (1) 2ty (1) Vs (2) 0l 7(2) ** Ypgr(n—1)

p30ESn
pP5TESK

Zpgf(n)ZlylngT(n)ylngT(nJrl)yl - ylzpé‘r(m)ylzl cee

and by lemma 3.6.2, 3.6.3 and 3.6.4 the lemma holds.

Lemma 3.6.6 Let j < i€ N and let

fij = fij(,2) =012192%2 - - - Yj—1Zj—1Uj 2104175 - - Yi—1Zi—2Y1 Zi—1UiZi

Y1Zn41Y1 - - - Y1ZmY121 -

then, up to a scalar,
— !/
flv] = fT/\,Tu'

Proof. If we consider the polynomial f; ; then

1219222+ Yj—12j-1Yj219j+1%5 ** Yi—-12i—2Y12i-1YiZi = ** YnZnY1Zn+1Y1
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D (D (D) Yo (1) 2 (1) Yo (2)2r(2) Yol 1) 2r (- ) Yo () 1Yo (1) 27 () Yorli—1)

o,TESY
Rr(i—2)Y127(i—-1)Yo (i) Zr (i) " * " Yo (n)2r(n) Y127 (n4+1)YL - - - Y121 (m) Y121 -~
Z (=17 (1) Yo(1)2r(1)¥o(2)27(2) ** * Yo (= 1) Zr(i=1) Yo (5)27(j) * * * Yor(im1)Z7(i—2)

o,TESR

ylzlya(j+1) T(i—1)Yo ()21 (3) " " Yo(n)2r(n) Y127 (n+1)Y1 - - - Y127 (m)Y121 " -+

+ Z ) Yo(1)2r(1)Yo(2)?7(2) " Yo (1-1) 27 (i-1) Yo () [Zlyﬂ(jH)7

0,TESy
(ZT(j) T ya(i—l)ZT(i—Z)) yl] Zr(i—1)Yo())?r() " " Yo(n)?r(n) Y127 (n+1)
Yi---Y1zrm)¥Y1z1 -

> (D) (D) Yo () 2 (1) Yo (2 2r(@) Yo i—1) 27 (=) Yo () 2r(5) " * Yorlim1)Zr(i-2)

0-7T€STL

ylzlya(j+1) Zr(i—-1)Yo(i)27(i) """ Yo(n)Zr(n)Y12r(n+1)Y1 - - - Y127 (m) Y121 - -~

+ ) (= ) Yo (1) 2r(1)Yo(2)7r(2) * Yo(j=1) 21 (i-1) Yo () Zr(i—1) Yo (i) #r(i) * ** Ya(n)

o,TES
Zr(n) [ya(jﬂ)zhyl (Zr(j) e 'ya(i—l)zr(i—2))] Y127 (n+1)Y1 - - - Y127 (m)Y121 " -
> (D (D) Yo (1) 2 (1) Yo (2)2r(@) Yol 1) 2r (- 1) o) 2r(G) " * Yorli1)Zr(i-2)

o,TESY

ylzlya(j+1) Zr(i—D)Yo(@)?r(3) " Yo(n)fr(n)Y12r(n+1)Y1 - - - Y127 (m)Y121 "

+ Z ) Yo (1) (1) Yo (2)7(2) " Yoli—1) (i~ 1) Yo () #r(i~1) Yo (i)

o,TESY

T(’L) T yo‘( VET(M) Yo (+1)21YLZ7(5) = " Yo (i—1) 27 (i—2) Y121 (n4+1) Y1 - - - Y127 (m) Y121 " -

N Z ) Yo(1)2r(1)Yo(2)?7(2) Yo (i -1) 27 (i)Yo () #r(i~1) Yo (i)

o,TESY

Rr@) " Yo(n)Fr(n) Y127 (5) * Yo (i—-1) 27 (i—2) Yo (j+1) 2LYL 2T (n4+1) YL - - - Y127 (m) Y121 - -+

If we assume that

p1=pro=(0(j)o(j+1)---o(i—1)), Py =p1r=(1),

p2 = p2o = (0(j+1)o(j+2) - a(n)) 71, Py = par = (T(H)T(G+1) - 1(n)) 771,

p3 = pip2, Py = piph,

we can write the polynomial in the following way
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Y Y DD (DAY (1) 2 (1) Yo ()7 (2) Ui (-2) Zar(-2)
PlO’ESn
pPITESR
Y121Yp1o(i-1) %0 7(=1)Yp10() 21 7(7) =" Ypro(n) Zp) m(n) Y120, 7(n+1)
Yi---N2p rm)Y1z1 -
+ > (DD (=12 (=1 T Y0 (1) 2o (1) Ypaor(2) 20r(2) Ypnontij—1)

p20€ESy
PLTES

Zphr(nti—g—1)Ypao(nti—i) 1YLy 7 (ntimg)Ypao(nbimjt1)
Zphr(nti—j+1) * Ypao(n) Zphr(n) Y1200 T(n+1) Y1 - - - Y1ZpL r(m)Y121 " "~

— > (P (=D (=1) P (= 1) Yo (1) 2ty (1) Ypar(2) 20 7(2) * Ypgr(nkimj2)
p30ESn
p5TESK

Zphr(nt+i—j+2)Y12p, r(n+i—j+3)Ypso(nt+i—j+3) * " Zps7(n)Ypso(n)F1Y1Z2pLr(n+1)

Y1 Y12phrm)¥Y1z1 -
Now by lemma 3.6.2, 3.6.3 and 3.6.4 the lemma holds. O

Similarly to 3.5.9 it is possible to prove the following.

Theorem 3.6.7 Let n,m,r,s € N such that 1 <n <m, let \ = (r —n+
1L,1" Y, p=(s—m+1,1""Y) and let T, T, a pair of Young tableauz, if f
is the highest weight vector corresponding to T and T}, then, up to a scalar,,

f = fT/\»Tu'

Theorem 3.6.8 Let n,m,r,s € N such that m #n andr >n >1s >
m>1, let

X(0,r,s) = Z M uXA @ Xp-
AFr

uks
If)\:(r—n—l—l,ln_l)l—r (md,u:(s—m—i—l,lm_l)l—s then

S 2 if r=s
AT if qr—sl=1

Proof. If r + s = n+ m it is obvious that m) , = 2. Now let r + s # n +m,
then by theorem 3.6.7 and 3.6.8, any highest weight vector is, mod IdZ(A),
equivalent to fr, T,

100



If m < n and r = s we have two different highest weight vectors linearly
independent,

Y12192%2 YmZmYm4121Ym+221 - 21YnZ1Y1 - - Y121,
and
Z1Y122Y2 *  * ZmYmZA1Ym+1212m+221 - - - 21Un21Y1-
If r =541, or r = s — 1 respectively, every highest weight vector is

equivalent to

1219222+ UmZmYUm+121Ym+221 * * - 21Yn21Y1 * * " Y121Y1,

and, respectively

21Y12292 * * * ZmUm 1 Ym+1212m4221 - - - 21Yn21Y121 -

Similarly if n < m.
Hence we have

X(0,r,s) = Z M XA @ Xpus

A7
uks

S 2 if r=s
ML r—s =1

where
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