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1  INTRODUCTION 
Agriculture changes. Thanks to a growing ecological sensibility, international 

agricultural research is focusing towards sustainable production strategies. These 
strategies primarily foster to reduce energy input in agro-ecosystems through an 
optimization of the turnover of the elements and through an improvement of biological 
control of stresses. So, the sum of this studies leans on the application of the sustainable 
development in agriculture (Altieri, 1994), which meet to the social expectations of 
food quality and environmental protection. In sustainable systems, soil microflora and 
soil fauna are pivotal to control soil borne diseases, to determine species fitness and 
production quality due to their roles in the biogeochemical cycle of elements. For such 
matters, scientific research shows growing interest to delve into biodiversity, dynamic 
and significance of microbial populations in soil and into the mechanisms that rule their 
biological activity (Werner, 1998; Kennedy, 1998; Bowen & Rovira, 1999). 

In the immense soil microbial survey, mycorrhizal fungi and N2 fixing bacteria 
(NFB) play a major role as symbionts of cultivated crops. Relating their matter of 
importance and distribution, NFB-legumes symbiosis has been extensively studied 
regarding its physiology and benefits to plants (Vance, 2001; Lum & Hirsch, 2003). 
Mycorrhizas (greek: µύκης (mykes) = fungus; ρίζα (rhiza) = roots, after Frank, 1885) 
have the same importance and a distribution as widespread as NFB. Mycorrhizas are 
symbioses between plants (macro- or phyto-biont) and fungi (micro- or myco-bionts). It 
seems that mycorrhizas appeared on earth about 460 million years ago (Redecker et al., 
2000) and helped plants during the early colonization of lands (Pirozynski & Malloch, 
1975; Simon et al., 1993; Brundrett, 2002). Thanks to its ancestral occurrence, this 
association can be found in the 80% of vegetal species (Smith & Read, 1997) and it’s 
responsible of major nutrient and water plant uptake in most of the environments 
(Harley & Smith, 1983; Trappe, 1987; Allen, 1996), especially in the harshest for plant 
survival or production (Mosse et al., 1981). 

The capability of being infected by mycorrhizas vary with the plant species. 
Usually legumes are likely to be infected by AM fungi. Some plant species seems to be 
completely dependent by mycorrhizas for their nutrient uptake and others do not form 
mycorrhizal associations. The non-mycorrhizal-host traits of some species (manly in the 
families Juncaceae, Cruciferae, Chenopodiaceae, Cyperaceae and Caryophyllaceae) 
(Wang & Qiu, 2006) might be a derived trait and it might be the outcome of 
specialization regarding, e.g., the plant habitat (Fitter & Moyersoen, 1996; Strack et al., 
2003). 
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1.1 CLASSIFICATION AND DISTRIBUTION OF MYCORRHIZAS 

Mycorrhizal symbioses can be divided in 7 groups basing on histological (Tab. 
1-1) and genetic traits. The most frequent and non-specific ones are between Arbuscular 
Mycorrhizal Fungi (AMF) or Ectomycorrhizal fungi (ECM) and plants. The others 
kinds of mycorrhizal symbioses have a certain specificity between some fungi taxa and 
plant families. ECM are distinguished by a dense mycelium sheaths around the roots 
and particular intercellular hyphal invasion of the plant root cortex forming the so called 
Hartig net. From both of the structures, an intricate hyphal web spreads in the 
surrounding soil (Bolan, 1991). AMF are polynucleate haploid organisms with an 
obligate symbiotic status. They are characterized for an active penetration into the root 
cortex and for the formation of arbuscules into the root cells. Arbuscules are tree stem-
like shaped organs which set an extended surface area for nutrient exchanges between 
the fungus and the cell cytoplasm (Bonfante & Perotto, 1992 and 1995). 

 

Tab. 1-1 - Table summarising key differences between mycorrhizal association types 
(modified after Smith & Read, 1997). 

Type AMF ECM Ectendo- Arbutoid Mono-
tropoid Ericoid Orchid

Septate hyphae - (+) ± ± + + + +
Hyphae in cells + - + + + + +

Hyphal coils ± - - - - + +
Arbuscules + - - - - - -

Mantle - + (-) + (-) + + - -
Hartig net - + + + + - -
Vesicles ± - - - - - -

Chlorophyll + + + ± - + ±

Fungi Glomerales Asco- 
(Basid-) Basid-

Notes: AMF=Arbuscular Mycorrhizal Fungi; ECM=Ectomycorrhizal Fungi;                                                            
Ectendo-=Ectoendoid Mycorrhizal Fungi; - = absent; + = present; (+)= sometimes present;                                       
(-)= sometimes absent; ± = present or absent; Basid- = Basidiomycetes; Asco- = Ascomycetes.

Most Basid-, but some Ascomycetes

Gymnosperms & 
Angiosperms

Orchida-
ceae

Vascular 
plants

Vegetal taxa 
symbionts Ericales Mono-

tropaceae Ericales

 

 

The genetic organization of AMF consists in several haploid nuclei, up to some 
hundreds, present within one fungal spore (Viera & Glenn, 1990; Hosny et al., 1998). 
Questions have been risen about the significance of such nuclei population, about their 
probable genetic redundancy and the negative effects associated with the lack of 
sexuality (e.g. slow genetic adaptation and accumulation of deleterious mutations) 
(Judson & Normack, 1996; Butlin, 2002; Gandolfi et al., 2003). Sanders (2002a and 
2002b) hypothesized that nuclei could be differentiated in different groups due to the 
natural mutations and that mutations are conserved during generations thanks to the 
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multinucleate nature of the AM cell. In addition, this diversity could have played an 
evolutionary role (Sanders, 2002a). More genetic differentiation could also have 
occurred through nuclear drift and anastomoses (Giovannetti et al., 2001) that provided 
random assortment of nuclei (Bever & Morton, 1999; Sanders, 2002b) among different 
individuals and through to an uneven distribution of different nuclei from parent to 
newly formed cells during mitosis (Sanders, 2002a). 

Presently, all AMF species are members of the phylum Glomeromycota (Fig. 1-1) 
which seems to have a monophyletic origin. It currently includes 4 orders and 13 
families phylogenetically sound for both genetic and morphological traits (Schüβler et 
al., 2001; Walker et al., 2004; Oehl & Sieverding, 2004). Glomeromycota numbers 
more or less 200 species formally described on the basis of spore morphological traits. 
Everyway, some authors suppose the existence of many unidentified species due to their 
incapacity or impossibility to sporulate (Bever et al., 1996; Vandenkoornhuyse et al., 
2002; Redecker et al., 2003; Wirsel, 2004). The phylogeny of AM fungi is in 
continuous change. Up to April 2009, 19 genera of AMF can be distinguished                                
(Tab. 1-2). An extensive and up-to-date description of genera and species of AM fungi 
can be found at the website ‘http://www.lrz-muenchen.de/~schuessler/amphylo/’. It is 
important to pinpoint that the genus Glomus (Fig. 1-1b), subdivided in three clades 
(Groups Aa and Ab as one single genus and Group B as another one) is not completely 
characterized at the moment and still considered as morphotaxon. The phylogenetic 
position of family Entrophosporaceae is also unclear and not presented in Fig. 1-1b and 
the genus Appendicispora and the family Appendicisporales are synonymic to 
Ambispora and Ambisporaceae, respectively (Walker, 2008). The family 
Gigasporaceae have been recently split in 4 families: Gigasporaceae; 
Scutellosporaceae; Racocetraceae; and Dentiscutataceae. Finally, it’s important to 
report that the genus Geosiphon (with the species mycorrhiza-like fungus G. pyriformis) 
is the only taxon forming symbiosis with cyanobacteria of the species Nostoc 
punctiforme (Kluge et al., 2002). A detailed description of genera can be found in 
Redecker & Raab (2006) who stated that “environmental studies using phylogenetic 
methods for molecular identification have recovered an amazing diversity of unknown 
phylotypes, suggesting considerable cryptic species diversity”. Everyway, many 
changes may occur to this classification in the near future, especially for the lower taxa 
for the high genetic variability of AMF, even internal to the species and to the nuclei 
(Sanders et al., 1995; Kuhn et al., 2001; Pawlowska & Taylor, 2004).  

AM fungi can be found in several environments (Strack et al., 2003) such as 
deserts (Corkidi & Rincón, 1997; Dalpé et al., 2000; Titus et al., 2002), rain forests 
(Brundrett et al., 1999; Guadarrama & Álvarez-Sánchez, 1999; Siqueira & Saggin-
Junior, 2001; Zhao et al., 2001; Gaur & Adholeya, 2002), aquatic environments (Khan, 
1993), ecosystems with saline (Carvalho et al., 2001; Sengupta & Chaudhuri, 2002) and 
sodic or gipsic soils (Landwehr et al., 2002). The relatively low number of Artic and 
Antarctic environments colonized by AMF is probably due to the lack of inoculum 
carriers rather then to other causes (Allen, 1996). 
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Fig. 1-1 – a) Phylum Glomeromycota positioning in the clade tree of Fungi Reign; b) 
clade tree of the family of the phylum Glomeromicota (a and b extracted by Schüβler et 
al., 2001 and modified by Parniske, 2008) 
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1.2 GENETIC AND HISTOLOGICAL TRAITS OF THE ARBUSCULAR 
MYCORRHIZAL SYMBIOSIS 

Arbuscular mycorrhizal (AM) fungi are obligate symbionts of plants. Without its 
host, AM fungi have a relatively short growth (20-30 days) (Bonfante & Perrotto, 1995) 
after which modifications in fungal morphology stop hyphal growth. It’s still unclear 
why AMF do not grow saprotrophically in absence of a living host, though it has been 
demonstrated that Gigaspora margarita is capable of DNA replication during spore 
germination and that “possess the machinery needed for DNA replication even in the 
absence of the host plant” (Bianciotto & Bonfante, 1993; Bonfante & Perrotto, 1995). 

When a fungal spore and/or a fungal hypha comes nearby of living host roots, 
development of mycelium starts with a reciprocal signaling pathway (Paszkowski, 
2006). Roots synthesize and release chemicals, mainly flavonoids (Lum & Hirsch, 
2003) and strigolactones (Akiyama et al., 2005), leading to intensified elongation and 
branching of AM hyphae (Tamasloukht et al., 2003). By his own way, as soon as hypha 
touches the root, it starts forming an appressorium and releasing exo- and 
endoglucanases, cellulases, xyloglucanases and pectolytic enzymes including 
polygalacturonase (García-Romera et al., 1991; García-Garrido et al., 1992a, 1992b and 
1996; Rejon-Palomares et al., 1996), which improve fungal penetration through plant 
cell walls. The plant facilitates the penetration of the fungus opening an epidermal cleft 
in the anticlinal cell walls of two adjacent epidermal cells (Parniske, 2004; Demchenko 
et al., 2004). Then fungal hyphae are allowed to pass intracellularly through an 
exodermal cell and an adjacent cell from the outermost cortical layer (Hause & Fester, 
2005). Genre et al. (2005) also showed that Medicago truncatula rhizodermal cells form 
a pre-penetration apparatus, a hollow column composed of microtubules, 
microfilaments and endoplasmic reticulum cisternae, that guides the invading hypha 
through the cell lumen. It’s also notable that such a apparatus is formed before fungal 
invagination of the plant cell, so before that fungus enters the root cells apoplast. 
Moreover, the pre-penetration apparatus is not induced in plant mutants in which 
appressoria formation is allowed but who are unable to form a complete symbiosis. 
After having entered the first cell layer, the hyphae pass through the outer layers of 
living cells, surrounded by a plant perifungal membrane that is histologically 
continuous with the plasma membrane. This step is maybe the bottleneck of the 
complete establishment of the AM symbiosis (Parniske, 2004). In Lotus japonicus 
mutant defective for the synthesis of the perifungal membrane, the penetration of the 
hypha into the outer layers of the plant cell lead to a death of both the plant cell and the 
hyphal tip (Bonfante et al., 2000). 

When the fungus reaches the inner cortex layer, it starts growing and branching 
throughout the apoplast under the control of the plant (Ivashuta et al., 2005; Paszkowski 
et al., 2006). During this process, some hyphal branches penetrate inner cortical cells 
without forming any appressoria and, by repeated dichotomous branching, initiate the 
synthesis of a characteristic tree-like structure, the arbuscule. It is not known what 
triggers the fungal entrance into the cell (Paszkowski, 2006), maybe a radial sugar 
gradient between the vascular tissue and the outer cell layers is involved in induction of 
the arbuscules formation (Blee & Anderson, 1998). Arbuscules surely are the key 
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organs of the mycorrhiza because are responsible for nutrient exchange between the 
symbionts. During the arbuscule formation and its life-span, the plant cell undergoes 
hard morphological and physiological changes. In details, plasmalemma starts to 
invaginate, the vacuole becomes fragmented and a periarbuscular membrane is 
synthesized in continuum with the plasma membrane (Harrison, 1999), amyloplasts 
disappeare and the number of organelles such as Golgi bodies and plastids increases 
(Bonfante & Perotto, 1992 and 1995) and form a network covering the arbuscule (Fester 
et al., 2001). In this network, plastids are connected to each other by tubular structures 
called ‘stromules’ (Köhler & Hanson, 2000). At the same time, the plant cell nucleus 
increases in size owing to unfolding of its chromatin, though maintaining its ploidy 
(Berta et al., 1990b), and it moves to a central position, surrounded by plastids forming 
“octopus-,” “millipede”-like or ring-shaped structures (Strack et al., 2003) whose 
presence indicates an intensified metabolism. Once the arbuscule and the peri-
arbuscular membrane are completely formed, the plant and the fungus start a reciprocal 
and active exchange of nutrients. Many transporters and other enzymatic complexes 
have been identified onto the peri-arbuscular membrane, mainly P transporters 
(Paszkowski et al., 2002; Harrison et al., 2002; Glassop et al., 2005; Maeda et al ., 
2006) and ATPases (Gianinazzi-Pearson et al., 1995). In the arbuscules containing cell, 
particular mycorrhizal induced chitinases are similarly expressed and regulated 
(Bonanomi et al., 2001). The arbuscule senesces and collapses after some days of 
activity (4–10 days, Sanders et al., 1977) and the fungal structures are then completely 
degraded by the plant cell. The plant cell recovers its original morphology (Jacquelinet-
Jeanmougin et al., 1987) and can allow a second fungal penetration and arbuscule 
formation (Alexander et al., 1988 and 1989; Hause & Fester, 2005). Salzer et al. (1999) 
and Walter et al. (2000) suggested that arbuscule senescence is somehow dependent by 
plant responses to intracellular colonization. Moreover, the collapse could be caused by 
endogenous fungal signaling or coordinated signalling cross-talk (Paszkowski, 2006). 

In late phases of the symbiosis, all AM fungi form intra- or inter-cellular vesicles, 
except for the ones of the genera Scutellospora and Gigaspora. Vesicles are lipid-rich 
storage organs (Smith & Read, 1997). Finally, the life cycle of the AM fungi finish and 
start again with the formation of new extraradical mycelia and spores. Another 
colonization process is then began by the new spores or by the hyphae in soil (Smith & 
Read, 1997). The overall extent of AM colonisation is controlled by the plant (Solaiman 
et al., 2000; Nishimura et al., 2002), but the expression of the related operones is not 
completely understood (Staehelin et al., 2001). Everyway, the genetic determinants that 
control the colonization and its efficiency are of great agricultural potential (Parniske, 
2004). 
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1.3 DIRECT INTERACTIONS BETWEEN AMF AND BACTERIA 

AM fungi can interact with soil bacteria both directly, via a trophic and 
physiological dialogue, and indirectly, by modifying the environment in which bacteria 
live (Barea et al., 2002; Johansson et al., 2004). In this section, I will focus on direct 
relations between AM fungi and bacteria. Two kinds of AMF-bacteria interaction can 
be described: (1) between AM extraradical hiphae and bacteria living in the soil and (2) 
between AM fungi of the family Gigasporaceae and bacteria passing their entire life 
cycle into the cytoplasm of the AM fungus cells, thus establishing a symbiosis between 
fungus and bacterium. 

Many bacteria live in the rhizosphere and attach to AM hyphae (Bianciotto et al., 
1996a). It is not clear if the attachment of some bacterial strain to AM hyphae is 
governed by a chemical and/or molecular dialogue between AM fungus and bacterium, 
but is has been demonstrated that some bacterial strains specifically respond to some 
AM fungi (Andrade et al., 1997; Artursson et al., 2005) suggesting a certain degree of 
specificity (Artursson & Jansson, 2003; Toljander et al., 2006). Results of both Andrade 
et al. (1997) and Artursson et al. (2005) suggest that AM fungi are more commonly 
associated to Gram-positive and γ-proteobacteria than Gram-negative bacteria. Boddey 
et al. (1991) supposed that mycorrhizal extra radical mycelium (ERM) act as vehicle for 
spreading of bacteria in soil. The attachment of bacteria to AM hyphae seems to follow 
a two-step process (Vande Broek & Vanderleyden, 1995). In the first phase, a labile 
binding, probably an electrostatic attraction, is established between the two kinds of 
microbes (Artursson et al., 2006). In the second step, cellulose fibrils or other bacterial 
polymers may be involved in the formation of a more stabile binding between AM fungi 
and bacteria (Bianciotto et al., 2001). The attachment of bacteria on AM hyphae is of 
great agronomic significance. Indeed, a close contact between bacterial cells and root 
structures is an important feature for many bacterial effects on plant. Moreover, it is a 
prerequisite for an effective nodule formation in N2 fixing symbioses. Regard to AM 
symbiosis, a close contact of bacterial and fungal cells could be important in 
determining AM growth and activity. Upon that matter, Azcón (1987) and Linderman 
(1997) showed that plant growth promoting rhizobacteria (PGPR), a group of microbes 
whose activity can result in plant benefits, have a stimulatory effect on growth of AM 
fungi. Moreover, Sanchez et al. (2004) found a common gene expression in M. 
truncatula in response to a fluorescent Pseudomonas and an AM fungus. 

The knowledge about the symbiotic life of some bacteria into AM fungi is still 
controversial. As already mentioned, some AM fungi from the family Gigasporaceae 
can harbour bacteria living symbiotically into all structures of the AM life cycle, except 
for arbuscules (Bianciotto et al., 1996b). These authors demonstrated that AM 
endosymbiotic bacteria are able to complete their whole life cycles within the AM cell 
and that they are Gram-negative and rod-shaped. AM endosymbiotic bacteria were 
formerly associated to the genus Burkholderia, but recent findings assign it to the 
species Candidatus (Ca.) Glomeribacter gigasporarum (Bianciotto et al., 2003). 
Different authors attempted to cultivate such bacteria on cell-free media with no results 
(Bianciotto et al., 2004; Jargeat et al., 2004). However, they found that these bacteria 
were vertically transmitted by generations of AM fungi trough vegetative spores. The 
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non-cultivability and the relatively little genome size of Ca. G. gigasporarum typical of 
all symbiotic bacteria gives clues about its obligate symbiotic status. Moreover, the 
coenocytic nature of the AM mycelium surely facilitates the migration of AM 
endosymbiotic bacteria into the AM fungus (Artursson et al., 2006). This hypothesis is 
supported by the demonstration of an active bacterial proliferation into the AM fungal 
mycelium (Bianciotto et al., 2004). 

No information is available about the physiological role of AM endocellular 
bacteria. By comparing genomic library developed from G. margarita spores, some 
authors supposed that some genes of endosymbionts of AM fungi are involved in the 
phosphate transport, in chemotaxis and in coat formation of bacterial endospores (Ruiz-
Lozano & Bonfante, 2000; Minerdi et al., 2002). In particular, Minerdi et al. (2001) 
found a DNA region containing putative nif genes in the genoma of Ca. Glomeribacter 
gigasporarum, so it could also be possible that these bacteria are involved in the N2 
fixation from atmospheric sources and contribute to N nutrition in the AM fungus. 
However, no reports are available about the possibility of N2 fixation in AM fungi. 

The process of cyclical infection of AM fungi by bacteria has not been described. 
However Geosiphon pyriforme, a mycorrhiza-like fungus, was found to harbor a 
cyanobacteria through an endocytotic process (Schüßler & Kluge, 2001) so it is 
presumable that it also occurs in AM fungi. 

1.3.1 DIRECT RELATIONS BETWEEN AMF AND RHIZOBIA 

The symbiosis between legumes and AMF displays several similarities to the 
NFB-legumes symbiosis by a genetic and eco-physiological point of view (Gollotte et 
al., 2002). Both symbioses share common steps (briefly: attraction, recognition, 
entrance, establishment, development of a specialized interface and coexistence with 
host plant) (Lum & Hirsch, 2003). Provorov et al. (2002) showed that a lot of mutants 
lacking for the ability of establishing the N2 fixing symbiosis (referred as ‘Nod-’) are 
also unable to establish the mycorrhizal one (referred as ‘myc-’). Despite the obvious 
differences between the two symbioses and the uniqueness of each of them, many plant 
genes are expressed with apparent similar functions in both symbiotic relations. These 
common features induced LaRue & Weeden (1994) and Provorov et al. (2002) to 
suppose that NFB-legume symbiosis evolved from a set of pre-adaptations during co-
evolution of plant with AMF. 

During early stages of both symbioses, a molecular and chemical dialogue occurs 
between AM fungi or NFB with each of their respective host by means of flavonoids in 
plant exudates (Recourt et al., 1992; Harrison & Dixon 1993, 1994) which take part in 
the recognition of partners and development of associations. In the N2 fixing symbiosis, 
the release of plant exudates induces the production of bacterial Nod factors, molecules 
that dictate the relations between symbionts (Djordjevic et al., 1997). Plant exudates 
also induce germination and growth of AM hyphae and hyphal branching when the 
fungus approaches the plant root. These effects are host-specific and occur only at the 
presence of host exudates as also shown by Elias & Safir (1987), Gianinazzi-Pearson et 
al. (1989) and Giovannetti et al. (1993). As already mentioned, plant flavonoids in roots 
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exudates exert a stimulus on AM infection. Xie et al. (1995) showed that the application 
of exogenous Nod factor also stimulates AM colonization and that this stimulus was 
correlated with an enhancement of specific plant flavonoids. It has been shown how this 
stimulus is not only host dependant, but also AMF genus-specific (Chabot et al., 1992). 

The attachment and penetration of AMF and NFB into plant roots is a multi-step 
procedure involving host participation. The first step of AMF infection is the formation 
of an appressorium. Even if chitin, the major component of fungal tissues, is know to be 
an elicitor of plant defence reactions, the appressorium contact with epidermal root cell 
doesn’t cause the typical defence reactions from plants, which triggers particular 
mechanisms in order to allow AMF but no other fungi to enter the root (García-Garrido 
& Ocampo, 2002). Anyway, AMF entrance into the plant is more dependant by the 
fungus rather than the plant. With respect to N2 fixing symbiosis, molecules produced 
by NFB during the early stages of the infection are related to fungal chitin and it 
suggests a plant ability to recognize different form of chitins and similar compounds 
hence regulating its own defenses the penetrations of symbionts. Once entered the roots 
cells, both AMF and NBF form particular exchange structures, named respectively 
“arbuscule” and “bacteroid’s membrane”. Plant always form an interface between root 
cell and symbiotic structures. The periarbuscular membrane (between plant cell and 
AMF) carries xyloglucans, nonesterified polygalaturonans, arabinogalactans and 
hydroxyproline-rich glycoproteins and similar components can be found in bacteroid 
compartments (Perotto et al., 1990). Finally, the use of Nod- and/or Myc- legume 
mutants in research has contributed to an enhanced understanding of the signaling 
process between host plant and micro-symbiont (NFB and/or AMF) (Gollotte et al., 
2002), although further studies are needed to a better understanding of the molecular 
dialogue between symbionts. 

1.4 CONTRIBUTION OF AM SYMBIOSIS TO PLANT GROWTH AND 
NUTRIENT UPTAKE 

AM symbiosis plays a key role in promoting plant growth and nutrient uptake, 
especially P (van der Heijden & Sanders, 2002; Garg et al., 2006; Hoeksema et al., 
2010). Such support mainly occurs in growth-limiting environments (Smith & Read, 
1997) or in crops where it isn’t possible to use mineral fertilizers (Scullion et al., 1998). 
Many reports show that AM symbiosis improves growth in drought-stressed conditions 
(Augé, 2001) and that its effects on drought tolerance can either be mediated by the 
higher P inflow (Kwapata et al., 1985; Osonubi et al., 1991) or occur irrespective of a 
higher P uptake in AM than non AM plants (Augé et al., 1994; Schellenbaum et al., 
1999). Indeed, AM fungi have side effects on soil hydraulic properties (Augé et al., 
2004) and soil structure (Rillig & Mummey, 2006) and these effects help plants to cope 
with water deficit. In field crops, several reports show that AM fungi inoculation 
improves plant dry matter (DM) production for economically important taxa of plants 
such as legumes (Fitter, 1985; Barea et al., 1987; Kristek et al., 2005) and grasses (Al-
Karaki et al., 2004). Generally AM symbiosis enhance root biomass thanks to the 
improved mineral nutrition, but sometimes it induced depressive effects on root DM 
(Koide, 1985; Fitter, 1977) and root length (Berta et al., 1990a). The AM symbiosis 
influences many aspects of root physiology such as plant rooting and root morphology, 
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nutrient acquisition rates and root reactions against stresses (Atkinson et al., 1994; 
Kapulnik & Douds, 2000; Berta et al., 2002). It has been sometimes reported that AM 
may have a negative effect on plant growth (Ryan & Angus, 2003; Li et al., 2008) but it 
has been found only for some plant species grown in pot in symbiosis with single AM 
strains. 

The effects of the AM symbiosis on nutrient uptake are clearly visible when 
nutrient availability for plants is scarce due to low nutrient concentration in soil or to 
low nutrient diffusibility (George, 2000). It is the case of nutrients such as P, Zn and Cu 
and others minerals (Barea et al, 2005), though AM symbiosis is also efficient in 
enhancing uptake of N (Jin et al., 2005; Govindarajulu et al., 2005). The enhanced 
nutrient uptake by AM plants in comparison to non-AM plants mainly depends on a 
better scavenging of soil area thanks to (1) the little dimensions of AM hiphae, which 
can access nutrient sources normally unavailable to plant root and root hairs (Chen et 
al., 2005; Jakobsen et al., 2005); and to (2) the possibility for AM fungi to absorb 
nutrients in forms unavailable for plants, such as organic N or organic P (Jayachandran 
et al., 1992; Tarafdar & Marschner, 1994; Koide & Kabir, 2000; Hodge et al. 2001). It 
has been shown that AM hyphae have an average diameter of 3 to 7 µm while the 
diameter of the finest root hair is 5 to 20 µm (Wulfsohn & Nyengaard, 1999; Bago, 
2000; Dodd et al., 2000) AM hyphal length densities may be up to hundreds-fold 
greater than root length densities. This features allow AM fungi to better explore the 
soil volume and so raise the probability that ions with low diffusion coefficient are 
absorbed (Miller et al., 1995). Moreover, AM hyphae are more effective than roots to 
absorb and utilize nutrients (O'Keefe & Sylvia, 1992; Cui & Caldwell, 1996). 

The area of soil in which AM symbiosis spread and establish its activity it’s also 
called mycorrhizosphere (Barea et al., 2002). In this area AM influences bacterial 
activity (Azcón-Aguilar & Barea, 1992; Bianciotto et al., 2001; Bianciotto & Bonfante, 
2002) and bacterial populations (Mansfeld-Giese et al., 2002; Marschner & Timonen, 
2005); it contributes to the formation of water-stable aggregates (Miller & Jastrow, 
2000; Jeffries et al., 2002); it contributes to the reduction of stresses by pollutants 
(Gianinazzi et al., 2002; Gianinazzi e Schüepp, 1994; Bethlenfalvay e Linderman, 
1992) and it plays a role in the defense of plants against biotic stresses (Rabie, 1998; 
Werner et al., 2002). The sum of these effects is important in sustaining plant growth. 
The AM contribution on the suppressed plant yield loss due to diseases are related to a 
number of suggested mechanisms as: improved nutrition (Declerck et al., 2002), 
competition for colonization sites (Fitter & Garbaye, 1994), production of AM anti-
microbial compounds (Benhamou et al., 1994), and priming of plant immune system 
(Pozo et al., 2002; Pozo & Azcón-Aguilar, 2007). 

In order to perform its activities into the mycorrhizosphere and plant roots, the 
AM symbiosis has a very high carbon demand and act as an important carbon sink for 
the plant: AM fungi can drain up to the 20% of the total carbon fixed by the plant (Bago 
et al., 2000; Johnson et al., 2002), irrespective of plant P or N status (Wright et al., 
1998a and 1998b). If we take into account that AM plants often have a higher DM 
production than non-AM plants, it means but that the improvement of plant 
photosynthesis by AMF is higher than the AM carbon demand, as results by many 
authors suggest (Harris et al., 1985; Ames e Bethlenfalvay; 1987). Plant regulate the 
amount of carbon transferred to the AM fungus. This regulation relies on the net 
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transfer of P, and probably also N, by the AM fungus to the plant (Fitter, 2006; Javot et 
al., 2007). Sometimes AM symbiosis can even suppress plant P transporters that are 
expressed under P deficient conditions, as demonstrated with molecular tools by Liu et 
al. (1998) and Burleigh & Harrison (1999). This increases plant reliance on AM 
symbiosis for P uptake so improving the transfer of C from plant to fungus and could be 
an important issue for the survival of the AM fungi. 

1.4.1 EFFECTS ON P UPTAKE 

Phosphorus is the most limiting element after N for plant growth and production 
(Vance et al., 2000) and over 80% of P in soil is in unavailable forms (organic or 
insoluble) to plants (Holford, 1997; Schachtman et al., 1988). Inorganic P, such as other 
nutrients, has a very low soil diffusibility and the high plant demand and uptake 
frequently generate a P depletion zone around of the root surface (Trenbath, 1976; 
Jungk & Claassen, 1989). In order to face its needs, plant have evolved several 
strategies to obtain P when it is not available (Vance et al. 2003; Hammond et al. 2004; 
Raghothama, 2005) among which AM symbiosis is one of the most important (Lum & 
Hirsch, 2003). 

The importance of AM symbiosis to absorb P from soil is related to the ability of 
AM hyphae to scavenge soil for P reserves normally unavailable to plants (Miyasaka & 
Habte, 2001) thanks to four features: (1) AM extraradical mycelium (ERM) is able to 
explore a higher soil volume than plant roots; (2) AM hyphae have a very small 
diameter if compared to both plant root and plant root-hair, thus increasing P absorbing 
surface; (3) AM fungi form polyphosphates in its cells, thus lowering internal P 
concentration and generating a high P gradient in AM cells respect to soil matrix; and 
(4) AM fungi produce organic acids and phosphatases which catalyze the release of P 
from organic complexes (Bucking & Shachar-Hill, 2005). Mycorrhizal P uptake 
pathway is regulated by molecular mechanisms which imply the expression of 
mycorrhizal P transporters to load P from soil into AM hiphae (Harrison & van Buuren, 
1995), its active translocation into the intraradical mycelium and delivery to the host 
root by means of specific P transporters (Paszkowski et al. 2002; Glassop et al. 2005). 

Reports on higher plant P uptake of AM plants than non mycorrhizal plants are 
too much to be all reported (McGonigle & Fitter, 1988; Crush, 1995; Ning & Cumming, 
2001; Cavagnaro et al., 2003; Gazey et al., 2004; van der Heijden et al., 2006; 
Schweiger et al., 2007). The most of pot studies involving AM fungi shows a higher P 
uptake, even if it not always related to plant growth responses (Smith et al., 2003, 
2004). Koide & Kabir (2000) showed that, in monoxenic conditions, mycorrhizal ERM 
was able to access to an organic P sources and transfer it to plant. On the other side, in 
non-mycorrhizal roots, P availability for plant is exclusively related to the presence and 
length of the root hairs (Marschner & Dell, 1994). The efficiency of P absorption by 
AM fungi varies with the AM fungus species (Jakobsen et al., 1992). In field 
conditions, AM fungi are normally present and studies about their importance in plant P 
uptake are not easy to perform because of the problems encountered in suppressing 
natural AM infection (Pedersen & Sylvia, 1997). However, many authors have 
attempted to perform field experiments, mainly focusing on the benefits of an enhanced 
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AM infection, and results seem interesting. Schweiger & Jakobsen (1998) directly 
measured P uptake by AM symbiosis in field grown wheat and found that the symbiosis 
is responsible for the most of P absorbed by plants thus confirming the results by Liu et 
al. (1998) and Burleigh & Harrison (1999). Black & Tinker (1977) found a higher total 
P uptake in mycorrhizal potatoes than non-mycorrhizal control, due to the higher DM 
yield because no differences on P concentration due to AM symbiosis were observed. 
Rangeley et al. (1982) had similar result in field grown white clover, while Hayman & 
Mosse (1979) found both a higher P concentration and higher total DM yield in AM 
clover than non AM control, above all in low-P fertilized soil. In pea, Kristek et al. 
(2005) found higher P concentration and P yield in AM than non-AM plants, especially 
in drought-stressed conditions. Finally, Al-Karaki et al. (2004) found that AM 
inoculation was capable of increasing P concentration and uptake in field grown wheat 
both in well-watered and drought-stressed conditions. It has sometimes been reported a 
null effect of AM symbiosis on P uptake in field grown soybean (Ganry, 1982), but it 
probably occurred because of the low soil P concentration (4.2 ppm measured with the 
Truog method) that impaired plant growth. 

1.4.2 EFFECTS ON N UPTAKE 

AM symbiosis could take up N from soil (Miller & Cramer, 2004) and further 
translocate it to the plant (Chalot et al., 2006). It has been shown that AM fungi respond 
to different N sources or N availability (Breuninger et al., 2004; Cappellazzo et al., 
2007). However, few studies are available on AM effect on plant N status and the 
impact of N absorbed by AMF on plant N balance is still unclear. AM symbiosis is 
active in the absorption of N from inorganic sources (Ames et al., 1983; Johansen et al., 
1993). In pot, using 15N-labelled nitrate as fertilizer, Tobar et al. (1994) shown that AM 
symbiosis considerably contributed to N uptake by lettuce both in drought-stressed and 
in well-watered conditions. The authors concluded that AM symbiosis is active in the 
uptake of nitrate from soil. However, AM symbiosis is better suited to take up N when 
it is in N-NH4

+ form as shown by Hawkins et al. (2000). 

Recent findings shows that AM fungi possess the machinery for a direct N uptake 
from organic sources (Cappellazzo et al., 2008). After an experiment in monoxenic 
conditions, Hawkins et al. (2000) showed that the presence of the AM fungus was able 
to absorb N from organic sources and transfer it to the host plant. They also showed that 
the amount of N adsorbed by the AM fungus from organic sources depends on the 
organic N form and on the AM fungus strain. The results from Hawkins et al. (2000) 
confirm the ones achieved by Cliquet et al. (1997) who showed that presence of AM 
symbiosis is responsible for an enhanced N acquisition from soil as both nitrate and 
amino-acids in ryegrass grown in a microcosm system. Such results accord with early 
and recent evidences about the ability of AM fungi to promote organic nitrogen 
decomposition and its further uptake (Hodge et al., 2001; Whiteside et al., 2009), but 
these effects have been studied only in microcosm systems and are not confirmed by pot 
and field studies. In addition, the mechanisms implied in the AM stimulus of organic N 
mineralization are still uncertain. In particular it is not clear if AM fungi promote the 
direct uptake of organic nitrogen, or if they stimulate the activity of N-mineralizer 
bacteria and promote the uptake of mineralized N.  
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Many legumes access to the atmospheric N source thanks the N2 fixing symbiosis 
and release great amount of N in soil as both dead tissues and exudates. When a legume 
is intercropped with a non N2 fixing species, N derived from the atmosphere (Ndfa) can 
become available to the non-fixing plants via a N transfer (Simard et al., 2002; Høgh-
Jensen, 2006). The AM symbiosis play an important role in the phenomenon of the N 
transfer between companion crops. First, AM fungi can mediate direct N transfer 
between a N donor and a N receiver plant (He et al., 2003) by directly linking the root 
systems of companion crops. Secondly, AM fungi can absorb root N rich exudates and 
further transfer it to the host plants (Kapulnik & Douds, 2000; Paynel et al., 2001). The 
amount of N transferred by AM hyphae is variable. Results from pot experiments 
suggest that AM symbiosis may facilitate interplant N transfer between legumes and 
grasses (Hamel et al., 1991; Frey & Schüepp, 1992 and 1993), while others obtained no 
AM effect on interplant N transfer (Rogers et al., 2001). In field, very few reports are 
available about AM effects on N transfer and results are still inconclusive. 

1.4.2.1 Effects on symbiotic N2 fixation 

Symbiotic N2 fixation is fundamental in the biogeochemical cycle of N. It 
represents the major N input for legumes in almost all environments and it is 
responsible for the most of available N to all plant communities. AM symbiosis can 
enhance legume symbiotic N2 fixation (Barea et al., 2005; Antunes et al., 2006a; Chalk 
et al., 2006) and receive in turn N as some report seem to suggest (Scheublin & van der 
Heijden, 2006). 

The interactions between AMF- and NFB-legumes symbioses can occur at both 
colonization and nutritional level. The nutritional aspect is obviously related to the 
enhanced nutrition of P, Zn, Cu and other immobile nutrients supplied by the AM fungi 
and important for the NFB-legumes symbiosis (Clark & Zeto, 2000; Vance, 2001). Li et 
al. (1991) found that Cu concentration and quantity in Trifolium repens was enhanced 
by AM symbiosis due to AM hyphal uptake. As a matter of fact, P is fundamental for 
symbiotic N2 fixation. In non limiting conditions, legume nodules have a 2-3 fold P-
dependency than roots in which are formed (Mosse, 1986; Almeida et al., 2000; 
O’Hara, 2001; Cuttle et al., 2003), especially in the earlier stage of their development 
(Smith et al., 1979; Asimi et al., 1980; Drevon e Hartwig 1997; Tang et al., 2001). P 
deficiency reduces the number and mass of nodules and the activity of N2-ase; it 
increases oxigen permeability of bacteroids so causing an oxidative damage to the N2 
fixing enzymatic machinery (Hunt & Layzell, 1993; Ribet & Drevon 1995; Vadez 
Rodier et al., 1996). AM symbiosis can also directly affect nodules or bacteroids thus 
establishing a tripartite symbiosis between AM fungi, N2 fixing bacteria and legumes. It 
is not known how the AM symbiosis directly affects the NFB-legume symbiosis. 
However it has been shown that AM fungi reduce the oxidative damage to nodules 
(Ruiz-Lozano et al., 2001a) and plant (Goicoechea et al., 1998; Porcel et al., 2003). 

AM symbiosis seems to cooperate with NFB-legume symbiosis also in alleviating 
water or salinity stress for the host plant (Azcón et al., 1988; Azcón & El-Atrash, 1997). 
The stimulus of AM symbiosis to N2 fixation and to legume growth is dependant on the 
combination of rhizobial strain and AM fungus (Rao et al., 1986). In a ad hoc 
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experiment, Azcón et al (1991) showed that inoculation of alfalfa grown in pot with 
different AM fungi and rhizobial strains resulted in different plant growth, %Ndfa (the 
percentage of total Ndfa above total plant N content) and N and P uptake. Similar 
results were found by Xavier & Germida (2002), who showed that lentil response (in 
terms of growth, harvest index, N and P content) to inoculation with different AM fungi 
or R. legumnosarum strains varied both with the Rhizobium strain and with the AM 
fungus. In field conditions, very reports are available on the effects of AM fungi on N2 
fixation by legumes. In soybean, Ganry et al. (1985) achieved higher Ndfa in AM than 
non AM crop when it was grown with a soluble phosphate fertilizer in a low P 
containing soil, but the same authors reported that AM inoculation didn’t produce any 
growth or Ndfa benefit when no P fertilizer was added. 

The tripartite symbiosis has a very high carbon cost, as also shown by several 
authors (Pang & Paul, 1980; Kucey & Paul, 1982; Harris et al., 1985). Generally, 
legumes inoculated with effective strains of AM fungi and N2 fixing bacteria have a 
higher photosynthesis rate than non-infected plants and this compensate for the C cost 
of the microsymbionts. In forage legumes subjected to mowing, photosynthesis rates are 
reduced and the AM symbiosis could compete with the NFB for carbon in the early 
regrowth stage. The response of both symbioses to above-ground plant removal is 
similar, but AM symbiosis seems to suffer less than nodules after plant clipping: 
nodules lose weight more rapidly than roots (Bayne et al., 1984), especially during the 
first 15 days after clipping (Vance et al., 1979), while AM fungal biomass is reduced 
less than root biomass (Bayne et al., 1984; Allsopp, 1998) and AM root colonization 
can even increase (Eom et al., 2001; Pietikäinen et al., 2009). In this phase, the 
competition for carbon between AM fungi and NFB can negatively affect the N2 
fixation rates of the N2 fixing symbiosis. Using field-grown Hedysarum coronarium 
subjected to repeated harvests, Barea et al. (1987) obtained a higher amount of Ndfa in 
the AM inoculated than the not inoculated crop and stated that a effective AM fungi-
legume combination could improve legume growth, N uptake and Ndfa as just as a P 
fertilization. In a similar experiment, Shivaram et al. (1988) found a higher amount of 
Ndfa in the AM than non-AM inoculated Macroptilium atropurpureum. However both 
authors (Barea et al., 1987; Shivaram et al., 1988) found no effects of AM inoculation 
on the %Ndfa indicating that the higher amount of Ndfa in AM inoculated than not 
inoculated crops depended solely on the promotion of plant growth and not by a 
stimulus of the N2 fixation activity. 

1.5 EFFECTS OF AM SYMBIOSIS ON SOIL BACTERIAL ACTIVITY AND 
COMMUNITIES 

The net of AM extraradical hyphae represent an ecological niche for bacteria. 
Bacteria living in the mycorrhizosphere are affected by AM fungal activity both 
directly, by its effects on soil matrix, and by indirectly influencing plant physiology and 
its relative effects on rhizosphere. Mycorrhizas also affect the community composition 
of soil bacteria (Marschner et al., 2001; Artursson et al., 2005) by different 
mechanisms: (1) modifying mycorhizosphere pH (Bago & Azcón-Aguilar, 1997), (2) 
affecting activity of free enzymes (Tarafdar & Marschner, 1994), (3) competing for 
inorganic nutrients (Christensen & Jakobsen, 1993), (4) decreasing the amount of root 
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exudation (Graham et al., 1981; Dixon et al., 1989) and (5) modifying root exudates 
compositions (Po & Cumming, 1997; Marschner et al., 1997). In addition, AM fungi 
release exudates which either promote or impair bacterial development and activity 
(Toljander et al., 2007). One of the most important AM exudates is surely glomalin 
(Rillig et al., 2002), a glycoprotein whose concentration is related to water stability of 
soil aggregates (Wright & Upadhyaya, 1998). The net of AM extraradical hiphae itself 
contribute to soil aggregates stability by enwrapping soil particles (Rillig & Mummey, 
2006). Because microorganisms are mainly present in soil aggregates, AM activity in 
soil can have positive effects on soil microbial population (Andrade et al., 1998). 
Moreover, it seems that bacteria can use senescent structures of AM fungi as pabulum, 
as also suggested by the enhanced chitinolitic activity in rhizosphere of AM plants 
(Abdel-Fatah & Mohamedin, 2000). 

Usually AM fungi decrease the growth rate of bacteria (Christensen & Jacobsen, 
1993) or induce them in a state of starvation (Marschner & Crowley, 1996; Marschner 
et al., 1997), though AM fungi may induce an increase in certain functional group of 
bacteria as actinomicetes and phosphate-solubilizing bacteria (Secilia & Bagyaraj 1987; 
Kothari et al., 1991; Posta et al., 1994; Toro et al., 1997). With respect to N cycle, 
Amora-Lazcano et al. (1998) found that AM symbiosis increased the population density 
of ammonia oxidizers, while reducing those of ammonifier and nitrifier bacteria. 

1.6 AIMS OF THE WORK 

The present thesis aimed to obtain information about the contribution of the AM 
symbiosis in alleviating the effect of abiotic stresses on crops grown in a typical 
Mediterranean environment and to test if AM symbiosis affects symbiotic N2 fixation 
and organic N mineralization activities and finally plant N uptake.  

In particular, two experiments were carried out. The first trial was performed 
under field conditions and had the specific aim to determine the effect of AM symbiosis 
on forage yield, quality, and biological N2 fixation of berseem (Trifolium alexandrinum 
L.) grown under both well-watered and drought-stressed conditions. 

The second trial was performed in pots to test the hypothesis that plant N uptake 
would be increased by the direct or indirect effects of AM fungi on OM decomposition 
process. In order to achieve this objective, it has been studied the effect of plant 
inoculation with AM fungi on soil enzymatic activity and microbial community, as well 
as the effects of AM symbiosis on plant N capture from different sources of organic 
matter. 
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2  MATERIALS AND METHODS 
 

2.1 EXPERIMENT 1 

Several pot studies have shown the beneficial effects of AM symbiosis on plants 
grown in water-stressed conditions; even if in other research the effects were absent or 
negative (Augé, 2001). However, limited information is available on the effects of AM 
symbiosis on crop drought tolerance under field conditions. In many Mediterranean 
areas, spring rainfall is scarce, which stresses plants and limits crop productivity. In 
such environments, AM symbiosis could play an important role in alleviating the effects 
of drought on crop yield and quality. The aim of this field experiment was to determine 
the effect of AM symbiosis on growth of berseem (Trifolium alexandrinum L.) grown 
under both well-watered and drought-stressed conditions. This experiment was funded 
by the progetto SI.CO.BIO.S, Regione Siciliana, Italia. 

2.1.1 SITE DESCRIPTION 

The experiment was carried out in 2007–2008 at the Pietranera field station, in 
Sicily (Italy) in a Mediterranean area (37°33’N – 13°30’E, 170 m a.s.l.) on a Vertic 
Haploxerept soil on which wheat was previously grown. The topsoil (0–40 cm) 
characteristics were: 38% clay, 25% silt, and 37% sand; pH 8.4; 1.27% organic matter; 
and 0.85‰ total N. The experimental site has a semi-arid climate (as defined by 
Emberger, 1955). Long-term mean annual rainfall is ~550 mm, mostly during the 
autumn–winter period (74%), and with a lesser amount during spring (18%). The mean 
minimum and maximum temperatures are 10.0 °C and 23.4 °C, respectively. Natural 
AM spore population in the native field involved the genera Glomus and Acaulospora. 
Overall AM spore density was 5 spores 10 g-1 air-dried soil. AM hyphal mass was not 
detected.  

2.1.2 TREATMENT ESTABLISHMENT AND CROP MANAGEMENT 

There were two treatments: (1) soil moisture regime: rainfed (DS) or well-watered 
(WW); (2) crop mycorrhization: AM inoculation (+AM) or AM suppression (–AM). 
Minimal rainfall occurred during the spring (55% below long-term average), resulting 
in drought-stressed conditions for crops in the rainfed treatments. So, well-watered 
crops received sprinkle irrigation (20 mm at 116 days after sowing [DAS] and 70 mm at 
123 DAS). Suppression of mycorrhizal symbiosis was achieved by spraying plots with 
systemic fungicides as a drench. In order to suppress spore germination, Captan (20 mg 
a.i. m-2), Carbendazim (20 mg a.i. m-2), and Benomyl (20 mg a.i. m-2) were used at 
sowing. During the growth of the crops, Benomyl, Fenpropimorph, and Carbendazim 
were applied once per month at a rate of 10, 5, and 5 mg a.i. m–2, respectively in order 
to reduce AM hyphal growth and AM symbiotic activity. These fungicides are capable 
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of suppressing AM symbiosis without affecting plant growth (Dodd & Jeffries, 1989; 
Sukarno et al., 1993; Udaiyan et al., 1995; Kjøller & Rosendahl, 2000; Schweiger et al., 
2001). Mycorrhizal sub plots received and equal amount of water. AM inoculation 
involved the application of a commercial AM inoculum at a rate of 12 g per kg of seed 
following the manufacturer’s recommendations. The inoculum consisted in pure spores 
of Glomus intraradices Schenk and Smith (1000 spores g–1) and Glomus mosseae (T.H. 
Nicolson and Gerd.) Gerd. and Trappe (1000 spores g–1). The experimental design was 
a split plot design replicated 4 times with water regime as the main plot and 
mycorrhization as the sub-plot. Sub plot was 72 m2. The experimental design included 
all factorial combinations. 

Soil was ploughed at 30 cm depth on summer and arrowed on autumn to control 
weeds and prepare suitable seedbed conditions. Such tillage practices presumably 
reduced the amount of natural AM inoculum, especially the AM hyphal mass (Kabir, 
2005). Seeds (2.85 g 1000 seed-1) of berseem (T.alexandrinum cv Lilibeo) were sown 
by hand at the 3rd of January 2008 in rows 25 cm apart. Sowing density was 1200 viable 
seeds m–2. Weeds were removed by hand. 

Plots were cut at 5 cm stubble height at 76 (first cut) and 116 (second cut) DAS. 
After the second cut, berseem regrowth was measured cutting different microplots (0.6 
m2 wide) at 7, 14, 21, and 28 days after the second cut (DAC).  

The 15N isotope dilution technique was used to estimate N2 fixation by berseem, 
using annual ryegrass (Lolium multiflorum var. westerwoldicum cv. Elunaria) was used 
as the reference crop (ryegrass received the same treatments as berseem; sowing density 
was 1200 viable seeds m–2). The 15N-labelled fertilizer ([NH4]2SO4 with an isotopic 
composition of 10 atom% 15N) was applied at 116 DAS (second cut) following the 
application procedure described by Høgh-Jensen & Schjǿrring (1994). Briefly, 15N-
labelled fertilizer was applied as drench at a rate of 8 kg N ha–1 to two microplots in the 
middle of each sub plot. The area of 15N-fertilized microplots was 2.25 m2. The rest of 
the plot outside this area received an equal amount of non-labelled ammonium sulfate.  
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2.1.3 PLANT HARVEST AND ANALISYS 

Epigeic and hypogeic sample areas of berseem and ryegrass were harvested and 
analyzed for root AM infection and N concentration as shown in Tab. 2-1. 

 

Tab. 2-1 – Table summarizing date of sampling and analysis on berseem (B) and 
ryegrass (R). DAS and DAC for ‘days after sowing’ and ‘days after the second cut’, 
respectively. 

DAS DAC Description % AM 
colonization Biomass N and 15 N 

concentration
55 - B+R
76 - first cut B+R*

116 0 second cut B+R*

123 7 regrowth B
130 14 regrowth B+R B+R B+R
137 21 regrowth B

144 28 regrowth B+R B+R B+R
* Ryegrass was harvested above cutting height, only.  

 

At each cut, the sample areas were harvested both above and below ground by 
removing the top 20 cm of soil. Plants were counted and separated into taproots, 
removed leaves, and stems and heads. At first cut (76 DAS) and second cut (116 DAS), 
residual leaves and stems (below cutting height) were also separated. The fresh weight 
of each sample was determined, and the leaf area of the leaves (separately for residual 
and removed at the first and second cut) was immediately measured on a 10 g 
subsample. Each subsample was oven dried and weighed. Similar measurements were 
done for ryegrass. 

Biomass samples of both berseem and ryegrass, collected at 14 and 28 DAC, were 
analyzed for total N and 15N enrichment (δ15N), using an elemental analyzer – isotope 
ratio mass spectrometry (EA-IRMS, Carlo Erba NA1500). 

At 7, 14, 21, and 28 DAC, ~1 kg soil was taken from two soil layers (0-20 cm and 
20-40 cm depth), weighted and dried at 105° until constant weight. Soil dry weights 
were recorded and soil moisture content was measured by gravimetric method. 

At 55 DAS and at 14 and 28 DAC, five plants with their roots were collected in 
each treatment by careful excavation the top 20 cm of soil and taken to laboratory. 
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Lateral roots were excised (root tips were discarded), rinsed free of soil and washed in 
distilled water, cut in pieces of 1 cm length and mixed. A representative sample of roots 
(more or less 2 g) per sample area was cleared with 10% (w/v) KOH and stained with 
0.05% (v/v) trypan blue using the method described by Phillips & Hayman (1970). Root 
colonization by AM fungi was further measured according to Giovannetti & Mossee 
(1980).  

2.1.4 CALCULATIONS AND STATISTICAL ANALISYS 

Data on 15N enrichment of biomass were used to calculate the percentage of 
clover nitrogen derived from symbiontic N2 fixation (%Ndfa) according to Fried and 
Middleboe (1977): 

 100)
NAtom%
NAtom%(1%Ndfa

ryegrass
15

berseem
15

×−=  

where Atom%15Nberseem represents the Atom%15N excess of berseem tissue, and 
Atom%15Nryegrass represents Atom%15N excess of ryegrass tissue. The 15N-natural 
abundance of the atmosphere (0.3663%15N) was used for calculating the Atom % 15N 
excess of both crops. The amount of N fixed by berseem clover was estimated as: 

100
Ndfa%NcloverTotalfixedN ×=   

Analysis of variance (procedure ANOVA, SAS Institute, 2004) was performed 
separately per cut according to the experimental design. All measured variables were 
assumed to be normally distributed. All variables corresponding to proportions were 
arcsine transformed before analysis to assure a better fit with the Gaussian law 
distribution. Treatment means were compared using Tukey's test (P values) at 5% 
probability level. 
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2.2 EXPERIMENT 2 

Where mineral fertilizers can’t be used, N availability for plant depends on net N 
mineralization (Nadelhoffer et al., 1985) and plants compete for N with soil 
microorganisms, such as soilborne fungi and bacteria. The effect of AM symbiosis on 
mineralization of organic nitrogen is still unclear. Early studies have shown that AM 
fungi can improve plant N from organic matter (e.g. Hodge, 2003), but no information 
is available about its mechanism. 

The aim of this experiment was to determine the effects of AM symbiosis on the 
process of organic N mineralization, on plant N capture and on soil bacterial 
community. This experiment was funded by the fondo Ex-60% 2007 “Ruolo della 
simbiosi micorrizica sull’efficienza di utilizzazione dell’azoto in differenti genotipi di 
frumento”, Università degli Studi di Palermo, Italy; and by the proyecto AGL2008-
00742/AGR, Ministerio de Ciencia e Innovación (MICINN), Spain. 

2.2.1 GROWTH CONDITIONS, EXPERIMENTAL DESIGN AND TRATMENT ESTABLISHMENT 

The experiment was conducted at Experimental Station of the Zaidín (CSIC) 
(Granada, Spain) during the winter of 2008 in a conditioned glasshouse, with 25/19 °C 
day/night temperature, a photoperiod of 16 h. Additional light at a photosynthetic 
photon flux density of 460 µmol m-2 s-1 was provided if necessary. 

A complete randomized factorial design replicated 4 times with two factors was 
adopted. Treatments were (1) AM inoculation: Glomus mosseae (T.H. Nicolson and 
Gerd.) Gerd. and Trappe isolate BEG 12; and not inoculated control; (2) addition of 
organic matter (OM): soil amended with 15N-enriched biomass of maize (root or 
leaves); not amended soil. An identical set of pots with OM treatments and no plant was 
made in order to evaluate the effects of adding OM on N mineralization processes and 
bacterial community. For the mycorrhizal treatments, inoculum was obtained from a 
thoroughly homogenized rhizosphere sample coming from a open-pot culture of 
Sorghum bicolor L. and consisted in soil, spores and mycelia. AM inoculum was added 
to the appropriate pots at a rate of 1 g inoculum per pot. For the OM treatments: 15N-
enriched organic matter was prepared by a previous maize cultivation on 15M enriched 
soil. Maize was harvested at before anthesis and separated in roots, stems and leaves. 
Fine roots (under ~1 mm diameter) and leaves were used as organic amendant. Roots 
and leaves were cut in ~1 mm and ~1 mm2 pieces, respectively. AM colonization of 
maize root was 17%. N concentrations (in parenthesis, the corresponding 15N abundance 
[APC] are given) of maize tissues was 1.90% (4.78% Atom percent PC) and 1.56 
(3.94% APC) for leaves and roots, respectively. Organic biomass was oven dried at 80 
°C for 1 day before adding to mixture.  

Each pot (10 cm diameter, 11 cm height, 72 in total) was filled with 600 g of a 
quarts sand:soil mixture (2:1). Soil properties were 37% sand, 43% silt, 20% clay; 1.8% 
organic matter, pH 8.1 (soil:water 1:1); 0.12 mS cm-1 saturated E.C. (25°C); 1.05‰ , 6.2 
ppm and 132 ppm of N, P (as P2O5) and K (as: K2O), respectively; 10.06% total Ca; 99 
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ppm soluble Ca and 16 ppm Mg. Before mixing soil with sand, soil and AM inoculum 
bacterial microflora were extracted by suspending 500 g soil or 500 g inoculum in 1.5 l 
distilled water. After shaking and decanting, the suspension was filtered (11 µm mesh) 
in order to discard natural AM fungi. After shaking and decanting, the suspension was 
filtered (11 µm mesh) in order to discard natural AM fungi. Both soil and sand were 2 
mm sieved and autoclaved (121ºC for 20 min). 15N enriched maize biomass was added 
at a rate of 4.6 g dry OM per one kg mixture and both OM amended and not amended 
mixtures were steam sterilized at 95°C for 1 h during three consecutive days in order to 
completely impair biological (both fungal and bacterial) activity. In order to normalize 
the differences in the starting microbial community, each pot received 30 ml soil 
suspension filtrate and 30 ml AM inoculum suspension filtrate before starting the 
experiment (Koide & Li, 1989; van der Heijden et al., 1998). OM added with AM 
inoculum was negligible if compared to the quantity added for the OM treatment.  

Seeds of wheat (cv. Simeto) were surface sterilized and germinated on wet filter 
paper in Petri dishes for 3 days. Five seedling were transplanted per each pot and 
thinned to 3 plants four days after transplanting. During the experiment, each pot 
received 5 ml modified Hoagland’s solution (Hoagland & Arnon, 1950) and 50 ml tap 
water once per 5 and 3 days, respectively. Modified Hoagland’s solution used in the 
experiment was lacking P and had 10% N strength, only.  

One third of the pots (4 pots per each treatments combination) were harvested at 7 
weeks after transplanting (WAT), while the others two were harvested at 9 and 13 
WAT, respectively. Due to a technical problem of the greenhouse, air temperature 
reached a maximum daily temperature of 35°C during the lest week of the experiment 
and it resulted in a thermal stress for plants that slightly reduced plant yield. During this 
week, soil temperature was maintained by giving pot 50 ml water once a day. At each 
harvest, a sample of soil per pot and total plant biomass were taken. Soil samples were 
saved at -80°C for further analyses. 

2.2.2 PLANT ANALYSIS 

Plant biomass was immediately separated into roots, leaves+stems and heads and 
fresh weights were recorded. Roots were rinsed free of soil, cut into 1-cm fragments and 
thoroughly mixed. Representative root samples were taken for determination of root 
AM colonization and fungal alkaline phosphatase (ALP) and succinate dehydrogenase 
(SDH). Shoots, heads and remaining roots were oven dried at 80 °C for 24 h and dry 
weight was taken. For measuring AM root colonization, root samples was cleared with 
10% (w/v) KOH and stained with 0.05% (v/v) trypan blue using the method described 
by Phillips & Hayman (1970). For measuring ALP and SDH, root samples were 
previously cleared (as described by Vierheilig et al., 2005) for 2 h in a solution 
containing 0.05 M Tris/citric acid (pH 9.2), 0.05% sorbitol, 15 units ml-1 cellulase and 
15 units ml-1 pectinase (both enzymes were from Aspergillus niger). Roots samples 
were subsequently rinsed in distilled water and placed in the approriate staining for ALP 
and SDH as described in Tisserant et al. (1993) and Smith & Gianinazzi-Pearson 
(1990), respectively. Measures of root AM colonization, ALP and SDH fungal activities 
were made by observing root pieces under the microscope and counting 250-300 total 
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intersections by the grid intersect method (Giovanetti & Mossee, 1980). Above ground 
and root plant biomasses were analyzed for total N and 15N enrichment, using an 
elemental analyzer – isotope ratio mass spectrometry (EA-IRMS, Carlo Erba NA1500). 

2.2.3 SOIL ENZYMATIC ACTIVITY, DNA EXTRACTION AND PCR-DGGE ANALYSIS 

Soil enzymatic activities were measured for both wheat-cultivated and 
uncultivated pots. Four enzymatic activity were measured: dehydrogenase activity 
(according with García et al., 1997) as an index of microbial activity; casein protease 
(also referred as ‘casein hydrolizing activity’ or ‘caseinase’, measured according with 
Ladd & Butler, 1972) as measure of protein hydrolysis to mono- and dipeptides; BAA-
protease (according with Nannipieri et al., 1980; and with Tabatabai, 1994) and urease 
(according with Kandeler & Gerber, 1988) as measure of amino-acids deamination.  

The total DNA was extracted from 250 mg of soil samples collected at the last 
sampling date (13 WAT) and from the bacterial inoculum (4 extractions per each pot) 
by the bead-beating method, following the manufacturers’ instructions MoBio 
UltraClean Soil DNA Isolation kit (MoBio Laboratories Inc., Solana Beach, CA, USA) 
with a few modifications, including the repetition of the second step (Inhibitor Removal 
Solution) to remove trace concentrations of PCR inhibitors. The DNA samples from 
each treatments were mixed and checked for concentration and quality using the 
NanoDrop® ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington, 
Delaware; USA). PCR was performed with the 16S rRNA universal bacterial primers 
(TIB®MOLBIOL, Berlin, Germany) F341, R907 and GC-F341 (P3) to amplify the V3–
V5 hypervariable regions of 16S rRNA genes. Primer P3 contains the same sequence as 
F341 but with an additional 40-nucleotide GC-rich sequence (GC clamp) at its 5′ end 
(Yu & Morrison, 2004). The PCR program was initiated by a hot start of 5 min at 
94 °C; after 9 min of initial denaturation at 95 °C, a touchdown thermal profile protocol 
was used, and the annealing temperature was decreased by 1 °C per cycle from 65 °C to 
55 °C; then 20 additional cycles at 55 °C were performed. Amplification was carried out 
with 1 min of denaturation at 94 °C, 1 min of primer annealing, and 1.5 min of primer 
extension at 72 °C, followed by 10 min of final primer extension. The total reaction 
mixture of the first PCR consisted of 25 µl with the following ingredients: approx. 1 ng 
of extracted DNA, 1 µM primer F341, 1 µM primer R907, 0.2mM dNTPs, 5 U Taq 
polymerase (Bioline GmbH, Germany), 1X PCR buffer (included in the ) and 1.5 mM 
MgCl2, and sterile Milli-Q water to a final volume of 25 µl. The second amplification 
was performed by using 1 µl of the products of the first reaction as template. In this 
amplification, primers P3 and R907 were used under the same conditions as described 
above. PCR products were analyzed by electrophoresis in 2% agarose gels stained with 
GelRedTM. 

PCR-DGGE was performed to evaluate the effect of treatments on bacterial 
community of soil. DGGE analyses were conducted 4 times, using 5, 7, 10 and 15 µl of 
the latter PCR product, respectively, loaded into a 45–60% urea–formamide–
polyacrylamide gradient gel. An INGENYphorU System (Ingeny International BV, The 
Netherlands) was run at 100 V for 16 h at 59 °C to separate the fragments. Gels were 
silver stained according to Radojkovica & Kusic (2000) and scanned. Band patterns 
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from the clearest gel were further analyzed. Band patterns in different DGGE lanes were 
compared with the UVImap Analysis software (UVItec Limited, Cambridge, UK). The 
lanes were normalized to contain the same amount of total signal after background 
subtraction and the gel images were straightened and aligned to give a densitometric 
curve. Bands were assigned and matched automatically and then checked manually. 
Band positions were converted to RF values between 0 and 1.  

2.2.4 CALCULATIONS AND STATISTICAL ANALISYS 

According to Allen et al. (2004), the N Recovery Fraction (%NREC; i.e. the N 
deriving from OM above N applied with OM) of wheat was calculated as follows: 

b
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15

b
15
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15
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NNNN

−
−

×=        ;      100
f

NN% REC
REC ×=  

where Nt is the total N content (g pot-1) in wheat; 15Na , 15Nb , and 15Nc are the 15N 
isotopic concentration of wheat grown with the organic amendant (either maize leaves 
or roots), without the organic amendant, and of the organic amendant (either maize 
leaves or roots), respectively. Finally, f is the total N of the organic amendant (either 
maize leaves or roots). 

Profile similarity by DGGE lanes was calculated by determining species evenness 
(E) and abundance (A) as follows: 

totmax n/nA;n/nE ==  

where n is the number of lines from a given band; nmax is the number of band from 
the line with most number of bands; and ntot is the total number of line detected in all 
DGGE lines (i.e. the sum of all common and uncommon bands). 

Nei and Li’s similarity coefficients (Nei & Li, 1979) was also calculated for the 
total number of lane patterns from the DGGE gel and the similarity coefficients 
calculated were then used to construct a dendrogram using the unweighted pair-group 
method with arithmetical averages (UPGMA). 

DGGE banding data were used to estimate three diversity indices by treating each 
band as an individual operational taxonomic unit (OTU). For these analyses, each band 
was presumed to represent the ability of that bacterial species to be amplified (Ibekwe 
& Grieve, 2004). Each banding pattern was used as a a semi-quantitative measure of 
bacterial diversity (Dilly et al., 2004). The Shannon index of general diversity H′ 
(Shannon & Weaver, 1963) and the reciprocal Simpson index of dominance D2 
(Simpson, 1949) were calculated from the number of bands present and the relative 
intensities of the bands in each lane. The similarity coefficients calculated were then 
used to construct a dendrogram using the unweighted pair-group method with 
arithmetical averages (UPGMA). Estimates of the number of clusters (soil bacterial 
communities) were achieved using pseudo F and t2 statistics (Milligan & Cooper, 
1985). The relevance of the cluster tree was evaluated by computing the cophenetic 
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correlation coefficient (routine COPH of the NTSYS-pc package). The closer the 
cophenetic coefficient to 1, the more relevantly the cluster tree reflects the structure of 
the data. Finally, matrices based on and DGGE banding pattern and enzymatic activities 
distances were compared calculating the Mantel’s test statistic Z (Mantel, 1967), and 
significance was determined using 1000 permutations (routine MXCOMP of the 
NTSYS-pc package; Rohlf, 1998). 

Moreover, Shannon index of equitability EH was calculated by dividing H′ by lnS. 
The intensity of the bands was reflected as peak heights in the densitometric curve. The 
Shannon H′ and Simpson D2 indexes were calculated from the following equations: 

 

∑ ∑=∗−= 2
2

' /1);log( PiDPiPiH  

where Pi = ni/N; ni is the height of peak and N is the sum of all peak heights in the 
curve. 

DGGE bands can be considered as the ability of that bacterial taxonomic unit to 
be amplified (Ibekwe & Grieve, 2004) and Dilly et al. (2004) proposed DGGE banding 
pattern as a semi-quantitative measure of bacterial diversity. To test if the similarities 
observed within and between samples were greater or less than those expected by 
chance, band matching data were stored as a binary matrix and analyzed using Raup and 
Crick’s probability-based index of similarity SRC (Raup & Crick, 1979). The SRC is the 
probability that the randomized similarity would be greater than or equal to the 
observed similarity, and SRC values above 0.95 or below 0.05 signify similarities and 
differences, respectively, which are not random assortments of the same species (bands 
or OTUs) (Rowan et al., 2003). SRC was calculated using the PAST (Palaeontological 
statistics, version 1.97) program (Hammer et al., 2001). 

Data on plant production, quality, root AM infection and activity and on soil 
enzymatic activities were subjected to analysis of variance (ANOVA) according to the 
experimental design. Data of enzymatic activity from unplanted and wheat-cultivated 
pots analyzed separately. All measured variables were assumed to be normally 
distributed. All variables corresponding to proportions were arcsine transformed before 
analysis to assure a better fit with the Gaussian law distribution. Treatment means were 
compared using Tukey's test (P values) at 5% probability level. 
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3  RESULTS AND DISCUSSION 
 

3.1 EXPERIMENT 1 

Total rainfall during the growing season was 13% lower than the long term 
average (551 mm). During spring, rainfalls were markedly lower (–56%) than normal 
and it caused drought stressing conditions for the crop. Average, minimum and 
maximum temperatures were similar to long-term averages (Fig. 3-1). 
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Fig. 3-1 – Daily average air temperature and daily and cumulated rainfall during the 
2007–2008 growing season at the study area in Pietranera field station (37°33’N – 
13°30’E, 170 m a.s.l.), Sicily, Italy. 
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3.1.1 BIOMASS PRODUCTION AND ROOT COLONIZATION BY AM FUNGI AT THE FIRST 
AND SECOND CUT 

At 55 DAS, mycorrhizal infection in +AM treatments was 32.4% and 23.6% for 
berseem and ryegrass, respectively. The fungicides applied negatively affected the root 
infection by AM fungi. Root AM colonization in –AM treatments was 7.0% in berseem 
and 1.7% in ryegrass. These results accord with reports from pot and field studies by 
several authors (Dodd e Jeffries, 1989; Sukarno et al., 1993; Udaiyan et al., 1995).  

At 76 DAS (first cut), root dry matter (DM) yield, aboveground biomass (both 
removed and residual), and respective Leaf Area Indices (LAIs) of berseem were 
significantly higher in the +AM than the –AM treatment, whereas, at 116 DAS (second 
cut) no significant effect of mycorrhization treatment were observed (Tab. 3-1).  

Given C limitation induced by the detopping of berseem, the advantages of the 
AM symbiosis were probably neutralized by the C cost of the AM fungi. Koide & Elliot 
(1989) and Kiers & Denison (2008) found that plants should suppress symbiotic 
association if the benefits are smaller than the C costs. On the other side, Goss & de 
Varennes (2002) and Ganry et al. (1985) argued that AM symbiosis was important in 
nutrient uptake in the early phase of the crop cycle, when roots are not well developed 
and still have a low nutrient absorbing ability. This could explain why the effects of AM 
treatments were significant only at the first cut. In contrast with results from the present 
study, Barea et al. (1987) found no effect of inoculation of AM fungi on Hedysarum 
coronarium plants at the first harvest, but in the subsequent regrowths AM inoculation 
significantly enhanced dry matter yield comparing with not inoculated plants. AM 
infection didn’t affect ryegrass production and plant traits both at the first and second 
cut. Kaschuk et al. (2010) reported that yield response of legumes to AM infection in 
field varies with the plant species and range from yield depression to yield 
improvement. 
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Tab. 3-1 – Berseem above ground (removed and residual) and root biomass and 
ryegrass above ground removed biomass, LAIs and % leaves in mycorrhizal inoculated 
(+Myc) mycorrhizal depressed (-Myc) crops at 76 (first cut) and 116 (second cut) DAC. 
Values are means for 8 replicates. Significance of treatments is given: ns, non 
significant; *, p < 0.05; **, p < 0.01.  

- Myc + Myc - Myc + Myc

g DM m-2 113 136 ** 393 410 ns
LAI 2.51 2.87 * 4.62 4.97 ns
% leaves 74.7 68.2 ** 40.6 41.5 ns

g DM m-2 46 51 * 155 158 ns
LAI 0.44 0.51 * 1.31 1.33 ns
% leaves 32.2 32.8 ns 28.6 28.5 ns

g DM m-2 35 41 * 36 36 ns

g DM m-2 45 45 ns 383 391 ns
LAI 1.0 1.0 ns 4.53 4.49 ns
% leaves 100.0 100.0 ns 51.0 46.8 ns

First cut Second cut

Removed above ground biomass

Residual above ground biomass

Removed above ground biomass

Berseem (Trifolium alexandrinum )

Root biomass

Ryegrass (Lolium multiflorum )

 

 

3.1.2 EFFECTS OF AM INOCULATION ON BERSEEM PRODUCTION AND SYMBIOTIC N2 
FIXATION UNDER DIFFERENT WATER REGIMES 

After the second cut, the effects of AM symbiosis was studied on berseem clover 
grown in the field under both drought and well-watered conditions as described in the 
section 2.1.2. 

As expected, soil moisture contents, measured at 7, 14, 21, and 28 days after the 
second cut (layers 0-20 cm and 20-40 cm) were always significantly higher in the well-
watered than the drought-stressed conditions (Fig. 3-2). Soil moisture contents weren’t 
affected by AM treatment and interaction between water regime and AM treatment has 
never been found. 

At 14 DAC, AM infection was on average 8.8% and 37.7% in the –AM and +AM 
treatments, respectively, and no effect of the soil moisture regime treatment was 
observed. At 28 DAC, root AM colonization was very low in the –AM treatments 
irrespective of soil moisture regime (8.7% on average). In +AM treatments, AM 
infection was significantly higher in the drought-stressed than well waters treatments 
(66.0% and 52.4%, respectively). Such result is consistent with findings from pot 
studies (e.g. Azcón et al., 1988, for alfalfa), while other authors (Meddich et al., 2000) 
have observed a higher AM infection in well-watered than drought-stressed berseem. 
However, in the latter experiment, drought was more severe than in our research. I 



Experiment 1 Results and discussion 
 

 - 30 -

hypothesize that the effects of drought vary with its intensity: in moderate stress 
conditions, the plant favours AM infection to take advantage of the symbiosis, while 
when drought is severe, probably the plant lacks of photosynthates to feed AM fungi 
and so AM infection is reduced. 
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Fig. 3-2 – Effects of treatments on soil moisture content (0 to 20 cm and 20 to 40 cm 
depth) during regrowth after the second cut. Values are means for 4 replicates. WW, DS 
for well-watered and drought-stressed plots, respectively; +Myc, and –Myc for 
mycorrhizal inoculated mycorrhizal depressed plots, respectively. Significance of 
treatments per each cut is given (W, soil moisture treatment; M, crop mycorrhization 
treatment, W*M, interaction): ns, non significant; *, p < 0.05; **, p < 0.01; ***, p < 
0.001.  
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The effects of treatments on berseem above ground (AG) biomass during 
regrowth after the second cut is shown in Fig. 3-3. Since from 7 DAC, berseem biomass 
was significantly higher under well-watered than drought-stressed conditions. The 
differences determined by water regime markedly increased at 14 DAC and remained 
unvaried at 21 and 28 DAC.  
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Fig. 3-3 – Effects of mycorrhization and soil moisture regime on berseem above ground 
biomass during regrowth after the second cut. Values are means for 4 replicates. WW, 
DS for well-watered and drought-stressed crops, respectively; +Myc, and –Myc for 
mycorrhizal inoculated mycorrhizal depressed crops, respectively. Significance of 
treatments per each cut is given (W, soil moisture treatment; M, crop mycorrhization 
treatment, W*M, interaction): ns, non significant; *, p < 0.05; **, p < 0.01; ***, p < 
0.001. 

 

AM symbiosis didn’t affect AG biomass at 7 and 14 days after the second cut 
(DAC) both under weel-watered and drought-stressed conditions. It is probable that the 
benefits of AM symbiosis during the first regrowth phase were impaired due to a 
competition for carbon between AM fungi and shoots. Indeed, during this phase, 
legume regrowth ability is highly dependent on the plant’s capacity to mobilize C and N 
reserves stored in roots and stubble (Ta et al., 1990; Ourry et al., 1994; Volenec et al., 
1996; Avice et al., 1997) and on residual leaf area (Meuriot et al., 2004) to rebuild its 
photosynthetic apparatus and the high sink strenght of the AG parts of the plant could 
have limited the resources available for the AM fungi, and it didn’t produce any growth 
benefit. This hypothesis is confirmed by the fact that at 21 and 28 DAC, when plants 
have already rebuilt its photosynthetic apparatus to satisfy both shoots and AM fungi C 
demands, a higher AG biomass was observed in +AM than –AM treatment. 

The advantages of the AM symbiosis were higher in drought-stressed than well-
watered conditions, particularly at 28 DAC. This result is consistent with findings of 
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several pot studies (Azcón et al., 1988; Ruiz-Lozano et al., 1995; Marulanda et al, 2003; 
Porcel & Ruiz-Lozano, 2004). Several authors reported that the AM contribution to 
plant drought tolerance are related to drought avoidance mechanisms such as hyphal 
water uptake (Ruiz-Lozano et al., 1995) and enhanced plant osmotic adjustment 
(Goicoechea et al., 1998; Kubikova et al., 2001) that favour plant water uptake from 
soil. Some authors (Ruiz-Lozano et al., 1996; Ruiz-Lozano et al., 2001b) suggested that 
the advantages of the AM symbiosis in drought stressing conditions are related to a 
protection effect of AM fungi against oxidative damages generated by drought (Bartels, 
2001). However, other authors (Al-Karaki et al., 2004) observed a beneficial effect of 
an increased AM infection to yield and quality of wheat grown in field both in well-
watered and drought-stressed conditions. 

Both treatments applied (water regime and mycorrhization) didn’t singnificantly 
affect berseem root biomass in all sampling dates (Fig. 3-4). Other researches (Hawkins 
& George, 1999; Li et al., 2006) have found no differences in root dry weight due to the 
presence of the AM symbiosis. The hypogeic:epigeic biomass ratio was higher in plants 
grown in drought than well-watered conditions, and it wasn’t affected by the AM 
treatment (Fig. 3-5). 
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Fig. 3-4 – Effects of mycorrhization and soil moisture regime on berseem root during 
regrowth after the second cut. Values are means for 4 replicates. WW, DS for well-
watered and drought-stressed crops, respectively; +Myc, and –Myc for mycorrhizal 
inoculated mycorrhizal depressed crops, respectively. Significance of treatments per 
each cut is given (W, soil moisture treatment; M, crop mycorrhization treatment, W*M, 
interaction): ns, non significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001 
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Fig. 3-5 – Effects of mycorrhization and soil moisture regime on hypogeic:epigeic 
biomass ratio of berseem during regrowth after the second cut. Values are means for 4 
replicates. WW, DS for well-watered and drought-stressed crops, respectively; +Myc, 
and –Myc for mycorrhizal inoculated mycorrhizal depressed crops, respectively. 
Significance of treatments per each cut is given (W, soil moisture treatment; M, crop 
mycorrhization treatment, W*M, interaction): ns, non significant; *, p < 0.05; **, p < 
0.01; ***, p < 0.001. 

 

A higher leaves, but lower stems and heads percentages were observed in biomass 
of berseem grown under well-watered than drought-stressed conditions (Fig. 3-6, Fig. 
3-7, Fig. 3-8 for leaves, stems and heads, respectively). The differences in stems and 
heads percentages due to the soil moisture content increased during time. Crop 
mycorrhization never affected the proportion of the botanical fractions on the epigeic 
biomass of berseem. 

Leaf area index was significantly higher in the well-watered than drought-stressed 
crop (Fig. 3-9), lhe highest LAI values were observed at 21 days after the second cut 
(5.42 and 2.88, respectively). For this trait, no significant effects of crop micorrhization 
were observed, as well. 
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Fig. 3-6 – Effects of mycorrhization and soil moisture regime on leaves percentage of 
berseem during regrowth after the second cut. Values are means for 4 replicates. See 
Fig. 3-5 for symbols and abbreviations. 
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Fig. 3-7 – Effects of mycorrhization and soil moisture regime on leaves percentage of 
berseem during regrowth after the second cut. Values are means for 4 replicates. See 
Fig. 3-5 for symbols and abbreviations. 
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Fig. 3-8 – Effects of mycorrhization and soil moisture regime on heads percentage of 
berseem during regrowth after the second cut. Values are means for 4 replicates. See 
Fig. 3-5 for symbols and abbreviations. 
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Fig. 3-9 – Effects of mycorrhization and soil moisture regime on LAI of berseem during 
regrowth after the second cut. Values are means for 4 replicates. See Fig. 3-5 for 
symbols and abbreviations. 
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Tab. 3-2 – N concentration, N uptake and Ndfa of berseem at 14 and 28 days after the 
second cut in crops grown under well-watered and drought-stressed (rainfed) 
conditions. +Myc, and –Myc for mycorrhizal inoculated mycorrhizal depressed crops, 
respectively. Each value is a mean for 4 replicates. Significance of treatments is given: 
ns, non significant; *, p < 0.05; **, p < 0.01. 

- Myc + Myc - Myc + Myc

N concentration
above ground N % 3.1 3.1 3.1 3.0 ns ns ns
root N % 1.8 1.8 1.9 1.9 ns ns ns

N uptake
above ground N g N m-2 9.2 10.6 13.1 13.1 * ns ns
root N g N m-2 0.6 0.7 0.8 0.8 ** ns ns

Ndfa
percentage 49.9 49.9 60.7 56.4 * ns ns
amount g N m-2 4.4 5.7 7.8 7.3 ** ns ns

N concentration
above ground N % 2.5 2.4 2.5 2.5 ns ns ns
root N % 1.8 1.8 1.8 1.8 ns ns ns

N uptake
above ground N g N m-2 12.3 13.7 16.9 16.2 * ns *
root N g N m-2 0.7 0.7 0.7 0.7 ns ns ns

Ndfa
percentage 40.4 52.9 50.3 52.7 * ns *
amount g N m-2 5.2 7.6  8.9 8.9 * * *

Measures at 14 days after the 2nd cut

Measures at 28 days after the 2nd cut

Drought-stressed
W*M

Well-watered
W M

 

 

N concentration in AG and root biomass of berseem and total N uptake didn’t 
vary with crop mycorrhization both at 14 and 28 DAC, except at 28 DAC where AM 
symbiosis enhanced total N uptake in the drought-stressed crop, only (Tab. 3-2). Such 
results are consistent with findings by other authors (Hawkins & George, 1999; 
Aliasgharzad et al., 2006). On the contrary, Azcón & Al-Atrash (1997) showed that AM 
symbiosis increased N concentration and N uptake in M. sativa of almost two- and 
threefold, respectively, comparing to the non-mycorrhizal control. Soil moisture 
regimes didn’t affect N concentration, but, given its effect on DM yield, it markedly 
influenced total N uptake at both 14 and 28 DAC.  

Ndfa (as both as percentage of total N uptake and the amount of N fixed) was 
significantly higher in well-watered than in drought-stressed conditions at both 14 and 
28 DAC. Several researches showed that symbiotic N2 fixation of legumes is highly 
sensitive to soil water deficiency (as reviewed by Zahran, 1999). This occurs because 
nodule activity is more sensitive to drought than shoot and root metabolism (Albrecth et 
al., 1994). Results from the present research seem to confirm this assumption; in fact 
the reduction of symbiotic N2 fixation caused by drought was higher than DM yield.  
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At 14 DAC, no effect of crop mycorrhization was observed on N2 fixation, but at 
28 DAC, a higher Ndfa was observed for +AM than –AM in the drought-stressed 
(rainfed) conditions, only. Many authors stated that N2 fixation can be improved by AM 
symbiosis, resulting in a higher amount of N fixed and in a higher proportional 
dependence of the legume on atmospheric N2 (Schoeneberger et al., 1989; Olesniewicz 
& Thomas, 1999; Goss & de Varennes, 2002; Antunes et al., 2006b) and in many cases 
such results were attributed to the benefits of AM fungi on improved P acquisition 
(Barea & Azcón, 1983). 

However very few data exist on the interactive effects of AM symbiosis and 
environmental factors on the performance of the tripartite symbiosis and particularly on 
the amount of symbiotic N2 fixation. Porcel et al. (2003) found that N2ase activity 
increased more in AM than non-AM soybeans in a controlled environment and that this 
increase was more evident under drought-stressed conditions. Ruiz-Lozano et al. 
(2001a) found that AM symbiosis was able to reduce nodule senescence under drought 
stress conditions and attributed this effect to a protection against oxidative damages 
which have detrimental effects on N2ase activity. 

3.1.3 BIOMASS PRODUCTION, QUALITY AND ROOT AM INFECTION OF RYEGRASS UNDER 
DIFFERENT SOIL MOISTURE REGIMES 

Data about biomass production, quality and root AM infection of annual ryegrass 
at 14 and 28 DAC are given in Tab. 3-3.  

Fungicide applied strongly depressed AM infection in both sampling moments. 
Root AM colonization of +AM treatments was significantly lower under well-watered 
than drought-stressed condition at both 14 and 28 DAC as already observed in berseem. 
Similar results were found by Ruiz-Lozano et al. (1995) for lettuce infected by G. 
mosseae and by Manske et al. (1995) in wheat. However, other authors found 
depressive (Al-Karaki et al., 2004) or null effects (Ruiz-Lozano et al., 1996) of drought 
stress on root AM colonization in non leguminous crops. As for berseem, here I 
hypothesize that the effects of drought vary with its intensity. In addition, it seems that 
the effect of water regime on root AM colonization of non-leguminous species seems to 
vary with the AM fungus strain: for example, Ruiz-Lozano et al. (1995) found a higher 
AM colonization in drought-stressed than well-watered lettuce inoculated by G. 
mosseae, but not with other AM fungi. In the present research, it is probable that plant 
stimulated AM infection in a higher extent under drought-stressed than well-watered 
conditions in order to overcome the stressing effect of water deficiency. However, plant 
growth was surely impaired by the lack of N fertilization irrespective of the water 
regime and mycorrhization treatments. This is clearly visible considering that plant N 
concentration at both 14 and 28 DAC was almost a half if comparing with N fertilized 
ryegrass grown in similar conditions (Giambalvo et al., 2005). 

A higher water availability resulted in both higher AG biomass and N uptake at 14 
and 28 DAC and it surely depended by the higher transpiration rates under well-watered 
than drought-stressed conditions, as also shown by Yin et al. (2009). No differences on 
root biomass have been found under the different water regimes.  
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Tab. 3-3 – Root AM colonization, above ground and root biomass, LAIs, % of leaves, 
stems and spikes, hypogeic:epigeic biomass ratio and N concentration and uptake of 
ryegrass at 14 and 28 days after the second cut in crops grown under well-watered and 
drought-stressed (rainfed) conditions. +Myc, and –Myc for mycorrhizal inoculated 
mycorrhizal depressed crops, respectively. Each value is a mean for 4 replicates. 
Significance of treatments is given: ns, non significant; *, p < 0.05; **, p < 0.01. 

- Myc + Myc - Myc + Myc

% 7.6 35.5 3.0 30.9 * * ns
Above ground biomass g DM m-2 229 230 379 406 *** ns ns

% leaves % 15.9 18.8 14.8 19.0 ns * ns
% stems % 17.1 19.0 16.4 17.8 ns ns ns
% spikes % 0.8 0.5 0.3 0.0 ns ns ns

LAI 1.30 1.26 2.57 2.80 * ns ns
Root biomass g DM m-2 29 36 33 45 ns *** ns
Hypogeic:epigeic biomass ratio 0.13 0.16 0.09 0.11 * * ns
N concentration

above ground N % 1.86 1.85 1.88 1.59 ns ns ns
root N % 0.72 0.76 0.65 0.62 * ns ns

N uptake
above ground N g N m-2 4.26 4.26 7.13 6.46 ** ns ns
root N g N m-2 0.22 0.28 0.21 0.28 ns ** ns

% 11.5 49.2 11.2 37.0 * * *
Above ground biomass g DM m-2 376 348 532 526 * ns ns

% leaves % 20.1 20.0 19.0 18.2 ns ns ns
% stems % 18.7 18.5 17.4 20.6 ns ns ns
% spikes % 14.5 15.6 14.9 15.7 ns ns ns

LAI 1.60 1.43 3.15 3.36 * ns ns
Root biomass g DM m-2 39 44 40 45 ns * ns
Hypogeic:epigeic biomass ratio 0.11 0.13 0.08 0.09 * ns ns
N concentration

above ground N % 1.73 1.40 1.66 1.30 ns * ns
root N % 0.83 0.76 0.76 0.61 ns ns ns

N uptake
above ground N g N m-2 6.50 4.87 8.83 6.84 * * ns
root N g N m-2 0.32 0.33 0.31 0.28 ns ns ns

Drought-stressed Well-watered

Root AM colonization

Measures at 28 days after the 2nd cut
Root AM colonization

W M W*M

Measures at 14 days after the 2nd cut
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AM symbiosis significantly enhanced root biomass irrespective of the soil 
moisture regime in both samplings. It’s usually believed that AM fungi impair root 
development by competing for C. However, other authors showed that AM can improve 
root growth, especially in nutrient limited environments (Behl et al., 2003; Schroeder & 
Janos, 2005; Li et al., 2006). In the present experiment, the lack of N or P fertilizers 
limited plant growth. In such conditions, AM fungi could have promoted root branching 
so resulting in a higher root biomass (Atkinson et al., 1994). The presence of the AM 
symbiosis had no effects on the above ground biomass at both 14 and 28 DAC. In 
agreement with the present results, several authors found that AM symbiosis can result 
in no positive AG growth responses at vegetative stages (Simpson & Daft, 1990; Baon 
et al., 1992; Graham & Abbott, 2000; Zhu et al., 2001; Ryan & Graham, 2002; Ryan & 
Angus, 2003; Li et al., 2005 and 2006). 

N concentration and uptake at 28 DAC was significantly lower in AM than non 
AM plants. Also Wallace et al. (1982) found a lower N uptake in plants subjected to 
clipping and attributed this effect to the competition for N and C between roots and AM 
fungi, especially when plants were grown under limiting N availability. Ganry (1982) 
found than AM symbiosis reduced the uptake of both fertilizer and soil N in a field 
experiment, while Hodge (2003) showed that AM fungi lowered N capture by Plantago 
lanceolata and L. perenne in monocultures and attributed this effects to the interplant 
competition for N. However, some reports showed that AM symbiosis promote N 
uptake by plants grown in N limiting (Azcón et al., 2008) or drought-stressed conditions 
(Goicoechea et al., 1997), while other authors found no positive effects of AM 
symbiosis on N uptake of plants grown under low N availability (Hawkins & George, 
1999) or after defoliation (Hokka et al., 2004). It seems that the contribution of AM 
fungi to N uptake becomes negligible when roots and hyphae exploit a common space 
(Hodge et al., 2000b; Mäder et al., 2000).  
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3.2 EXPERIMENT 2 

3.2.1 RESULTS  

Significances of data of wheat production and quality are shown in Tab. 3-4.                             
OM addition significantly affected root AM infection (Fig. 3-10), alkaline phosphatases 
(ALP, Fig. 3-19) and succinate dehydrogenase (SDH, Fig. 3-12) activities in all 
samplings. Roots AM colonization was on average 23,2%, 34,9% and 33,3% at 7, 9 and 
13 weeks after transplanting (WAT), respectively. ALP activity at the first (7 WAT) and 
second (9 WAT) sampling date was higher in plants grown in amended soils. At the 
third sampling (13 WAT), ALP activity of plants grown in root amended soil was lower 
than plants grown in leaves amended or not amended soils. SDH activity in mycorrhizal 
roots was enhanced at 7, but depressed 9 and 13 WAT, by the addition of organic matter 
to soil.  

Fig. 3-13 and Fig. 3-14 show wheat epigeic and root biomass, respectively. At the 
3rd sampling, root biomass decreased of almost 50% irrespective of treatments due to a 
thermal stress during the last week of growth, but the effect of AM symbiosis and OM 
addition to plant growth and N uptake were similar to those observed at the 1st and 2nd 
cut. AM symbiosis improved above ground plant growth in all sampling, except in 
wheat grown in root amended pot at the 7 and 9 WAT. Addition of organic matter 
lowered above ground and root biomass both in AM and non AM treatments. In 
particular, addition of maize roots to soil consisted in higher depressive effects than 
addition of maize leaves to soil, especially at the second (7 WAT) and third (9 WAT) 
samplings. AM symbiosis didn’t affect root:epigeic biomass ratio (R/S, Fig. 3-15) On 
average, R/S (Fig. 3-15) was higher plants grown in not amended that amended soil. An 
interaction between plant inoculation and OM addition was found. At the first and 
second sampling dates, R/S of plants grown in root amended and not amended soil was 
higher in non AM than AM plants, but didn’t affect R/S of plants in soil amended with 
maize leaves. At the third sampling date, AM symbiosis affected R/S in leaves amended 
soil, only.  

No differences in root and shoot N concentration were found among treatments 
applied (Tab. 3-4). On average, shoot N concentration was 1.36%, 1.13% and 1.23% at 
the first, second and third sampling date, respectively, while root N concentration was 
0.59%, 0.53% and 0.71%, respectively. Differences observed in total N uptake among 
treatments were similar to those observed in plant growth (data not shown). AM 
symbiosis in wheat significantly lowered both N recovery fraction (%NREC) (Fig. 3-16) 
and the percentage of plant N deriving from organic matter in comparison with non 
mycorrhizal treatments (Fig. 3-17).  
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Fig. 3-10 – Percentage of root AM colonization of wheat grown in soil amended with 
maize leaves (+LA, green lines) or maize roots (+RA, red lines) or non amended soil 
(Contr, blue lines) at 7, 9 and 13 weeks after transplanting. 
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Fig. 3-11 – Root AM colonization percentage after alkaline phosphatase (ALP) staining 
of wheat grown in soil amended with maize leaves (+LA, green lines) or maize roots 
(+RA, red lines) or non amended soil (Contr, blue lines) at 7, 9 and 13 weeks after 
transplanting. 
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Fig. 3-12 – Root AM colonization percentage after succinate dehydrogenase (SDH) 
staining of wheat grown in soil amended with maize leaves (+LA, green lines) or maize 
roots (+RA, red lines) or non amended soil (Contr, blue lines) at 7, 9 and 13 weeks 
after transplanting. 
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Fig. 3-13 – Epigeic biomass of wheat grown in soil amended with maize leaves (+LA, 
green lines) or maize roots (+RA, red lines) or non amended soil (Contr, blue lines) and 
infected with G. mosseae (+Myc, continuous lines with closed symbols) or not (dashed 
lines with open symbols) at 7, 9 and 13 weeks after transplanting. 
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Fig. 3-14 – Root biomass of wheat grown in soil amended with maize leaves (+LA, 
green lines) or maize roots (+RA, red lines) or non amended soil (Contr, blue lines) and 
infected with G. mosseae (+Myc, continuous lines with closed symbols) or not (dashed 
lines with open symbols) at 7, 9 and 13 weeks after transplanting. 
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Fig. 3-15 – Root:Epigeic biomass ratio of wheat grown in soil amended with maize 
leaves (+LA, green lines) or maize roots (+RA, red lines) or non amended soil (Contr, 
blue lines) and infected with G. mosseae (+Myc, continuous lines with closed symbols) 
or not (dashed lines with open symbols) at 7, 9 and 13 weeks after transplanting. 
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Fig. 3-16 –N recovery fraction (NREC) of wheat grown in soil amended with maize leaves 
(+LA, green lines) or maize roots (+RA, red lines) and infected with G. mosseae 
(+Myc, continuous lines with closed symbols) or not (dashed lines with open symbols) 
at 7, 9 and 13 weeks after transplanting. 
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Fig. 3-17 – Percentage of plant N deriving from OM in wheat grown in soil amended 
with maize leaves (+LA, green lines) or maize roots (+RA, red lines) and infected with 
G. mosseae (+Myc, continuous lines with closed symbols) or not (dashed lines with 
open symbols) at 7, 9 and 13 weeks after transplanting. 
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Significances of data from soil enzymatic activity measurement in both planted 
and unplanted pots are given in Tab. 3-5. In unplanted soil, addition of maize leaves 
resulted in a higher enzymatic activity in comparison with no OM addition (Fig. 3-18), 
but its effects on casein hydrolyzing activity  were observed in the first sampling date, 
only. Addition of maize roots didn’t affect casein hydrolizing and deammination 
activities in unplanted soil, but enhanced dehydrogenase activity in any of the sampling 
dates. 

In planted soil, on average, all enzymatic activities were higher in leaves amended 
than non amended soil. Addition of maize roots to soil lowered urease and caseinase 
activities in comparison with non amended soil. The effects of AM symbiosis on soil 
enzymatic activity varied with OM treatment (Tab. 3-5 and Fig. 3-19). In particular, 
AM improved dehydrogenase activity at the first sampling in soil amended with maize 
root, only, and at the second sampling date in soil amended with both maize leaves and 
root. At the third sampling, soil dehydrogenase activity was higher in all AM than non 
AM treatments. Caseinase activity was improved at the first but depressed at the third 
sampling by AM symbiosis, while no difference among treatments were found at the 
second sampling. This effect is particularly evident in soil amended with maize leaves. 
AM symbiosis significantly improved BAA-protease in all samplings. 

To compare DGGE profiles (Fig. 3-20), Nei & Li’s indices were determined and 
UPGMA was used to create a dendrogram describing pattern similarities (Fig. 3-20a). 
The cophenetic coefficient calculated between the correlation matrix and the cluster tree 
was 0.78, indicating that the cluster tree was fit to explicate the difference or similarities 
between treatments. The dendrogram generated showed that bacterial profiles from non 
mycorrhizal wheat rhizosphere clustered together with a homology coefficient of about 
66% (Fig. 3-21a, red coloured cluster), while bacterial profiles from AM wheat 
mycorrhizosphere clustered together with a homology coefficient of about 62% (Fig. 3-
21a, blue coloured cluster). Bacterial profile by non cultivated non amended pots 
clustered with profiles from non mycorrhizal rhizosphere, while bacterial profiles from 
unplanted soil with leaves-amendant clustered with profiles from mycorrhizal 
rhizospheres. Bacterial profile from unplanted soil amended with maize roots and from 
the original bacterial inoculum clustered alone.  

The structural diversity of the microbial communities was also examined by the 
Shannon (H′) and Simpson (D2) diversity indexes (Tab. 3-6). Higher H′ and D2 were 
found for bacterial communities of AM than non AM rhizosphere and for bacterial 
communities of non amended than leaves amended soils. Bacterial communities from 
root amended soils showed a higher degree of structural similarity to non amended soils 
than the ones from leaves amended soils. Tab. 3-6 also shows the SRC values obtained 
from the comparison of soils from all treatments and from the original bacterial 
inoculum. No significant dissimilarities (SRC < 0.05) were found. A similarity greater 
than that expected by chance (SRC > 0.95) was observed in many cases, above all 
between amended treatments. Raup & Crick probability-based indices of similarity 
showed that AM treatment determined stronger change in soil bacterial communities 
when no OM was applied in comparison to those of OM added soils (Tab. 3-6).                              
Fig. 3-20b shows the dendrogram generated by the Raup and Crick cluster analyses. 
The mantel test Z between matrices based on and DGGE banding pattern (UPGMA) 
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and enzymatic activities distances was 0.22, meaning little correlation between bacterial 
community structure and soil enzymatic activity. 
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Fig. 3-18 – DGGE profiles from bacterial communities of soils from the applied 
treatments. Contr, +LA, and +RA for non amended, amended with maize leaves and 
amended with maize roots, respectively; Original Inoculum for bacterial community 
from the applied inoculum of microorganisms. 
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Fig. 3-21 – (a) Nei and Li’s similarity coefficients (UPGMA dendrogram, tolerance 
1.0%) and (b) Raup and Crick probability-based index of similarity cluster analyses for 
DGGE profiles from bacterial community structure of soils from the applied treatments. 
Each cluster with a different colour. PS, and US for planted and unplanted soil, 
respectively; Contr, +LA, and +RA for non amended, amended with maize leaves and 
amended with maize roots, respectively; + Myc for soil in which wheat was cultivated in 
association with AM fungus G. mosseae; Original Inoculum for bacterial community 
from the applied inoculum of microorganisms. 
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3.2.2 DISCUSSION 

Percentage of root AM colonization of wheat increased until the second sampling 
(9 week after transplanting) and remained constant until the third one. In spring wheat, 
Zhu & Smith (2001) observed that AM colonization reached its highest values at the 
seventh week of growth. On average, root AM infection was similar to that observed by 
other authors in pot studies (Li et al., 2005 and 2006), but lower than that observed 
under field condition by Al Karaki et al. (2004). Probably, as shown by several authors 
(Bååth & Hayman, 1984; Koide, 1991; Allsopp & Stock, 1992), in pot the fine root 
system of wheat is able to completely explore the available soil volume and in such 
conditions the cost:benefit ratio of AM symbiosis for nutrient uptake is reduced, thereby 
plants reduce the amount of C fed to the AM fungus and root AM infection decreases. 
The highest values of ALP and SDH activities were observed at 9 WAT (2nd sampling), 
in accordance with Zhu et al. (2001). ALP is related to the rate of P transfer from AM 
fungi to plants and can be used as marker for analyzing the AM symbiotic efficiency 
(Tisserant et al., 1993). Since wheat shows high P requirements during the first 7-9 
weeks after emergence (Römer & Schilling 1986) and such requirements are not easy to 
satisfy by root uptake, it’s expectable that during this phase, plants show a certain 
dependency on AM symbiosis for P absorption (Zhu & Smith, 2001).  

Addition of OM exerted a depressive effect on plant growth and N uptake, in 
accordance with other studies (Seligman et al., 1986; Hodge et al., 1998). Considering 
that addition of OM increased the soil microbial activity, as data from dehydrogenase 
activity suggest, and that soil microorganisms compete better than plants for nutrients 
on a short timescale (Jackson et al., 1989; Kaye & Hart, 1997), it’s possible that this 
depressive effect was due to a higher sequestration of available inorganic N by 
microorganisms in OM than non amended soil. On the other hand, it has been shown 
that bacteria decreased N availability for plant uptake when C:N ratio of the added 
organic residues is higher than 12.5 (Killham, 1994; Hodge et al., 2000a). 

On average, plants inoculated with G. mosseae (BEG 12) yielded 15,6% more 
biomass relative to the non-mycorrhizal plants. Other researches have shown that 
growth response of wheat to AM infection is variable (Al-Karaki & Al-Omoush, 2002; 
Li et al., 2005 and 2006) in relation to many conditions such as genotypic differences in 
root morphology, nutrient uptake and symbiotic efficiencies or to different growth 
conditions, in particular, nutrient availability. Several researches highlighted that AM 
symbiosis improve plant growth and nutrient uptake especially when plants are grown 
under nutrient limiting conditions (Azcón & Ocampo, 1981; Vierheilig & Ocampo, 
1991; Karagiannidis & Hadjisavva-Zinoviadi, 1998), such as in the present study. 

In accordance with other studies (Tobar et al., 1994; Azcón et al., 2001), a higher 
N uptake was observed in AM than non AM plants. It has been shown that by means of 
the AM symbiosis, plants can better scavenge the soil volume (Miyasaka & Habte, 
2001) so enhancing the possibility to absorb the available N. This effect is particularly 
important when AM extraradical hyphae explore soil volumes different of those 
explored by the plant root system (Hodge et al., 2001), such as in field conditions; 
whereas in pot, the wheat root system per se is able to explore the entire soil volume 
and it implies a reduction of the advantage of AM symbiosis for nutrient uptake. 
Therefore, as suggested by Hodge et al. (2000a), AM symbiosis could have improved N 
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uptake in host plants by being more effective than the sole roots to compete for 
inorganic nitrogen with soil microorganisms. An indirect confirmation of this 
mechanism can be found in the higher proteolytic activity observed in the non AM than 
AM rhizosphere. Infact, considering that soil proteases are inducible enzymes which are 
progressively released when organic:inorganic soil N ratio increases (Gill & Modi, 
1981; Chrost, 1991), it’s conceivable that the higher proteolytic activity in AM than non 
AM treatment depended by a mycorrhizal depletion of inorganic nitrogen, given that, to 
my knowledge, there’s no evidence regarding the secretion of proteases by AM fungi.  

In non AM treatments, at 13 weeks after transplanting, the percentage recovery of 
15N from OM (%NREC) was 8.49% and 6.11% when maize leaves or maize roots, 
respectively, were added to soil. These differences can be due to the different C:N ratio 
of the added OM (higher in maize roots than leaves). Indeed, the rate of mineralization 
of the OM strictly depends on the C:N ratio of the substrate being decomposed: the 
lower its C:N ratio, the higher its mineralization rate. In a 39 days long trial, Hodge et 
al. (1998) observed in different grasses values ranging from 3.2% to 5.0% of the %NREC 
from OM when L. perenne shoots with a 31:1 C:N ratio were added to soil, whereas in a 
49 days long trial, the same authors (Hodge et al., 2000c) found a %NREC value of 11% 
when L. perenne shoots with a 21:1 C:N ratio were added to soil. 

The root infection with AM fungi strongly reduced the %NREC of the N applied 
with OM (-50% on average in comparison to non AM control); at the same time, the 
soil proteolytic activity was higher in AM than non AM treatments, which, in theory, 
should imply a higher rate of N mineralization and therefore a higher availability of N 
from organic sources; so it should have improved the %NREC from OM in AM than non 
AM treatments. Also Hodge et al. (2000b) showed that the AM symbiosis accelerates 
decomposition of fresh organic matter, without promoting an increase of %NREC from 
organic matter. In order to explain the decrese of %NREC observed in AM than non AM 
treatments, I hypothesize that microorganisms and AM plants differentially competed 
for the different sources of N (from soil or OM): AM plants better competed for soil 
mineral N, whereas bacteria better utilized N from added OM. Other research 
highlighted that, on a short timescale, microorganisms compete better for N from 
organic sources (Nadelhoffer et al., 1985; Kaye & Hart, 1997; Hodge et al., 2000a) and 
so, the reduction of the %NREC in AM than non AM treatments could be due to a 
temporal sequestration of N from organic sources by bacteria. An indirect confirmation 
of this hypothesis came from Hodge (2003), who found, at harvest, a higher percentage 
of N mineralized from the applied organic matter in soil of AM than non AM 
treatments. 

Addition of OM to soil consisted in a strong change in the enzymatic profile and 
bacterial community structure of both planted and unplanted soil with a overall increase 
in both proteolityc and dehydrogenase activity of soil microorganisms. It has been 
shown, under controlled conditions, that the addition of fresh organic matter to soil 
trigger into activity many dormant r-strategist microoganisms (De Nobili et al., 2001) 
and it may exert a priming effect on mineralization activity of stable soil organic matter 
(Fontaine et al., 2003). In the present experiment, a lower protease activity was 
observed in soil amended with maize roots than maize leaves. It is likely that these 
differences somehow depended on the chemical-bromatologic composition of the 
material being decomposed (Bonmatí et al., 2009).  
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The addition of organic matter decreased H′ and D2 from the DGGE banding 
patterns, suggesting a decrease in bacterial diversity. It is possible that the addition of 
OM increased the competitiveness of the r-strategist bacteria both for preexistent and 
added nutrients (Andrews &Harris, 1986; Fontaine et al., 2003), with a subsequent 
decrease of the abundance of the K-strategist bacteria. This decrease was marked so 
much so the abundance of K-strategist bacteria was under the detection limit of DGGE 
protocol. A similar result was obtained by Dilly et al. (2004). 

Plant inoculation with AM fungi determined an increase in H′ and D2 from the 
DGGE banding patterns, suggesting that bacterial diversity increased in AM treatments 
than non AM ones. Marschner et al. (2001) found a lower bacterial species abundance 
in rhizosphere of plants inoculated with G. mosseae than non mycorrhizal plants, 
whereas Amora-Lazcano et al. (1998) observed an increase in the number of ammonia 
oxidizers and a decrease in the numbers of ammonifying and denitrifying bacteria due 
to plant inoculation with AM fungi. Moreover, Mansfeld-Giese et al. (2002) observed a 
selective mycorrhizal influence on bacterial strains. Indeed, AM fungal infection alters 
root exudation qualitatively and quantitatively (Graham et al., 1981; Dixon et al., 1989; 
Po & Cumming, 1997; Marschner et al., 1997), which preferentially stimulate ones 
while depressing other bacterial functional groups, so that it’s conceivable that AM 
influence on bacterial community is mediated by the AM effects on host plant and also 
by a selective AM influence on rhizosphere populations (Andrade et al., 1998). 

The average increase of the enzymatic activity due to the addition of maize leaves 
to soil was associated to a decreased abundance of the bacterial species, as suggested by 
the decrease of H′ and D2 indices. On the other side, the higher enzymatic activity 
(especially BAA- and casein- hydrolyzing activities) due to plant AM inoculation 
wasn’t related to qualitative change in the microbial community. Similar results were 
achieved by Hodge et al. (2001) who found an increase of mineralization activity due to 
plant AM colonization, but no qualitative changes in microbial community described by 
phospholipids fatty acid profiling. The latter authors hypothesized that variations in 
mineralization activity of organic matter were probably a direct result of the presence of 
the AM fungal hyphae, suggesting that AM fungi could have saprotrophic capabilities, 
although the mechanisms involved are still unknown. 
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4  CONCLUSIONS AND FUTURE PROSPECTS 
 

The present research aimed to obtain information about the contribution of the 
AM symbiosis in alleviating the effect of abiotic stresses to Mediterranean crops and to 
test if AM symbiosis affects symbiotic N2 fixation and organic N mineralization 
activities and finally plant N uptake. 

In the field trial, the AM symbiosis improved both plant growth and symbiotic N2 
fixation of berseem grown under drought-stressed, but not under well-watered 
conditions and it suggests that the AM symbiosis can contribute to crop production in 
Mediterranean environments where spring rainfall is scarce, which stresses plants and 
limits crop productivity. Therefore, in such environments, when choosing a 
management practice (such as tillage, fertilization, etc.) to be applied, it should also be 
taken into account the aspects concerning the preservation of the natural AM 
population. Moreover, a valuable agronomical practice could be the inoculation with 
effective AM fungal strains in order to improve both the natural AM population and the 
efficiency of the AM symbioses. However, the applicability of this solution needs 
further studies in order to identify effective combinations of AM strains and plant  
genotypes and to investigate on the competition between natural and introduced AM 
fungi in soil. 

In the pot trial, the AM symbiosis improved total N uptake in plants and soil N 
mineralization rates, suggesting that the AM activity is important in improving both 
plant growth and soil quality. However, AM symbiosis decreased plant N recovery from 
organic sources, probably due to a different ability between microorganisms and AM 
plants in utilizing the different sources of N (from soil or OM). The increase of soil 
enzymatic activity in the AM treatment comparing to non AM counterpart wasn’t 
related to qualitative changes in the microbial community and it suggests a direct effect 
of the AM fungi on the decomposition rate of OM, possibly through an association with 
particular functional group of soil microorganisms. This latter aspects need further 
research because an advancement of knowledge about the role and impact of AM fungi 
on the decomposition process could surely have practical implication on crop 
production in Mediterranean environments. 
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Some pictures of the experiments: 
 
A: experimental field. 
B: wheat root after staining with trypan blue (red arrow indicates a 

mycorrhizal infection point). 
C: berseem plot after cut.  
D: berseem sample area after removal of roots.  
E: sample areas in a berseem plot.  
F: not infected and mycorrhizal wheat plants (the common “little plant/big 

plant” effect was probably impaired by the nitrogen lack).  
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