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Summary 
 

Breast cancer is the leading worldwide type of cancer among women and its lethality 

is strictly dependent on its high risk of metastatic spread. The concept that tumors are 

hierarchically organized and harbor cells with distinct tumorigenic potential and 

successful outgrowth at metastatic sites, referred to as CSCs, has long been observed 

in a broad range of tumors and it is now well-recognized by the scientific community. 

In the past few years, the protein Sam68 (Src associated in mitosis of 68kDa) has 

been linked to the onset and progression of cancer. In the first chapter of this thesis 

(Chapter 1), I evaluate Sam68 aberrant expression in breast cancer specimens as 

well as its function in modulating the invasiveness and self-renewal capability of 

breast CSCs (BCSCs). Sam68 also contributes to tumorigenesis in preclinical 

settings. 

The prominent role of CSCs in tumor relapse explains disease maintenance and the 

frequent failure of current therapies. In this context, we focused our attention on 

recombinant erythropoietin (EPO) analogs (ESAs, erythropoiesis-stimulating agents), 

which are used as drugs to treat anemia, including in cancer patients receiving 

chemotherapy. We provide evidence that EPO enhances BCSCs refractoriness to 

conventional chemotherapy and promotes in vivo tumor progression (Chapter 2). 

Tumor dissemination is dependent on a permissive microenvironment that can favour 

an epithelial to mesenchymal transition (EMT) and hypoxia, contributing to 

chemoresistance by inducing in cancer cells a stem like-phenotype. Understanding 

the relationship between cancer cells and microenvironment may be fundamental in 

developing innovative therapeutic strategies for a better and definitive response to 

treatments. All these aspects are discussed in Chapter 3. 

Thus, targeting molecular events affecting CSCs peculiarities, as self-renewal and an 

innate chemoresistance, could improve the ineffectiveness of current therapies which, 

in most cases, are not designed in a specific way such as to respond to intratumoral 

and intertumoral heterogeneity. Data shown in Chapter 4 seek to emphasize that the 

development of new powerful tools for targeting CSCs will possibly overcome the 

current disappointing results and lead to the improvement of therapies’ outcomes. 
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Chapter 1 

 

 

 

 
Sam68 sustains self-renewal and invasiveness of breast cancer stem cells 

Alice Turdo, Miriam Gaggianesi, Tiziana Apuzzo, Antonina Benfante, Mauro 

Piantelli, Claudio Sette, Matilde Todaro and Giorgio Stassi. 

Manuscript in preparation 
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Abstract 

 

Sam68, the major CD44 splicing regulator, is a multifunctional RNA-binding protein 

involved in multiple steps of RNA metabolism and its expression is aberrant in breast 

cancer. Herein, we highlight novel implications of Sam68 in the mammary tumor 

onset and progression. In a cohort of screened breast cancer patients, breast CSCs 

express higher Sam68 protein levels than tumor bulk, highlighting that Sam68 

expression is likely restricted to cells with self-renewal activity. Stable knockdown of 

Sam68 in breast CSCs significantly curtails proliferation rate and is coupled with an 

increase in proteins inducing cell cycle arrest and a reduction of pro-survival 

signaling. Compared to control cells, downregulation of Sam68 is correlated with an 

attenuation of cell motility capability and Twist, Snail, CD44v6 and Met levels. 

Moreover, Sam68 modulates the expression of an oncogenic alternative splice variant 

of Met (Met-SM), probably through the ASF/SF2 splicing factor. Sam68 silencing 

ablates breast cancer xenograft formation in immunocompromised mice. Finally, 

univariate and multivariate analysis of TMA show that invasive breast carcinoma 

over-expressing Sam68 are associated with a significantly higher incidence of distant 

relapse. Based on these results, we deem that Sam68 may promote pro-invasive 

signals by inducing and modulating the alternative splicing of oncogenic variants of 

several genes. Thus, further investigations on signaling pathways affecting CSCs 

self-renewal and invasiveness could represent a crucial key to improve selective 

cancer treatment. 
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1.1 Introduction 

 

Despite the outstanding advances obtained in curing localized malignancies, 

metastatic disease still lacks effective therapeutic approaches and represents the main 

cause of cancer related mortality in women worldwide (1). Breast cancer is an high 

heterogeneous disease that is commonly classified using i) histology, into ductal and 

lobular cancers, ii) ER, PR and HER2 receptors expression, and iii) their 

differentiation state and gene expression profiles, distinguishing luminal-A, luminal-

B, HER2 enriched, basal-like, claudin-low and normal like. Triple negative breast 

cancers (ER-, PR- and HER2-) can often be classified in basal-like tumors and have 

the least favorable prognosis among all the breast cancer subtypes. These patients 

currently do respond to chemotherapy but recurrence and disease progression is still a 

major issue (2). Moreover, the absence of targeted treatment alternatives renders 

appealing the introduction of new molecular therapies. 

Mammary gland tissue’s homeostasis, remodeling and regeneration are finely tuned 

by adult stem cells, which retain self-renewal and multi-lineage differentiation 

ability. As a consequence of epigenetic and/or genetic alterations, those cells may 

acquire a malignant behavior and be in charge of tumor seeding (3). In primary breast 

xenografts, cells with these peculiarities are also endowed with the capability to form 

tumors in immuocompromised mice by limiting dilution transplantation assay (4) and 

to recapitulate the original heterogeneity observed in the primary tissue they are 

derived from. CSCs are likely to be resistant to conventional chemotherapies and for 

this purpose, recent advances in stem cell biology are revealing that characteristics of 

normal stem cells are retained by their malignant counterparts, including dormancy 

(quiescence), active DNA repair machinery, the expression of several ABC drugs 

transporters, an intrinsic resistance to apoptosis and lower concentration of reactive 

oxygen species (5). Recently, it has been pointed out that CSCs display a cellular 

plasticity that allows them to transit between EMT and MET states (6). Indeed, the 

EMT process plays a fundament role in embryonic development as well as in several 

cancer progression steps. In this context, recent finding from our group underlined 

that cytokines, such as OPN, HGF and SDF-1 secreted by tumor microenvironment, 

increase the expression of CD44v6, an alternative spliced variant of CD44 and co-

receptor for MET (7). Engagement of HGF on CD44v6/MET complex activates EMT 

program, promoting colon cancer cell motility and invasiveness (7). Interestingly, 

CD44 was the first Sam68 (Src-associated protein during mitosis, of 68 kDa) target to 

be identified. Sam68 belongs to the heteronuclear ribonucleoprotein particle K 

(hnRNP K) homology (KH) domain family of RNA-binding proteins and is a 

member of the signal transduction and activation of RNA (Star) family (8). Sam68 
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interacts with the splicing activator SRm160 promoting inclusion of v5 and v6 exons 

in CD44 (9). EGF and HGF/MET stimulation, by modulating the non-RTK breast 

tumor kinase/protein tyrosine kinase 6 (Brk/PTK6), induces Sam68 phosphorylation, 

promoting both cell migration and cell cycle progression (10). Moreover, Sam68 has 

been proposed as a multifunctional effector in human cancers (11) and its up 

regulation is associated with tumorigenicity in breast cancer (12). 
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1.2 Material and methods 

 

The immunohistochemistry analysis were performed on 3 μm or 5 μm paraffinated 

sections of breast tumoral tissues and xenografts. Sections were deparaffinized and 

rehydrated. Antigen retrieval was carried out by boiling slides with a sodium citrate 

solution 10mM (pH 6.0 or 9.9). Incubation with TBS 10% TritonX-100 on ice for 10 

min was required to permeabilize cells. Primary antibodies used were anti-Sam68 

(SC-333, Santa Cruz Biotechnology), anti-ALDH (BD biosciences clone 44 cat n. 

611194) and anti-Ki67 (DAKO #M7240 clone MIB-1). The slides were stored at 4°C 

overnight. The staining was detected by using the chromogen AEC (3-amino-9-

ethylcarbazole). Nuclei were stained with hematoxylin. Tissue microarrays (TMA) 

were constructed by removing 2-mm diameter cores of histologically confirmed 

invasive breast carcinoma (T1-T2, N0, M0; n = 155) areas from each original paraffin 

block and re-embedding these cores into gridded paraffin blocks, using a precision 

instrument (MTA, Beecher Instuments, WI). After antigen retrieval (microwave 

treatment at 750 W for 10 min in 10 mM sodium citrate buffer, pH 6.0), five-

micrometer sections were incubated overnight at 4°C with the anti Sam68 rabbit 

polyclonal antibody (C-20, S. Cruz Biotechnology, CA) at 1:150 dilution. The anti-

rabbit EnVision kit (Dako, Glostrup, Denmark) was used for signal amplification. In 

control sections the specific primary antibody was replaced with non-immune serum. 

Slides were evaluated by pathologist without knowledge of the clinicopathological 

data. Pathologic tumor size and tumor grade, as well as estrogen receptor (ER), 

progesterone receptor (PR) and Ki-67 expression were dichotomized according to the 

St. Gallen criteria (2013). HER-2 membranous staining was scored according to 

Herceptest (Dako) and classified as positive if the intensity was scored 3+, with more 

than 30% of cells showing complete membrane staining, or if the intensity was 

scored 2+ in presents of an amplification of the HER-2 gene as assessed by 

fluorescent in situ hybridization. Based on immunohistochemistry of ER, PR, Ki-67 

and HER-2, we also studied the Nectin-4 distribution in breast cancer molecular 

subtypes: Luminal-A (n = 70), Luminal-B/HER-2 negative (n = 36), Luminal-

B/HER-2 positive (n = 14), HER-2 (n = 10), and Triple Negative (n = 25).  

For the immunofluorescence assay, citospins were fixed with 2% paraformaldehyde 

and permeabilized with TBS 10% TritonX-100 on ice for 10 min. Primary antibodies 

were: CD44v6 (R&D Systems) and Met (Santa Cruz). TUNEL reaction was 

performed with the In Situ AP Cell Death Detection Kit (Roche). Nuclei were 

counterstained with TOTO-3 (Life technologies). 
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For western blot analysis detail’s see material and methods section in chapter 2. 

Antibodies used were: Sam68 (SC333, Santa Cruz Biotechnology), p27kip1 (2552, 

rabbit polyclonal, CST), Bcl-XL (H-5, mouse IgG1, Santa Cruz Biotechnology), β-

actin (Ab-1 mouse IgM, Calbiochem), anti-mouse HRP-conjugated (Pierce #185413), 

and anti-rabbit HRP-conjugated (Pierce #32460). 

 

For RNA Extraction and Real-Time PCR, RNA was isolated by using the RNeasy 

Plus Mini Kit (Qiagen) and retrotranscribed by using the High-Capacity c-DNA 

Archive kit (Applied Biosystem). The Taq Man Primer used were: Hs00153310_m1 

(CD44v6), Hs00195591_m1 (Snail), Hs00173141_m1 (Sam68) and Hs01675818_s1 

(Twist). qRT-PCR was performed in triplicates. The relative quantity of expression of 

each gene was evaluated through the comparative Ct method (ΔΔCt) in comparison 

to the expression of the housekeeping gene (GAPDH). Gene expression profiles were 

carried out with the Epithelial to Mesenchymal Transition RT
2
 Profiler PCR Array 

(Qiagen). 

 

Breast CICs were obtained from mechanically and enzimatically digestion of human 

breast tissues as described in Chapter 2 (material and methods section). Stable Sam68 

knockdown was produced by lentiviral transduction of the PLK0.1 vector with the 

shSam68 insert and of a scrambled vector and subsequent puromicin (Sigma-Aldrich) 

selection. Invasion assay was performed in 8µm pore size transwell coated with GF-

depleted matrigel 1:3 in serum free medium. 3x10
4
 cells were plated and 10% human 

AB serum medium was used as chemoattractant. 

BCSCs (3 x 10
5
) were suspended in 1:6 matrigel (BD Matrigel Matrix Growth Factor 

Reduced) and orthotopically injected in 6-week-old NOD/SCID mice (Charles River, 

Italy). Tumors were measured with a caliper each week and volume was calculated 

by the formula: π/6 x larger diameter x (smaller diameter)
2
. At the end of the 

experiment mice were sacrificed and tissues were collected for histological analysis. 
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1.3 Results and Discussion 
 

Sam68 expression was examined in five breast cancer tissues and the adjacent normal 

counterparts using immunohistochemistry. As a result, Sam68 expression was higher 

in cancerous specimens compared to the non-cancerous ones (Figure 1A). To support 

the results of protein expression we explored the mRNA level of Sam68 in seven 

paired tumor and normal tissues of the same patients (Figure 1B). The qRT-PCR data 

partially confirmed the protein analysis, indicating that Sam68 expression may vary 

between different molecular subtypes of breast cancer and that discrepancy between 

the transcriptional and translational levels could occur. For a better understanding of 

the role of Sam68 in breast cancer onset, we analyzed its expression in freshly 

isolated Cancer Stem Cells (CSCs) from tissues of breast cancer patients undergoing 

surgical removal, in accordance with the ethical committee at the University of 

Palermo. Breast CSCs (BCSCs) expressed higher Sam68 protein levels than tumor 

bulk and the normal counterpart, highlighting that its expression was likely confined 

to cells with self-renewal activity (Figure 1 C). To investigate Sam68 role among the 

molecular subtypes of breast cancer, its expression was examined in basal-like and 

luminal BCSCs. Sam68 was markedly elevated in cells with basal-like features in 

comparison to luminal BCSCs. The results showed the same trend between qRT-PCR 

and Western blotting (Figure 1D-E). 

Given their high content in Sam68, basal BCSCs were selected for performing 

knockdown experiments. We silenced Sam68 by transducing BCSCs with a lentiviral 

vector carrying a short hairpin RNA specific for Sam68 (shSam68) or a scramble 

vector (Scr) as control (Supplementary Figure S1A). The efficiency of the procedure 

was verified by qRT-PCR and Western Blot (Supplementary Figures S1 B-C). The 

downregulation of Sam68 impaired BCSCs ability to form colonies in a 3D culture 

(Figure 2A) and curtailed their viability and proliferation rates (Figures 2 B-C). These 

findings are coupled with an increase in p27kip1 and reduction of Bcl-xL (Figures 

2D-E). 
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Figure 1. Sam68 is upregulated in Breast Cancer Stem Cells (BCSCs) in comparison to 

tumor bulk and normal tissue of the same patient. A, immunohistochemical staining with 

antibodies against Sam68 of paraffin-embedded sections derived from breast carcinomas 

(Tumor) and the paired adjacent normal tissues (Normal). Representative pictures of two 

samples. B, Sam68 expression level in tumors and normal breasts by qRT-PCR. C, Western 

blotting analysis of Sam68 in BCSCs, tumor and normal tissue of the same patient. D, 

Sam68 expression in basal and luminal CSCs by qRT-PCR, and E, Western blotting. 
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Figure 2. Sam68 interfers with BCSCs viability and proliferation. A, number of colonies 

generated in a soft agar assay for scr and shSam68 BCSCs. B, cells viability measured at 72 

hours. C, number of cells in culture up to 10 days. D, Western blotting analysis of p27Kip1 

and Bcl-xL, quantitative measurement, and E, representative images. All the experiments 

were carried out in triplicate with three different basal BCSCs lines. 
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CSCs are endowed with extraordinary migratory and invasive capabilities and for this 

reason they may power metastatic dissemination. Sam68 seems to be a critical input 

required for invasion, as shown by the invasion assay in Figure 3A. The process 

called Epithelial to Mesenchymal Transition (EMT) favors the migration of CSCs 

from the primary tumor at metastatic sites. These migratory traits are usually 

conferred by a network of factors, such as those included in the array in Figure 3B. 

Genes expression profiles revealed that the downregulation of Sam68 restrains the 

expression of EMT-related genes (Figure 3B). CD44 is an adhesion molecule with 

several functions in EMT and tumor propagation and, in combination with other 

antigens or functional assays, it can also enrich for breast CSCs (4). It was recently 

pointed out that an alternative splicing isoform of CD44, called CD44v6, sustains 

colon cancer metastasis and demarcates a subpopulation of colorectal CSCs (CR-

CSCs) with metastagenic properties (7). Due to its ability to regulate alternative 

splicing, Sam68 is a valuable candidate as inductor of CD44 splicing. qRT-PCR data 

in Figure 3C show that the total CD44 transcript level is not affected by Sam68 

deprivation, conversely the CD44 variant isoforms v4, v5, v7, v9, v10 (Figure 3D) 

and v6 (Figure 3E) are massively reduced. ShSam68 BCSCs display also a reduction 

in transcriptional factors involved in motility (Twist and Snail) (Figure 3E) and cell 

adhesion molecules such as E-cadherin (Figure 3F and Supplementary Figure S1E) 

levels. CD44v6 acts as a co receptor for the HGF-receptor MET, thus enhancing the 

HGF-MET signaling (13) (Orian-Rousseau V. 2002; Ponta, H.). Sam68 modulates 

also the expression of MET (Supplementary Figure S1) and of an its oncogenic 

variant MET-SM that lacks the ubiquitin ligase docking site (Figure 3G). Among the 

splicing factors analyzed in Figure 3H, ASF seems to be the only one able to force 

MET-SM expression. Since, as in Figure 3I, Sam68 knock-down attenuates ASF 

expression, it is highly conceivable that Sam68 indirectly controls MET alternative 

splicing. 
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Figure 3. Sam68 hampers BCSCs invasive capabilities. A, number of invasive cells at 48 

and 72 hours. B, gene expression profiles of scr and shSam68 BCSCs. qRT-PCR for CD44 

(C), CD44v (D), Twist, Snail and CD44v6 (E), and E-cadherin expression levels. G, RT-

PCR for Met. RT-PCR (H) and western blot analysis for several splicing factors (I). All the 

experiments were carried out in triplicate with three different basal BCSCs lines.
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To confirm that Sam68 is essential for tumorigenesis and metastagenesis we settled 

an in vivo experiments in immunocompromised mice. ShSam68 and scr BCSCs were 

injected into the mammary gland of 6-week-old mice and tumors’ onset was 

monitored up to 4 months. Sam68 knockdown abrogated tumor growth as opposed to 

control cells, which gave rise to xenografts (Figures 4 A-B). Particularly, shSam68 

BCSCs were confined in to the site of injection and didn’t damage the normal 

anathomy of the mammary gland. ShSam68 BCSCs were negative for ki67, ALDH 

(Figure 4C) and CD44V6 (Figure 4D). To confirm that both populations (ShSam68 

and Scr BCSCs) were viable at the time of tumors’ and normal breasts’ excision, we 

performed a terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling 

(TUNEL) reaction on paraffin-embedded sections of xenografts. The analysis proved 

that only few cells were apoptotic both in control and shSam68 cells (with arrows) 

(Figure 4D). 

Next, we explored the clinical relevance of Sam68 in breast cancer patients. 

Univariate analysis, in a cohort of 155 breast cancers, indicated that tumors over-

expressing Sam68 (Sam68
High

), with a cut off of 90% positive cells, were associated 

with a significantly higher incidence of distant relapse (P = 0.011) (Figure 5A). 

Moreover, in multivariate analyses of distant relapse free survival (DRFS), adjusted 

for the other prognostic factors, Sam68
High

 was an independent prognostic factor 

influencing distant relapse (HR = 2.6: 95% CI, 1.1-6.3; P = 0.037) (Table 1). Finally 

we deemed to explore the relationship between high Sam68 expression and breast 

cancer molecular subtypes. Kaplan–Meier curves estimated an higher incidence of 

DRFS in HER2 positive plus Triple negative breast cancer (P=0.023) and in Luminal 

B HER2 positive plus HER2+ plus Triple negative (P=0.008). Moreover, in 

multivariate analyses, Sam68
High

 in Luminal-B HER2 Pos plus HER2 plus Triple 

Negative was an independent prognostic factor influencing distant relapse (HR=7.9: 

95%CI 1.0-60.7; P=0.048) (Table 2). 

Overall, our studies better define Sam68 clinical relevance as a prognostic biomarker 

for breast cancer patients and give new insights to improve the ineffectiveness of 

current therapies by targeting molecular events that affect CSCs peculiarities 
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Figure 4. Sam68 impais BCSCs tumorigenic capabilities. A, shSam68 and Scr BCSCs 

were orthotopically injected in the mammary fat pad of immunocompromised mice (5 mice 

per group). This experiment was carried out with three basal BCSCs lines. B, 

immunohistochemical analysis for H&E, ki67 and ALDH of xenografts and normal breast 

glads obtained after mice were sacrificed. D, immunofluorescence on paraffin embedded 

tissues for CD44v6 (red), TUNEL (green) and DAPI (blues). White arrows indicate death 

cells.  
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Figure 5. A, Kaplan–Meier estimates of disease-free survival (DFS), local relapse-free 

survival (LRFS) and distant relapse-free survival (DRFS) in all patients (n = 155) according 

to high (green solid line) and low (blue dashed line) expression of Sam68. B, Kaplan–Meier 

estimates of distant relapse-free survival (DRFS) in all patients (n = 155) according to the 

molecular types HER2 + TN and C, Luminal-B HER2 positive + HER2 + TN. High (green) 

and low (blue) expression of Sam68. 
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Supplementary Figure S1. A, schematic representation of the PLK0.1 vector containing 

the shSam68 sequence. B, qRT-PCR and, C, Western blotting analysis for Sam68 levels in 

scr and shSam68 BCSCs. D, Immunofluorescence images for CD44v6 and MET (both in 

green) in scr and shSam68 BCSCs. E, western blotting analysis for E-cadherin in Scr and 

shSam68 BCSCs. 
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    Variable HR 95% CI P 

    
    
Disease-free survival    

Tumor size, cm (≤ 2 vs >2) 1.4 0.7-2.9 0.305 

Tumor grade (2-3 vs 1) 1.4 0.5-4.1 0.520 

ER (negative vs positive) 2.3 0.9-6.0 0.095 

PR (positive vs negative) 1.3 0.5-3.2 0.584 

Ki-67 (high vs low) 1.1 0.5-2.1 0.847 

HER-2 (positive vs negative) 1.1 0.5-2.6 0.753 

Sam68 (high vs low) 1.4 0.7-2.7 0.295 

    
Local Relapse-Free Survival    

Tumor size, cm (> 2 vs ≤ 2) 1.9 0.6-5.8 0.259 

Tumor grade (1 vs 2-3) 2.3 0.7-7.6 0.183 

ER (positive vs negative) 1.2 0.2-6.1 0.804 

PR (negative vs positive) 1.2 0.3-5.1 0.832 

Ki-67 (high vs low) 1.6 0.5-4.9 0.452 

HER-2 (negative vs positive) 1.0 0.3-2.2 0.977 

Sam68 (low vs high) 3.1 0.9-9.4 0.062 

    
Distant Relapse-Free Survival    

Tumor size, cm (≤ 2 vs >2) 1.8 0.8-4.5 0.176 

Tumor grade (2-3 vs 1) 1.0 0.3-2.9 0.975 

ER (negative vs positive) 3.0 0.9-10.1 0.068 

PR (positive vs negative) 1.7 0.6-5.3 0.343 

Ki-67 (high vs low) 1.1 0.4-2.5 0.898 

HER-2 (positive vs negative) 1.5 0.6-3.8 0.349 

Sam68 (high vs low)    2.6 1.1-6.3 0.037* 

    
*Statistically significant 

Table 1 Multivariate Analysis of Sam68 expression in breast tumors 
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Subtype 
Distant Relapse Free Survival    

 HR 95% CI P  

      

L
u

m
in

a
l-

A
 (

n
=

7
0

) Tumor size, cm (≤ 2 vs > 2) 1.0 0.2-5.4 0.972  

Tumor grade (2-3 vs 1) 1.0 0.1-5.5 0.977  

Sam68 (high vs low) 10.1 0.8-86.6 0.085  

      

L
u

m
in

a
l-

B
 H

E
R

2
 

N
eg

 
(n

=
3

6
) Tumor size, cm (>2 vs ≤ 2) 1.1 0.3-4.7 0.912  

Tumor grade (2-3 vs 1) 1.0 0.2-5.3 0.989  

Sam68 (low vs high) 2.6 0.6-11.4 0.201  

      

L
u

m
in

a
l-

B
 H

E
R

2
 

P
o

s 
(n

=
1

4
) 

 Tumor size, cm (>2 vs ≤ 2) 1.3 0.1-11.6 0.825  

Tumor grade (2-3 vs 1) - - -  

Sam68 (high vs low) - - -  

      

H
E

R
2

 
(n

=
1
0
) Tumor size, cm (>2 vs ≤ 2) 2.5 0.3-22.5 0.405        

Tumor grade (2-3 vs 1) - - -  

Sam68 (high vs low) 5.7 0.4-80.2     0.201  

      

T
ri

p
le

 
N

eg
a

ti
v

e 
(n

=
2
5
) Tumor size, cm (≤ 2 vs > 2) 2.0 0.2-22.0 0.576        

Tumor grade (2-3 vs 1) - - -  

Sam68 (high vs low) - -     -  

      

H
E

R
2

 
p

lu
s 

T
ri

p
le

 
N

eg
a

ti
v

e 
(n

=
3
5
) Tumor size, cm (≤ 2 vs > 2) 1.5 0.4-6.1 0.547        

Tumor grade (2-3 vs 1) 1.0 0.2-4.5 0.984  

Sam68 (high vs low) 6.4 0.8-51.8     0.084  

            

L
u

m
in

a
l-

B
 H

E
R

2
 

P
o

s 
p
lu

s 
H

E
R

2
 

p
lu

s 
T

ri
p

le
 

N
eg

a
ti

v
e 

(n
=

4
9

) Tumor size, cm (≤ 2 vs > 2) 1.3 0.4-3.9 0.687        

Tumor grade (2-3 vs 1) 1.0 0.1-4.4 0.989  

Sam68 (high vs low) 7.9 1.0-60.7     0.048*  

      
      

                                      *Statistically significant 

Table 2. Multivariate analyses of Sam68 expression in breast cancer subtypes 
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Abstract 

 

Recombinant erythropoietin (EPO) analogs (ESAs, erythropoiesis-stimulating agents) 

are clinically used to treat anemia in cancer patients receiving chemotherapy. After 

clinical trials reporting increased adverse events and/or reduced survival in ESAs-

treated patients, concerns have raised about the potential role of ESAs in promoting 

tumor progression, possibly through tumor cell stimulation. However, evidence is 

lacking on the ability of EPO to directly affect cancer stem cells, which are 

considered responsible for tumor progression and relapse. We found that breast 

cancer stem cells (BCSC) isolated from patient tumors express the EPO receptor and 

respond to EPO treatment with increased proliferation and self-renewal. Importantly, 

EPO stimulation increased BCSC resistance to chemotherapeutic agents and activated 

cellular pathways responsible for survival and drug resistance. Specifically, the Akt 

and ERK pathways were activated in BCSC at early time points following EPO 

treatment, while Bcl-xL levels increased at later times. In vivo, EPO administration 

counteracted the effects of chemotherapeutic agents on BCSC-derived orthotopic 

tumor xenografts and promoted metastatic progression both in the presence and in the 

absence of chemotherapy treatment. Altogether, these results indicate for the first 

time that Epo acts directly on BCSC by activating specific survival pathways, 

resulting in BCSC protection from chemotherapy and enhanced tumor progression. 
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2.1 Introduction 

 

Erythropoiesis-stimulating agents (ESAs) have been used for two decades in the 

supportive therapy of cancer patients, due to their ability to increase red blood cell 

production and to reduce the need of transfusions (1). In 2002, ESAs were 

administered to approximately 45% of all cancer patients (2). However, following 

clinical trials reporting a shorter progression-free survival and/or overall survival in 

ESAs-treated patients, ESAs were suspected to increase the risks of thromboembolic 

events and to enhance tumor progression (3-6). Consequently, in 2008 the Food and 

Drug Administration (FDA) limited the indication for ESAs administration to cancer 

patients with hemoglobin less than 10 g/dL receiving chemotherapy for palliative 

intent (7). Since then, the use of ESAs in cancer patients progressively declined, and 

recently the FDA released new guidelines ensuring that ESAs access is strictly 

controlled and that patients are fully informed about ESAs-related risks (8). Despite 

clinical observations suggesting a possible association between ESAs and tumor 

progression, the effect of EPO on neoplastic cells remains a matter of debate. In 

particular, experimental studies on the effect of EPO on cancer cells yielded 

controversial results, likely due to variable methodologic approaches. Recent in vivo 

studies, however, provided important clues on tumors’ response to EPO. Specifically, 

EPO was shown to antagonize the effect of trastuzumab on breast cancer xenografts 

and to decrease the effect of chemotherapy in a mouse model of metastatic breast 

cancer (9, 10). Such studies suggest a direct influence of EPO on breast tumors and 

highlight the importance of reliable in vivo models to elucidate the interactions 

between EPO and tumor cells. The existence of cancer stem cells (CSC) in solid 

tumors was demonstrated for the first time in breast cancer, where CSC were isolated 

as a CD44
+
/CD24

-/low
 population able to initiate tumors with as few as 200 cells (11). 

Lately, breast tumorigenic cells were identified either by distinctive phenotypes such 

as ALDH
+
, CD24

high
/CD49f

high
/delta-like 1 (DLL1)

high
, CD24

high
/CD49f

high
 /Delta-

notch like epidermal growth factor repeat-containing transmembrane (DNER)
high

, or 

through functional characteristics such as enhanced PKH26 dye-retaining capacity or 

low proteasome activity (reviewed in (12)). More recently, breast cancer stem cells 

(BCSC) were identified as a ganglioside GD2
+
 population able to form tumors with 

as few as 10 cells (13). BCSC have been shown to increase after chemotherapy 

treatment (14) and to be quantitatively associated with chemotherapy resistance (15). 

Moreover, BCSC have been shown to mediate invasion and metastasis both in vitro 

and in mouse models (16). Elucidating the effect of EPO on BCSC is therefore 

crucial to fully understand the effects of ESAs treatment in breast cancer patients. As 

ESAs administration is reserved to patients with metastatic breast cancer receiving 
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chemotherapy, it is particularly important to understand whether they may influence 

BCSC response to anticancer drugs and metastasis progression. Here, we employed 

human BCSC-derived orthotopic/metastatic xenografts to show that BCSC response 

to EPO in vivo results in increased chemotherapy resistance of primary tumors and 

metastases, resulting in enhanced tumor progression. 

 

2.2 Materials and Methods 

 

2.2.1 Antibodies and reagents 

Primary antibodies were: mouse monoclonal anti-EPOR MAB307 (R&D Systems; 

ref. 10), rabbit polyclonal anti-EPOR M20 (Santa Cruz Biotechnology; ref. 9), rabbit 

polyclonal anti-Akt and rabbit polyclonal anti-phospho-Akt Ser 473 (9272 and 9271; 

Cell Signaling Technology), mouse monoclonal anti-phospho Erk1/2 Tyr 204 (E4; 

Santa Cruz Biotechnology), rabbit polyclonal anti-Erk1 (K23; Santa Cruz 

Biotechnology), mouse monoclonal anti-Bcl-xL (H-5; Santa Cruz Biotechnology), 

mouse monoclonal anti-β-actin (JLA20; Calbiochem), mouse monoclonal anti-CD44 

(BU75; Ancell), mouse monoclonal anti-CD24 (HIS50; BD Biosciences), mouse 

monoclonal anti-p63 (4A4; Santa Cruz Biotechnology), mouse monoclonal CK8-18 

(5D3), mouse monoclonal CK14 (LL002), and mouse monoclonal CK5 (XM26; all 

from Novocastra), mouse monoclonal anti-Ki67 (MIB-1; Dako), mouse monoclonal 

anti-CD49f (MP4F10; R&D Systems). Secondary antibodies were: horseradish 

peroxidase (HRP)-conjugated anti-mouse antibody (Pierce), HRP-conjugated anti-

rabbit antibody (Thermo Scientific), mouse fluorescein isothiocyanate (FITC)- and 

Rhodamine red–conjugated antibodies (Invitrogen, Molecular Probes), and mouse R-

phycoerythrin (PE) antibody (Sigma-Aldrich). Recombinant human EPO was 

purchased from R&D Systems.  

 

2.2.2 BCSC isolation and culture 

Human breast cancer tissues were obtained from patients undergoing surgery in 

accordance with the ethical standards of the institutional Committee on human 

experimentation (authorization no. CE-ISS 09/282). Tumor tissues were 

mechanically and enzymatically digested with collagenase (1.5 mg/mL; Gibco) and 

hyaluronidase (20 mg/mL; Sigma-Aldrich) in Dulbecco's Modified Eagle Medium 

(Gibco), shaking for 1 hour at 37°C. The resulting cell suspension was plated in ultra-

low attachment flasks (Corning) in serum-free medium supplemented with basic 

fibroblast growth factor (bFGF; 10 ng/mL) and EGF (20 ng/mL) as previously 

described (17). This procedure yielded BCSC lines that were subjected to genotyping 

http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-10
http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-9
http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-17
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to validate each cell line individuality and were further tested for their ability to 

generate tumor xenografts that replicated the histology of the parental tumor.  

 

2.2.3 Viability, proliferation, and clonogenic assays 

For viability assays, BCSCs untreated or pretreated 24 hours with 3 U/mL EPO were 

cultured for the indicated times in presence of doxorubicin (1 μmol/L), 5-FU (5-

fluorouracil; 25 μmol/L), or Taxol (5 μmol/L). The number of viable cells was 

detected by the CellTiter AQueous Assay Kit (Promega). Cell death was also 

assessed by acridine orange (50 μg/mL)/ethidium bromide (1 μg/mL) staining and 

fluorescence microscopy detection. Colony-forming assays were conducted on soft 

agar (Seaplaque) with 0.4% base agar and 0.3% top-layer agar. After 21 days, 

colonies were stained with 0.01% crystal violet and visualized under a light 

microscope.  

 

2.2.4 Immunoblotting 

Cells were growth factor–starved for 24 hours and treated with 3 U/mL EPO for 10, 

30, 120 minutes and 48 hours. Protein extracts were obtained in ice-cold T-PER 

buffer (Thermo Scientific) with protease inhibitors (Sigma-Aldrich). Equal amounts 

of proteins were loaded on SDS-PAGE gels and transferred to nitrocellulose 

membranes, subsequently blocked with 5% nonfat dry milk in TBS containing 0.1% 

Tween 20 and probed with primary and HRP-linked secondary antibodies. 

Immunoreactive bands were visualized with SuperSignal West Dura Substrate 

(Pierce). Image acquisition was conducted with a ChemiDoc Imaging system (UVP 

Advanced Imaging Systems).  

 

2.2.5 Immunohistochemistry 

Apoptotic cells on paraffin-embedded breast cancer xenograft sections were 

visualized by the terminal deoxynucleotidyl transferase–mediated dUTP nick end 

labeling (TUNEL) reaction with the In Situ AP Cell Death Detection Kit (Roche). 

Immunohistochemical analyses were conducted on 5 μm-thick paraffin-embedded 

sections of breast cancer tissue and xenografts. Tissues were heated for antigen 

retrieval and stained with specific antibodies against Bcl-xL, CK 8-18, CK 14, CK 5, 

p63, Ki67, EPO receptor (EPOR), or isotype-matched controls overnight at 4°C. 

Sections were incubated with biotinylated anti-mouse or anti-rabbit immunoglobulins 

and subjected to streptavidin-peroxidase (Dako). Stainings were revealed using 3-

amino-9-ethylcarbazole substrate (AEC; Dako) substrate and cells counterstained 

with aqueous hematoxylin. Slides were mounted with synthetic resin.  
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2.2.5 Immunofluorescence and flow cytometry 

Immunofluorescence was conducted on cytospins of cultured BCSC fixed with 2% 

paraformaldehyde for 20 minutes at 37°C, blocked with 0.5% bovine serum albumin 

for 30 minutes and exposed overnight at 4°C to antibodies against EPOR, CD44, and 

CD24. Stained slides were treated with Rhodamine Red- or FITC-conjugated anti-

mouse antibodies with the addition of 200 ng/mL RNAse (Sigma-Aldrich). Nuclei 

were counterstained with TOTO-3 iodide (Invitrogen-Molecular Probes) and images 

were acquired using an Olympus FV1000 confocal microscope. For fluorescence-

activated cell sorting (FACS) staining, BCSC were fixed with 2% paraformaldehyde 

and stained with primary antibodies against CD44, CD24, EPOR, or isotype-matched 

controls and then with fluorochrome-conjugated secondary antibodies. Samples were 

analyzed with a FACSCalibur equipped with CellQuest Software (BD Biosciences).  

 

2.2.6 Mice treatment 

Animal studies were carried out according to the institutional guidelines under the 

Italian Ministry of Health authorization (DM 23/2011-B). BCSCs (3 × 10
5
) were 

suspended in 100 μl of 1:6 Matrigel (BD Biosciences) and orthotopically injected in 

5-week-old nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice 

(Charles River Laboratories). Tumor size was measured weekly with an electronic 

caliper and volume was calculated using the formula: π/6 × larger diameter × (smaller 

diameter)
2
. After 4 weeks, mice were treated intraperitoneally either with doxorubicin 

(2 mg/kg, on day 2 and 5 every week for 4 weeks) or 5-FU (150 mg/kg, on day 1 

every week for 4 weeks), alone or in combination with EPO (150 U/kg, on day 1 and 

4 every week for 4 weeks). PBS was used as control. At the end of the treatment, 

mice were sacrificed and tumors were collected for histologic analyses. To determine 

the in vivo effects of EPO on a metastatic breast cancer model, NOD/SCID mice were 

orthotopically injected with 4.5 × 10
5
 BCSCs carrying a Tween Luciferase–GFP 

lentiviral vector. After cell inoculation, mice received a subcutaneous injection of d-

luciferin (150 mg/kg; Promega) and were analyzed by in vivo imaging (Biospace 

Laboratories). Five weeks later, primary tumors of mice showing lung metastases (as 

measured by luciferase intensity) were removed and mice (n = 4 per group) received 

respectively intraperitoneal injections of PBS, paclitaxel (10 mg/kg, on day 1 every 

week for 3 weeks), EPO (300 U/kg on day 2 every week for 3 weeks), or paclitaxel + 

EPO. Three weeks later, mice were euthanized and lungs were analyzed for luciferase 

expression. Data were quantified with Biospace Lab M3 Vision software.  

 

2.2.7 Statistical analysis 



27 

 

Data were expressed as mean ± SD. The statistical significance of results was 

determined by Bonferroni multiple comparison tests. Results were considered 

significant when P values were less than 0.05 (*, P < 0.05; **, P < 0.01; and ***, P < 

0.001).  
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2.3 Results and Discussion 

BCSCs can be isolated from tumor specimens by selective culture in medium 

containing EGF and bFGF (18), resulting in a majority of CD44
+
/CD24

−/low
 cells that 

form progressively expanding tumor spheres (Figure 1A and Supplementary Figure 

S1A). According to this method, five BCSC lines were isolated from infiltrating 

breast tumors (Supplementary Table S1). Cells isolated in such conditions fulfilled 

the functional characteristics of CSCs, as they were able to produce tumors in 

immunocompromised mice that replicate the original patient tumor in terms of 

histologic structure and marker expression (Figure 1B). As a first step to investigate 

the potential BCSC sensitivity to EPO, we assessed whether the EPO receptor was 

detectable on cultured CSC and on tissue sections of different breast tumor subtypes, 

whose BCSC content was reportedly related to increasing malignancy (19). Because 

of previous controversies about the specificity of anti-EPO receptor antibodies, we 

used only antibodies that were validated by recent authoritative studies (see Materials 

and Methods). The specificity of the anti-EPO receptor antibody used for 

immunofluorescence and flow cytometry was further validated by assessing its ability 

to detect EPO receptor increase in leukemic UT-7 EPO cells upon growth factor 

starvation (Supplementary Figure S1B; ref. 20). Staining of intact BCSC with anti-

EPOR antibody revealed substantial (31–99%) EPOR expression on all the BCSC 

lines examined (Figure 1C), indicating a potential role of EPO in the regulation of 

BCSC proliferation and survival. EPO receptor was also detected on cultured BCSCs 

stained with CD49f antibodies (Supplementary Figure S1C), indicating its presence 

on BCSC populations identified with different stem cell–associated markers. 

 

http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-18
http://cancerres.aacrjournals.org/content/73/21/6393.long#F1
http://cancerres.aacrjournals.org/content/73/21/6393.long#F1
http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-19
http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-20
http://cancerres.aacrjournals.org/content/73/21/6393.long#F1


29 

 

Figure 1. Characterization of BCSC lines and BCSC-derived xenografts. A, microscopic 

imaging of progressive sphere formation by a single BCSC (line 308). Bar, 25 μm. B, 

immunohistochemical staining with hematoxylin and eosin (H&E) or antibodies against 

cytokeratins 5 (CK5), 14 (CK14), 8-18 (CK8-18), Ki67, and p63 of sections derived from 

breast carcinoma (Parental) and from a mouse xenograft (Xenograft) generated with BCSC 

derived from the same tumor (BCSC line 308). Bar, 40 μm (inset, 30 μm). C, EPO receptor 

expression on BCSC lines detected by fluorescence microscopy (top; bar, 25 μm) or flow 

cytometry (bottom). 
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In tissue sections, strong EPO receptor expression was detected on the positive 

control (placenta) and on basal-like tumors. EPO receptor was also present, at a lesser 

extent, on HER2
+
 and luminal B tumors, whereas a faint expression was detectable 

on luminal A tumors and on normal breast, the latter showing a positivity at the limit 

of detection (Figure 2A and Supplementary Table S2). Treatment of BCSC cultures 

with recombinant human EPO resulted in increased cell proliferation, indicating that 

EPOR expressed on BCSC surface is functional and delivers signals that modulate 

cell growth (Figure 2B). To determine whether EPO was able to affect BCSC self-

renewal, cells derived from dissociated mammospheres were plated in soft agar in the 

presence or in the absence of EPO. Colony scoring after 3 weeks showed a 

significantly higher number of colonies in EPO-treated samples in 3 of 5 cases, 

indicating that EPO can increase BCSC self-renewal in vitro (Figure 2C).  

BCSCs were previously shown to be more resistant than bulk tumor cells to 

chemotherapeutic drugs (14). Because EPO is used almost exclusively in patients 

with cancer undergoing chemotherapy, it is essential to clarify whether EPO can 

further enhance BCSC resistance to chemotherapy, therefore favoring drug resistance 

and tumor relapse. Upon treatment of mammospheres with EPO and with 

chemotherapeutic agents commonly used for breast cancer therapy, we found that the 

presence of EPO resulted in increased BCSC survival in the presence of cytotoxic 

drugs (Figure 3A and B). This observation indicates that EPO activates survival 

signals in BCSCs that are responsible for chemoresistance. To identify pathways 

downstream of EPOR that may be responsible for apoptosis resistance in BCSC, we 

analyzed levels of phospho-Akt, phospho-Erk, and Bcl-xL at different time points 

upon EPO stimulation (Figure 3C and Supplementary Fig. S2). 

Phosphorylation/activation of Erk and Akt was maximal respectively 10 minutes and 

2 hours after EPO stimulation in 5 of 5 and 4 of 5 BCSC lines (Figure 3C). 

Differently, an increase in Bcl-xL levels was not apparent at early time points of EPO 

stimulation (Supplementary Figure S2), but became clear in 5 of 5 BCSC lines after 

48 hours of treatment (Figure 3C). Increase in pErk, pAkt, and Bcl-xL upon EPO 

stimulation was apparent also in intact spheres (Figure 3D). 

http://cancerres.aacrjournals.org/content/73/21/6393.long#F2
http://cancerres.aacrjournals.org/content/73/21/6393.long#F2
http://cancerres.aacrjournals.org/content/73/21/6393.long#F2
http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-14
http://cancerres.aacrjournals.org/content/73/21/6393.long#F3
http://cancerres.aacrjournals.org/content/73/21/6393.long#F3
http://cancerres.aacrjournals.org/content/73/21/6393.long#F3
http://cancerres.aacrjournals.org/content/73/21/6393.long#F3
http://cancerres.aacrjournals.org/content/73/21/6393.long#F3
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Figure 2. EPOR expression in breast cancer subtypes and EPO response of cultured BCSC. 

A, EPOR staining of tissue sections derived from human placenta, normal breast (top), and 

breast tumors of different subtypes (bottom). Black arrows indicate EPOR-positive cells. 

Bar, 45 μm (inset, 25 μm). B, number of cells obtained after 72 hours of culture in the 

absence (control) or in the presence of EPO 3 U/mL (EPO). Results shown are the mean ± 

SD of experiments carried out in triplicate with five BCSC lines. *, P < 0.05. C, number of 

colonies generated in semisolid culture conditions by BCSC lines in the absence (Control) 

or in the presence (EPO) of EPO 3 U/mL (left). Representative picture of the plates (BCSC 

line 308; right). *, P < 0.05.
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Figure 3. EPO increases BCSC resistance to chemotherapy in vitro by stimulating cell 

survival pathways. A, BCSC untreated (Control), treated with EPO 3 U/mL (EPO), with 

chemotherapeutic agents doxorubicin (Doxo; 1 μmol/L), 5-FU (25 μmol/L), or Taxol (5 

μmol/L) and with the combination EPO-chemotherapy were assessed for cell viability after 

24, 48, and 72 hours. Results shown are the mean ± SD of experiments carried out in 

triplicate with five BCSC lines. *, P < 0.05; **, P < 0.01; ***, P < 0.001. B, ethidium 
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bromide/acridine orange staining of tumor spheres (BCSC line 308) treated as above. C, 

levels of phospho-Erk (pErk), phospho-Akt (pAkt), and Bcl-xL in BCSC untreated 

(Control) or growth factor–starved and stimulated with 3 U/mL EPO, respectively, for 10 

minutes, 2, and 48 hours. D, cells treated as in C (BCSC line 208) were stained with the 

indicated antibodies and visualized by fluorescence microscopy. Bar, 25 μm. 

 

To investigate whether EPO treatment affected tumor response to chemotherapy in 

vivo, we produced orthotopic breast tumors by injecting BCSC in the mammary fat 

pad of NOD/SCID mice. Tumors were allowed to grow until they reached the size of 

50 mm
3
, then mice were treated with EPO and/or chemotherapeutic agents 

doxorubicin (Figure 4A and B) or 5-FU (Supplementary Figure S3A and S3B) for 4 

weeks, during which tumor volume was constantly monitored with an electronic 

caliper. Although vehicle-treated tumors grew exponentially, chemotherapy-treated 

tumors were significantly inhibited. In contrast, the growth of tumors treated with 

EPO + chemotherapy was similar to controls, indicating a chemoprotective effect of 

EPO in vivo (Figure 4A and B and Supplementary Figure S3A). Staining of xenograft 

sections at the end of the treatment revealed an increased rate of apoptosis and lower 

levels of Bcl-xL expression in chemotherapy-treated tumors but not in tumors treated 

with chemotherapy and EPO in combination (Figure 4B and Supplementary Figure 

S3B). These results indicate that EPO reduces the efficacy of chemotherapy in vivo 

by promoting BCSC apoptosis resistance. To investigate whether EPO could 

influence the growth of metastatic tumors, we injected luciferase-transduced BCSC in 

the mammary fat pad of NOD/SCID mice and awaited the formation of spontaneous 

lung metastases. Five weeks after BCSC injection, when metastases started to be 

detectable, the primary tumor was removed to observe the effect of subsequent 

treatments solely on metastatic sites. Mice were then treated for 3 weeks with EPO 

alone, with paclitaxel, or with the EPO + paclitaxel combination. At the end of the 

treatment, mice were sacrificed and lungs were analyzed for luciferase expression. 

Tumor burden in lungs of mice treated with EPO alone was strongly increased as 

compared with that of control mice (Figure 4C and D). Enhanced metastatic 

progression was also found in the lungs of mice treated with the paclitaxel + EPO 

combination as compared with mice treated with paclitaxel alone, indicating that 

EPO exerted a chemoprotective effect on metastatic tumors (Figure 4C and D). 

http://cancerres.aacrjournals.org/content/73/21/6393.long#F4
http://cancerres.aacrjournals.org/content/73/21/6393.long#F4
http://cancerres.aacrjournals.org/content/73/21/6393.long#F4
http://cancerres.aacrjournals.org/content/73/21/6393.long#F4
http://cancerres.aacrjournals.org/content/73/21/6393.long#F4
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Figure 4. EPO protects primary and metastatic tumors from chemotherapy in vivo. A, 

growth of BCSC-derived tumor xenografts (BCSC line 308) vehicle-treated (Control), 

treated with doxorubicin (Doxo) alone, or in combination with EPO (Doxo+EPO) as 

described in Materials and Methods (top). Results shown are the mean ± SD of three 

experiments carried out with groups of 3 mice each. *, P < 0.05; ***, P < 0.001. 

Representative pictures of the tumors (bottom). B, immunohistochemical staining of 

xenograft sections obtained at the end of the experiment shown in A and stained with 

hematoxylin/eosin (H&E), with anti-cytokeratin 14 (CK14), anti-Bcl-xL (Bcl-xL), or 
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TUNEL. Bar, 30 μm. C, whole-body imaging of tumors at different time points after 

injection (Day 0) of 5 × 10
5
 BCSCs transduced with Tween-LUC GFP in the mammary fat 

pad of NOD/SCID mice, as described in Materials and Methods. Five weeks after injection, 

when lung metastases (and in some cases peritoneal metastases) were visible, the primary 

tumor was removed and the treatment with EPO, paclitaxel, or paclitaxel + EPO was started 

(red arrow). After 3 weeks of treatment (8 weeks postinjection), mice were sacrificed and 

lungs were subjected to bioimaging to detect metastatic tumors (Lung metastases). The 

black square on the left side of the mice was positioned to shield luciferase signals emitted 

from residual cells that remained after primary-tumor removal. One representative 

experiment of 4 mice per group is shown. D, photon counts emitted from mice lungs 

derived in the experiment described in C. Photon/s/sr, photons per second per steradian. *, P 

< 0.05 and **, P < 0.01.  

 

2.4 Conclusions 

 

Because the disclosure of clinical trials showing that ESAs treatment had an adverse 

influence on patient survival, the effect of EPO on tumor cells has been the subject of 

an intense debate. Although ESAs likely influence patient survival through multiple 

mechanisms, few in vivo studies have specifically addressed the question of whether 

EPO modifies tumor response to therapy. We have shown for the first time that EPO 

can bind and stimulate BCSCs, resulting in increased tumor growth and 

chemoresistance. These results confirm and expand previous observations by Hedley 

and colleagues on xenografts obtained with breast cancer cell lines (10). In patients 

with breast cancer, EPO-mediated BCSC stimulation may not result in immediate 

effects on tumor growth or response to chemotherapy, as BCSCs represent a minority 

of cells, but may favor subsequent tumor relapse. Further clinical studies that 

evaluate rates of relapse in ESA-treated patients would be required to clarify this 

issue. 

 

http://cancerres.aacrjournals.org/content/73/21/6393.long#ref-10
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Supplementary Figure S1. A, Immunofluorescence staining of CD44 and CD24 on BCSC 

derived from five different tumors. Bar, 25 µm. B, Flow cytometry staining of EPO receptor 

(EPOR) on UT-7 EPO cells kept in EPO-containing growth medium (w/o starvation) or 

upon 24 hours of EPO deprivation (Starvation). C, flow cytometry staining of the indicated 

BCSC lines with antibodies against CD49f and EPO receptor (EPOR) IMC isotype matched 

control. 
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Supplementary Figure S2. Levels of phospho-Erk (pErk), phospho-Akt (pAkt) and Bcl-xL 

in BCSC lines untreated (Control) or growth factor-starved for 24 hours and subsequently 

stimulated with 3U/ml EPO (EPO) for 10 minutes, 30 minutes and 2 hours. 
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Supplementary Figure S3. A, Upper panel: growth of BCSC-derived tumor xenografts 

(BCSC line 208) vehicle-treated (Control), treated with 5-fluorouracil (5FU) alone or in 

combination with EPO (5FU+EPO) as described in Materials and Methods. Results shown 

are the mean ± SD of three experiments performed with groups of three mice each. *, P < 

0.05; **, P < 0.01. Lower panel: representative images of tumors at the end of the treatment. 

B, immunohistochemical staining of xenograft sections obtained at the end of the 

experiment shown in and stained with hematoxylin/eosin (H&E), with anticytokeratin 14 

(CK14), anti-Bcl-xL or TUNEL. Bar, 30 µm. 
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Supplementary Table S1. Tumor type, patient age and grading of breast tumors that 

were used to derive the indicated BCSC lines. Expression of estrogen receptor (ER), 

progesterone receptor (PR), c-ErbB2 (c-ERB) and Ki67 of the respective BCSC lines is 

shown. IDC, infiltrating ductal carcinoma; ILC, infiltrating luminal carcinoma.  

Supplementary Table S2. A, Evaluation of cells positive for EPO receptor (EPOR) in 12 

breast cancer patients of different subtypes, as specified in B. B, breast cancer diagnostic 

markers ER (estrogen receptor), PR (progesterone receptor), HER2/c-ErbB2 (HER2) and 

Ki67 in tumor tissue samples analyzed for EPO receptor expression 

Patient no. ER (%) PR (%) HER2 Ki67 (%)

1 90 0 2+ >20

2 0 0 0 >10

3 90 50 1+ >30

4 80 15 1+ <10

5 0 0 0 >60

6 0 0 0 >40

7 95 0 2+ 15

8 70 80 1+ >20

9 60 0 1+ >25

10 80 90 0 <10

11 0 0 0 70

12 55 0 2+ 25

Luminal-HER2 Basal-like Luminal B Luminal A

30%  10% 40%  2% 22%  3% 8 %  1%EPOR

BCSC 

LINE

Patient 

age

Tumor 

type

Grading ER (%) PR (%) c-ERB Ki67(%)

105 69 IDC G2 90 60 + 25

208 55 IDC G2 90 60 +++ >10

308 85 ILC G2 - - + >10

608 59 IDC G2 90 30 - >10

708 74 IDC G2 80 80 +++ >10
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Abstract 

 

The mutual and interdependent interaction between tumor and its microenvironment 

is a crucial topic in cancer research. Recently, it was reported that targeting stromal 

events could improve efficacies of current therapeutics and prevent metastatic 

spreading. Tumor microenvironment is a “complex network” of different cell types, 

soluble factors, signaling molecules and extracellular matrix components, which 

orchestrate the fate of tumor progression. As by definition, Cancer Stem Cells (CSCs) 

are proposed to be the unique cell type able to maintain tumor mass and survive 

outside the primary tumor at metastatic sites. Being exposed to environmental 

stressors, including reactive oxygen species (ROS), CSCs have developed a GSH-

dependent antioxidant system to improve ROS defense capability and acquire a 

malignant phenotype. Nevertheless, tumor progression is dependent on extracellular 

matrix remodeling, fibroblasts and macrophages activation in response to oxidative 

stress, as well as Epithelial Mesenchymal Transition (EMT)-inducing signals and 

endothelial and perivascular cells recruitment. Besides providing a survival 

advantage by inducing de novo angiogenesis, tumor-associated vessels contribute to 

successful dissemination by facilitating tumor cells entry into the circulatory system 

and driving the formation of pre-metastatic niche. In this review, we focus on the 

synergistic effect of Hypoxia Inducible Factors (HIFs) and Vascular Endothelial 

Growth Factors (VEGFs) in the successful outgrowth of metastasis, integrating 

therefore many of the emerging models and theories in the field. 
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3.1 Introduction 

 

Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world 

and one of the major causes of death worldwide (1). The prevention and the early 

diagnosis are surely the most important approaches for reducing the burden of CRC, 

given the symptoms of early disease occur just in 5% of cases. A significant portion 

of patients who receive surgery and adjuvant therapy still develop recurrences and 

metastasis and this phenomenon seems to be driven in some cell subsets by the 

acquisition of resistance to conventional therapy, such as chemo- and radio-therapy 

(2). 

Growing evidence indicates that a cellular subpopulation with stem cell like features, 

commonly referred to as Cancer Stem Cells (CSCs), is critical for tumor generation 

and maintenance. 

A recent study showed that within the tumor population it is possible to identify a 

heterogeneous population of cells with different biological roles (3). Recent advances 

in stem cell biology are revealing that this cellular fraction shares many properties 

with normal adult stem cells, including dormancy (quiescence), active DNA repair 

machinery, the expression of several ABC drugs transporters and an intrinsic 

resistance to apoptosis (4). As their normal counterpart, also the colon CSCs reside in 

a specialised microarchitectonic structures or niches that respond to both local and 

systemic conditions providing also protection against conventional therapies (5). 

Moreover, microenvironmental stimuli, such as those involved in the epithelial-

mesenchymal transition (EMT) and hypoxia, indirectly contribute to chemoresistance 

by inducing in cancer cells a stem like-phenotype. Understanding the driving force of 

tumor progression and the relationship between cancer cells and microenvironment 

could be fundamental in developing innovative therapeutic strategies for a better and 

definitive response on patient treatments. 

 

3.2 CRC, Stem Cell Niche and Colon CSCs 

 

It is widely accepted that CRC progression is driven by the acquisition of 4-5 

progressive mutations in oncogenes or tumor suppressor genes (6). Some driver 

mutations frequently occur in the same gene sequences and are shared by most of the 

people affected by this cancer, whereas some mutations are different and responsible 

of the final cancer phenotype in individual patients (7). Most of the information about 

CRC derives from the study of familial adenomatous polyposis (FAP), an autosomal 

dominant colon cancer syndrome caused by APC gene mutation (8). APC is involved 

in the regulation of Wnt pathway that, as we will discuss later in this review, can 
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regulate cell proliferation, differentiation, migration and apoptosis (9). Tumor 

progression is also achieved by other mutations such as KRAS, SMAD2/4, TP53 and 

deletion of chromosome 18q (10). 

It was recently demonstrated that despite the great heterogeneity and biological 

diversity of CRC it is possible to distinguish three different subtypes.  De Sousa E 

Melo et al. indeed showed that two of these subtypes have already been identified for 

chromosomal-instable and microsatellite-instable cancer. A third one, prognostically 

unfavourable, is characterized by microsatellite stability and relatively more CpG 

island methylator phenotype-positive, thus rendering it impossible to be identified on 

the basis of characteristic mutations (11). 

The presence of a distinct population with stem cell characteristics among 

disseminated and circulating cancer cells may be of clinical relevance, not only for 

their putative role in metastasis formation and recurrence, but also for their role in 

resistance to conventional therapy. CSCs are likely to share many properties of 

normal stem cells as mentioned above, which may underlie their capacity to survive 

therapeutic protocols based on genotoxic agents targeting actively proliferating cells 

(12). 

First invoked by Paget, the “seed and soil” hypothesis suggests that the successful 

growth of metastatic cells depends on the interactions and properties of cancer cells 

(seeds) and their potential target organs (soil). Additionally, new concepts include: (i) 

the role of cancer stem-like cells as putative cells of metastatic origin (the "seeds"); 

(ii) the mechanism of EMT in driving epithelial cell into the blood stream to avoid 

anoikis, or anchorage independent cell death; and (iii) the reverse process of EMT, or 

mesenchymal to epithelial transition (MET), which promotes conversion back to the 

parent cell morphology and growth of macrometastasis in the target organ, open a 

new broad of aspect on this issue (13). 

The microenvironment plays a crucial role in maintaining the pluripotency of colon 

SCs at the base of colon crypts influenced by fibroblast, endothelium and 

inflammatory cells and the cytokines and growth factors secreted by these cells (in 

particular HGF) finely regulate the balance between self-renewal and differentiation 

of the staminal population (14-16). The most characterized pathway involved in the 

maintenance of colon stem cells is Wnt (17-19), and it is clearly highlighted by the 

different expression of Wnt members along the colon crypt (20), even if the 

maintaining of stemness and the differentiation pattern is actually the result of the 

fine collaboration between Wnt with other important pathways such as PTEN-PI3K-

Akt (21,22), BMP (23), Notch (24) and Sonic hedgehog (Shh) (25). 
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3.3 EMT, Pre-metastatic niche and Metastasis Formation 

 

Metastasis formation is considered a complex multi-step process that includes 

sequential molecular and cellular events that permit transformed cells to gain access 

to the blood stream (intravasation), survive their journey through the blood stream, 

and ultimately traverse through the microvasculature of target organs (extravasation) 

to deposit, survive, and grow in a foreign tissue environment. The EMT represents 

the first step of this highly regulated cascade and it is an important biological process 

initially studied in normal tissues during the organogenesis and then extended in the 

pathogenesis of cancer diseases, particularly referred to the acquisition of migratory 

phenotype in CRC cells (26). After they extravasate from the circulation into the 

target organ, aberrant cells must implant, proliferate, and induce angiogenesis in 

order to survive and grow in a foreign and presumably “hostile” environment. These 

phenomena are driven not only by genetic and/or epigenetic alteration of cancer cells, 

but also by the non-neoplastic stromal cells (27). 

The EMT is characterized by the loss of epithelial properties, including the apico-

basal polarity and cell adhesion, the E-cadherin, occluding and cytokeratins 

expression, and at the same time the acquisition of N-cadherin, vimentin, fibronectin, 

Twist1, zinc-finger proteins (SNAIL, SLUG, ZEB) and matrix metalloproteinases 

(MMPs) expression, all events that lead to an increased cell mobility (28). Moreover, 

EMT-inducing factors released by the surrounding microenvironment (29) can affect 

the invasive phenotype in epithelial malignancies initiation. Key regulators of this 

process are TGF-β (by the activation of Twist, SLUG and ZEB2), PI3K/Akt 

(increasing the mTOR kinase expression), Shh and Wnt (30,31). 

Currently, dissemination and spread of cancer cells during the tumor progression are 

elective events underling the invasion through the tissue extracellular matrix (ECM). 

It was recently shown that tumor cells have two different modes of motility: (1) the 

acquisition of a mesenchymal phenotype, as previously described that identify a 

mesenchymal motility mode and the amoeboid migration (32). The mesenchymal 

mode is characterized by the acquisition of an elongated morphology and activation 

of the small GTPase Rac (33); (2) the amoeboid motility is defined by a rounded or 

ellipsoid cell morphology and weak interactions with the surrounding matrix, driven 

by Rho expression, which induce membrane blebbing through Rho-associated protein 

kinase (ROCK)-dependent myosin II phosphorylation and consequent actomyosin 

contractility (34). These two migration modes are interconvertible and regulated by 

microenvironmental influences. The possibility to switch from one mode to the other 

one highlights the cell plasticity that accomplishes movement from the primary 

tumor, establishment in an ectopic site, and survival therein (35). 
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The balance between high levels of activated Rac and Rho proteins regulates finely 

the motility mode. Moreover, Rac signalling inhibits amoeboid movement through its 

effector WASP-family verprolin-homologous protein 2 (WAVE2), and in the same 

way Rho/ROCK suppresses Rac by the activation of ARHGAP22, a GTPase-

activating protein (GAP) (36). 

Although RHO gene mutations are extremely rare, their altered expression has been 

assessed in many human cancers, including CRC. In particular, RhoA is frequently 

overexpressed and its induction is rapidly mediated by TGF-β (37), while depletion 

of Rac1 strongly correlates with the inhibition of lamellipodia formation, cell 

migration and invasion in carcinoma cells (38). 

Furthermore, recent study established the independent contribution of KRAS and 

BRAF mutations, which rarely coexist in human tumors, to migration and invasion of 

CRC cells through Rho GTPases signalling. Although KRAS and BRAF are common 

members of the same pathway, Makrodouli et al. showed that BRAF mutation 

enhances cell migration through RhoA activation, and its effect is more pronounced 

compared to KRAS. These findings are expected to eventually result in tailor-made 

therapies against Rho pathway components, since it depends on the genetic 

background of the cancer patient (39). 

 

3.4 Status redox and Hypoxia: two sides of the same coin 

 

In the absence of an aberrant microenvironmental stimuli, genetic and epigenetic 

alterations in tumor cells are insufficient to induce primary tumor progression (27). 

Either through structure and function-based mechanisms, including ECM 

remodelling, release of cytokines and growth factors , metabolic changes, or 

activation of stromal components, microenvironment enables tumor cells to achieve 

an aggressive phenotype (32). 

As observed, reactive oxygen species (ROS) has emerged as an important factor 

affecting several cancer hallmarks. ROS are involved in the acquisition of self-

sufficiency in proliferation signals by a ligand-independent receptor tyrosine kinase 

transactivation as well as loss of contact inhibition and anchorage-dependence cell 

growth. The development of a more aggressive phenotype is also promoted by ROS 

through MMPs secretion, EMT program activation, Met overexpression and 

regulation of cellular plasticity induced by the Rac1/RhoA antagonism (40,41). 

Moreover, ROS sustain de novo angiogenesis by inducing the recruitment of 

perivascular cells and the activation of endothelial progenitors through the Vascular 

Endothelial Growth Factor (VEGF) and angiopoietin (Ang) release. Besides being 

involved in evading apoptosis by the activation of survival pathways, specifically 
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PI3K/AKT, NF-kB, and anoikis resistance, ROS increase the sensibility to mutagenic 

agents and help escape from the immune surveillance system (42). 

Oxidative stress can derive from either extrinsic or intrinsic source (Figure 1).  

 

Figure 1. Extrinsic and intrinsic production of oxidative stress. CAMs and hypoxia induce 

a pro-oxidant environment, mandatory for CAF activation and senescent fibroblasts 

conversion into pro-inflammatory cells, affecting in turn EMT of cancer cells. Due to Jun D 

downregulation and increased activity of ROS-producing enzymes, cancer cells exacerbate 

the production of oxygen radicals. CD44v stabilizes the subunit xCT at the plasma 

membrane by promoting GSH synthesis and tumor growth. Cancer-associated macrophages 

(CAMs), Cancer-associated fibroblasts (CAFs), Senescent Activated Secretory Pathways 

(SASPs), Reactive oxygen species (ROS), Reduced glutathione (GSH), CD44 variant 

(CD44v), xCT (the light-chain subunit of cystine-glutamate antiporter system xc(-)), EMT 

(Epithelial Mesenchymal Transition). 
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Cancer-associated- fibroblasts (CAFs) or -macrophages (CAMs) synergize in the 

induction of a pro-oxidant environment. Due to the activation of Nitric Oxide 

Synthase 2 (NOX2), CAMs can directly produce ROS resulting in CAFs recruitment 

and MMPs activation (43). Moreover, by secreting the master pro-inflammatory 

cytokine TNFα, CAMs primes the NF-kB activation in both stromal and cancer cells, 

which in turn up-regulates SNAI1 expression (44). In response to intrinsic and 

extrinsic oxidative stress, CAFs support tumor growth and promote EMT changes in 

cancer cells by secreting growth factors and ECM degrading proteases. Moreover, 

their production of extracellular matrix proteins promotes the recruitment of 

endothelial precursor cells from bone marrow (45). Ageing-induced oxidative stress 

concurs to transform fibroblasts into pro-inflammatory cells and  induce an EMT 

program in the neighboring epithelial cells by secreting the so-called Senescent 

Activated Secretory Pathways (SASP) factors, which composed of pro-inflammatory 

cytokines and MMPs (46). Klimova et al. demonstrated that hypoxia also improves 

ROS generation by deregulation of the mitochondrial complex III resulting in ROS 

release into the cytosol (47). 

Interestingly, TGFβ has been correlated to redox control of EMT, either directly by 

the activation of MAPK or indirectly by ERK-mediated Smad 2 phosphorylation. As 

shown by Rhyu et al., in renal tubular epithelial cells, TGFβ1 stimulation induces E-

cadherin loss, α-SMA and fibronectin up-regulation. These EMT-related molecular 

events are prevented by the inhibition of both NADPH oxidase (NOXes) and 

mitochondrial electron transfer chain subunit I, suggesting that NOXes and 

mitochondrial metabolism are important sources of TGFβ-induced cellular ROS (48). 

Similarly, Zhang et al. identified ferritin heavy chain (FHC) as a critical modulator of 

TGFβ-induced EMT. By repressing the synthesis of FHC, a cellular iron storage 

protein, TGFβ promotes iron release and subsequent increase in the intracellular 

labile iron pool (LIP), which is associated with redox-mediated activation of 

p38MAPK. Thus, FHC overexpression abrogates TGFβ-induced LIP increase 

resulting in ROS elimination and EMT suppression (49). 

Cancer cells exacerbate the oxidant microenvironment by enhanced basal metabolic 

activity through aberrant growth factors and cytokines signaling as well as increased 

activity of ROS-producing enzymes, such as NOXes, cyclooxygenase (COXes) or 

lipoxygenases (LOXes) (50). Moreover, high levels of ROS may result from down-

regulation of Jun D, a transcriptional activator of FHC that is known to minimize 

LIP-dependent ROS generation (51). 

To protect themselves from oxidative stress, cancer cells develop adaptation 

strategies, including increased expression of scavenger anti-oxidative enzymes and 
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pro-survival molecules. Particularly, reduced glutathione (GSH) is the major 

intracellular antioxidant factor by reducing the ROS levels and suppressing ROS-

dependent activation of p38MAPK. Ishimoto et al. demonstrated that in 

gastrointestinal cancer cells a CD44 variant (CD44v) maintains high levels of GSH 

by stabilizing the xCT expression at the plasma membrane. xCT is the light-chain 

subunit of cystine-glutamate antiporter system xc(-), which exchanges extracellular 

cystine uptake for intracellular glutamate, thereby promoting GSH synthesis (Figure 

1). At first, glutamate-cysteine ligase couples glutamate and cysteine to form γ-

glutamylcysteine. Glutatione synthetase then catalyzes the formation of GSH from 

glycine and γ-glutamylcysteine. Since cysteine availability is a rate-limiting factor for 

GSH synthesis, CD44-mediated stabilization of xCT plays a key role in the GSH-

dependent antioxidant system, promoting the proliferation of cancer cells and the 

formation of lethal gastrointestinal tumors. This is supported by the observation that 

CD44 depletion reduces the number of proliferating tumor progenitor cells and 

inhibits gastric tumor development in Gan (Gastric Neoplasia) mice through the 

ROS-dependent p38MAPK activation and p21
CIP1/WAF1

 upregulation. The antioxidant 

potential of gastric cancer cells confers resistance to ROS-inducing anticancer drugs, 

such as cisplatin and docetaxel. Consistently, in an HCT116 xenograft model, the 

specific xCT inhibitor sulfasalazine suppresses CD44-dependent tumor growth in 

parallel with the activation of p38MAPK, suggesting that the suppression of xCT by 

sulfasalazine might impair the ROS defense ability of CD44v-expressing CSCs and 

improve the efficacy of currently available treatments (52).  

CD44 and its variant isoforms have already been identified as tumor metastasis-

associated proteins. Ectopic expression of CD44v6 splice variant confers metastatic 

potential to non metastatic tumor cell lines, promoting Met activation by its ligand 

HGF that is mainly secreted by mesenchymal cells (53). The importance of the 

CD44v6 and Met multimeric signaling in cancer progression has been strengthened 

by the observation that adenoma growth in the Apc
Min/+

 mice model was reduced by 

inhibiting the CD44v6 expression through short hairpin RNA/nanoparticles 

technology (54). Moreover, Jung et al. showed that CD44v6 supports tumor cell 

migration and apoptosis resistance since only the matrix assembled by CD44v6-

competent but not -deficient cells induces metastasis formation (55). Given that 

disseminating cells are exposed to high levels of ROS during tumor progression, 

metastatic growth requires also adequate ROS defense ability to successfully colonize 

secondary sites. Interestingly, knockdown of the redox protein thioredoxin-like 2 has 

been reported to inhibit tumorigenesis and metastasis of human breast cancer cell 

lines upon transplantation into immunodeficient mice by enhancing ROS levels and 

reducing NF-κB activity (56). It has also been investigated the role of CD44v-xCT in 
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lung metastasis. By promoting xCT-dependent GSH synthesis, CD44 expression 

allows mouse 4T1 breast cancer cells to evade high levels of ROS produced by 

neutrophils and colonize the lung. It is not surprising that knockdown of epithelial 

splicing regulatory protein 1 in CD44
+
 subpopulation induces an isoform switch from 

CD44v to CD44s, resulting in reduced xCT expression and lung metastasis 

suppression (57). 

Proliferating tumor cells distance themselves from the vasculature and colonize an 

environment deficient in oxygen and nutrients. Therefore, tumor cells need to 

reprogram their metabolism by increasing glycolytic activity and decreasing aerobic 

respiration rate. This shift is mediated by an increase in ROS levels generated by 

mitochondrial complex III, which accounts for hypoxia-inducible factor-1 (HIF-1) 

stabilization via oxidation/inactivation of prolyl hydroxylases and release from Von 

Hipper-Lindau (VHL)-mediated degradation. When stabilized in hypoxia, HIF-1α 

dimerizes with HIF-1β and translocates into the nucleus. By interacting with the co-

activators CBP/p300, the α/β heterodimer HIF-1, bound to hypoxia-response 

elements (HREs) in target genes, mediates the expression of proteins involved in the 

formation of new vasculature and metabolic adaptation to hypoxia (58). HIF-1α 

increases the transcription of glucose transporters and glycolytic enzymes as well as 

lactate dehydrogenase A (LDHA) and pyruvate dehydrogenase kinase 1 (PDK1), 

resulting in the diversion of pyruvate towards lactate away from mitochondrial 

oxidative phosphorylation (59). Additionally, mutations of tumor suppressor genes 

(PTEN, VHL) and oncogenic pathways (Ras/MAPK, PI3K-Akt) converge on HIF-1α 

activation through an oxygen-independent mechanism (58). Specifically, in CRC 

hypoxia activation of wild-type K-Ras mediates Akt phosphorylation and resistance 

to apoptosis (60).  

Similar to HIF-1α, HIF-2α is involved in the regulation of hypoxia tumor response. 

Interestingly, Heddleston et al. reported a role of HIF2α in reprogramming non-stem 

cancer cells towards a stem-like phenotype by inducing the expression of key stem 

cell genes, like OCT4, NANOG and MYC. Concordantly, overexpression of HIF-2α in 

glioma non-stem cells increased neurospheres formation and tumorigenic capacity 

(61). Moreover, as shown by Xue et al, HIF2α activation modulates colon 

tumorigenesis in Apc 
Min/+

 mice by overexpression of intestinal iron transport. The 

resulting iron intake contributes to dysregulation of local iron homeostasis, which in 

turn affects cancer progression through increasing cell survival and proliferation (62).  

Hypoxia has been reported as an important driving force for the multistep process of 

metastasis (Figure2).  
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Figure 2. Regulatory functions of hypoxia in different steps of metastasis. 1) During 

primary tumor growth, hypoxia acts as inductor of “glycolytic” phenotype and executor of 

EMT. 2) Under hypoxia, tumor cells gain an improvement in motility and invasion capacity, 

facilitating thereby detachment and dissemination from the primary site. 3,4) Increased 

expression of VEGF and MMPs induced by hypoxia is critical to penetrate the vasculature 

and promote the subsequent exit. 5) By the recruitment of bone marrow-derived cells and 

CD11b
+ 

myeloid cells to secondary organs, LOX secreted by hypoxic tumor cells forms the 

premetastatic niche. 6) Hypoxia-dependent induction of CXCR4 and angiogenesis 

contribute to the successful metastatic colonization. EMT (Epithelial Mesenchymal 

Transition), LDHA (lactate dehydrogenase A), pyruvate dehydrogenase kinase 1 (PDK1), 

Lysyl Oxidase (LOX), Autocrine Motility Factor (AMF), cathepsin D (CTSD), Matrix 

Metalloproteinase (MMPs), Vascular endothelial growth factor (VEGF), Angiopoietin-like 

4 (ANGPTL4). 
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The early EMT-related events induced by hypoxia support ROS-dependent GSK-3β 

inactivation, followed by SNAIL nuclear translocation and E-cadherin loss (63,64). 

In response to hypoxic conditions, Notch signaling up-regulates Snail expression by 

two distinct but synergistic mechanisms, involving both direct transcriptional 

activation of SNAI1 (65) and an indirect mechanism operating via the ECM protein 

lysyl oxidase (LOX) (66). Moreover, Twist expression, directly induced by HIF-1α 

through the HRE located in its promoter, contributes to cadherin profile changes with 

E-cadherin down-regulation followed by N-cadherin upregulation (64). At a later 

stage, activation of Wnt/β-catenin pathway and increased invasiveness are sustained 

by HIF-1α- and VEGF-dependent events (63). Particularly, hypoxia-induced invasion 

is associated with basement membrane degradation and ECM remodeling by 

upregulation of cathepsin D (CTSD) and MMP2 (58,67). Hongo et al. proposed that 

the up-regulation of β1 integrin expression by hypoxia in CRC cells increases the 

ability to adhere and migrate on collagen fibers (68).  

The role of HIF-1α in cell migration is related to improved LOX expression. In 

hypoxic cancer cells, LOX mediates the covalent cross-linking of collagen fibers and 

elastin, thereby increasing cell focal adhesion kinase activity that is known to induce 

cell motility by acting as a signal between integrins and actin cytoskeleton. These 

remodeled matrix events are essential for invasive cell movement and provide a 

metastasis freeway by which other tumor cells may walk and spread to adjacent 

tissues (69). Hypoxia-induced “invasive switch” is also mimicked by Met and 

autocrine motility factor (AMF) overexpression. Pennacchietti et al. demonstrated 

that hypoxia synergizes with HGF to affect basal cell morphology and induce cell 

scattering by transcriptional activation of the MET proto-oncogene. Consistently, 

increased Met expression sensitizes tumor cells to HGF produced by fibroblasts, 

promoting thereby the invasive growth towards tissue parenchyma and blood 

circulation (70). One of the most important tumor-secreted cytokines, AMF promotes 

resistance to apoptosis in tumor cells and angiogenesis induction via autocrine and 

paracrine mechanisms (71). 

Hypoxia-selected tumor cells are able to evade the hostile milieu of primary site by 

promoting angiogenesis and affecting vascular integrity and permeability. 

Consistently, hypoxia-dependent expression of VEGF, MMP1 and MMP2 is essential 

to offend the vasculature and promote intravasation. MiR-372/373, upregulated in 

response to hypoxia through HIF-1α, contribute to increased intravasation by 

targeting the MMP inhibitory protein RECK, resulting in excessive activation of 

MMPs (72). Besides VEGF, MMP1 and MMP2, tumor cells extravasation is 

promoted by Angiopoietin-like 4 (ANGPTL4), a member of vascular regulators 

angiopoietin family upregulated in the primary tumor by both TGFβ and hypoxia 
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(58). As shown by Padua et al., the expression of ANGPTL4 in cancer cells primes 

these cells to disrupt vascular endothelial tight junctions and increase the capillary 

permeability, thereby affecting the transendothelial passage (73). 

Recent reports suggested that the metastatic seeding at distant organs is influenced by 

hypoxia-induced factors released from primary tumor, critical for pre-metastatic 

niche formation. It has been reported that in breast cancer LOX, secreted by hypoxic 

tumor cells into the bloodstream, modifies the collagen cross-linking in the lungs and 

promotes the recruitment of CD11b
+
 myeloid cells to pre-metastatic sites. By the 

consequent adhesion to cross-linked matrix, CD11b
+
 myeloid cells produce MMP-2, 

which supports collagen remodeling by LOX and thereby leading to increased 

recruitment and subsequent invasion of bone marrow-derived cells. This cell 

population is thought to create a favorable environment for the incoming primary 

tumor cells (69). 

Hypoxia in primary tumor may also improve metastatic seeding of tumor cells by 

heightening chemokine C-X-C motif receptor 4 (CXCR4) expression. Specifically, 

CXCR4-mediated signal transduction can enable tumor cells to home to secondary 

organs where its ligand Stromal Derived Factor 1 (SDF1) is highly expressed (e.g., 

lymph nodes, lungs, liver, or bones). The responsiveness of CXCR4
+
 cells to SDF-1 

gradient is positively affected by several molecules produced during inflammation, 

specifically fibrinogen, fibronectin, C3a, hyaluronic acid, suggesting that 

inflammation affects the spreading of CXCR4
+
 tumor cells (74). 

Similarly to primary tumor, hypoxia response molecules facilitate tumor-stromal 

interactions in secondary sites to support the metastasis colonies proliferation. 

However, the role of hypoxia in determining the organ-specific metastasis is still 

unknown. Microarray profiling revealed that hypoxia promotes the expression of 

lung-metastasis gene signature, including Connective tissue growth factor, 

Osteopontin, IL-6 and -8, ANGPTL4, and primes ER
-
 breast cancer cells in promoting 

lung colonization by activating an effective angiogenesis. Since bone marrow 

vasculature is already fenestrated, facilitating the transendothelial passage of tumor 

cells, hypoxia-induced angiogenesis does not provide an advantage for bone 

metastasis seeding. Thus, it is not surprising that hypoxia activates a limited 

percentage of bone-metastasis genes, including CXCR4 and dual specificity 

phosphatase 1, which functions as a stress-inducible MAPK signaling activator 

(58,75). Interestingly, experimental models and human cancers implicated TFGβ in 

promoting distal metastasis formation. After seeding the lung parenchyma, ER
-
 breast 

cancer cells take a proliferative advantage from local TGFβ through induction of the 

cell differentiation inhibitor ID1 (76). As shown by Kakonem et al, in mice 

inoculated by MDA-MB-231 breast cancer cells, osteolytic bone metastases require 
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the recruitment and activation of osteoclasts. In particular, induction of IL-11 and 

parathyroid hormone-related protein production by TGFβ promotes differentiation of 

osteoclast precursors and bone resorption, thereby increasing the osteoblastic 

expression of Receptor Activator for NF-κB (RANK) ligand (77). Lastly, Batlle et al. 

speculated that IL-11, a TGFβ-target gene in stromal cells, confers metastatic 

initiation capacity to CRC cells via GP130/STAT3 signaling, critical to induce a 

survival advantage and suppress apoptotic stimuli in metastatic sites (78). 

 

3.5 CSCs and vasculature cells crosstalk: a mutual convenience 

 

Tumor cell growth and nurture require several strategies to supply the oxygen and 

metabolic demand, all involving new vessels formation and captivation from the 

surrounding stroma. Tumor neovascularization can occur through a) sprouting from 

existing vessels (sprouting angiogenesis), b) lumen invagination and splitting of 

vessels (intussusceptive angiogenesis), c) enfolding of vessels by cancer cells (vessel 

co-option), d) simulation of endothelial features by tumor cells (vasculogenic 

mimicry), e) formation of lymphatic vessels from pre-existing ones 

(lymphangigogenesis) and finally f) endothelial progenitor cells recruitment (79). 

Angiogenesis has been defined as a key process for tumor and metastasis formation 

and CSCs are predicted to be strong promoters of this phenomenon. For instance, Bao 

et al. demonstrated a profound interplay between CSCs and tumor vasculature. 

Injection of glioblastoma stem cells (GSCs) CD133
+
 in the right frontal lobes of 

athymic nude mice displays strongly angiogenic and hemorrhagic tumors compared 

to the CD133
-
 counterpart. The angiogenic advantage of the CD133

+
 fraction may be 

supported by a 10-20 fold increase of VEGF secretion. Significantly, conditioned 

medium from these fractions fosters human endothelial cells migration and tube 

formation (80). According to these data, the concomitant presence of CSCs correlates 

with more angiogenic tumors in terms of enhanced resident endothelial cells function 

and recruitment of bone marrow-derived endothelial progenitors to the tumor site. 

VEGF and SDF1 are the main powering determinant of these CSCs properties (81). 

On the other hand, it is likely conceivable a possible impact of endothelial cells on 

CSCs state. A paracrine signaling by endothelial cells may induce CRC cells to gain 

CSC properties with Notch pathway as the main player of this conversion. Indeed, 

Jagged-1, a Notch-activating ligand, is released from endothelial cells as a soluble 

form by ADAM17 proteolitic cleavage and its binding to Notch receptor of adjacent 

CRC cell triggers the onset of stem-like features. Co-culturing CRC cells either with 

endothelial cancer cells or with endothelial cell-conditioned medium lead to an 
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increase of the CD133
+
/ALDH

+
 subpopulation compartment and sphere forming 

capability as well as in vivo tumor growth and spreading (82).  

Similarly, as showed by Calabrese et al., it was demonstrated that endothelial–

derived factors support self-renewing of brain tumor cells and keep them in an 

undifferentiated state. These stem-like cells closely interact with CD34
+
 capillaries 

and are strictly dependent on microvasculature density. Co-injection of primary 

human endothelial cells and CD133
+
 medulloblastoma cells accelerates initiation and 

promotion of brain tumor xenografts by expanding the CSCs pool. Thus, tumor 

microenvironment orchestrates a vascular niche formation determining the CSCs fate 

(83). 

Furthermore, the presence of ‘mosaic’ blood vessels in which both endothelial and 

tumor cells are located into the lumen surface of tumor vessels has long been 

described (84). Consistent with these findings, glioblastoma stem cells can be 

induced to differentiate into endothelial cells and directly contribute to tumor 

vasculature architecture when injected in immunocompromised mice, as proven by 

the presence of CD34
+
/CD144

+
/VEGFR2

+
 human-derived endothelial cells (85). 

Likewise, vasculogenic mimicry can occur via a multipotent intermediate 

(CD133
+
/CD144

+
) that can differentiate either into a tumoral or endothelial 

phenotype (86). 

Another related possibility is that, rather than differentiation into endothelial lineage, 

CSCs generate vascular pericytes that mainly support endothelial cells to maintain 

vessels function and integrity. It was recently shown that, after GSC differentiation 

induction, a fraction of 4-11% cells expressed several pericyte markers such as α-

SMA, NG2, CD146 and CD248. Significantly, in vivo cell lineage tracing with 

specific fluorescent reporter confirmed that the majority of pericytes had GSC origin. 

Of note, selective deletion of GSC-derived pericytes hampered microvessel 

development and tumor growth. CXCR4 expressing GSCs were recruited toward 

epithelial cells by an SDF-1 chemoattractant gradient and then induced to pericytes 

differentiation upon TGF-β release by endothelial cells (87). 

 

3.6 Angiogenic pathways orchestrate CSCs survival and motility 

 

Although CSCs represent a minority of tumor cells population, deregulation of 

pathways involved in cell self-renewal and motility contributes to cancer conversion 

and promotion. In addition to well established CSCs radioresistance and 

chemoresistance mechanisms, an increasing adaptability to antiangiogenic treatment 

was shown (88). These cells can elicit resistance and increase their tumorigenic and 
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invasive potential by exploiting an hypoxic microenvironment (89) as well as the 

activation of anti-apoptotic pathways (88) (Figure 3). 
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Figure 3. Tumor microenvironment is conducive to angiogenesis promotion. A truncated 

soluble form of Jagged-1 is released by endothelial cells and its binding to Notch receptor 

on nearby colon cancer cells promotes a stem-like phenotype. PGE2 mediates the release of 

the angiogenic factors CXCL1 and VEGF in colon cancer cells, via an EP1-4/EGFR/MAPK 

cascade. CXCL1 secretion stimulates endothelial cell migration by CXCR2 binding and 

Rac/Cdc42 pathway activation. Furthermore, PGE2 induces colon cancer cell proliferation 

and survival trough PI3K/Akt signaling and transcriptional activation of PPARδ. Under 

hypoxic conditions, induction of HIF1α and alternative K-Ras pathways results in further 

VEGF release from cancer cells. In endothelial cells, VEGF/VEGFR interaction promotes 

cell proliferation, survival and migration via PI3K, Ras and FAK pathways. Finally, 
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activation of pro-survival signals in tumoral cells is triggered by microenvironmental stress 

and  p38MAPK, MAPKAPK2 and Hsp27 cascade. Notch intracellular domain (NICD), 

Prostaglandin E2 (PGE2), Chemochine C-X-C motif ligand 1 (CXCL1), Prostaglandin E 

receptor 1-4 (EP1-4), Epidermal growth factor receptor (EGFR), Mitogen-activated protein 

kinase (MAPK), Chemochine C-X-C motif receptor 2 (CXCR2), Cell division control 

protein 42 (Cdc42), Perixisome proliferator-activated receptor δ (PPARδ), Rho-associated 

protein kinase (ROCK), MAP kinase-activated protein kinase 2 (MAPKAPK2), Heat shock 

protein 27 (Hsp27). 

 

Among molecules that regulate tumor angiogenesis, such as Plateled–Derived 

Growth Factor (PDGF), FGF, HGF and TGF-α/β, VEGFs and their cognate receptors 

(VEGFRs) are the driving force of angiogenic response due to their specific 

expression on endothelial and tumoral cells, resulting in multiple signal pathways 

activation.  

VEGF family is represented by five members (VEGFA, VEGFB, VEGFC, VEGFD 

and placental growth factor [PGF]) coupled with three tyrosine kinase receptors 

(VEGFR1 [Flt1], VEGFR2 [KDR/Flk1] and VEGFR3 [Flt4]). As a soluble factor, 

VEGF serum concentration, in preoperative CRC, reflects the stage and correlates 

with disease progression. Both VEGFs and VEGFR2 are associated with a worse 

prognosis, tumor spreading and enhanced microvessel density. Particularly, VEGF 

expression increases during the colonic adenoma-adenocarcinoma pathogenesis 

conversion and before an invasive phenotype switch (90).  

VEGFR1 is mostly expressed on endothelial cells, monocytes, macrophages, 

hematopoietic stem cells and some tumoral cells, including CRC cells (91). VEGFB 

and PGF have been identified as its exclusive ligands. VEGFR2 is not restricted to 

endothelial cells but it is also shared by, for example, colitis-associated colon cancer 

epithelial cells (92) and GSCs (93). Furthermore, VEGFR3, the first normal 

lymphatic endothelium marker (94), together with VEGFC is involved in cancer 

lymphangiogenesis (95).  

VEGFA/VEGFR2 interaction is recognized as a potent proangiogenic stimulus 

increasing survival, proliferation, migration, and vascular permeability of endothelial 

cells (96). Although VEGFA has a higher binding affinity for this receptor, VEGFR2 

possesses a greater tyrosine kinases activity that governs the activation of MAP-

kinase, PI3K, Fak and Rac pathways. Interestingly, phosphorylation of p38MAPK, in 

colon CSCs, protects them from antiangiogenic treatment through the activation of 

Heat shock protein 27 (Hsp27) (88). Hypoxic induction of VEGF is not merely 

dependent on HIF-1α. It was already reported that CRC cells are forced to express 



61 

 

VEGF through a K-Ras/PI3K/Rho/ROCK/c-Myc axis. Indeed, a putative Myc-Max 

binding site was found on VEGF gene promoter (97). 

It was extensively observed that Prostaglandin E2 (PGE2) is abundantly secreted by 

both colon cancer cells and stromal cells and promotes the release of the angiogenic 

factors C-X-C motif ligand 1 (CXCL1) and VEGF through the Prostaglandin E 

receptor 1-4 (EP1-4)/Epidermal growth factor receptor (EGFR)/MAPK cascade. 

Tumor-derived CXCL1 stimulates endothelial cell migration and in vivo tumor 

growth and microvessels density, by CXCR2 binding and Rac/Cdc42 pathway 

activation. Furthermore, PGE2, via PI3K/Akt signalling, enhances transcriptional 

activation of Perixisome proliferator-activated receptor δ (PPARδ) that is required for 

colorectal adenoma growth (98,99). 

The angiogenic properties of VEGF may be amplified when tumoral endothelium is 

previously destabilized by other growth factors, such as Ang-2. Ang-1, 2 and 4, that 

bind the same endothelial receptor Tie2. While Ang-1 is expressed by pericytes, 

smooth muscle cells and tumor cells, Ang-2 is exclusive to endothelial cells. Ang1 

preserves vascular integrity by reducing cell-to-cell gaps whereas Ang2 increases 

pericytes dissociation and vessels destabilization, rendering endothelial cells more 

receptive to foreign stimuli, for instance, VEGF (100). 

A broad spectrum of clinical data reports that activating KRAS mutations could occur 

up to 50% of early stages CRC patients (101). Interaction of Ras with the catalytic 

subunit p110 of PI3K appears to be extremely relevant to the induction of VEGF 

gene expression. PI3K phosphorylates Akt which subsequently inhibits GSK-3β 

leading to β-catenin nuclear translocation. Mutated KRAS enhances the stability of β-

catenin and promotes the formation of nuclear β-catenin/TCF4 complexes (102). In 

addition, further evidence of a cooperative interaction between K-Ras and Wnt 

pathway in CRC lies in the presence of a consensus TCF4 element in the VEGF 

promoter (103). At the early onset of colon neoplastic lesion, a crosstalk between Ras 

and the microenvironment has been described. Particularly, RAS oncogene can 

orchestrate endothelial and inflammatory cells recruitment to the tumor site in an IL-

8-dependent manner (104). On the other hand, as previously mentioned, in wild type 

KRAS CRC and in presence of an hypoxic microenvironment, VEGF expression is 

strictly regulated by Akt and c-Src pathways (60). 

Entirely conflicting with other Ras oncoprotein features, R-Ras is described as a 

supporter of tumor vessels normalization by counteracting VEGF angiogenic 

potential. Tumor vasculature differs from the normal counterpart for the presence of 

saccular, tortuous and high permeable vessels with fibrin-gel matrix deposition. 

Pericytes are poorly associated with endothelial cells supported by an irregular 

basement membrane. Vessel leakiness allows cancer cells to easily penetrate into the 
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bloodstream and thus colonize distant organs. In addition, plasma leakage from 

vessels, due to an higher interstitial hydrostatic pressure at the tumor site, reduces the 

delivery of chemotherapeutic agent (105). However, R-Ras does not affect the 

oxygen-sensing mechanism of vessel normalization exerted by PHD2 or HIF-2α 

under hypoxic condition. Conversely, it facilitates the accumulation of VE-cadherin 

on cell-to-cell junction, favoring the stabilization of the endothelial barrier. Indeed, it 

reduces phosphorylation of Ser665 in the cytoplasmic domain of VE-cadherin, 

suppressing its internalization on endothelial cells. Interestingly, this phenomenon 

antagonizes VEGF-mediated VE-cadherin phosphorylation. Furthermore, R-Ras 

activity in pericytes increases their interaction with endothelial cells, leading to 

normal vessels morphogenesis (106). 

Based on this observation, antiangiogenic therapies may contribute to the 

normalization of tumor vasculature architecture and consequently improve their 

distribution and efficacy (107). 

Finally, the BMPs pathway was observed aberrantly regulated in the majority of 

sporadic CRC and germline mutation on BMP receptors and downstream substrates 

were detected in juvenile polyposis (108). Furthermore, BMP signaling has been 

shown to be essential in human intestinal development and regeneration regulating 

also the number and the self-renewal state of colonic stem cells (109). To date, little 

is known about BMPs role in angiogenesis. Recently, BMP9 was identified as a 

ligand of the orphan Activin receptor-like Kinase 1 (Alk1) in endothelial cells and the 

resulting interaction affects several angiogenic steps. BMP9/Alk1 signaling 

counteracts bFGF-stimulated endothelial cells proliferation and migration as well as 

VEGF-induced angiogenesis. Indeed, BMP9/Alk1/BMP receptor II (BMPRII) 

complex abolished VEGF expression through suppression of TGFβ/Alk5/BMPRII 

signaling (110). Certainly further investigations are needed to identify the underlying 

mechanism of BMP engagement during angiogenesis promotion. 

 

3.7 Therapeutic Advances  

 

Quiescent cells within the stemness niche have been associated with tumor recurrence 

and relapse after chemotherapy. Targeting the molecular mediators and signaling 

pathways affecting EMT and tumor progression may provide novel therapeutic 

strategies to prevent CSCs-dependent distant metastasis formation.   

Fighting neovascularization to counteract cancer promotion is a crucial step of the 

long-standing theory of J. Folkman (111). Based on this hypothesis, the first 

antiangiogenic compound approved by the FDA, in 2004, was Bevacizumab. It is a 

monoclonal antibody against VEGF recommended in first and second line settings, 

http://click.thesaurus.com/click/nn1ov4?clksite=thes&clkpage=the&clkld=0&clkorgn=0&clkord=0&clkmod=1clk&clkitem=engagement&clkdest=http%3A%2F%2Fthesaurus.com%2Fbrowse%2Fengagement
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either with FOLFOX (5-Fluorouracil, Leucovorin and Oxaliplatin) or FOLFIRI (5-

Fluorouracil, Leucovorin and Irinotecan). As shown by preclinical data, Aflibercept 

is a VEGFA, VEGFB and Placental growth factor (PIGF) decoy receptor, composed 

of VEGFR1 and VEGFR2 extracellular domains fused to the constant portion of 

immunoglobulin gamma chain. In 2012, FDA approved the administration of this 

compound plus FOLFIRI in patients with metastatic CRC with disease progression 

after oxaliplatin treatment. Recently, advanced clinical trials validate the efficacy of  

Regorafenib as a VEGFR1/2/3 and Tie2 tyrosine kinase inhibitor (112). 

Despite initial therapeutic benefits in patients with metastatic CRC, classic 

antiangiogenic strategies failed to improve long-term clinical outcomes (113). 

Since new development of tumor vasculature implies several complex signaling, 

alternative angiogenic or anti-apoptotic mechanism could be devised by cancerous 

cells (88). Indeed, it has been recently pointed out, by Lu et al., that glioblastoma 

multiforme treatment with Bevacizumab developed more invasive tumors, as the 

blockade of VEGF enhances HGF-induced MET phosphorylation (114). Another 

attractive approach takes into account that anti-angiogenic treatments favor a hypoxic 

microenvironment that gives to CSCs population a metabolic advantage and 

preserves their self-renewal state (89).  

Given that anti-angiogenic drugs may enhance tumor invasiveness by blocking de 

novo angiogenesis and inducing hypoxia, the development of HIF-1α targeted 

therapies may reduce or prevent metastasis (58). There are several agents that affect 

directly or indirectly the HIF-1α expression or activity. The binding of HIF-1α to the 

co-activator p300/CBP has been attenuated by the chetomin, a small molecule that 

interferes with hypoxia-inducible transcription (115). In addition, the proteasome 

inhibitor bortezomib, approved for treatment of patients with multiple myeloma and 

mantle cell lymphoma, impairs the interaction with the co-activator p300/CBP by 

inducing the hydroxylation of Asn803 in the C-terminal transactivation domain (116). 

By blocking HIF-1α binding to HRE sequence, a step required for transcription 

induction, anthracyclines have been reported to significantly reduce the prostate 

tumor growth and vascularization in a mouse model (117). The topoisomerase I 

inhibitor topotecan, cardiac glycoside digoxin and PX-478 have also been implicated 

in HIF-1α expression, consistent with their remarkable antitumor activity in a variety 

of human tumor xenograft models (118). HIF-1α protein translation is also inhibited 

by the chaperone Hsp90, which induces its proteasomal degradation in a VHL-

independent manner (119). Nontoxic prodrugs that generate active species in hypoxic 

tissue by selective bioreduction have now reached advanced clinical trials. 

Nitroaromatics, quinones, tertiary amine N-oxides, and transition metals are 

selectively reduced and activated in the absent of O2 to release or activate toxic 
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effectors to eradicate surrounding hypoxic tumor cells. Similarly, the gene-directed 

enzyme prodrug therapy uses HRE sequence to improve the expression of reductase 

enzymes, including P450 reductase, HSV thymidine kinase and cytosine deaminase, 

which kill hypoxic tumor cells by converting a prodrug into a cytotoxin (58). 

Nevertheless, a robust validation of hypoxia inhibitors in clinical trials is needed to 

support the hypoxia-targeted therapies. Overall, these findings suggest that advanced 

compounds need to be developed to selectively target cancer microenvironment. 

 

3.8 Conclusions 

 

The reviewed data emphasize the supporting role of the microenvironment in primary 

tumor establishment and dissemination to distant sites. The critical event of EMT 

depends on the complex signals produced by stromal components ensuring the 

generation of CSCs phenotype with increased proliferative capacity and metastatic 

potential in hostile milieu. In addition, perivascular, hypoxic and premetastatic niches 

have been proposed to enhance the resistance of CSCs to therapy. Based on this 

observation, combination therapies targeting hypoxia and de novo angiogenesis may 

have enormous therapeutic implications by blocking the successful homing of cancer 

cells to metastatic sites. Thus, a better understanding of cancer microenvironment 

framework could be a crucial key to improving patient cure. 
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Abstract 

 

Compelling evidence indicates that the survival and behavior of Cancer Stem Cells 

(CSCs) are positively regulated by specific stimuli received from the tumor 

microenvironment, which dictates the maintenance of stemness, invasiveness, and 

protection against drug-induced apoptotic signals. CSCs are per se endowed with 

multiple treatment resistance capabilities, thus the eradication of CSC pools offers a 

precious strategy in achieving a long-term cancer remission. Numerous therapies, 

aimed at eradicating CSCs, have been elaborated such as: i) selective targeting of 

CSCs, ii) modulating their stemness and iii) influencing the microenvironment. In 

this context, markers commonly exploited to isolate and identify CSCs are optimal 

targets for monoclonal antibody-based drugs. Furthermore,  the molecules that inhibit 

detoxifying enzymes and drug-efflux pumps, are able to selectively suppress CSCs. 

Auspicious outcomes have also been reported either by targeting pathways 

selectively operating in CSCs (e.g. Hedgehog, Wnt, Notch and FAK) or by using 

specific CSC cytotoxic agents. Other compounds are able to attenuate the unique 

stemness properties of CSCs by forcing cell differentiation, and this being the case in 

ATRA, HDACi, BMPs and Cyclopamine, among others. Targeting the interplay 

between paracrine signals arising in the tumor stroma and the nearby cancerous cells 

via the inhibition of VEGF, HIF, CD44v and CXCR4, is increasingly recognized as a 

significant factor in cancer treatment response and holds alluring prospects for a 

successful elimination of CSCs. In the present chapter, we discuss the latest findings 

in the optimization and tailoring of novel strategies that target both CSCs and tumor 

bulk for the eradication of malignancies. 
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4.1 Introduction 

 

The concept that tumors are hierarchically organized and harbor cells with distinct 

tumor-initiating capabilities and self-renewal potential, referred to as cancer stem 

cells (CSCs), has long been observed in a variety of hematopoietic malignancies and 

solid tumors and is now well-recognized by the scientific community (1). By virtue 

of their innate plasticity, it is worth considering that CSCs fuel and succeed in tumor 

growth, treatment resistance, distant metastasis formation and patient relapse. 

Mechanistically, CSCs share several biological properties with normal adult stem 

cells that endows them with a survival advantage upon chemotherapeutic 

intervention. These include dormancy (quiescence), active DNA repair machinery, an 

enhanced reactive oxygen species (ROS) defence capability, a higher expression of 

multiple drug resistance (MDR) membrane transporters and anti-apoptotic proteins 

(2, 3). 

Thus, attractive emerging strategies have been developed to selectively target CSCs 

by using agents directed at CSC-surface markers, drug-detoxifying enzymes, drug 

efflux pumps or key signaling pathways sustaining the stemness properties of CSCs. 

Otherwise, stemness modulator drugs force CSCs to differentiate terminally, resulting 

in the loss of self-renewal potential and the gaining of susceptibility to cytotoxic 

therapies. To eventually overcome cancer resistance and relapse, a simultaneous 

delivery of stem cells targeting drugs or stemness modulator compounds, has been 

tested in combination with standard anticancer drugs to successfully eliminate CSCs, 

tumor bulk cells and spontaneously dedifferentiated non-CSCs (4, 5). Of note, stem 

cell targeting drugs eradicate CSCs but at concentrations less toxic to non-CSCs. 

Conversely, stemness inhibiting drugs aim at reducing the stemness of CSCs and 

uniquely, at high doses, they may eliminate CSCs and non-CSCs with similar 

potency. Finally, paracrine signals between cancer cells and stromal cells are required 

to trigger an epithelial-to-mesenchymal transition (EMT) program. Besides the 

acquisition of a mesenchymal and invasive state, EMT seems to confer stem-like 

properties to neoplastic epithelial cells (6), and subsequently additional autocrine 

signals, arising from cancerous cells themselves, appear to maintain this 

mesenchymal state (7). Therefore, specific molecular therapies that target CSC 

peculiarities and prominent tumor microenvironment signals, may be powerful 

determinants in tumor shrinkage and successful elimination of CSCs (Figure1). 
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Figure 1 Targeting cancer stem cells and the tumor microenvironment. (A) Therapeutic 

approaches to selectively target CSCs use mAbs directed to CSC-surface markers (1), 

agents blocking drug efflux pumps (2), inhibitors of signaling pathways that take part in 

controlling the fate of CSCs (3), CSC-specific cytotoxic compounds (4) and inhibitors of the 

DNA repair machinery (5). (B) Microenvironment modulator drugs can impair the effect of 

stromal- and cancer-derived factors (1), inhibit angiogenesis (2) and counteract the pro-

oxidant environment generated by tumor hypoxia (3). (C) Stemness modulator compounds 

force the differentiation of CSCs and in combination with standard chemotherapy contribute 

to the successful elimination of CSCs and tumor bulk. Cancer stem cell (CSC), monoclonal 

antibody (mAb). 

 

4.2 Selective cancer stem cells targeting drugs 

 

Proof of evidence that CSCs are endowed with self-renewal and differentiation 

capabilities is represented by the ability to engraft tumors when serially transplanted 

in immunocompromised mice. Further support, recently emerging from in vivo 

genetic cell fate tracking experiments, confirmed the capability of CSCs to seed a 

tumor and recapitulate its heterogeneity (8, 9). The criteria used to identify CSCs in 

solid tumors and hematopoietic disorders include certain in vitro properties among 
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which i) CSCs can be distinguished and isolated with specific cell-surface marker 

profiles or intracellular molecules, ii) CSCs are endowed with increased resistance to 

chemotherapeutic compound (CSCs are detectable for their high levels of detoxify 

enzymes and MDR) and iii) the activation of CSCs-dependent pathways, which could 

offer a functional marker for their identification (10). 

 

4.2.1 CSC surface markers as a therapeutic target  

Thus, the ability to use CSCs’ peculiar surface markers has been suggested as a 

promising therapeutic approach. One must bear in mind that some limitations do exist 

such as, the existence of inter- intra- tumor heterogeneity and splicing variants, the 

different methodologies used for CSCs detection and the presence of some common 

markers shared by normal adult stem cells. For instance, CD44 is a transmembrane 

glycoprotein and the receptor for hyaluronic acid (HA) and osteopontin (OPN), 

among others. It is expressed in CSCs from distinct solid tumor types and H90, an 

anti-CD44 monoclonal antibody (mAb), was the first antibody that showed CSC 

targeting properties. In vivo administration of H90 interfered with acute myeloid 

leukemia (AML) stem cells’ homing capability in the microenvironmental niche and 

maintained their stem cell status (11). Similarly, in a xenograft model initiated by 

triple negative breast cancer cells, the anti-CD44 mAb P245 inhibited tumor growth 

and recurrence if injected during the apparent tumor remission period achieved after 

treatment with doxorubicin and cyclophosphamide (12). GV5 is a recombinant 

human mAb that recognizes the extracellular domain of CD44’s alternative splicing 

variant, termed CD44R1(v8-v10). In athymic mice GV5 inhibited tumor formation, 

after the subcutaneous transplantation of larynx and cervix cancer cells,  due to the 

induction of antibody-dependent cellular cytotoxicity (ADCC) and internalization of 

CD44R1 (13). H4C4 is an anti-CD44 mouse mAb that decreased pancreatic CSC 

capabilities of in vitro tumor sphere formation and in vivo tumor growth. It also 

impaired metastasis formation and recurrence after radiotherapy via Nanog and 

STAT3 signaling pathway inhibition (14). Finally, due to its promising preclinical 

results, RO5429083, which is a humanized mAb directed against an extracellular 

epitope of human CD44, has been evaluated in a phase I clinical study on CD44-

expressing metastatic and/or locally advanced solid tumors. Another phase I clinical 

study is still ongoing involving patients with AML 

(http://www.cancer.gov/clinicaltrials). MT110 is a bispecific bifunctional T-cell-

engaging (BiTE) antibody that concomitantly binds to the epithelial cell adhesion 

molecule (EpCAM), a common CSC marker, and to the T-cell receptor complex CD3 

which, leads to the activation of cytotoxic T cells against EpCAM-expressing cells 

and causes cell death via redirected lysis. MT110 reduced the capacity of  colon and 

http://www.cancer.gov/clinicaltrials
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pancreatic CSCs, cocoltured with peripheral blood mononuclear cells (PBMCs) as 

source of T cells, to form spheres in vitro and to generate tumors in vivo (15, 16). 

MT110, is in early stages of clinical trials for patients with locally advanced, 

recurrent or metastatic solid tumors, known to widely express EpCAM 

(http://www.cancer.gov/clinicaltrials). Catumaxomab is a bispecific trifunctional 

antibody (Triomabs) binding to EpCAM and the CD3 complex in T cells. In addition, 

it binds macrophages, natural killer (NK) and dendritic cells via its Fc fragment thus, 

synergizing the anti-tumor effects exerted by T cells. When Catumaxomab is 

administered  to  patients with advanced solid cancers and suffering from malignant 

ascites,  it activated peritoneal T cells, stimulated the release of proinflammatory Th1 

cytokines, decreased the peritoneal level of VEGF and eliminated CD133
+
/EpCAM

+
 

CSCs (17). Catumaxomab has been approved in Europe for clinical use in the 

treatment of malignant ascites and the results, from a prospective randomized phase 

II/III clinical trial, have been reported by Heiss et al. (18). The ubiquitous expressed 

transmembrane antigen CD47 can trigger inhibition of phagocytosis (the so-called 

‘don’t eat me’ signal) on SIRPα-expressing phagocytic cells. CD47 blocking via the 

mouse mAb B6H12.2 favors the phagocytosis of human AML stem cells through 

mouse and human macrophages. Interestingly, B6H12.2 spares normal hematopoietic 

stem cells because they express low levels of CD47 (19). 7G3 is a mouse mAb and 

recognizes the human interleukin-3 (IL-3) receptor α chain (CD123), which is 

overexpressed on AML blasts and CD34
+
 AML stem cells. 7G3 inhibits the 

engraftment and homing of AML stem cells in immunocompromised mice  through 

ADCC (20). CSL362, a humanized anti-CD123 mAb with an increased affinity for 

human CD16, induces massive NK-mediated ADCC in both AML blasts and 

CD34
+
CD38

−
CD123

+
 AML stem cells (21). CSL362 is currently in  the beginning 

stages of clinical trials for patients with AML (http://www.cancer.gov/clinicaltrials). 

A more detailed list of CSC specific markers and their use as putative therapeutic 

targets has been reviewed recently (22, 23). 

 

4.2.2 Targeting ABC transporters in CSCs 

ATP-binding cassette (ABC) transporters have been used to identify CSCs because 

they are overexpressed on the membrane of both normal and cancer stem cells. ABC 

transporters enable the efflux of drugs and are responsible for MDR. Thus, CSCs are 

able to expel the Hoechst 33342 dye by adopting such machinery and thus creating a 

‘side population’ (SP) which, can be isolated by fluorescence-activated cell sorting 

(FACS). ABCB1 (P-glycoprotein), ABCG2 and ABCC1 are the most extensively 

studied ABC transporters in stem cell biology. In order to avoid drug resistance, 

much effort has been devoted to the design of ABC transporter inhibitors which, 

http://www.cancer.gov/clinicaltrials
http://www.cancer.gov/clinicaltrials
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selectively eliminate CSCs but spare normal stem cells. However, several ABCB1 

inhibitors, such as verapamil, tariquidar, and quinidine, have shown little efficacy in 

clinical settings. The elimination of CSCs has not been successful perhaps due to: 

clinical studies that were not designed correctly, the choice of an incorrect ABC 

transporter as a target and other combinations of CSC targeting drugs would have 

been preferable (24). Some ABCG2 inhibitors showed high toxicity both in vitro and 

in vivo. Novel compounds are in preclinical studies such as the ABCG2 inhibitor 

YHO-13351 which, sensitized the human cervical carcinoma cell line to irinotecan 

and reduced the CSC population (25). Xia et al. developed an image-based high-

content screening system and identified 12 potent high drug efflux cancer cell 

inhibitors from 1280 screened compounds. These inhibitors sensitized lung cancer 

cells to chemotherapeutic drugs and possibly affected in vivo tumorigenic capabilities 

of the CSC compartment (26).  

 

4.2.3 The inhibition of pathways that sustain CSCs 

CSCs are dependent on activated signaling pathways different from those sustaining 

the bulk population. Therefore, targeting the stemness determinants could effectively 

conduct to the most durable remission and prevent resistance to chemotherapy and 

radiotherapy. Being an important player in self-renewal and maintenance of CSCs 

(27), the Wnt signaling pathway has been targeted by both small-molecule and 

biologic inhibitors. The first class of compounds includes ICG-001 which, acts as an 

antagonist of CREB-binding protein (CBP)/β-catenin (28) and showed to selectively 

eliminate drug resistant leukemic stem cells (29). Moreover, the small LGK974 (30) 

and IWP2 (31) molecules target the porcupine enzyme which, is responsible for 

palmitoylation of Wnt ligands, a required step in activating their secretion. A 

LGK974-based phase I clinical trial on patients with solid tumors is still ongoing 

(http://www.cancer.gov/clinicaltrials). The second class of compounds includes, the 

humanized mAb OMP-18R5 that binds to the extracellular domain of multiple 

Frizzled (FZD) receptors and blocks the Wnt3A-induced downstream pathway. In 

preclinical settings, it reduces tumorigenic capabilities of human breast, pancreatic, 

colon and lung cancer cells, compared to standard chemotherapy (32), and is 

currently in its early stages of clinical trial for patients with solid tumors 

(http://www.cancer.gov/clinicaltrials). The activation of the Hedgehog (Hh) pathway 

is mandatory for the maintenance of CSC properties in various human cancers. The 

molecules antagonist of smoothened (SMO), a G protein-coupled transmembrane 

serpentine receptor that usually acts as a signal transducer of the proximal Hh 

pathway, such as GDC-0449, inhibit cell growth and induce apoptosis of pancreatic 

CSCs (33). Interestingly, the antineoplastic compound mithramycin, showed 

http://www.cancer.gov/clinicaltrials
http://www.cancer.gov/clinicaltrials
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properties that target Sox2
+
 medulloblastoma stem cells and bear the aberrant Sonic 

hedgehog (Shh) pathway activation. Specific to this context, although Sox2
+ 

cancer 

cells were driven by Shh signaling, they were not affected by either the Shh-targeted 

therapy with GDC-0449 or anti-mitotic chemotherapy. This suggests the existence of 

heterogeneity even within the Shh medulloblastoma subgroup and that a combination 

of bulk targeting drugs and CSCs targeted therapy could lead to a more notable 

control of the disease (34). GDC-0449 is in phase II of the clinical trial regarding the 

treatment of basal cell carcinoma (http://www.cancer.gov/clinicaltrials).  

The Notch signaling pathway is a well-recognized positive regulator of CSCs fate 

(35, 36). The best way to target Notch activation, is to inhibit the proteolytic cleavage 

of the Notch intracellular domain (NICD) via the γ-secretase complex. γ-secretase 

inhibitors (GSIs) reduce self-renewal and tumorigenicity of GSCs and breast CSCs 

(37, 38). A phase I/II clinical trial that foresees  the use of GSIs MK-0762 followed 

by docetaxel, whose purpose is killing breast cancer stem cells in advanced or 

metastatic breast cancer, has recently been completed (39). Antibodies targeting the 

Notch ligand Delta-like 4 (Dll4) such as the humanized mAb OMP-21M18, have 

been developed and efficiently reduced CSC frequency in solid tumors (40, 41). A 

comprehensive analysis of all ongoing and completed Notch clinical trials has 

recently been published (42). FAK activity seems to be critical for survival, migration 

and resistance to chemotherapy of CSCs (43, 44). Kang et al. demonstrated that the 

FAK inhibitor VS-6063 (which inhibits FAK autophosphorylation) overcomes 

resistance to paclitaxel in ovarian cancer by decreasing the AKT-dependent YB-1 

phopshorylation which, in turn downregulates the CD44 expression (45). Others 

showed that the upregulation of CD44 favors breast cancer cell self-renewal, 

tumorspheres formation and induces paclitaxel resistance (46). Furthermore, CD44 

upregulates Nanog, responsible for increased ABCB1 expression and ovarian cancer 

cells acquired resistance to paclitaxel (47). VS-6063 is currently in phase II of its 

clinical trial for K-RAS mutant non small cell lung cancer (NSCLC) patients. 

Similarly, other FAK inhibitors such as VS-4718 and PF-00562271, are in phase I of 

clinical evaluation (http://www.cancer.gov/clinicaltrials). Finally, the BMI-1 inhibitor 

PTC-209, has recently been proposed as an interesting small molecule affecting self-

renewal of colorectal cancer cells with no systemic toxicity in preclinical settings 

(48). 

 

4.2.4 Agents that selectively eradicate CSCs 

A high-throughput screen for agents that selectively kill CSCs has been performed by 

Gupta et al. Among a library of 16.000 compounds tested, salinomycin induced 

breast CSC-specific toxicity. Breast cancer cells were initially forced to undergo an 

http://www.cancer.gov/clinicaltrials
http://www.cancer.gov/clinicaltrials


81 

 

EMT by means of an E-cadherin knockdown. Pre-treatment with salinomycin 

inhibited tumorsphere formation in vitro and reduced tumor seeding ability in vivo by 

>100-fold, compared to paclitaxel. Salinomycin treatment also decreased tumor mass 

and metastasis and increased epithelial differentiation of breast CSCs in an 

immunocompromised mouse model (49). Successively, similar results have been 

reached in some type of cancers, including leukemia, colorectal cancer, lung cancer, 

GIST and osteosarcoma. Some findings also suggested that, a combination of 

salinomycin and conventional cytotoxic drugs could be a much more efficient 

strategy than the use of a single agent to improve therapeutic outcomes (50, 51). 

Moreover, being that salinomycin seems to be toxic to normal stem cells at 

concentrations also effective in CSCs (52) it will render its clinical use as a single 

agent difficult. Salinomycin acts as a K
+
 ionophore in biological membrane that 

promotes mitochondrial and cytoplasmic K
+
 efflux however, the exact mechanisms 

underlying its toxicity against CSCs still remains  unclear. It has been shown that 

salinomycin is a powerful inhibitor of the multidrug resistance protein 1 (MDR-1) (P-

glycoprotein/ABCB1) (53). It inhibits the phosphorylation of the Wnt co-receptor 

LRP6, induces apoptosis in chronic lymphocytic leukemia (54) and is an antagonist 

of the mTORC1 signaling pathway in breast and prostate cancer cells (55). On the 

other hand, it encourages ROS production and inhibits oxidative phosphorylation in 

mitochondria (56), resulting in the possible elimination of CSCs, which rely on this 

metabolic process. In addition, recent studies have unveiled that salinomycin induces 

cell growth inhibition and apoptosis in multi drug resistant ovarian cancer cell lines, 

by ablating the activity of the signal transducer and activator of transcription 3 (Stat3) 

and thus, diminishing the expression of Stat3 target genes, such as cyclin D1, S-phase 

kinase-associated protein 2 (SKP2) and SURVIVIN (51). This is not surprising if we 

consider the most recent evidence which highlights the major role that Stat3 plays in 

reducing the effectiveness of drugs treatment. Specifically, the inhibition of MEK in 

‘oncogene-addicted’ cancer cells, (driven by activated EGFR, HER2, ALK, MET and 

KRAS pathways) triggers the feedback activation of Stat3 through IL-6R and FGFR, 

leading to treatment resistance (57). In line with these results, Kim et al. showed that 

the constitutive activation of the IL-6/Stat3/NF κB pathway in p53
-
PTEN

- 
non-

transformed MCF10A, was dependent on the proteolytic degradation of SOCS3 and 

generated highly metastatic and EMT-like CSCs. Thus, proteasoma inhibition 

restored SOCS3 protein levels and the selective IL-6R antagonist, tocilizumab, 

repressed the CSC compartments, hampered tumor growth and dissemination in vivo 

(58). 
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4.2.5 PARPi affects CSC survival 

Recent breakthroughs displayed that inhibition of poly-ADP-ribose polymerase 

(PARP) could be a promising selective CSC-targeted therapy. Mechanistically, PARP 

is an abundant nuclear protein that mediates the repair of single strand breaks (SSBs) 

through base excision repair. The inhibition of PARP leads to the accumulation of 

SSBs that during replication are converted into double-strand breaks (DSBs), usually 

repaired by the homologous recombination (HR) pathway, mediated by BRCA1 or 

BRCA2. Whereas, in neoplastic cells with defective HR, the DSBs cannot be repaired 

and lead to cell death. It was shown that AZD2281, a PARP inhibitor (PARPi), 

preferentially targets glioblastoma stem cells (GSCs) and reduced their survival, 

expansion and tumor initiation capabilities, as well as having sensitized them to 

radiation therapy (59). Moreover, a PARPi, GPI 15427, was able to counteract GSC’s 

resistance to temozolomide (60). These examples opened a new road for the use of 

PARPi, even in the absence of mutations of BRCA1/2. This changed the classical idea 

of ‘synthetic lethality’ which exists between PARP and BRCA1/2 signaling 

pathways. Indeed, patients affected by triple negative breast cancer (non carriers of 

BRCA1/2 mutations), have shown increased therapy response and survival following 

PARP inhibition (BSI-201) in combination with DNA-damaging chemotherapy. The 

latter of which may eventually obstruct the cellular DNA repair machinery and cause 

cell death (61). Moreover, deletions or mutations in other genes involved in key 

genotoxic stress pathways such as PTEN, may sensitize them to PARPi 

administration (62). PARPi are currently under clinical evaluation in solid tumors as 

single agent or in combination with chemotherapy and detailed information about 

ongoing clinical trials has been published elsewhere (63) 

(http://www.cancer.gov/clinicaltrials). 

  

4.3 Stemness modulator drugs 

 

Notwithstanding that CSCs embody a small portion of the tumor bulk, they are 

responsible for the heterogeneous cell population that constitutes the tumor mass and 

their intrinsic resistance to chemotherapy and radiotherapy shown by aggressive 

tumors. Indeed, CSCs possess both self-renewing capabilities, by means of 

generating two identical CSCs daughter cells through symmetrical division, and the 

ability to differentiate through asymmetrical division, yielding the multitude of 

cancerous cells that account for overwhelming tumor growth (64). As previously 

discussed, a prominent mechanism of therapeutic resistance includes an altered 

kinetic cell cycle in quiescent CSCs. They are spared by chemotherapy-induced 

cytotoxicity because they are not actively cycling cells but are capable of activating 

http://www.cancer.gov/clinicaltrials
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DNA repair mechanisms. Thus, forcing terminal differentiation of CSCs could be an 

extremely powerful weapon in preventing resistance and relapse. Ideally, a clinically 

effective response could be achieved by the simultaneous administration of anti-CSC 

therapy and conventional chemotherapy, in order to eliminate cytotoxic drug-

susceptible non-CSCs and prevent their dedifferentiation in CSCs (5). Given that the 

development of clinical endpoints in this field may prove challenging, an emergent 

amount of stemness modulator drugs is already in clinical use and others are in 

preclinical or early stages of clinical evaluation. Some examples are listed below. 

 

4.3.1 ATRA induces differentiation of CSCs 

Among these, all-trans-retinoic acid (ATRA), a derivate of vitamin A, has already 

been demonstrated to be a potent differentiation-inducing drug and a successful 

treatment strategy, in combination with arsenic trioxide, for AML patients carrying 

the PML-RARα fusion protein (65). Campo et al. reported that ATRA induced 

differentiation and radio- and chemo-sensitization of stem-like glioma cells (66). 

Given that, ALDH is a common marker of breast CSCs and a detoxifying enzyme 

responsible for the oxidation of intracellular aldehydes as well as of retinol to retinoic 

acid, it was shown that DEAB-mediated ALDH inhibition increased the CSC 

compartment by abrogating CSC differentiation. Conversely, ATRA treatment 

induced differentiation of breast CSCs and decreased the stem population (67). 

Similarly, Hammerle et al. suggested that the neuroblastoma stem cells’ response to 

13-cis-retinoic acid (RA), could be enhanced by the proteasome inhibitor MG132 

(68). Interestingly, a combination of CSC genomics with connectivity map, analyzed 

a database of 6100 gene expression profiles of four breast cancer cell lines, treated 

with different concentrations of approximately 1000 FDA approved drugs. This 

revealed that ATRA is negatively associated with CSC-enriched gene expression 

signature. ATRA induced apoptosis, hampered mammosphere formation and forced 

differentiation of fulvestrant-resistant cells. Intriguingly, in the same study, a MEK 

inhibitor, selumetinib, sensitized the K-RAS mutant breast cancer cell line, which was 

enriched with CSCs, to the ATRA treatment (69). 

 

4.3.2 SAHA modulates differentiation and apoptosis of CSCs 

Suberoylanilide hydroxamic acid (SAHA), also called vorinostat, a potent inhibitor of 

the histone deacetylase (HDAC) family, caused differentiation and apoptosis of 

several tumor type cells. In an in vivo prostate cancer tumor model, SAHA hampered 

tumor growth with low systemic toxicity (70). Additionally, HDAC inhibitors can be 

therapeutically exploited to specifically target slow cycling cells. For instance, 

SAHA, coupled with imatinib mesylate, successfully fostered apoptosis in quiescent 
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chronic myelogenous leukemia stem cells and offered a novel strategy to overcome 

chemoresistance and the difficulties in targeting dormant cells (71). 

 

4.3.3 BMPs: an actor of balance between differentiation and stemness 

It is the general understanding that the bone morphogenic protein family (BMPs) is 

required to inhibit the stem cell state and mesenchymal traits in a variety of normal 

and cancerous epithelial tissues (7, 72) and promote differentiation of adult and 

pluripotent stem cells (73). Mechanistically, BMPs are members of the transforming 

growth factor-β (TGF-β) superfamily and bind to a combination of type I receptors 

(anaplastic lymphoma kinase 2 (Alk2), Alk3 (or BMPR1A), and Alk6 (or BMPR1B)) 

and type II receptors (BMPR2)). They activate either the canonical BMP signaling 

pathway, through phosphorylation of smads receptors, or the PI3K/AKT-mediated 

non canonical BMP signaling pathway. Specifically, a BMP7 variant (BMP7v) 

abrogated in vitro proliferation of glioblastoma stem cells (GSCs) as well as the 

expression of stem associated markers and endothelial cord formation. In a 

glioblastoma orthotopic mouse model, BMP7v impaired tumor growth, invasion and 

angiogenesis (74). Likewise, our group demonstrated that BMP4 enhanced colorectal 

CSCs’ differentiation and apoptosis and it their sensitized them to 5-fluorouracil and 

oxaliplatin treatment. However, the SMAD4-defective tumors carrying either 

mutations in PI3K or loss of PTEN are refractory to the treatment mentioned above 

thus, confirming the BMP4-mediated activation of both canonical and non canonical 

pathways (75). On the contrary, molecules such as Coco, an antagonist of TGF-β 

ligands, reverses the effect of BMP thereby, enhancing the self-renewal of metastasis-

initiating cells (76). 

 

4.3.4 Resveratrol affects CSC self-renewal 

A number of epidemiological studies have proposed that resveratrol, a polyphenolic 

compound  with which, many plant species are enriched with, exerts several 

biochemical activities associated with tumorigenesis such as, inhibition of 

inflammation, cell proliferation and angiogenesis as well as, sensitizing tumor cells to 

chemotherapy (77). Even though the influence of resveratrol on CSCs is still under 

evaluation, recent evidence showed that KRAS
G12D

 mice, which spontaneously 

develop aggressive pancreatic cancer, treated with resveratrol developed smaller 

tumors (dimension and weight). Moreover, patient-derived pancreatic cancer and 

mice-derived KRAS
G12D

 CSCs, lost their self-renewal capability in presence of 

resveratrol, possibly by the inhibition of Nanog, Sox-2, c-Myc and Oct4. In the same 

study, patient-derived CSCs underwent resveratrol-evoked apoptosis by activating 

caspase 3/7 and inhibiting XIAP and Bcl-2. Migration and invasion were suppressed 
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following the inhibition of EMT related markers such as ZEB-1, SLUG and SNAIL 

(78). Similarly, in Glioblastoma multiforme (GBM), resveratrol induced apoptosis 

and differentiation of stem-like cells and sensitized them to radiotherapy in vitro and 

in vivo, via disruption of STAT3 signaling (79). Thereafter, Sato et al. 

mechanistically explained the inhibitory effect observed after resveratrol treatment on 

self-renewal and the tumorigenicity of CSCs. Indeed, resveratrol promoted the 

phosphorylation and activation of p53, which in turn may directly favor Nanog 

degradation via proteasome machinery (80).  

 

4.3.5 Cyclopamine limits the self-renewal of CSCs 

An additional plant-derived compound, the steroidal alkaloid cyclopamine, is a potent 

cancer preventing compound that directly binds to the heptahelical bundle of SMO 

(81). As already discussed in the present chapter, Hh signaling is essential for the 

maintenance of stem-like traits in multiple myeloma, leukemia and gastric cancer, 

among others (82-84). Hh pathway inhibition through cyclopamine inhibited 

tumorsphere formation in vitro and the establishment of orthotopic glioblastoma 

tumors (85). The newly synthesized cyclopamine-derived inhibitor of the Hh 

pathway, IPI-926, ameliorated cyclopamine characteristics such as oral 

bioavailability, higher metabolic stability, and a better pharmacokinetic profile (86). 

Cyclopamine and IPI-926 limited self-renewal potential of B-cell acute lymphocytic 

leukemia (B-ALL) cells (87). Interestingly, delivery of conventional chemotherapy, 

such as gemcitabine, to the tumor site, may be potentiated by the simultaneously 

administration of IPI-926. Indeed, in vivo inhibition of the Hh pathway increased 

intratumoral drug absorption in a gemcitabine-resistant pancreatic ductal 

adenocarcinoma model thus, making IPI-926 an important therapeutic strategy for the 

management of pancreatic cancer chemoresistance (88). IPI-926 is undergoing early 

step clinical trials for solid malignancy in combination with standard chemotherapy 

(89) (http://www.cancer.gov/clinicaltrials). 

 

4.3.6 Curcumin promotes CSC differentiation 

Curcumin (diferuloylmethane) derives from the Indian spice plant turmeric. 

Extensive preclinical studies showed its therapeutic potential in a variety of human 

diseases, including cancer. Due to its pleiotropic activities, curcumin is able to 

modulate a variety of normal or aberrant biological processes, hence it has been 

selected as a promising anti-cancer drug in several clinical trials reported in detail by 

Gupta et al. (90). Moreover, studies have shown that curcumin displayed capability 

of eliminating colon CSCs either alone or in combination with standard 

chemotherapy, such as FOLFOX (5-fluorouracil and oxaliplatin) and dasatinib (91, 

http://www.cancer.gov/clinicaltrials
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92). Furthermore, Curcumin promotes GSCs terminal differentiation, which 

culminated in autophagy. Whereas, in an intracranial glioblastoma xenograft model, 

it repressed their self-renewal capability and tumorigenicity (93). Intriguingly, breast 

CSCs, derived from the MCF7 cell line, displayed inhibition of tumorsphere 

formation and the Wnt signaling pathway (94). 

 

4.3.7 Metformin in CSC biology 

Metformin is a well established oral anti-diabetic drug of the biguanide class. It is an 

agonist of the adenosine monophosphate-activated protein kinase (AMPK) and an 

inhibitor of PI3K, mTOR and IGF. It has gained attention for its in vitro and in vivo 

antitumor effects and is now being tested in several advanced clinical trials (95) 

(http://www.cancer.gov/clinicaltrials). Metformin has also emerged as an important 

factor to counteract the retention of stemness and the activation of the EMT program 

of some cancer populations (95). Metformin was able to inhibit the expression of 

Oct4 in the MCF7 cell line, mediated by 17-β-estradiol treatment, and to reduce the 

fraction of CD44
high

/CD24
low

 cells (96). In line with these results, Vazquez-Martin et 

al. observed that metformin deprived basal-like breast cancer cells of the stem 

compartment and suppressed an EMT program activation through the transcriptional 

repression of ZEB1, TWIST1, SNAI2 and TGFβ (97). Metformin depleted the CSC 

pool in both gemcitabine-sensitive and -resistant pancreatic cancer cells, by 

decreasing the expression of CSC-specific markers such as EpCAM, Notch, Nanog, 

and CD44, as well as reexpressing miRNAs, (e.g. let7a, let7b, miR200b, and miR-

200c) usually associated with cellular differentiation (98). The studies performed by 

Oliveras-Ferraros et al. attempted to anticipate the possible mechanisms of acquired 

resistance to metformin treatment. They observed that the potential of metastatic 

dissemination of breast stem-like cells seemed to be fueled by the chronic 

administration of metformin to the estrogen–dependent MCF7 cell line. Thus, the 

drug selected for the emergence of resistant cells, leads to a transcriptome 

reprogramming which, drives them towards a metastatic stem-like profile (99). 

 

4 Microenvironment modulator drugs 

 

4.4.1 Targeting the CSCs vasculature niche 

There is proof of evidence that tumor-associated stroma and the extracellular matrix, 

are an extremely powerful source of herotypic signals, responsible for the activation 

of an EMT program on cancer cells and possibly  to nurture the CSCs within their 

niche. Among the stromal compartment, endothelial cells play a major role in 

supporting the self-renewal capability of CSCs and in building up all the vasculature 

http://www.cancer.gov/clinicaltrials
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architecture needed from these cells to provide nutrients and an easy route to 

metastatic dissemination. While the contribution of endothelial cells to tumor 

angiogenesis is self-evident, our understanding on CSC survival and drug resistance 

is still incomplete. Pioneer work from Calabrese et al., showed how the formation of 

a vascular niche is directly involved in the function of CSCs. Interestingly, 

glioblastoma stem cells (GSCs) can be induced to differentiate in either endothelial 

cells or pericytes, as a consequence of their undifferentiated state and their strict 

dependence on microvasculature stimuli (100). Tumor vasculature is classically 

composed of a network of tortuous, saccular and extremely permeable vessels, 

endothelial cells that are abnormally covered by pericytes and an irregular basal 

membrane. As a result, cancer cells can easily penetrate into the bloodstream and 

colonize distant metastatic sites, and a higher interstitial hydrostatic pressure, due to 

plasma leakage, may impair the delivery of chemotherapeutic drugs to the tumor site 

(101). Vascular endothelial growth factor (VEGF) was identified as an endothelial 

compartment mitogen which has a prominent role in positively regulating 

physiological and pathological angiogenesis. The mammalian VEGF family consists 

of five heparin-binding homodimeric glycoprotein of 45 kDa referred to as, VEGFA 

(VEGF), VEGFB, VEGFC, VEGFD and Placental growth factor (PlGF). The 

predominant VEGF molecules are represented by several spliced variants denoted as, 

VEGF121, VEGF145, VEGF148, VEGF165, VEGF183, VEGF189, and VEGF206 (102). They 

are commonly secreted by macrophages, neutrophils, fibroblast and several cancer 

cells but not by endothelial cells themselves. VEGF receptors consist of VEGFR1 

(FLT1), VEGFR2 (FLK1) and VEGFR3 (FLT4). VEGFR1 is able to bind VEGF, 

VEGFB and PlGF. VEGFR2 is activated by VEGF, VEGFC and VEGFD. Lastly, 

VEGFR3 is primarily involved in lymphangiogenesis as a receptor for VEGFC and 

VEGFD. Although all VEGFRs are tyrosine kinase receptors, VEGFR2, in response 

to VEGF stimulation, has captured the most attention as the predominant effector in 

cancer initiation and progression. This is explained by the fact that VEGFR1 binds 

VEGF with a higher affinity than VEGFR2 but conversely exhibits weaker tyrosine 

kinase activity in response to its ligand (103). In this context, Park et al. also 

proposed that VEGFR1 could act as a ‘decoy’ receptor able to negatively regulate 

VEGF activity, by preventing its binding to VEGFR2 (104).  

The binding of VEGFs to their cognate receptors induces dimerization and 

autophosphorilation of the intrinsic receptor’s tyrosine residues and consequently 

activates the dominant PI3K-AKT, MAPK and FAK pathways. It is now well 

established that VEGFs and VEGFRs are expressed in a variety of tumors (including 

colon, breast, lung, prostate, and ovarian cancer). VEGF signaling interferes in cancer 

biology and interestingly in CSC function, independently of angiogenesis and in 
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autocrine fashion. Conversely, it is popular belief that tumors rely on the classical 

paracrine VEGF-mediated sprouting angiogenesis, the increased permeability and the 

influence from the immune cells and the tumor microenvironment’s fibroblasts (105). 

The realization that VEGF signaling is a crucial determinant in EMT-induced cancer 

stemness, is becoming an emerging theme and was recently pointed out by Fantozzi 

et al.. Indeed, VEGF-mediated angiogenesis by itself is not sufficient but required to 

increase tumor initiating capacity and dissemination of breast cancer cells undergoing 

EMT, also suggesting that additional factors from the microenvironment are required 

(106). For instance, a fraction of CD133
+
 GSCs showed a 10-20 fold increase of 

VEGF secretion and displayed strongly angiogenic and hemorrhagic tumors through 

the enhancement of resident endothelial cell function and recruitment to the tumor 

site of bone marrow-derived endothelial progenitors (107). In murine models, GSCs 

may be induced to differentiate into endothelial cells and to directly contribute to 

tumor vasculature architecture, as proven by the positivity of those cells to VEGFR2 

(108). These findings clearly establish that VEGF, secreted by tumoral cells, acts as a 

paracrine factor to sustain angiogenesis and as an autocrine factor to boost cancer 

stemness. 

Judah Folkman was the first scientist to introduce the pioneer idea that solid 

neoplasms were always sustained by new vessel growth and envisioned angiogenesis 

as a new target for cancer treatment (109). In 2004, for the first time the FDA 

approved an anti angiogenic compound, called Bevacizumab, for clinical use in 

combination with standard chemotherapy. It is a humanized monoclonal antibody 

specific to VEGF that prevents the interaction of VEGF to its receptor. It became the 

standard means of treatment for metastatic HER2 negative breast cancer, metastatic 

colorectal cancer, glioblastoma, advanced or metastatic non-small-cell lung cancer, 

advanced renal-cell carcinoma and recently, for persistent, recurrent, or metastatic 

cervical cancer (110). Later, Aflibercept was approved as a ‘decoy’ receptor for 

VEGFA, VEGFB and PlGF (111). The inhibition of VEGFR kinase activity, is 

another valid approach to counteract tumor angiogenesis. Sunitinib targets multiple 

receptor tyrosine kinases including PlGFR and VEGFRs in unresectable, local, 

advanced or metastatic disease in well differentiated pancreatic neuroendocrine 

tumors, renal-cell carcinomas, and imatinib-resistant gastrointestinal tumors. 

Similarly, Sorafenib inhibits Raf kinases, VEGFRs and PlGFR in thyroid, liver and 

hepatocellular carcinoma (112). Since 1971, lots of studies have been published in 

the field and seemed promising but little efficacy has been shown yet. Besides their 

remarkable activity in the inhibition of primary tumor growth, anti-angiogenic drugs 

failed in producing lasting responses and patients’ illnesses eventually progress (113). 

This could be partially explained by the fact that alternative adaptive resistance 
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mechanisms, used to overcome the drug-mediated anti angiogenic effect, can occur. 

This could be the case when there is: an activation of alternative angiogenic 

pathways, including Fibroblast growth factor 1 (FGF1) and FGF2, Ephrin A1 

(EFNA1) and EFNA2 and Angiopoietin1 (ANGPT1), the recruitment of 

proangiogenic cells, and the increased coverage of pericytes to support vessel 

integrity. Interestingly, in an in vivo engineered model of KRAS-driven pancreatic 

ductal adenocarcinoma, resistant to anti-VEGF therapy, the MEK inhibitor 

substantially decreased the release of granulocyte–colony stimulating factor (G-CSF) 

by the tumor cell, which is usually  responsible for the recruitment and mobilization 

of pro-tumorigenic and pro-metastagenic CD11b
+
 Gr1

+
 myeloid-derived suppressor 

cells. CD11b
+
 Gr1

+
 cells also helped the establishment of metastases by secreting 

matrix metalloproteinases (MMPs) as well as the Bv8 molecule, endowed with pro 

angiogenic features. This study revealed that a combination of MEK inhibitor and 

anti-VEGF therapy substantially decreased tumor burden and angiogenesis (114). 

Likewise, anti angiogenic therapy eradicated the brain tumor stem cell niche in an in 

vivo model of c6 rat glioma cell line and enhanced the effect of the conventional 

cytotoxic agent, cyclophosphamide (115). 

Even upon anti-VEGF therapy, functional vessels tightly covered by pericytes have 

been observed. Indeed, endothelial cells can recruit perycites to protect themselves 

from anti angiogenic treatments and preserve their vascular structure. An attractive 

hypothesis suggested that CXCR4
+
 GCSs were mobilized towards the tumor site 

through an SDF-1 gradient and, upon TGF-β release by endothelial cells, were forced 

to differentiate in pericytes and contributed to tumor vasculature and growth (116). 

Moreover, Conley et al. showed that, hypoxic conditions limit the effectiveness of the 

antiangiogenic agents bevacizumab and sunitinib, by increasing breast CSC 

populations (117). 

 

4.4.2 Therapeutic implications of Neuropilins in CSC biology 

VEGF receptors can functionally interact with other receptors and foster CSC-driven 

tumor growth and progression. Within the same  context, Neuropilins (NRPs) were 

described earlier as neuronal receptors for the semaphoring family and also involved 

in axon guidance. They act as transmembrane glycoproteins with a short cytoplasmic 

domain that lacks intrinsic catalytic activity and function as co receptors of VEGFR1 

and VEGFR2. NRP1 is commonly expressed by endothelial cells and tumor cells 

(118). Upon autocrine VEGF stimulation, NRP1 promotes stemness and renewal of 

VEGFR2
+
 squamous skin CSCs (119). Similarly, viability, self renewal and 

tumorigenicity of CD133
+
 GSCs rely on autocrine VEGF/VEGFR2/NRP1 signaling 

and are maintained by a continuous secretion of VEGF (120). Cao et al. showed that 
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VEGF and NRP1 induced a dedifferentiated phenotype in vitro and promoted tumor 

formation in vivo (121). α6β1 integrin is necessary for the tumorigenicity of some 

subpopulations of breast CSCs and GSCs (122, 123). In triple negative breast 

cancers, NRP2 resulted preferentially expressed in breast CSCs and associated with 

α6β1 integrin. Upon VEGF stimulation of the NRP2- α6β1 complex, the focal 

adhesion kinase (FAK) mediated the activation of MAPK signaling and the 

subsequent expression of GLI1, an effector of the non canonical Hedgehog pathway. 

GLI1 in turn, induced BMI1 and positively  fed back to the NRP2 expression, thus 

contributing to tumor initiation (124). NRP2 is also associated with aggressive 

prostate cancer and its expression is forced by PTEN loss. Activation of the 

VEGF/NRP2 axis culminates in BMI1 expression, which represses the transcription 

of the insulin like growth factor 1 receptor (IGF1R), commonly responsible for tumor 

progression. Interestingly, single targeting of NRP2 led to compensatory IGF-1R 

activation (125). 

Therefore, these findings offer a perfect example of how an ideal combination of 

conventional chemotherapy, stemness modulator drugs (in this case anti-NRP 

specific antibodies), and anti IGFR antibodies could reduce tumor bulk, overcome 

treatment resistance and prevent relapse (Figure 2). 
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Figure 2. Therapeutic strategies to inhibit VEGF signaling in tumor cells. Besides 

regulating the common paracrine pathway on endothelial cells to sustain angiogenesis, 

VEGF signaling, when potentiated by NRPs, exerts its role in the autocrine stimulation of 

CSC self-renewal and migration. NRP2 can also interact with α6β1 integrin and trigger the 

integrin-mediated activation of FAK signaling cascade that culminates in the induction of 

BMI1 and NRP2. NRP1 interaction with VEGFR2 promotes the release of VEGF in the 

extracellular compartment, sustaining both the autocrine loop and the paracrine endothelial 

cell activation. Inhibition of VEGF signaling can be achieved mainly by mAb targeting 

VEGF and small molecules TKIs. mAbs directed against NRPs have been developed and 

proved to hamper self-renewal and tumorigenic capabilities of CSCs. However, inhibition 

of NRP2 can lead to compensatory IGF1R expression via BMI1 downregulation, supporting 

the importance of multiple therapy administration aimed at targeting both NRPs and IGF1R. 

Vascular endothelial growth factor (VEGF), Neuropilin (NRP), cancer stem cell (CSC), 

focal adhesion kinase (FAK), monoclonal antibody (mAb), tyrosine kinase inhibitor (TKI), 

insulin-like growth factor 1 receptor (IGF1R), extracellular matrix (ECM). 
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For instance, multiple compensatory signals could be activated when a single anti-

angiogenic treatment is administrated, regardless of possible collateral stimulation of 

pathways involved in invasiveness or tumor cell stemness. Given that Bevacizumab 

does not inhibit VEGF binding to NRPs, Pan et al. generated two anti-NRP1 

monoclonal antibodies specific to the binding site of semaphorin and VEGF on 

NRP1. This caused a reduction in cell proliferation as well as vascular density in a 

NSCLC in vivo model, assuming that the inhibition of NRP1, impairs vascular 

remodeling and thus rendering vasculature more responsive to anti VEGF treatment 

(126). In contrast with these findings, Snuderl et al. recently showed that the 

exclusive targeting of the PlGF/NRP1 pathway with the previously used phase I 

clinical trials, TB403 and 5D11D4, respectively an anti-murine PIGF antibody and an 

anti-human/murine PlGF antibody, reduced primary tumor burden and progression of 

medulloblastoma. PlGF seemed to be secreted by the tumor stroma, following tumor-

derived Shh stimulation. PlGF only interacts with NRP1 rather than with VEGFR1 on 

medulloblastoma cells, for the enhancement of tumor spread. Authors suggested that 

the use of anti-NRP1 and –PlGF, in concert with standard chemotherapy, could make 

an additional improvement in the clinical setting (127). 

Another example of multiple compensatory signaling activation was shown by Lu et 

al.. Indeed, bevacizumab treatment fostered an invasive phenotype in an in vivo 

model of GBM. The inhibition of VEGF suppressed the recruitment of the protein 

tyrosine phosphatase 1 B (PTP1B) from the VEGFR2/MET complex, consequently 

restoring hepatocyte growth factor (HGF)-mediated MET phosphorilation and tumor 

invasiveness. Authors suggested that in selected patients with GBM, tumor 

recurrence could be avoided by the combined use of anti VEGF and anti MET 

treatments (128). 

 

4.4.3 Targeting microenvironment stimuli 

AMD3100 is an antagonist of CXCR4. This drug, in combination with G-CSF to 

improve hematopoietic stem cell mobilization to peripheral blood for autologous 

transplantation, was approved in 2008 by the FDA for clinical use as a treatment for 

non-Hodgkin's lymphoma and multiple myelomas (129, 130). 

Commonly used for leukemia in several clinical trials, AMD3100 prevents CXCR4
+
 

leukemia cell recruitment to the SDF-1-secreting bone marrow microenvironment, 

thus rendering cancerous cells more susceptible to cytotoxic drugs (131). In 

agreement with this, invasive CD133
+
 pancreatic CSCs expressed CXCR4 and 

predominantly metastasize in the liver, being attracted by a gradient of SDF1, which 

is secreted by the stroma compartment (132). 



93 

 

Recently, CXCR4-SDF1 signaling has been identified as the driving force behind the 

establishment of bone metastasis in triple negative breast cancers. Particularly, CAF-

rich stroma found in primary breast cancer secretes SDF-1 and IGF and selects tumor 

cell clones with high Src activity and thus, characterized by an activation of PI3K-

AKT pathway. Src hyperactive clones were primed for bone metastasis because 

endowed with a greater chance of survival in the bone environment enriched with 

SDF-1 and IGF. Mechanistically, human mesenchymal stem cells were stimulated 

with a conditioned media from MDAMB231 cell line to constitutively secrete SDF-1 

and IGF. Subsequently, authors cotransplanted breast cancer cell lines and stromal 

cells in an orthotopic mouse model. Following an in vivo treatment with CXCR4 

inhibitor (AMD3100) and IGF1R inhibitor (BMS754807), the recovered cells were 

reimplanted and resulted in tumors, low in bone metastasis, compared to reimplanted 

cells from untreated tumors (133). 

Similarly, we recently showed that in colorectal cancer, the exposure to SDF1, HGF 

and OPN, increased the migratory capabilities of colorectal CSCs and induced the 

CD44v6 expression, an alternative splicing isoform of CD44, on transiently 

amplifying progenitors. Interestingly, in untreated colorectal CSCs, CD44v6 was 

already highly expressed whereas, it was lower in sphere-derived differentiated 

progeny and bulk primary cells. CD44v6 acts as a coreceptor of the tyrosine kinase 

receptor MET, and together with its ligand, the pleyotropic cytochine HGF, 

cooperates to promote survival and migration through the PI3K-AKT pathway. When 

blocking SDF-1-CXCR4 activity with AMD3100, it reduced the invasive potential 

and abrogated the CD44v6 expression induced by HGF and OPN. Similarly the PI3K 

inhibitor, BKM120, killed CD44v6
+
 colorectal CSCs and impaired metastatic 

dissemination (134). It is worth considering that targeting these powerful effectors in 

the tumor microenvironment could have tremendous therapeutic implications. In this 

context, the use of compounds which, target both MET and HGF, are still under 

evaluation in several clinical trials (135) and only few of them were recently 

approved by the FDA. Although discovered as a MET tyrosine kinase inhibitor, 

Crizotinib was approved at the end of 2013 exclusively for the treatment of NSCLC 

as an ALK blocking compound (136). Similarly, Cabozantinib is a multi kinase 

inhibitor against VEGFR1, 2 and 3, RET, MET; TIE-2 and KIT and is currently 

administered uniquely for progressive medullary thyroid cancer (137). Clinical trials 

for prostate, brain, breast, and NSCLC are still undergoing 

(http://www.cancer.gov/clinicaltrials). 

http://www.cancer.gov/clinicaltrials
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4.4.4 Hypoxia as a therapeutic target 

Evidence that CD44 variant isoforms (CD44v) could promote survival and multidrug 

resistance has been shown by Ishimoto et al. In gastrointestinal cancer cells, CD44v 

enhanced the synthesis of reduced glutathione (GSH), the predominant intracellular 

antioxidant factor, by physically interacting with and stabilizing the cystine 

transporter subunit (xCT) at the plasma membrane. xCT is the light chain subunit of 

the cysteine-glutamate exchange transporter, which exchanges intracellular glutamate 

for extracellular cysteine, required for GSH synthesis. GSH protects the cell against 

reactive oxygen species (ROS) damages and suppresses p38
MAPK

 activation, leading 

to cancer cell proliferation and resistance to ROS-inducing agents, such as docetaxel 

and cisplatin. As a result of these findings, in vivo exposure to sulfasalazine, a 

selective xCT inhibitor, induced p38
MAPK

 signaling, enhanced response to 

chemotherapy, and avoided CD44-dependent tumor growth. Therefore, authors 

suggested that either sulfasalazine or CD44v-target therapy could abrogate ROS 

defense capabilities of CSCs and in turn sensitize to conventional cancer treatments 

(138). 

Normal stem cells as well as CSCs, harbor low levels of ROS and possess an efficient 

defense mechanism against oxidative stress (139). An increase in ROS levels can 

occur in response to either environmental extrinsic (e.g. CAFs, CAMs, and hypoxia) 

or intrinsic oxidative stress (e.g. ROS producing enzyme and Jun D downregulation), 

along with iron chelators, nitric oxide (NO), and genetic alterations in PTEN, von 

Hippel-Lindau (VHL), succinate dehydrogenase (SDH), RAS-MAPK, and PI3K-

AKT accounts for the hypoxia-inducible factor 1 α (HIF-1α) stabilization (140-142). 

As well as under normoxia, HIF-1α exerts its role in shielding tumor cells from 

oxygen deprivation and thus aids in meeting the metabolic requirements of the 

expanding tumor mass. The HIF family of transcription factors has a prominent role 

in a finely tuned and well characterized oxygen-sensor mechanism. They comprise a 

heterodimer of an oxygen dependent α–subunit (either HIF-1α, HIF-2α or HIF-3α) 

together with a constitutively expressed β-subunit (HIF-1β). Under normoxic 

conditions and in presence of iron, prolyl hydroxylases (PDH) modifies Pro402 and 

Pro564 of HIF-1α and promotes the interaction with VHL, leading to ubiquitination 

and proteasomal degradation. It prevents HIF-1α to dimerize with HIF-1β and to bind 

with the coactivator CBP/p300 to the hypoxia response element (HRE) in the 

promoters of hypoxia-target genes, regulating proliferation/apoptosis, glycolysis, 

angiogenesis, and invasion/metastasis (143). A high HIF-1α level is observed in 

many human cancers and is associated with poor prognosis in brain, breast, ovary, 

cervix, colorectal, prostate, bladder, and oropharynx cancers (144, 145). Particularly, 

HIF-1α has been reported to be hyperactivated in TNBCs and necessary for the 
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maintenance of the CD44
high

CD24
low

 cell population. Chen et al. identified XBP1, a 

component of the unfolded protein response (UPR) pathway, as a major controller of 

HIF-1α transcriptional activity in TNBCs. It is required for tumor relapse in a murine 

model and directly enriches the CD44
high

CD24
low

 population in vitro. XBP1 can also 

be associated with poor prognosis, suggesting that combinatory therapy using stem 

cell targeting drugs, such as inhibitors of the UPR pathway and standard 

chemotherapy may improve cancer therapeutic intervention (146). 

A tight relationship exists between hypoxia and tumor dissemination. Low oxygen 

levels in a tumor microenvironment promotes the overexpression of EMT master 

regulators such as SNAIL, TWIST, and ZEB1, while it attenuates E-cadherin 

expression. Matrix remodeling requires basal membrane degradation via HIF-1α-

dependent production of MMP2 and cathepsin D (CTSD). The so-called “invasive–

switch” is guided by hypoxia and sustained by MET and lysyl oxidase (LOX) 

expression. Hypoxia facilitates both intravasation and extravasation of tumor cells 

through the increased production of VEGFA. Meanwhile, CXCR4, OPN, and 

Angiopoietin-like 4 (ANGPTL4) increase the chance of homing and outgrowth to 

secondary organs (147).  

HIF-2α also contributes to the hypoxia-driven “angiogenic-switch” and is directly 

linked to stem cell biology as a regulator of OCT4 (148) and c-MYC (149). Given that 

it displays a restricted tissue-specific expression pattern compared to its homologs, 

little attention has been given to addressing its pro angiogenic and pro tumorigenic 

features (149). One key study showed the preferential expression of HIF-2α on GSCs 

compared to the differentiated and normal counterpart and its association with poor 

survival in glioblastoma patients. Authors underlined that HIF-2α may support the 

CSCs niche by providing survival and metabolic advantages through the modulation 

of OCT4, GLUT1, and SERPINB9 expression. This suggests that new therapeutic 

approaches should be aimed at targeting stem cell specific molecules involved in 

neoangiogenesis (150) 

On the contrary, besides being a member of the HIF system, HIF-3α’s role in the 

tumor hypoxia-inducible adaptive response system, is not well characterized. Indeed, 

it lacks the transactivation domain and likely functions as a negative regulator of 

HIF-1α and HIF-2α due to sequestration of HIF-1β (151). 

As previously discussed, preclinical data provide evidence that hypoxic tumor cells 

play a pivotal role in tumor progression and resistance to therapies. Moreover, the pro 

metastatic effect elicited by angiogenesis-induced hypoxia can compromise clinical 

outcomes in patients. Thus, targeting intratumoral hypoxia, can be considered the 

gold standard to be exploited in neoplastic malignancy. Nevertheless, it is clear that 

hypoxia is heterogeneously diffused within a given tumor cell population and is 
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endowed with an even more differentiated extension among patient tumors. Based on 

this observation, an appropriate measuring of tumor hypoxia either by direct or 

indirect methods, will facilitate the selection of the patient’s treatment as well as, the 

monitoring of their treatment-response (152). However, an interesting finding 

recently reported for the first time is that, a chemotherapeutic agent, in this case 

doxorubicin, can stabilize HIF-1α even in normoxic cells. Indeed, doxorubicin 

increased the expression of STAT1, with consequent stimulation of iNOS, 

intracellular synthesis of NO and HIF-1α accumulation (153). 

In recent years, several drugs have been designed to selectively target chemo- and 

radio-resistant hypoxic cancer cells. According to the action mechanism, they could 

be tentatively categorized as a) agents targeting HIF-1α DNA binding, b) agents 

attenuating HIF-1α protein translation, c) agents inducing HIF-1α protein 

degradation, d) prodrugs inducing hypoxia-mediated cytotoxicity e) HRE-driven 

expression of enzymes converting prodrugs and f) agents targeting downstream HIF 

pathway effectors. 

Specifically, HIF-1α function can be directly targeted via chetomin, a small molecule 

that precludes HIF-1α binding to the transcriptional coactivator p300/CBP (154). 

Similarly, the proteasome inhibitor bortezomib, which has been approved by the FDA 

for clinical use in multiple myeloma and mantle cell lymphoma patients refractory to 

at least one prior therapy, affects the C-terminal activation domain (CAD) of HIF-1α. 

It was shown that bortezomib enhanced the HIF-1α hydroxylation of Asn803 residue, 

by the dioxygenase factor-inhibiting hypoxia 1 (FIH-1), causing the inhibition of 

p300-HIF interaction (155). Intriguingly, anthracyclines, such as doxorubicin and 

daunorubicin, block HIF-1 binding to HRE sequence, providing new evidence in 

refining their use as antiangiogenic drugs (156). 

HIF-1α expression can be modulated by the topoisomerase I inhibitor topotecan, one 

of the first hypoxia inhibitor ever tested on humans and currently approved for the 

treatment of small cell lung cancer and recurrent cervix carcinoma. Cardiac glycoside 

digoxin inhibited the translation of HIF-1α in an mTOR-independent manner. In 

preclinical settings, PX-478 appeared to inhibit HIF-1α mRNA expression and 

translation, and foster HIF-1α degradation by preventing its deubiquitination (157). 

Contrasting data have been generated regarding the contribution of the mTOR 

pathway in the modulation of hypoxia. Besides several mTOR inhibitors, such as 

everolimus and temsirolimus, which have been approved by the FDA for clinical use 

in renal cancer patients and displayed remarkable antiangiogenic activity and 

inhibition of HIF-1α (158). Hypoxia, especially in early stage tumors, may negatively 

regulate HIF-1α expression according to the intensity and duration of oxygen 

deprivation (159). Another indirect mechanism of HIF-1α inhibition includes the 
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targeting of upstream pathways (e.g. PI3K-AKT and RAS-MAPK) involved in HIF-

1α protein translation (160). Interestingly, the tumor suppressor p53 mediates 

apoptosis under hypoxic conditions. However, cancer cells with dysregulated p53, 

escape programmed death and p53-mediated HIF-1α inhibition (161). p53 may either 

interact with HIF-1α and mediate its degradation through HDM2 (161) or compete 

with HIF-1α for p300 thus, blocking its transcriptional activity (162). Agents 

targeting p53, aim at reactivating mutant p53. This is the case of RITA (reactivation 

of p53 and induction of cell apoptosis), which induces DNA damage in order to 

stimulate p53-evoked cell apoptosis and inhibits MDM2 to prevent p53 degradation. 

This mechanism seems to be hypoxia-independent (163).  

HIF-1α degradation may be forced by the inhibition of chaperone HSP90. In both 

normoxia and hypoxia, the HSP90 antagonists GA and 17-AAG mediate elimination 

of HIF-1α through E3 ubiquitin ligase and reduces angiogenesis in vivo (164). 

Trichostatin A is an inhibitor of HDAC and promotes a proteasome-dependent HIF-

1α degradation in osteosarcoma (165). Similarly, HDAC inhibitors FK228 and 

LAQ824 resulted in the abrogation of HIF-1α activity (166, 167). Of note, SAHA, 

the potent pan HDAC inhibitor, may act together with TRAIL, in breast cancer 

orthotopic models and downregulate both VEGF and HIF-1α (168). 

One promising approach seeks to develop prodrugs that can be reduced by hypoxia in 

prodrug radicals, as intermediate products. In normoxia, they can be re-oxidized and 

converted back by oxygen, while in hypoxic cells they can be either further reduced 

or fragmented so as to generate an active toxic drug. Examples of bioreactive 

prodrugs still in clinical development, include RH-1, mitomycin C, AQ4N, PR-104, 

and SR4233. Some concerns have been reported regarding the prodrugs’ penetration 

into poorly perfused tumors and their toxicity. The activation of aerobic reductase 

also in normal tissues or the additional generation of DNA reactive cytotoxins, make 

it hard to combine bioreductive prodrugs with standard chemotherapy (152). 

Moreover, in tumoral cells prodrugs can be converted into cytotoxins by an hypoxia-

regulated expression vector which, encodes the enzyme responsible for this reaction. 

Hypoxia targeted gene therapy has been tested in a preclinical setting and consists in 

the expression, in tumoral cells, of plasmid vector carrying genes driven by a 

promoter containing HRE and encoding: thymidine kinase (TK), cytosine deaminase 

(CD), uracil phosphoribosyltransferase (UPRT), and flavoprotein cytochrome c P450 

reductase (CPR) (169, 170). A triple suicide gene therapy has proven to enhance 

cytotoxicity to ganciclovir and 5 fluorocytosine and sensitize colorectal cancer cells, 

both in vivo and in vitro, to radiotherapy by simultaneous expression of TK, CD and 

UPRT (170). 
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Finally, multiple agents also aim at targeting the downstream component of the HIF 

signaling pathway such as the LOX inhibitors, β-aminoproprionitrile (βAPN) or anti-

LOX antibody, which binds the LOX active site and blocks its enzymatic function 

(171) 

 

4.5 Challenges and limitations of targeting cancer stem cells and their niche 

 

Conventional anti-cancer drug development has been focused on the identification of 

cytotoxic chemotherapeutic agents that can target deregulated pathways and 

molecular markers in tumor cells. Despite all efforts, patients undergoing 

chemotherapy, after an apparent remission, often relapse and develop more 

aggressive diseases. This emphasizes that CSCs may be responsible for therapy 

failure due to the specific activated mechanisms which are peculiar to the 

undifferentitated status of these cells. In this context, novel compounds have been 

precisely designed to eliminate CSCs or affect their microenvironment and, 

administered in concert with conventional chemotherapy, can lead to tumor bulk 

shrinkage and ablate resistance and relapse. Of note, there is a need to refine such 

therapies to counteract their side effects. Indeed, such approaches could impair 

normal stem cell niches, have ‘off target’ effects on signals required for normal cells 

survival or, and as well as standard treatments, they should be administered at 

concentrations harmless to patients.  

 

4.6 Conclusion and future perspectives 

 

The reviewed data show only a partial portion of the existing therapies in the field. 

Anyhow, they seek to emphasize that despite of the efforts that have been made to 

develop powerful CSCs targeted therapy, multiple obstacles still need to be faced for 

the achievement of long lasting clinical benefits. The future use of appropriate tumor 

models and technologies reflecting the phenotypic, genetic and epigenetic tumor 

heterogeneity constantly evolving to counteract the hostile milieu, will possibly 

overcome the achieved disappointing results. Moreover, a multitude of new inhibitors 

are currently being investigated and will possibly conduct to some encouraging 

experimental evidence. 
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