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Abstract. The aim of this paper is to prove the existence of infinitely many weak solu-
tions for a mixed boundary value system with (p, ..., pw)-Laplacian. The approach is
based on variational methods.
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1 Introduction

The aim of this paper is to establish the existence of infinitely many weak solutions for the
following mixed boundary value system with (p, ..., pm)-Laplacian.

—(Juh|P2ul) = AF, (tu,..., um)  in]0,1]

_ ! pm—24,0 \ — : (1'1)
(|ul,] u,) = AF,, (t,ug,..., uy) in]0,1]

u;(0) =ui(1) =0 i=1,...,m

where m > 2, p; > 1 (1 <i < m), Ais a positive real parameter, F: [0,1] x R" — R is a
C!-Carathéodory function such that F(t,0,...,0) = 0 for every t € [0,1] and moreover we
suppose that for every p > 0

sup  |Fy,(t,x1,...,%m)]| ELl([O,l]), i=1,...,m.
[ (o1 [<p
Here F,; denotes the partial derivatives of F respect on u; (i =1,...,m).

Among the papers which have dealt with the nonlinear mixed boundary value problems
we cite [1,3,10,13].

We investigate the existence of infinitely many weak solutions for system (1.1) by using
Theorem 1.1. This theorem is a refinement, due to Bonanno and Molica Bisci, of the variational
principle of Ricceri [12, Theorem 2.5] and represents a smooth version of an infinitely many
critical point theorem obtained in [5, Theorem 2.1].
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Theorem 1.1. Let X be a reflexive Banach space, ®: X — R is a continuously Gateaux differen-
tiable, coercive and sequentially weakly lower semicontinuous functional, ¥: X — R is sequentially
weakly upper semicontinuous and continuously Gateaux differentiable functional, A is a positive real
parameter.

Put, for each r > infx ®

o(r) =  inf  —Pve@ e ¥(0) — ¥ (u)
: uc®=1(]—co,r) r — q)(u) s (12)

;= liminf , 0 := liminf .
7 = liminf ¢(r) Hl(g}f;r;))gp(r)

One has
(a) For every r > infx ® and every A € |0, ﬁ [, the restriction of the functional ® — A'Y to
O~ 1(] — oo, 7[) admits a global minimum, which is a critical point (local minimum) of ® — A'Y
in X.

(b) If v < oo, then for each A €0, % [, the following alternatives hold: either

(b1) ® — AY possesses a global minimum, or

(by) there is a sequence {u,} of critical points (local minima) of ® — AY such that

(c) If 5 < +oo, then for each A €]0, 3|, the following alternatives hold: either

(c1) there is a global minimum of ¥ which is a local minimum of ® — A'Y, or

(c2) there is a sequence {u, } of pairwise distinct critical points (local minima) of & — A'Y, with
limy, 1+ 00 ©(uy,) = infx @ which weakly converges to a global minimum of .

Many authors proved the existence of infinitely many solutions by using the theorem above
for different problems see for example [2,4-9,11].

The paper is arranged as follows. At first we prove the existence of an unbounded se-
quence of weak solutions of system (1.1) under some hypotheses on the behaviour of potential
F at infinity (see Theorem 3.1). And as a consequence, we obtain the existence of infinitely
many weak solutions for autonomous case (see Corollary 3.4).

2 Preliminaries

Let us introduce notation that will be used in the paper. Let
X, ={ueW'([0,1]), u(0)=0}, p=>1

be the Sobolev space with the norm defined by

iy = ([ 1owar)’

for every u € X, that is equivalent to the usual one.
It is well known that (X,, || - ||,) is compactly embedded in (C°([0,1]), || - [|l) and one has

lullo < llull, — Vu € X,. @)
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Now, let X be the Cartesian product of m Sobolev spaces X,,, i.e. X = [T/Z; X, endowed
with the norm
m
el == 3 Nl
i=1

forall u = (uq,...,uy) € X.
A function u = (uy,...,uy) € X is said a weak solution to system (1.1) if

/01 l:il lul ()P 2ul(t)ol(t) dt = )L/Oliélfui(t,ul(t),...,um(t))vi(t) dt

for every v = (vq,...,vm) € X.
In order to study system (1.1), we will use the functionals ®,¥: X — IR defined by putting

O@) =) L Y (u) = /OlF(t,ul(t),...,um(t))dt 2.2)

for every u = (uy, ..., uy) € X.
Clearly, @ is coercive, weakly sequentially lower semicontinuous and continuously Gateaux
differentiable and the Gateaux derivative at point u = (u1,...,u,) € X is defined by

1 m
@'(u)(0) = [ MO ORI

for every v = (v1,...,0m) € X.On the other hand ¥ is well defined, weakly upper sequentially
semicontinuous, continuously Gateaux differentiable and the Gateaux derivative at point u =
(u1,...,uy) € X is defined by

1 m
¥ (1) (0v) :/0 ;Fui(x,ul(t),...,um(t))vi(t) dt

for every v = (vy,...,vm) € X.
A critical point for the functional I := ® — AY is any u € X such that

' (u)(v) =AY (u)(v) =0  VoeX.

Hence, the critical points for functional I} := ® — AY are exactly the weak solutions to
system (1.1).

A function u: [0,1] — R™ is said a solution to system (1.1) if u € C1([0,1], R™), |u!|Fi7%u]
is AC([0,1]) (i =1, ..., m) and the system (1.1) is satisfied a.e.

Standard methods show that solutions to system (1.1) coincide with weak ones when F is
a C! function.

Now, put

A — liminf fol maX§€Q(T) P(f, (?1, ey Cm) dt

r— 00 rs

where s = mini<;<{pi}, Q(r) ={¢=(1,...,¢m) € R" : 14 |Gi <7}

[LF(t,E, ..., En)dt
B= limsup 2

|| +o0, EER™ Yt [GilP '

, (2.3)
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1 1
/\1 = E’ /\2 - ﬁ/ (25)
(Z;ﬂzl Pipi> A
we suppose Ay = 01if B = +o0, and A, = 40 if A =0,
_ opi—1
k = max . (2.6)
1<i<m pi

3 Main results
Our main result is the following theorem.

Theorem 3.1. Assume that

(iy) F(t,x) >0 for every (t,x) € [0,1] x R, where R = {x = (x1,...,xy) € R" :x; >0, i =

1,...,m};
(ip)
P fOl maXgze(r) P<tl é’l/ ce lgm) dt
lmnf .
1 JUE(E - G dt
< —— limsup 2

S m . 7
m o |&|—+o00,EER™ ity |GilP
i=1 P;

where Q(r) ={& = (&1,...,Cm) € R™: Y, |&i]| < r}and s = minj<j<p, {pi}-

Then, for each A €|y, Az|, where A1, Ay are given by (2.5), the system (1.1) has a sequence of weak
solutions which is unbounded in X.

Proof. Our goal is to apply Theorem 1.1 (b). Consider the Sobolev space X and the operators
defined in (2.2). Pick A €]Aq, Ay
Let {c, } be a real sequence such that lim,_, ¢, = +00 and

1
lim Jo maxzeqe,) F(t, 81+, Gm)

S
n—-4o0 Cn

= A.

Put

Ch
oINS
(2?1:1 pim )
for all n € IN.

Taking into account (2.1), one has Y} ; |v;(t)| < ¢, where v = (vy,...,vy) € X such that

Pi
m iy
21:1 p’_ : < rn.

Ty =
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Hence, for all n € IN, one has

o(r) = e SUP (4, o) ed-1(|—co]) Y(v1,...,0m) —¥(u,..., un)
" (U1 eee iy ) EP (] —00,74]) Ty — CD(ul, ceey Mm)
1
SUP (5, on)cd-1(|—coral) Jo E(L01(E), -, Om(t)) dt

IN

fo maxgeq(c,) F(t, 61, - -+, Gm) dt
) e

therefore, since from (i») one has A < co, we obtain

S
0% —hmmf(p tn) < (2;}1 > A < oo

Now, fix A €]A1, A2[, we claim that the functional I, = ® — AY is unbounded from below.

Let {¢n = (Cin)i=1,..m} be a real sequence such that lim,_, |§,| = +o00 and

fll F(tfélﬂllémn)dt
lim = =B
e Yiq [Cin|P

For all n € IN define

win(t) = 28t ift € [0, 1] 1
" &n  ifte L]

clearly, w, = (wiy, ..., wmn) € X and

where k is given by (2.6).
Taking into account (i;), we have

1 1
/P(t,wn(t))dtzﬁ F(t, Einy o) Enn) dt
0

2

Then, by using (3.2) and (3.3) for all n € IN we have
m 1
P(wn) = N¥F(wn) SEY Gl = A [} F(tGanr- . Gl
i=1 2
Now, if B < o0, we fix € € ] %, 1 [, from (3.1) there exists v. € IN such that

1 m
/l F(t) Einy s o) En) dE > eBl; Enl? Vn > e

2

therefore

D(wy) — A¥(wy) < (E— /\eB) i Gl > Ve

i=1

3.1)

(3.2)

(3.3)

(3.4)
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by the choice of €, one has
lim (®(wy) — A¥(wy)) = —oo.

n—o0

On the other hand, if B = +o0, we fix

> =

from (3.1) there exists vy; € IN such that

2

1 m
ﬁ F(t, Ernye ) Eon)dt > MY |El? V1> vy
i=1

therefore

O(wn) — A¥ (wy) < (E - AM) |

1

|Gin |7 Vn > vm

m
=1

by the choice of M, one has

lim ((wy) — A¥(wy)) = —oco.

n—oo

Hence, our claim is proved.
Since all assumptions of Theorem 1.1 (b) are verified, the functional I} = ® — AY admits a
sequence {u,} of critical points such that lim,_,« ||is|| = +oc0 and the conclusion is achieved.
O

Remark 3.2. In Theorem 3.1 we can replace r — +oo by r — 07, applying in the proof part
(c) of Theorem 1.1 instead of (b). In this case a sequence of pairwise distinct weak solutions
to the system (1.1) which converges uniformly to zero is obtained.

Remark 3.3. We consider the system
—(Juy |~ 2ul) + |ua [P 2uy = AFy, (fur, ..., um) in |0, 1]

) (3.5)
—(|ul, |Pm=2ul)) + |t |Pm 2wy = AF,,, (t,u1, ..., uy) in]0,1]

u;(0) =uj(1) =0 i=1,...,m

by using the usual norm

1
1 1 Pi
el = ([ woypae+ [ wcopar)

2+pi+2Pi (pi+1)
2pi(pit+1)
that used to prove Theorem 3.1, that for each A €]Aq, A2[, with A1 and A, given by (2.5), the

system (3.5) has a sequence of weak solutions which is unbounded in X .

in X,,, and the constant k = maxj << { } we can prove in a very similar way to

Now, we point out a special case of Theorem 3.1.

Corollary 3.4. Let f,g: R?> — R be two positive continuous functions such that the differential 1-
form w = f(x,y)dx+ g(x,y)dy is integrable and let F be a primitive of w with F(0,0) = 0. Fix
p,q > 1 with p < q assume that
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.. F(rr .
lim inf (rr) _ 0, lim sup
r—+o 7P s +-00 79

Then, the system
—(Ju'|P72u") = f(u,v) in1=]0,1]
—(|o'|97%0") = g(u,v) in1=]0,1]
u(0)=u'(1)=0
v(0) =v'(1) =0

possesses a sequence of pairwise distinct solutions which is unbounded in X.

Proof. Since f and g are positive one has that max g ,)co(r) F(¢,77) < F(r,r) for every r € Ry.

Therefore
1
max F(¢,n)dt
lim inf J0 M En<an FE 1) < liminf £ _ g
r——+00 rP r—+oc  rP
on the other hand, we have
1 F
+oo = = limsup @ < lim sup % < lim sup Fp(g' ”)q,

r——+00 r r—r—+o00 r + r §2+7]2*>+00, (gln)e]R%r C + 1/]

then we have Ay = 0 and A, = +c0 and all assumptions of Theorem 3.1 are satisfied and the
proof is complete. O

Now, we present one example that illustrates our result.
Example 3.5. Consider p = q = 4 and the function F: R? — R defined by

xzyzez(sinlogx-i—l)ez(sinlogy—i-l) if x >0, y> 0,

0 otherwise.

F(x,y) :{

We denote by f(x,y) and g(x,y) the partial derivatives of F respect on x and y respectively

zxy2€2(sinlogx+1)62(sinlogy+1) [1 + cos 10g X] ifx >0, y> 0,

0 otherwise;

f(x,y) :{

2x2y62(sinlogx+1)62(sinlogy+1) [1 + cos logy] ifx>0, y > 0,

0 otherwise.

g(xy) = {

Since f and g are non negative one has that max, ,)co() F(x,y) < F(r,r) for every r € R..
By a simple computation, we obtain

ma F(x,
lim inf )< O imine EO) g
r—4o00 r r—r+00 r
. Fxy) _ ¢
llm Sup W = 4 .

x2+4y2—+oo,(x,y) ERZL
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Hence, from Theorem 3.1, for each A €] ;%, 2%[ the system
—(|u'?u") = Af(u,0) inl1=]0,1]
—(|')?0") = Ag(u,v) inl1=]0,1]
u(0) =u'(1)=0
v(0)=7'(1)=0

has a sequence of solutions which is unbounded in X = Xj x Xj.
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