Infinitely many weak solutions for a mixed boundary value system with $\left(p_{1}, \ldots, p_{m}\right)$-Laplacian

Diego Averna ${ }^{\boxtimes}$ and Elisabetta Tornatore
Dipartimento di Matematica e Informatica, Università degli Studi di Palermo, Via Archirafi 34, Palermo, 90123, Italy
Received 16 September 2014, appeared 4 December 2014
Communicated by Gabriele Bonanno

Abstract

The aim of this paper is to prove the existence of infinitely many weak solutions for a mixed boundary value system with $\left(p_{1}, \ldots, p_{m}\right)$-Laplacian. The approach is based on variational methods.

Keywords: critical points, variational methods, infinitely many solutions, p-Laplacian.
2010 Mathematics Subject Classification: 35A15, 35J65.

1 Introduction

The aim of this paper is to establish the existence of infinitely many weak solutions for the following mixed boundary value system with $\left(p_{1}, \ldots, p_{m}\right)$-Laplacian.

$$
\begin{cases}-\left(\left|u_{1}^{\prime}\right|^{p_{1}-2} u_{1}^{\prime}\right)^{\prime}=\lambda F_{u_{1}}\left(t, u_{1}, \ldots, u_{m}\right) & \text { in }] 0,1[\tag{1.1}\\ \quad \vdots & \\ -\left(\left|u_{m}^{\prime}\right|^{p_{m}-2} u_{m}^{\prime}\right)^{\prime}=\lambda F_{u_{m}}\left(t, u_{1}, \ldots, u_{m}\right) & \text { in }] 0,1[\\ u_{i}(0)=u_{i}^{\prime}(1)=0 & i=1, \ldots, m\end{cases}
$$

where $m \geq 2, p_{i}>1(1 \leq i \leq m), \lambda$ is a positive real parameter, $F:[0,1] \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a C^{1}-Carathéodory function such that $F(t, 0, \ldots, 0)=0$ for every $t \in[0,1]$ and moreover we suppose that for every $\rho>0$

$$
\sup _{\left|\left(x_{1}, \ldots, x_{m}\right)\right| \leq \rho}\left|F_{u_{i}}\left(t, x_{1}, \ldots, x_{m}\right)\right| \in L^{1}([0,1]), \quad i=1, \ldots, m
$$

Here $F_{u_{i}}$ denotes the partial derivatives of F respect on $u_{i}(i=1, \ldots, m)$.
Among the papers which have dealt with the nonlinear mixed boundary value problems we cite $[1,3,10,13]$.

We investigate the existence of infinitely many weak solutions for system (1.1) by using Theorem 1.1. This theorem is a refinement, due to Bonanno and Molica Bisci, of the variational principle of Ricceri [12, Theorem 2.5] and represents a smooth version of an infinitely many critical point theorem obtained in [5, Theorem 2.1].

[^0]Theorem 1.1. Let X be a reflexive Banach space, $\Phi: X \rightarrow \mathbb{R}$ is a continuously Gâteaux differentiable, coercive and sequentially weakly lower semicontinuous functional, $\Psi: X \rightarrow \mathbb{R}$ is sequentially weakly upper semicontinuous and continuously Gâteaux differentiable functional, λ is a positive real parameter.

Put, for each $r>\inf _{X} \Phi$

$$
\begin{align*}
\varphi(r) & :=\inf _{u \in \Phi^{-1}(]-\infty, r[)} \frac{\sup _{v \in \Phi^{-1}(]-\infty, r[)} \Psi(v)-\Psi(u)}{r-\Phi(u)}, \tag{1.2}\\
\gamma & :=\liminf _{r \rightarrow+\infty} \varphi(r), \quad \delta:=\liminf _{r \rightarrow\left(\inf _{X} \Phi\right)^{+}} \varphi(r) .
\end{align*}
$$

One has
(a) For every $r>\inf _{X} \Phi$ and every $\left.\lambda \in\right] 0, \frac{1}{\varphi(r)}$ [, the restriction of the functional $\Phi-\lambda \Psi$ to $\Phi^{-1}(]-\infty, r[)$ admits a global minimum, which is a critical point (local minimum) of $\Phi-\lambda \Psi$ in X.
(b) If $\gamma<\infty$, then for each $\lambda \in] 0, \frac{1}{\gamma}[$, the following alternatives hold: either
$\left(b_{1}\right) \Phi-\lambda \Psi$ possesses a global minimum, or
$\left(b_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of critical points (local minima) of $\Phi-\lambda \Psi$ such that $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=+\infty$.
(c) If $\delta<+\infty$, then for each $\lambda \in] 0, \frac{1}{\delta}$, the following alternatives hold: either
(c_{1}) there is a global minimum of Ψ which is a local minimum of $\Phi-\lambda \Psi$, or
$\left(c_{2}\right)$ there is a sequence $\left\{u_{n}\right\}$ of pairwise distinct critical points (local minima) of $\Phi-\lambda \Psi$, with $\lim _{n \rightarrow+\infty} \Phi\left(u_{n}\right)=\inf _{X} \Phi$ which weakly converges to a global minimum of Φ.

Many authors proved the existence of infinitely many solutions by using the theorem above for different problems see for example [2,4-9,11].

The paper is arranged as follows. At first we prove the existence of an unbounded sequence of weak solutions of system (1.1) under some hypotheses on the behaviour of potential F at infinity (see Theorem 3.1). And as a consequence, we obtain the existence of infinitely many weak solutions for autonomous case (see Corollary 3.4).

2 Preliminaries

Let us introduce notation that will be used in the paper. Let

$$
X_{p}=\left\{u \in W^{1, p}([0,1]), \quad u(0)=0\right\}, \quad p \geq 1
$$

be the Sobolev space with the norm defined by

$$
\|u\|_{p}=\left(\int_{0}^{1}\left|u^{\prime}(t)\right|^{p} d t\right)^{\frac{1}{p}}
$$

for every $u \in X_{p}$, that is equivalent to the usual one.
It is well known that $\left(X_{p},\|\cdot\|_{p}\right)$ is compactly embedded in $\left(C^{0}([0,1]),\|\cdot\|_{\infty}\right)$ and one has

$$
\begin{equation*}
\|u\|_{\infty} \leq\|u\|_{p} \quad \forall u \in X_{p} . \tag{2.1}
\end{equation*}
$$

Now, let X be the Cartesian product of m Sobolev spaces $X_{p_{i}}$, i.e. $X=\prod_{i=1}^{m} X_{p_{i}}$ endowed with the norm

$$
\|u\|:=\sum_{i=1}^{m}\left\|u_{i}\right\|_{p_{i}}
$$

for all $u=\left(u_{1}, \ldots, u_{m}\right) \in X$.
A function $u=\left(u_{1}, \ldots, u_{m}\right) \in X$ is said a weak solution to system (1.1) if

$$
\int_{0}^{1} \sum_{i=1}^{m}\left|u_{i}^{\prime}(t)\right|^{p_{i}-2} u_{i}^{\prime}(t) v_{i}^{\prime}(t) d t=\lambda \int_{0}^{1} \sum_{i=1}^{m} F_{u_{i}}\left(t, u_{1}(t), \ldots, u_{m}(t)\right) v_{i}(t) d t
$$

for every $v=\left(v_{1}, \ldots, v_{m}\right) \in X$.
In order to study system (1.1), we will use the functionals $\Phi, \Psi: X \rightarrow \mathbb{R}$ defined by putting

$$
\begin{equation*}
\Phi(u):=\sum_{i=1}^{m} \frac{\left\|u_{i}\right\|_{p_{i}}^{p_{i}}}{p_{i}}, \quad \Psi(u):=\int_{0}^{1} F\left(t, u_{1}(t), \ldots, u_{m}(t)\right) d t \tag{2.2}
\end{equation*}
$$

for every $u=\left(u_{1}, \ldots, u_{m}\right) \in X$.
Clearly, Φ is coercive, weakly sequentially lower semicontinuous and continuously Gâteaux differentiable and the Gâteaux derivative at point $u=\left(u_{1}, \ldots, u_{m}\right) \in X$ is defined by

$$
\Phi^{\prime}(u)(v)=\int_{0}^{1} \sum_{i=1}^{m}\left|u_{i}^{\prime}(t)\right|^{p_{i}-2} u_{i}^{\prime}(t) v_{i}^{\prime}(t) d t
$$

for every $v=\left(v_{1}, \ldots, v_{m}\right) \in X$. On the other hand Ψ is well defined, weakly upper sequentially semicontinuous, continuously Gâteaux differentiable and the Gâteaux derivative at point $u=$ $\left(u_{1}, \ldots, u_{m}\right) \in X$ is defined by

$$
\Psi^{\prime}(u)(v)=\int_{0}^{1} \sum_{i=1}^{m} F_{u_{i}}\left(x, u_{1}(t), \ldots, u_{m}(t)\right) v_{i}(t) d t
$$

for every $v=\left(v_{1}, \ldots, v_{m}\right) \in X$.
A critical point for the functional $I_{\lambda}:=\Phi-\lambda \Psi$ is any $u \in X$ such that

$$
\Phi^{\prime}(u)(v)-\lambda \Psi^{\prime}(u)(v)=0 \quad \forall v \in X
$$

Hence, the critical points for functional $I_{\lambda}:=\Phi-\lambda \Psi$ are exactly the weak solutions to system (1.1).

A function $u:[0,1] \rightarrow \mathbb{R}^{m}$ is said a solution to system (1.1) if $u \in C^{1}\left([0,1], \mathbb{R}^{m}\right),\left|u_{i}^{\prime}\right|^{p_{i}-2} u_{i}^{\prime}$ is $\operatorname{AC}([0,1])(i=1, \ldots, m)$ and the system (1.1) is satisfied a.e.

Standard methods show that solutions to system (1.1) coincide with weak ones when F is a C^{1} function.

Now, put

$$
\begin{equation*}
A=\liminf _{r \rightarrow+\infty} \frac{\int_{0}^{1} \max _{\tilde{\xi} \in Q(r)} F\left(t, \xi_{1}, \ldots, \xi_{m}\right) d t}{r^{s}} \tag{2.3}
\end{equation*}
$$

where $s=\min _{1 \leq i \leq m}\left\{p_{i}\right\}, Q(r)=\left\{\xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in \mathbb{R}^{m}: \sum_{i=1}^{m}\left|\mathcal{F}_{i}\right| \leq r\right\}$.

$$
\begin{equation*}
B=\limsup _{|\xi| \rightarrow+\infty, \xi \in \mathbb{R}_{+}^{m}} \frac{\int_{\frac{1}{2}}^{1} F\left(t, \xi_{1}, \ldots, \xi_{m}\right) d t}{\sum_{i=1}^{m}\left|\xi_{i}\right|^{p_{i}}} \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\lambda_{1}=\frac{1}{B}, \quad \lambda_{2}=\frac{1}{\left(\sum_{i=1}^{m} p_{i}^{\frac{1}{p_{i}}}\right)^{s} A} \tag{2.5}
\end{equation*}
$$

we suppose $\lambda_{1}=0$ if $B=+\infty$, and $\lambda_{2}=+\infty$ if $A=0$,

$$
\begin{equation*}
\bar{k}=\max _{1 \leq i \leq m}\left\{\frac{2^{p_{i}-1}}{p_{i}}\right\} . \tag{2.6}
\end{equation*}
$$

3 Main results

Our main result is the following theorem.
Theorem 3.1. Assume that
(i_{1}) $F(t, x) \geq 0$ for every $(t, x) \in[0,1] \times \mathbb{R}_{+}^{m}$, where $\mathbb{R}_{+}^{m}=\left\{x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}: x_{i} \geq 0, i=\right.$ $1, \ldots, m\} ;$
(i,

$$
\begin{aligned}
& \liminf _{r \rightarrow+\infty} \frac{\int_{0}^{1} \max _{\xi \in Q}(r)}{} F\left(t, \xi_{1}, \ldots, \xi_{m}\right) d t \\
& r^{s} \\
& \quad<\frac{1}{\left(\sum_{i=1}^{m} p_{i}^{\frac{1}{p_{i}}}\right)^{s}} \limsup _{|\xi| \rightarrow+\infty, \xi \in \mathbb{R}_{+}^{m}} \frac{\int_{\frac{1}{2}}^{1} F\left(t, \xi_{1}, \ldots, \xi_{m}\right) d t}{\sum_{i=1}^{m}\left|\xi_{i}\right|^{p_{i}}}
\end{aligned}
$$

where $Q(r)=\left\{\xi=\left(\xi_{1}, \ldots, \xi_{m}\right) \in \mathbb{R}^{m}: \sum_{i=1}^{m}\left|\tilde{\xi}_{i}\right| \leq r\right\}$ and $s=\min _{1 \leq i \leq m}\left\{p_{i}\right\}$.
Then, for each $\lambda \in] \lambda_{1}, \lambda_{2}\left[\right.$, where λ_{1}, λ_{2} are given by (2.5), the system (1.1) has a sequence of weak solutions which is unbounded in X .

Proof. Our goal is to apply Theorem 1.1 (b). Consider the Sobolev space X and the operators defined in (2.2). Pick $\lambda \in] \lambda_{1}, \lambda_{2}[$.

Let $\left\{c_{n}\right\}$ be a real sequence such that $\lim _{n \rightarrow+\infty} c_{n}=+\infty$ and

$$
\lim _{n \rightarrow+\infty} \frac{\int_{0}^{1} \max _{\xi \in Q\left(c_{n}\right)} F\left(t, \xi_{1}, \ldots, \xi_{m}\right)}{c_{n}^{s}}=A .
$$

Put

$$
r_{n}=\frac{c_{n}^{s}}{\left(\sum_{i=1}^{m} p_{i}^{\frac{1}{p_{i}}}\right)^{s}}
$$

for all $n \in \mathbb{N}$.
Taking into account (2.1), one has $\sum_{i=1}^{m}\left|v_{i}(t)\right|<c_{n}$ where $v=\left(v_{1}, \ldots, v_{m}\right) \in X$ such that $\sum_{i=1}^{m} \frac{\left\|v_{i}\right\|_{p_{i}}^{q_{i}}}{p_{i}}<r_{n}$.

Hence, for all $n \in \mathbb{N}$, one has

$$
\begin{aligned}
\varphi\left(r_{n}\right) & =\inf _{\left(u_{1}, \ldots, u_{m}\right) \in \Phi^{-1}(]-\infty, r_{n}[)} \frac{\sup _{\left(v_{1}, \ldots, v_{m}\right) \in \Phi^{-1}(]-\infty, r_{n}[)} \Psi\left(v_{1}, \ldots, v_{m}\right)-\Psi\left(u_{1}, \ldots, u_{m}\right)}{r_{n}-\Phi\left(u_{1}, \ldots, u_{m}\right)} \\
& \leq \frac{\sup _{\left(v_{1}, \ldots, v_{m}\right) \in \Phi^{-1}(]-\infty, r_{n}[)} \int_{0}^{1} F\left(t, v_{1}(t), \ldots, v_{m}(t)\right) d t}{r_{n}} \\
& \leq\left(\sum_{i=1}^{m} p_{i}^{\frac{1}{p_{i}}}\right)^{s} \frac{\int_{0}^{1} \max _{\xi \in Q\left(c_{n}\right)} F\left(t, \xi_{1}, \ldots, \xi_{m}\right) d t}{c_{n}^{s}}
\end{aligned}
$$

therefore, since from $\left(i_{2}\right)$ one has $A<\infty$, we obtain

$$
\gamma:=\liminf _{n \rightarrow \infty} \varphi\left(r_{n}\right) \leq\left(\sum_{i=1}^{m} p_{i}^{\frac{1}{p_{i}}}\right)^{s} A<\infty
$$

Now, fix $\lambda \in] \lambda_{1}, \lambda_{2}$ [, we claim that the functional $I_{\lambda}=\Phi-\lambda \Psi$ is unbounded from below. Let $\left\{\xi_{n}=\left(\xi_{\text {in }}\right)_{i=1, \ldots, m}\right\}$ be a real sequence such that $\lim _{n \rightarrow \infty}\left|\xi_{n}\right|=+\infty$ and

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\int_{\frac{1}{2}}^{1} F\left(t, \xi_{1 n}, \ldots, \xi_{m n}\right) d t}{\sum_{i=1}^{m}\left|\xi_{i n}\right|^{p_{i}}}=B \tag{3.1}
\end{equation*}
$$

For all $n \in \mathbb{N}$ define

$$
\omega_{\text {in }}(t)=\left\{\begin{array}{ll}
2 \xi_{\text {in }} t & \text { if } \mathrm{t} \in\left[0, \frac{1}{2}[\right. \\
\xi_{\text {in }} & \text { if } \mathrm{t} \in\left[\frac{1}{2}, 1\right]
\end{array} \quad i=1, \ldots, m\right.
$$

clearly, $\omega_{n}=\left(\omega_{1 n}, \ldots, \omega_{m n}\right) \in X$ and

$$
\begin{equation*}
\Phi\left(\omega_{n}\right)=\sum_{i=1}^{m} \frac{1}{p_{i}}\left\|\omega_{i n}\right\|_{p_{i}}^{p_{i}} \leq \bar{k} \sum_{i=1}^{m}\left|\xi_{i n}\right|^{p_{i}} \tag{3.2}
\end{equation*}
$$

where \bar{k} is given by (2.6).
Taking into account $\left(i_{1}\right)$, we have

$$
\begin{equation*}
\int_{0}^{1} F\left(t, \omega_{n}(t)\right) d t \geq \int_{\frac{1}{2}}^{1} F\left(t, \xi_{1 n}, \ldots, \xi_{m n}\right) d t \tag{3.3}
\end{equation*}
$$

Then, by using (3.2) and (3.3) for all $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\Phi\left(\omega_{n}\right)-\lambda \Psi\left(\omega_{n}\right) \leq \bar{k} \sum_{i=1}^{m}\left|\xi_{i n}\right|^{p_{i}}-\lambda \int_{\frac{1}{2}}^{1} F\left(t, \xi_{1 n}, \ldots, \xi_{m n}\right) d t \tag{3.4}
\end{equation*}
$$

Now, if $B<\infty$, we fix $\epsilon \in] \frac{\bar{k}}{\lambda B}, 1\left[\right.$, from (3.1) there exists $v_{\epsilon} \in \mathbb{N}$ such that

$$
\int_{\frac{1}{2}}^{1} F\left(t, \xi_{1 n}, \ldots, \xi_{m n}\right) d t>\epsilon B \sum_{i=1}^{m}\left|\xi_{i n}\right|^{p_{i}} \quad \forall n>v_{\epsilon}
$$

therefore

$$
\Phi\left(\omega_{n}\right)-\lambda \Psi\left(\omega_{n}\right) \leq(\bar{k}-\lambda \epsilon B) \sum_{i=1}^{m}\left|\xi_{i n}\right|^{p_{i}} \quad \forall n>v_{\epsilon}
$$

by the choice of ϵ, one has

$$
\lim _{n \rightarrow \infty}\left(\Phi\left(\omega_{n}\right)-\lambda \Psi\left(\omega_{n}\right)\right)=-\infty .
$$

On the other hand, if $B=+\infty$, we fix

$$
M>\frac{\bar{k}}{\lambda}
$$

from (3.1) there exists $v_{M} \in \mathbb{N}$ such that

$$
\int_{\frac{1}{2}}^{1} F\left(t, \xi_{1 n}, \ldots, \xi_{m n}\right) d t>M \sum_{i=1}^{m}\left|\xi_{i n}\right|^{p_{i}} \quad \forall n>v_{M}
$$

therefore

$$
\Phi\left(\omega_{n}\right)-\lambda \Psi\left(\omega_{n}\right) \leq(\bar{k}-\lambda M) \sum_{i=1}^{m}\left|\tilde{\zeta}_{i n}\right|^{p_{i}} \quad \forall n>v_{M}
$$

by the choice of M, one has

$$
\lim _{n \rightarrow \infty}\left(\Phi\left(\omega_{n}\right)-\lambda \Psi\left(\omega_{n}\right)\right)=-\infty
$$

Hence, our claim is proved.
Since all assumptions of Theorem 1.1 (b) are verified, the functional $I_{\lambda}=\Phi-\lambda \Psi$ admits a sequence $\left\{u_{n}\right\}$ of critical points such that $\lim _{n \rightarrow \infty}\left\|u_{n}\right\|=+\infty$ and the conclusion is achieved.

Remark 3.2. In Theorem 3.1 we can replace $r \rightarrow+\infty$ by $r \rightarrow 0^{+}$, applying in the proof part (c) of Theorem 1.1 instead of (b). In this case a sequence of pairwise distinct weak solutions to the system (1.1) which converges uniformly to zero is obtained.

Remark 3.3. We consider the system

$$
\begin{cases}-\left(\left|u_{1}^{\prime}\right|^{p_{1}-2} u_{1}^{\prime}\right)^{\prime}+\left|u_{1}\right|^{p_{1}-2} u_{1}=\lambda F_{u_{1}}\left(t, u_{1}, \ldots, u_{m}\right) & \text { in }] 0,1[\tag{3.5}\\ \quad \vdots & \\ -\left(\left|u_{m}^{\prime}\right|^{p_{m}-2} u_{m}^{\prime}\right)^{\prime}+\left|u_{m}\right|^{p_{m}-2} u_{m}=\lambda F_{u_{m}}\left(t, u_{1}, \ldots, u_{m}\right) & \text { in }] 0,1[\\ u_{i}(0)=u_{i}^{\prime}(1)=0 & i=1, \ldots, m\end{cases}
$$

by using the usual norm

$$
\|u\|_{p_{i}}=\left(\int_{0}^{1}|u(t)|^{p_{i}} d t+\int_{0}^{1}\left|u^{\prime}(t)\right|^{p_{i}} d t\right)^{\frac{1}{p_{i}}}
$$

in $X_{p_{i}}$, and the constant $\bar{k}=\max _{1 \leq i \leq m}\left\{\frac{2+p_{i}+2^{p_{i}}\left(p_{i}+1\right)}{2 p_{i}\left(p_{i}+1\right)}\right\}$ we can prove in a very similar way to that used to prove Theorem 3.1, that for each $\lambda \in] \lambda_{1}, \lambda_{2}\left[\right.$, with λ_{1} and λ_{2} given by (2.5), the system (3.5) has a sequence of weak solutions which is unbounded in X.

Now, we point out a special case of Theorem 3.1.
Corollary 3.4. Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be two positive continuous functions such that the differential 1 form $\omega=f(x, y) d x+g(x, y) d y$ is integrable and let F be a primitive of ω with $F(0,0)=0$. Fix $p, q>1$ with $p \leq q$ assume that

$$
\liminf _{r \rightarrow+\infty} \frac{F(r, r)}{r^{p}}=0, \quad \limsup _{r \rightarrow+\infty} \frac{F(r, r)}{r^{q}}=+\infty .
$$

Then, the system

$$
\begin{cases}-\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}=f(u, v) & \text { in } \mathrm{I}=] 0,1[\\ -\left(\left|v^{\prime}\right|^{q-2} v^{\prime}\right)^{\prime}=g(u, v) & \text { in } \mathrm{I}=] 0,1[\\ u(0)=u^{\prime}(1)=0 & \\ v(0)=v^{\prime}(1)=0 & \end{cases}
$$

possesses a sequence of pairwise distinct solutions which is unbounded in X.
Proof. Since f and g are positive one has that $\max _{(\xi, \eta) \in Q(r)} F(\xi, \eta) \leq F(r, r)$ for every $r \in \mathbb{R}_{+}$.
Therefore

$$
\liminf _{r \rightarrow+\infty} \frac{\int_{0}^{1} \max _{(\xi, \eta) \in Q(r)} F(\xi, \eta) d t}{r^{p}} \leq \liminf _{r \rightarrow+\infty} \frac{F(r, r)}{r^{p}}=0
$$

on the other hand, we have

$$
+\infty=\frac{1}{2} \limsup _{r \rightarrow+\infty} \frac{F(r, r)}{r^{q}} \leq \limsup _{r \rightarrow+\infty} \frac{F(r, r)}{r^{p}+r^{q}} \leq \limsup _{\sqrt{\xi^{2}+\eta^{2} \rightarrow+\infty,}(\xi, \eta) \in \mathbb{R}_{+}^{2}} \frac{F(\xi, \eta)}{\xi^{p}+\eta^{q}},
$$

then we have $\lambda_{1}=0$ and $\lambda_{2}=+\infty$ and all assumptions of Theorem 3.1 are satisfied and the proof is complete.

Now, we present one example that illustrates our result.
Example 3.5. Consider $p=q=4$ and the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
F(x, y)= \begin{cases}x^{2} y^{2} e^{2(\sin \log x+1)} e^{2(\sin \log y+1)} & \text { if } x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

We denote by $f(x, y)$ and $g(x, y)$ the partial derivatives of F respect on x and y respectively

$$
\begin{aligned}
& f(x, y)= \begin{cases}2 x y^{2} e^{2(\sin \log x+1)} e^{2(\sin \log y+1)}[1+\cos \log x] & \text { if } x>0, y>0, \\
0 & \text { otherwise }\end{cases} \\
& g(x, y)= \begin{cases}2 x^{2} y e^{2(\sin \log x+1)} e^{2(\sin \log y+1)}[1+\cos \log y] & \text { if } x>0, y>0, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since f and g are non negative one has that $\max _{(x, y) \in Q(r)} F(x, y) \leq F(r, r)$ for every $r \in \mathbb{R}_{+}$. By a simple computation, we obtain

$$
\begin{gathered}
\liminf _{r \rightarrow+\infty} \frac{\max _{(x, y) \in Q}(r)}{r^{4}} F(x, y) \\
\liminf _{r \rightarrow+\infty} \frac{F(r, r)}{r^{4}}=1 \\
\sqrt{\sqrt{x^{2}+y^{2}} \rightarrow+\infty,(x, y) \in \mathbb{R}_{+}^{2}} \sup _{2(x, y)}^{2\left(x^{4}+y^{4}\right)}=\frac{e^{8}}{4} .
\end{gathered}
$$

Hence, from Theorem 3.1, for each $\lambda \in] \frac{4}{e^{8}}, \frac{1}{2^{6}}[$ the system

$$
\begin{cases}-\left(\left|u^{\prime}\right|^{2} u^{\prime}\right)^{\prime}=\lambda f(u, v) & \text { in } \mathrm{I}=] 0,1[\\ -\left(\left|v^{\prime}\right|^{2} v^{\prime}\right)^{\prime}=\lambda g(u, v) & \text { in } \mathrm{I}=] 0,1[\\ u(0)=u^{\prime}(1)=0 & \\ v(0)=v^{\prime}(1)=0 & \end{cases}
$$

has a sequence of solutions which is unbounded in $X=X_{4} \times X_{4}$.

References

[1] R. I. Avery, C. J. Chyan, J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, Comput. Math. Appl. 42(2001), 695-704. MR1838025; url
[2] D. Averna, S. M. Buccellato, E. Tornatore, On a mixed boundary value problem involving the p-Laplacian, Matematiche (Catania) 66(2011), 93-104. MR2827188; url
[3] D. Averna, R. Salvati, Three solutions for a mixed boundary value problem involving the one-dimensional p-Laplacian, J. Math. Anal. Appl. 298(2004), 245-260. MR2086544; url
[4] G. Bonanno, G. D'Aguì, On the Neumann problem for elliptic equations involving the p-Laplacian, J. Math. Anal. Appl. 358(2009), 223-228. MR2532500; url
[5] G. Bonanno, G. Molica Bisci, Infinitely many solutions for a boundary value problem with discontinuous nonlinearities, Bound. Value Probl. 2009, Art. ID 670675, 20 pp. MR2487254; url
[6] G. Bonanno, G. Molica Bisci, D. O’Regan, Infinitely many weak solutions for a class of quasilinear elliptic systems, Math. Comput. Modelling 52(2010), 152-160. MR2645927; url
[7] G. Bonanno, E. Tornatore, Infinitely many solutions for a mixed boundary value problem, Ann. Polon. Math 99(2010), 285-293. MR2720222; url
[8] P. Candito, Infinitely many solutions to the Neumann problem for elliptic equations involving the p-Laplacian and with discontinuous nonlinearities, Proc. Edinb. Math. Soc.
(2) 45(2002), 397-409. MR1912648; url
[9] G. D'Aguì, Infinitely many solutions for a double Sturm-Liouville problem, J. Glob. Optim. 54(2012), 619-625. MR2988202; url
[10] H. Lü, D. O’Regan, C. Zhong, Multiple positive solutions for the one-dimensional singular p-Laplacian, Appl. Math. Comput. 133(2002), 407-422. MR1924626; url
[11] S. Marano, D. Motreanu, Infinitely many critical points of non-differentiable functions and applications to a Neumann-type problem involving p-Laplacian, J. Differential Equations 182(2002), 108-120. MR1912071; url
[12] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113(2000), 401-410. MR1735837; url
[13] R. Salvati, Multiple solutions for a mixed boundary value problem, Math. Sci. Res. J. 7(2003), 275-283. MR1996739

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: diego.averna@unipa.it

