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Abstract. The aim of this paper is to prove the existence of infinitely many weak solu-
tions for a mixed boundary value system with (p1, . . . , pm)-Laplacian. The approach is
based on variational methods.
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1 Introduction

The aim of this paper is to establish the existence of infinitely many weak solutions for the
following mixed boundary value system with (p1, . . . , pm)-Laplacian.

−(|u′1|p1−2u′1)
′ = λFu1(t, u1, . . . , um) in ]0, 1[

...

−(|u′m|pm−2u′m)′ = λFum(t, u1, . . . , um) in ]0, 1[

ui(0) = u′i(1) = 0 i = 1, . . . , m

(1.1)

where m ≥ 2, pi > 1 (1 ≤ i ≤ m), λ is a positive real parameter, F : [0, 1] ×Rm → R is a
C1-Carathéodory function such that F(t, 0, . . . , 0) = 0 for every t ∈ [0, 1] and moreover we
suppose that for every ρ > 0

sup
|(x1,...,xm)|≤ρ

|Fui(t, x1, . . . , xm)| ∈ L1([0, 1]), i = 1, . . . , m.

Here Fui denotes the partial derivatives of F respect on ui (i = 1, . . . , m).
Among the papers which have dealt with the nonlinear mixed boundary value problems

we cite [1, 3, 10, 13].
We investigate the existence of infinitely many weak solutions for system (1.1) by using

Theorem 1.1. This theorem is a refinement, due to Bonanno and Molica Bisci, of the variational
principle of Ricceri [12, Theorem 2.5] and represents a smooth version of an infinitely many
critical point theorem obtained in [5, Theorem 2.1].
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Theorem 1.1. Let X be a reflexive Banach space, Φ : X → R is a continuously Gâteaux differen-
tiable, coercive and sequentially weakly lower semicontinuous functional, Ψ : X → R is sequentially
weakly upper semicontinuous and continuously Gâteaux differentiable functional, λ is a positive real
parameter.

Put, for each r > infX Φ

ϕ(r) := inf
u∈Φ−1(]−∞,r[)

supv∈Φ−1(]−∞,r[) Ψ(v)−Ψ(u)

r−Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).
(1.2)

One has

(a) For every r > infX Φ and every λ ∈
]
0, 1

ϕ(r)

[
, the restriction of the functional Φ − λΨ to

Φ−1(]−∞, r[) admits a global minimum, which is a critical point (local minimum) of Φ− λΨ
in X.

(b) If γ < ∞, then for each λ ∈]0, 1
γ [, the following alternatives hold: either

(b1) Φ− λΨ possesses a global minimum, or

(b2) there is a sequence {un} of critical points (local minima) of Φ − λΨ such that
limn→+∞ Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈]0, 1
δ [, the following alternatives hold: either

(c1) there is a global minimum of Ψ which is a local minimum of Φ− λΨ, or

(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of Φ− λΨ, with
limn→+∞ Φ(un) = infX Φ which weakly converges to a global minimum of Φ.

Many authors proved the existence of infinitely many solutions by using the theorem above
for different problems see for example [2, 4–9, 11].

The paper is arranged as follows. At first we prove the existence of an unbounded se-
quence of weak solutions of system (1.1) under some hypotheses on the behaviour of potential
F at infinity (see Theorem 3.1). And as a consequence, we obtain the existence of infinitely
many weak solutions for autonomous case (see Corollary 3.4).

2 Preliminaries

Let us introduce notation that will be used in the paper. Let

Xp = {u ∈W1,p([0, 1]), u(0) = 0}, p ≥ 1

be the Sobolev space with the norm defined by

‖u‖p =

(∫ 1

0
|u′(t)|p dt

) 1
p

for every u ∈ Xp, that is equivalent to the usual one.
It is well known that (Xp, ‖ · ‖p) is compactly embedded in (C0([0, 1]), ‖ · ‖∞) and one has

‖u‖∞ ≤ ‖u‖p ∀u ∈ Xp. (2.1)



Infinitely many weak solutions for a mixed boundary value system 3

Now, let X be the Cartesian product of m Sobolev spaces Xpi , i.e. X = ∏m
i=1 Xpi endowed

with the norm

‖u‖ :=
m

∑
i=1
‖ui‖pi

for all u = (u1, . . . , um) ∈ X.
A function u = (u1, . . . , um) ∈ X is said a weak solution to system (1.1) if

∫ 1

0

m

∑
i=1
|u′i(t)|pi−2u′i(t)v

′
i(t) dt = λ

∫ 1

0

m

∑
i=1

Fui(t, u1(t), . . . , um(t))vi(t) dt

for every v = (v1, . . . , vm) ∈ X.
In order to study system (1.1), we will use the functionals Φ, Ψ : X → R defined by putting

Φ(u) :=
m

∑
i=1

‖ui‖
pi
pi

pi
, Ψ(u) :=

∫ 1

0
F(t, u1(t), . . . , um(t)) dt (2.2)

for every u = (u1, . . . , um) ∈ X.
Clearly, Φ is coercive, weakly sequentially lower semicontinuous and continuously Gâteaux

differentiable and the Gâteaux derivative at point u = (u1, . . . , um) ∈ X is defined by

Φ′(u)(v) =
∫ 1

0

m

∑
i=1
|u′i(t)|pi−2u′i(t)v

′
i(t) dt

for every v = (v1, . . . , vm) ∈ X. On the other hand Ψ is well defined, weakly upper sequentially
semicontinuous, continuously Gâteaux differentiable and the Gâteaux derivative at point u =

(u1, . . . , um) ∈ X is defined by

Ψ′(u)(v) =
∫ 1

0

m

∑
i=1

Fui(x, u1(t), . . . , um(t))vi(t) dt

for every v = (v1, . . . , vm) ∈ X.
A critical point for the functional Iλ := Φ− λΨ is any u ∈ X such that

Φ′(u)(v)− λΨ′(u)(v) = 0 ∀v ∈ X.

Hence, the critical points for functional Iλ := Φ − λΨ are exactly the weak solutions to
system (1.1).

A function u : [0, 1] → Rm is said a solution to system (1.1) if u ∈ C1([0, 1], Rm), |u′i|pi−2u′i
is AC([0, 1]) (i = 1, . . . , m) and the system (1.1) is satisfied a.e.

Standard methods show that solutions to system (1.1) coincide with weak ones when F is
a C1 function.

Now, put

A = lim inf
r→+∞

∫ 1
0 maxξ∈Q(r) F(t, ξ1, . . . , ξm) dt

rs , (2.3)

where s = min1≤i≤m{pi}, Q(r) = {ξ = (ξ1, . . . , ξm) ∈ Rm : ∑m
i=1 |ξi| ≤ r}.

B = lim sup
|ξ|→+∞, ξ∈Rm

+

∫ 1
1
2

F(t, ξ1, . . . , ξm) dt

∑m
i=1 |ξi|pi

, (2.4)
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λ1 =
1
B

, λ2 =
1(

∑m
i=1 p

1
pi
i

)s

A
, (2.5)

we suppose λ1 = 0 if B = +∞, and λ2 = +∞ if A = 0,

k = max
1≤i≤m

{
2pi−1

pi

}
. (2.6)

3 Main results

Our main result is the following theorem.

Theorem 3.1. Assume that

(i1) F(t, x) ≥ 0 for every (t, x) ∈ [0, 1]×Rm
+, where Rm

+ = {x = (x1, . . . , xm) ∈ Rm : xi ≥ 0, i =
1, . . . , m};

(i2)

lim inf
r→+∞

∫ 1
0 maxξ∈Q(r) F(t, ξ1, . . . , ξm) dt

rs

<
1(

∑m
i=1 p

1
pi
i

)s lim sup
|ξ|→+∞,ξ∈Rm

+

∫ 1
1
2

F(t, ξ1, . . . , ξm) dt

∑m
i=1 |ξi|pi

,

where Q(r) = {ξ = (ξ1, . . . , ξm) ∈ Rm : ∑m
i=1 |ξi| ≤ r} and s = min1≤i≤m{pi}.

Then, for each λ ∈]λ1, λ2[, where λ1, λ2 are given by (2.5), the system (1.1) has a sequence of weak
solutions which is unbounded in X.

Proof. Our goal is to apply Theorem 1.1 (b). Consider the Sobolev space X and the operators
defined in (2.2). Pick λ ∈]λ1, λ2[.

Let {cn} be a real sequence such that limn→+∞ cn = +∞ and

lim
n→+∞

∫ 1
0 maxξ∈Q(cn) F(t, ξ1, . . . , ξm)

cs
n

= A.

Put

rn =
cs

n(
∑m

i=1 p
1
pi
i

)s

for all n ∈N.
Taking into account (2.1), one has ∑m

i=1 |vi(t)| < cn where v = (v1, . . . , vm) ∈ X such that

∑m
i=1

‖vi‖
pi
pi

pi
< rn.
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Hence, for all n ∈N, one has

ϕ(rn) = inf
(u1,...,um)∈Φ−1(]−∞,rn[)

sup(v1,...,vm)∈Φ−1(]−∞,rn[)
Ψ(v1, . . . , vm)−Ψ(u1, . . . , um)

rn −Φ(u1, . . . , um)

≤
sup(v1,...,vm)∈Φ−1(]−∞,rn[)

∫ 1
0 F(t, v1(t), . . . , vm(t)) dt

rn

≤
(

m

∑
i=1

p
1
pi
i

)s ∫ 1
0 maxξ∈Q(cn) F(t, ξ1, . . . , ξm) dt

cs
n

,

therefore, since from (i2) one has A < ∞, we obtain

γ := lim inf
n→∞

ϕ(rn) ≤
(

m

∑
i=1

p
1
pi
i

)s

A < ∞.

Now, fix λ ∈]λ1, λ2[, we claim that the functional Iλ = Φ− λΨ is unbounded from below.
Let {ξn = (ξin)i=1,...,m} be a real sequence such that limn→∞ |ξn| = +∞ and

lim
n→+∞

∫ 1
1
2

F(t, ξ1n, . . . , ξmn)dt

∑m
i=1 |ξin|pi

= B. (3.1)

For all n ∈N define

ωin(t) =

{
2ξint if t ∈ [0, 1

2 [

ξin if t ∈ [ 1
2 , 1]

i = 1, . . . , m

clearly, ωn = (ω1n, . . . , ωmn) ∈ X and

Φ(ωn) =
m

∑
i=1

1
pi
‖ωin‖

pi
pi ≤ k

m

∑
i=1
|ξin|pi (3.2)

where k is given by (2.6).
Taking into account (i1), we have∫ 1

0
F(t, ωn(t)) dt ≥

∫ 1

1
2

F(t, ξ1n, . . . , ξmn) dt. (3.3)

Then, by using (3.2) and (3.3) for all n ∈N we have

Φ(ωn)− λΨ(ωn) ≤ k
m

∑
i=1
|ξin|pi − λ

∫ 1

1
2

F(t, ξ1n, . . . , ξmn)dt. (3.4)

Now, if B < ∞, we fix ε ∈
] k

λB , 1
[
, from (3.1) there exists νε ∈N such that

∫ 1

1
2

F(t, ξ1n, . . . , ξmn) dt > εB
m

∑
i=1
|ξin|pi ∀n > νε

therefore

Φ(ωn)− λΨ(ωn) ≤
(

k− λεB
) m

∑
i=1
|ξin|pi ∀n > νε
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by the choice of ε, one has
lim
n→∞

(Φ(ωn)− λΨ(ωn)) = −∞.

On the other hand, if B = +∞, we fix

M >
k
λ

from (3.1) there exists νM ∈N such that∫ 1

1
2

F(t, ξ1n, . . . , ξmn)dt > M
m

∑
i=1
|ξin|pi ∀n > νM

therefore

Φ(ωn)− λΨ(ωn) ≤
(

k− λM
) m

∑
i=1
|ξin|pi ∀n > νM

by the choice of M, one has

lim
n→∞

(Φ(ωn)− λΨ(ωn)) = −∞.

Hence, our claim is proved.
Since all assumptions of Theorem 1.1 (b) are verified, the functional Iλ = Φ− λΨ admits a

sequence {un} of critical points such that limn→∞ ‖un‖ = +∞ and the conclusion is achieved.

Remark 3.2. In Theorem 3.1 we can replace r → +∞ by r → 0+, applying in the proof part
(c) of Theorem 1.1 instead of (b). In this case a sequence of pairwise distinct weak solutions
to the system (1.1) which converges uniformly to zero is obtained.

Remark 3.3. We consider the system
−(|u′1|p1−2u′1)

′ + |u1|p1−2u1 = λFu1(t, u1, . . . , um) in ]0, 1[
...

−(|u′m|pm−2u′m)′ + |um|pm−2um = λFum(t, u1, . . . , um) in ]0, 1[

ui(0) = u′i(1) = 0 i = 1, . . . , m

(3.5)

by using the usual norm

‖u‖pi =

(∫ 1

0
|u(t)|pi dt +

∫ 1

0
|u′(t)|pi dt

) 1
pi

in Xpi , and the constant k = max1≤i≤m

{
2+pi+2pi (pi+1)

2pi(pi+1)

}
we can prove in a very similar way to

that used to prove Theorem 3.1, that for each λ ∈]λ1, λ2[, with λ1 and λ2 given by (2.5), the
system (3.5) has a sequence of weak solutions which is unbounded in X .

Now, we point out a special case of Theorem 3.1.

Corollary 3.4. Let f , g : R2 → R be two positive continuous functions such that the differential 1-
form ω = f (x, y) dx + g(x, y) dy is integrable and let F be a primitive of ω with F(0, 0) = 0. Fix
p, q > 1 with p ≤ q assume that
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lim inf
r→+∞

F(r, r)
rp = 0, lim sup

r→+∞

F(r, r)
rq = +∞.

Then, the system 
−(|u′|p−2u′)′ = f (u, v) in I =]0, 1[

−(|v′|q−2v′)′ = g(u, v) in I =]0, 1[

u(0) = u′(1) = 0

v(0) = v′(1) = 0

possesses a sequence of pairwise distinct solutions which is unbounded in X.

Proof. Since f and g are positive one has that max(ξ,η)∈Q(r) F(ξ, η) ≤ F(r, r) for every r ∈ R+.
Therefore

lim inf
r→+∞

∫ 1
0 max(ξ,η)∈Q(r) F(ξ, η) dt

rp ≤ lim inf
r→+∞

F(r, r)
rp = 0

on the other hand, we have

+∞ =
1
2

lim sup
r→+∞

F(r, r)
rq ≤ lim sup

r→+∞

F(r, r)
rp + rq ≤ lim sup√

ξ2+η2→+∞, (ξ,η)∈R2
+

F(ξ, η)

ξ p + ηq ,

then we have λ1 = 0 and λ2 = +∞ and all assumptions of Theorem 3.1 are satisfied and the
proof is complete.

Now, we present one example that illustrates our result.

Example 3.5. Consider p = q = 4 and the function F : R2 → R defined by

F(x, y) =

{
x2y2e2(sin log x+1)e2(sin log y+1) if x > 0, y > 0,

0 otherwise.

We denote by f (x, y) and g(x, y) the partial derivatives of F respect on x and y respectively

f (x, y) =

{
2xy2e2(sin log x+1)e2(sin log y+1)[1 + cos log x] if x > 0, y > 0,

0 otherwise;

g(x, y) =

{
2x2ye2(sin log x+1)e2(sin log y+1)[1 + cos log y] if x > 0, y > 0,

0 otherwise.

Since f and g are non negative one has that max(x,y)∈Q(r) F(x, y) ≤ F(r, r) for every r ∈ R+.
By a simple computation, we obtain

lim inf
r→+∞

max(x,y)∈Q(r) F(x, y)
r4 ≤ lim inf

r→+∞

F(r, r)
r4 = 1

lim sup√
x2+y2→+∞,(x,y)∈R2

+

F(x, y)
2(x4 + y4)

=
e8

4
.
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Hence, from Theorem 3.1, for each λ ∈] 4
e8 , 1

26 [ the system
−(|u′|2u′)′ = λ f (u, v) in I =]0, 1[

−(|v′|2v′)′ = λg(u, v) in I =]0, 1[

u(0) = u′(1) = 0

v(0) = v′(1) = 0

has a sequence of solutions which is unbounded in X = X4 × X4.
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