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Polygonal Mesh Segmentation by Surfae Curvature Di�usionAbstrat: One of the most popular 3D objet representations in Computer Visionis the polygonal mesh, whih is a sets of verties, edges and faets having someadjaeny relations. Several appliations suh as shape mathing, shape retrieval,3D data ompression, et. require mesh segmentation, whih onsists in the de-omposition of an objet into its meaningful omponents. Mesh segmentation is avery hard problem sine it an be redued to the graph partition problem whih isan NP-Complete. Many supervised or parameters dependent algorithms have beendeveloped to produe sub-optimal solutions aording to di�erent paradigms suhas Region Growing, Clustering, et.In this thesis we present a new method based on di�usion of some energy funtionover the surfae of the objet.By miming the heat di�usion proess, Surfae Curvature Di�usion (SCD) las-si�es the verties of a mesh by distributing the mean urvature of the objet on themesh surfae. SCD uses the disretization of partial di�erential equations to modelthe di�usion of the urvature over time and it segments the mesh by analysing thetrend of suh a di�usion on the verties.SCD depends only on the initial state of the urvature and it is performed untilthe energy reahes the equilibrium. Then it is parameter-free and time independent.We show some of several experiments arried out by using di�erent kinds ofmeshes and we show that SCD is very fast and aurate. Moreover, it allows torightly detet the most of the feature-edges when it is ompared to other tehniquespresent in literature. These features together with the lak of any tuning makesSCD a very interesting method for mesh segmentation.Keywords: Three-Dimensional Polygonal Mesh, Mesh Fairing, Surfae Fit-ting, Mesh Segmentation, Energy Di�usion, Surfae Curvature Di�usion, TensorVoting, Normal Voting.
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IntrodutionThe interest of researhers in digital 3D objet analysis rise up during the pastdeades due to the advanes in omputer tehnologies together with the birth ofnew �elds of researh. The generation, representation and manipulation of virtualobjets are the prinipal problems in several ontext suh as: engineering, robotis,omputer vision, mediine, moleular biology, entertainment, et.The generation of 3D virtual objets an be aomplished by either spei�software or partiular aquisition devies whih allow to generate virtual objetsfrom the real world. These devies are able to gather the all the information of theobjets in order to produe 3D data whih is typially represented either by volumesor by loud of points. In this thesis we are only interested in 3D data obtained bysome laser sanner aquisition devie, more preisely we fous on polygonal mesheswhih are a partiular representation of the surfae of the objets by means ofgraph-type strutures whose nodes are the points aquired from the real world.There are many appliations relying on the analysis of three-dimensional meshes.For instane, the mesh representation is widely used in Computer Gaming and inother �eld of entertainment. In these ontexts it is important to simulate physialphenomena involving 3D objets e�iently. Shape retrieval is another importantappliation whih exploits largely the mesh representation. Indeed, it requires tomath an objet against some given model in order to retrieve from a database,all the objets having similar shape to the input one. The key problem of manyappliation involving 3D representation is the mesh partitioning in its meaningful(semanti) omponents. The meaning of a omponent highly depend on the type ofappliation, thus there no exists a unique way to perform the objet segmentation. Avery popular segmentation exploits the disontinuities of the surfae, alled feature-edges, to de�ne the di�erent parts of the objet.Mesh deomposition is a very hard task. Starting from a mesh it is possible tode�ne its dual graph, and the mesh segmentation problem is equivalent to the graphpartition problem whih is an NP-Complete problem. Hene, we need to resort toapproximate solutions.Several mesh segmentation methods are present in literature. Many algorithms,aording to di�erent paradigms suh as Region Growing, Clustering, et. produesub-optimal solutions. Unfortunately most of these tehniques an not be easilyembedded in automati segmentation systems, beause they require the tuning ofsome parameters or threshold levels, to produe a signi�ant segmentation. Thus,the searh for parameter-free methods is partiularly interesting.Mesh SegmentationThe surfae of an objet is deomposed into segments aording to some spei�problem to be solved. Di�erent appliations require di�erent type of segments with



2 Introdutiondi�erent shapes and properties, and segmentation algorithms an be generally las-si�ed, aording to their goals, into one of the following ategories:
• Surfae Type Segmentation Algorithms. Appliations as texture map-ping, morphing, mesh simpli�ation, and mesh ompression require to deom-pose the objet into small regions satisfying some riteria. For instane, regionsmay present onstant urvature or they ould math some surfaes primitive(ylinders, spheres, et.).
• Component Type Segmentation Algorithms. Several appliations needto understand the objet shape to ful�l tasks as shape mathing, shape re-trieval, objet reonstrution, ollision detetion, et. This lass of mesh seg-mentation algorithms deompose the objets into their meaningful parts. Forexample, an objet representing a human hand an be deomposed into its�ngers and palm.Mesh segmentation problem is an NP-Complete problem and di�erent approxi-mate solutions have been proposed, and the three prinipal segmentation method-ologies reported in literature are:
• Region Growing Based Methods. This lass of algorithms segment anobjet by growing regions starting from seed elements, where these seed ele-ments an be hosen in di�erent ways and the region growing proess is ruledby the underlying geometry of the mesh surfae.
• Clustering Based Methods. Clustering is widely used in several problemsof data analysis. Here, lustering methods are used to perform segmentationsby merging the mesh elements into regions, aording to some ost funtionbased on the loal geometrial properties of the surfae.
• Spetral Analysis. The eigen analysis of the Laplaian matrix of some graphassoiated with the mesh, is used for mesh ompression purposes. Eah entryin the matrix enodes the probability that two elements belong to the samesegment.Thesis ContributionsIn the ontext of mesh segmentation based on the loal surfae analysis, we proposedtwo methods to loate the feature edges over the surfae of an objets. Both methods�rst assign a weight to eah edge of the mesh, where an edge is the line joining twoverties of the triangulation whih desribe the mesh. A neighbourhood of eah edgeis then onsidered. Suh neighbourhood is deomposed into disjoint layers, aordingto the distane from the entral edge. The �rst method analyses the variane of theweights within eah layer and lassi�es the feature edges through linear regression.The seond method de�nes a measure of salieny of eah mesh element based onsome fuzzy membership. The fuzzi�ation proess indues a segmentation of the



Introdution 3surfae into three sets: the set of feature edges, the set of smooth surfaes and theset of ramps, namely the region of the surfae lose to feature edges.In this thesis we propose the Surfae Curvature Di�usion (SCD), whih is anautomati mesh segmentation method based on the di�usion of some energy funtionde�ned over the surfae of the mesh. The key idea is to reprodue the physialphenomenon of the heat di�usion, through the distribution of the mean urvature ofthe objet over its surfae. As the physial proess ats in the ontinuous ase, SCDsolves the problem of urvature di�usion by means of disretized partial di�erentialequations depending on both the spatial oordinates of the points and time.At the initial time (t = 0) the energy funtion oinides, point by point, withthe mean urvature of the objet. The algorithm traks the evolution of the energyover all the points of the surfae and it lassi�es the objet verties aording to thevariation of their energy. At the end of the proess (t = tmax), feature-edges areharaterized by a large loss of energy released to their neighbouring points. While,points lying on smooth surfaes inrease their energy.Finally, by using the loal energy variation, SCD de�nes an height map andapplies a region growing based algorithm to loate the objet omponents.SCD uses as input data obtained by range images aquired by some devies,and it is both parameters-free and time independent, beause the di�usion proessis related only to the shape of the objet and always terminates at equilibrium.Furthermore, as the proposed algorithm simulates an adiabati proess, the totalurvature of the objet is preserved, as in the physial phenomenon.Surfae fairing is a very important tool in mesh proessing. Noise is typiallysuppressed by moving the verties along the normals to the surfae with speedequal to the mean urvature (mean urvature �ow). On the ontrary, SCD is ableto perform an e�etive surfae de-noising only by measuring the total variation ofthe verties energy.Several experiments on di�erent kind of meshes show that SCD is robust, fast,aurate and e�ient.Thesis OutlineThis thesis is organised as follows:
• Chapter 1 desribes the most important 3D data generation methods. Inpartiular we fous on range data representation. Here, we also de�ne theboundary mesh representation as a set of verties, edges and onvex polygonswith some adjaeny relation. Furthermore, we brie�y disuss about theprinipal mesh generation tehniques.
• In Chapter 2 we disuss about the prinipal algorithms reported in literatureto estimate di�erential properties of surfaes and we also introdue othersurfae desriptors based on Tensor Voting. Moreover, the basi priniples ofmesh de-noising are disussed.



4 Introdution
• In Chapter 3 we summarize the state of the art of the mesh segmentationmethods. In partiular, here we explain Region Growing, Clustering and Spe-tral Analysis methods. In this hapter we also fous on both the WatershedTransform and mesh edge-detetion algorithms developed so far. Finally, wedisuss the Normal Voting approah.
• Chapter 4 introdues di�usion based image proessing and it presents ourSCD method. Some of the experiments arried out to validate the e�etive-ness of the proposed algorithm are also reported. Moreover, the SDC resultsare ompared to the outome of some of the most important edge-detetionalgorithms present in literature and future works are �nally proposed.



Chapter 1Three-Dimensional Objets
The representation of a three-dimensional objet by a omputer requires a virtu-alization proess, typially performed by the generation through a model, or byaquisition of a real-world objet, or by a mix of both tehniques. 3D digital objetsare usually divided into two ategories: solid, where the objets are represented bya volume and boundary, where the objets are represented by a surfae.Sine our work relies on triangular meshes, whih are a partiular type of bound-ary objets, in this hapter we will fous on the boundary ategory.1.1 Three-Dimensional Objets Generation3D modelling and omputer gaming fouses mainly in generating of 3D modelsthrough speialized software like 3D graphial engines and libraries for omputerprograms. The rendering of objets for the generation of very realisti 3D senesand the interation with virtual 3D worlds requires to simulate di�erent physialphenomena as ollisions and motion. Furthermore, features like lighting and tex-turing are widely used. Modelling is also performed in Computer Aided Design(CAD) for engineering purposes. A very important tool used in CAD problems isrepresented by Non-Uniform Rational B-Splines (NURBS) [51℄, whih provide somerepresentations of 3D geometry and are able to desribe every shape, from a simpleline to a very omplex organi struture.1.2 Three-Dimensional Objets Aquisition3D virtual objets an be also obtained from the real-world by using some kinds ofaquisition systems [67℄. Di�erent devies are able to apture the 3D shape of a realobjet, like a amera aptures a 2D snapshot of a real sene.Data aquisition is a neessary step to represent a real 3D objet through aomputer. This proess gathers all the spatial information of the objet by returninga olletion of data that an be easily managed by an automati system.There exist several real 3D objets aquisition devies, and di�erent systemsprodue di�erent virtual objet representations, eah one with own advantages anddisadvantages about memory requirement, proessing simpliity and level of objetdetails.The main data types are: range data and volumetri data. The former is gen-erally obtained by ative range sensor systems, the latter by tomography systems,ultrasounds, satellite terrain mapping systems, Magneti Resonane Imaging, et.



6 Chapter 1. Three-Dimensional ObjetsA general range sensor system is omposed by a laser devie and a amera. Theaquisition proess uses a beam of laser light to hit the objet and the measure of thelight re�eted by a point on the objet is used to ompute the spatial oordinates ofsuh a points. The objet is sanned from di�erent point of view and the resultingimages must be merged together in order to have a full representation. Figure 1.1shows the typial range sensor system sheme. A plane-type beam of light intersetsthe objet in P, by measuring the distane between P and the amera (depth of thepoint) it is possible to map the 3D oordinates of P on P' belonging the 2D amera-spae. The distane between P and P' gives the depth information of P. This proessreturns an image (range image), where the point depth replaes the pixels brightnessintensity information.

Figure 1.1: Shema of a general range sensor system.Range images are a speial lass of digital images and are generally representedin two forms. The �rst is a list of 3D oordinates points with no spei� order,usually denoted as loud of points; while the seond one is a matrix of depth valueswith expliit spatial organization, i.e. a matrix A = aij where aij = z(i, j) indiatesthe depth information of the point with oordinates (i, j). Figure 1.2 shows anexample a two range images of the surfaes of a sulpture.Volumetri aquisition systems aquire data by shooting the objet by pene-trating rays (suh as X-rays). Di�erent materials absorb di�erent rate of radiationand, by measuring the exiting beam it is possible to obtain a set of ross-setional2D images (slies). The whole shape of the objet is reonstruted by staking theoutput images through the proess of voxelization, see Figure 1.3.Volumetri data are represented by a set of voxels. The voxel (volume pixel)is the smallest unit in 3D volumetri data. The voxel an be represented by eithera box-shaped volume or a sample point on a regular 3D grid, and it stores all theavailable information about the objet features in that volume (i.e. olour, opaity,gray level, labels, et.).In the ase of a 3D lattie a volumetri image is a subset of Z3, voxels are ubes



1.2. Three-Dimensional Objets Aquisition 7

Figure 1.2: Two range images (left and enter) representing two di�erent points ofview of a sulpture, with the reonstruted shape (right)

Figure 1.3: Voxelization shema.with edges of unitary length, arranged as in Figure 1.4, and . Note that two voxelsmight share a surfae, an edge or a vertex determining three kind of onnetivity.Objets data need often to be desribed by some mathematial model. Objetssurfaes represented by range data or volumetri data an be modelled by parametrisurfaes and impliit surfaes, respetively. Parametri models are usually given bya 2D to 3D mapping funtion f , while impliit surfaes are represented by threedimensional salar �eld f(x, y, z) = 0 [29℄.Several onversion tehniques have been developed to transform a surfae repre-sentation into another one. A well know method, for impliit to expliit onversion,is the Marhing Cube (MC ) algorithm [35℄, whih performs a sampling of the im-pliit surfae f(x, y, z) = 0 on a uniform spatial grid and onsiders the approximateintersetions between the grid and the surfae. The drawbak of the method is thepoor reonstrution of sharp features. Over the years, many improvement of theMC tehnique have been presented. In [61℄ the size of the triangles is adapted to



8 Chapter 1. Three-Dimensional Objets

Figure 1.4: 3 x 3 three dimensional lattie. With this kind of onnetivity, aninternal voxel (blak box) has 26 neighbours.the shape of the objet surfae, while in [29℄ a direted distane �eld is used alongthe x and y diretions at every grid point, resulting in a good reonstrution nearsharp zones.Several algorithms to onvert from expliit to impliit forms are presented in [28℄,where these algorithms onvert 3D geometri objets into their disrete voxel-maprepresentation by using a Cubi Frame Bu�er (CFB), namely, a 3D array of voxelswhih stores regular volumetri datasets.1.3 Three-Dimensional Boundary Objets Representa-tionOur researh fous on the lass of objets represented by polygonal meshes, whihare the most popular 3D objet representations approximating the objets surfaeby a set of simple onvex polygons.De�nition 1 (k-simplex) Given a set A of point in the R
n spae, the onvexombination of k+1 a�nely independent points of V ⊆ A is alled k-simplex, where

k < n.When it is required to highlight the number of points of a k -simplex we use thenotation ϕk rather than ϕ.De�nition 2 (s-faet of a k-simplex) Let ϕ be a k-simplex de�ned by
V = {v0, v1, ..., vk} and let φ be a simplex de�ned by V ′ ⊆ V , where | V ′ |= s + 1.The simplex φ is alled s-faet of ϕ and this relation is denoted by either ϕ ⊲ φ or
φ⊳ ϕ.In other words, an s-faet φ is as a onvex ombination of s+1 points of V (see�gure 1.6).



1.3. Three-Dimensional Boundary Objets Representation 9
0-simplex 1-simplex

Figure 1.5: Example of k-simplies where eah k-simplex is a (k -1)-faet of thesimplex on the right.De�nition 3 (Simpliial omplex) A �nite set H of simplies is a simpliialomplex if the following onditions hold:1. if ϕ ∈ H and φ⊳ ϕ⇒ φ ∈ H, that is, eah s-faet of a simplex ϕ ∈ H is alsoin H;2. either ϕ∩ϕ′ = ∅ or ϕ∩ϕ′⊳ϕ and ϕ∩ϕ′⊳ϕ′, that is, the intersetion between
ϕ,ϕ′ ∈ H is either empty or a ommon s-faet.Figure 1.6 shows some examples of simpliial omplexes. The dimension ofa simpliial omplex H, dim(H), is the maximal dimension of its elements. If

dim(H) = k, then H is k-omplex.
valid simplicial complexFigure 1.6: Valid simpliial omplex (right) and not valid one (left)De�nition 4 (Simpliial k-omplex) A simpliial omplex H is k-omplex if

dim(H) = k.De�nition 5 (Pure simpliial omplex) A simpliial k-omplex H is pure if
∀φ ∈ H ∃ ϕ ∈ H | φ⊳ ϕ.De�nition 6 (Orientation of a k-simplex) An orientation of a k-simplex is anequivalene lass of the permutations of its verties obtained by an even number oftranspositions.
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Figure 1.7: Orientations of k-simplies.De�nition 7 (Underlying spae of a simpliial omplex) The underlyingspae of a simpliial omplex H is |H| = ⋃

ϕ∈H
ϕ.Note that |H| is a topologial spae and simpliial omplexes are used to rep-resent manifolds, whih are topologial spaes, too. Manifolds are used to de�nesurfaes (2-manifold) and their properties, like di�erentiability, where it is typi-ally requires that for eah point within the manifold representation, there exists aneighbourhood homomorphi to the open disk.De�nition 8 (Triangulation) Given a topologial spae X, a simpliial omplexH is a triangulation if |H| is homeomorphi to X.A triangulation is maximal if the addition of a new simplex violates the de�nitionof simpliial omplex.De�nition 9 (Orientable triangulation) A triangulation T is orientable if twok-simplies ϕ,ϕ′ ∈ T de�ne two di�erent orientations on the shared (k-1)-faet.De�nition 10 (Polyhedral mesh) An orientable triangulation T is a polyhedralmesh if T is a pure orientable k-simpliial omplex and if eah (k-1)-simplex in T isshared by at most two k-simplies in T.Given a simpliial omplex H let us denote V =

⋃

ϕ0∈H
ϕ0, E =

⋃

ϕ1∈H
ϕ1, and

F =
⋃

ϕ2∈H
ϕ2, that represent the sets of verties, edges and faets of H, respetively.It is possible to de�ne the following three relations:

• vRvee⇔ ∃v
′|(v, v′) = e;

• vRvff ⇔ ∃v
′, v′′|(v, v′, v′′) = f ;

• eReff ⇔ ∃v, v
′, v′′|(v, v′) = e, and (v, v′, v′′) = f ;where v, v′, v′′ ∈ V , e ∈ E, and f ∈ F .De�nition 11 (Triangular boundary mesh) Given a polyhedral mesh de�ned bya set H of 2-simplies, a triangular boundary mesh is M = {V,E, F,Rvf , Rve, Ref},

M = {V,E, F} for short.



1.4. Mesh Generation 11In the triangular boundary meshes the neighbourhood of a faet is the set ofedges and verties in relation to that faet, while the neighbourhood of a vertex isthe set of edges and faets adjaent to the vertex. Suh neighbourhoods are alsoalled yles. When a yle does not ontain any hole is said to be single. Notethat two faets are in relation if they share an edge and the onnetivity of a meshis related to the adjaeny relations of its elements. The onnetivity is required toperform any kind of loal analysis as it allows to reah the neighbourhood of eahvertex.Furthermore a mesh is regular or strutured if eah vertex has the same numberof adjaent verties, otherwise is non-regular or unstrutured.The suitability of a mesh depends on several geometrial features. High qualitymeshes are haraterized by the following properties:- the variane of the area enlosed by triangles should not be very large;- the aspet ratio of triangles should be losed to 1, where the aspet ratio isthe ratio between the diameter of the irumsribed irle and the maximaledge length of the triangle;- in the ase of unstrutured meshes, the variane of the number of adjaentneighbours of the verties should be as small as possible.1.4 Mesh GenerationMany methodologies have been developed for generating a polyhedral mesh start-ing from a loud of points. Triangulation is the most important and widely usedapproah for unstrutured mesh generation; relevant tehniques are: Delaunay Tri-angulation (DT) [31, 18, 46, 11℄, Advaning Front Method (AFM) [23℄ and GradedTriangulation (GT) [44℄.De�nition 12 (Delaunay Triangulation) A triangulation T on a set V of pointsis a Delaunay Triangulation if eah simplex of T is irumsribed by an hyperspherethat does not ontain any point in V.DT algorithms are lassi�ed in di�erent groups depending on the approahesused:
• Inremental Insertion. This lass of algorithms perform the DT by startingwith a simplex ontaining the onvex hull of the point set; then other vertiesare inserted progressively. An example is the Watson's algorithm [46℄ for 2Dtriangulations, whih starts with a super triangle that enompasses the wholedomain.
• Divide and Conquer. These algorithms reursively arry out a partitionand triangulation on the input points, then a merging phase is applied inorder to join the resulting triangulations [31, 18, 11℄.



12 Chapter 1. Three-Dimensional ObjetsThe Advaning Front Method (AFM) starts from the boundary of the loud ofpoints and adds new simplies progressively. The right loation of new elements isruial and the main issue is represented by the merging of the loated advaningfronts. Note that in the three-dimensional spae, this method produes tetrahedralmeshes.The Graded Triangulation, de�ned in the two-dimensional spae, exploits bothDT and AFM. The triangulation is improved by adapting number and size of thetriangles to the shape of the starting boundary.Di�erent appliations require di�erent mesh quality harateristis, for instanein order to ahieve very fast motion and rendering, omputer gaming meshes areusually de�ned by a small number of elements (triangles or quadrilaterals); on theother hand, sienti� appliations may need to proess large amount of data withhigh level of details for feature extration and surfae analysis. Aquisition systemsprodue very dense loud of points resulting in meshes with a very large numberof triangles [68℄. In this senario a very important property is the mesh resolution,whih intuitively indiates the level of detail of the mesh surfae and is it related tothe number of verties.The simpli�ation of the input data may improve the results of suh algorithmsand may redue the exeution time. Progressive meshes adapt the set of mesh pointsaording to the required level of details, as in some visualization interfaes wherethe resolution of the virtual objet is related to the zoom level allowing e�ientrendering.Several papers [36, 55, 57, 62, 21℄ have been written about mesh simpli�ationalgorithms to redue the number of verties by iteratively perform some operationson either verties or edges. In order to preserve the shape of the objet, the ostof eah operation is usually omputed as the distane between the original meshan the simpli�ed one. Mesh simpli�ation algorithms are lassi�ed aording to thetype of operation used to redue the number of verties:
• Vertex Removal. In [57, 62℄ the mesh is simpli�ed by iteratively seletingverties for removal, then the neighbourhood of eah removed vertex is re-triangulated. The ost is omputed as the distane between the removedpoint and the �ttest-plane de�ned on the neighbouring points;
• Vertex Clustering. These methods [36, 55℄ use a grid struture obtainedfrom the objet bounding-box and all the verties ontained in a grid ell areluster together. The objet shape is not guaranteed by these methods.
• Edge Collapse. Many algorithms redue the number of verties by ollapsingthe endpoints of the edges. The approah used in [19℄ allows the ontrol ofthe objet details, it omputes both the upper and the lower bounds of theedges length by using two parameters p1 and p2. The parameter p1 indiatesthe desired resolution, while p2 spei�es the deviation of the edges lengthfrom the given resolution p1. The shape of the objet is preserved by a shape



1.5. Polygonal Mesh Data Strutures 13hange measure de�ned as the maximum distane between the mesh beforeand after an operation is applied.In Computer Vision it is often required a loal objet analysis for features ex-tration and segmentation, algorithms often require a topologial representation ofthe objet where neighbourhood operations an be easily performed. For these pur-poses a suitable mesh representation is useful and loal analysis an be aomplishedthrough the onnetivity of the verties. Notie that two adjaent faets ould haveedges with di�erent lengths and this harateristi must be onsidered during theevaluation of the surfae features, like its di�erential properties. The algorithm pre-sented in [19℄ addresses also this problem and an be used to normalize the lengthsof the edges.1.5 Polygonal Mesh Data StruturesBasi information needed to analyse an objet surfae deal with the adjaeny be-tween mesh items, therefore the implementation of objets surfaes segmentationalgorithms requires to aess the mesh elements e�iently. Mesh data struturesmust desribe 2-manifolds and store all the needed topologial relations betweenelements by keeping trak how an item is onneted to its neighbours.Typial mesh queries are:
• aess the verties of a faet;
• aess the verties of an edge;
• visit the edges of a faet aording to some order;
• visit the edges adjaent to a vertex;
• visit the faets adjaent to a vertex;3D data strutures an be mainly distinguished into edge-based and fae-based,where the topologial information are related to either the edges or the faets neigh-bourhood, respetively.Edge-based strutures store, for eah edge in the mesh, some pointers to itsverties and to its adjaent edges. On the ontrary, fae-based strutures store,for eah faet, some pointers to its adjaent faets and to its verties. Eah datastruture has its own advantages in terms of memory requirements and simpliityfor topologial operations, their usage depends on the appliation needs. To thebest of our knowledge, at present there are no standard fae-based models, whilethere are two well known edge based approahes: Winged-Edge [2℄ and Half-Edge.In this thesis the Half-Edge data struture has been adopted when the aessthe neighbourhood of the mesh elements in loal surfae analysis is needed.The Half-Edge struture dupliates eah edge into two virtual half-edges aord-ing to the orientation of the yle of its faet (see Figure 1.8), moreover it maintainsfor eah half-edge the pointers to:
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• the opposite half edges;
• the adjaent vertex;
• the adjaent faet;
• the next half edge;
• the previous half edge.Note that the previous half-edge an be referened by using only the informationabout the next half-edge. Mesh queries an be easily implemented by using this datastruture and with regular meshes they an be performed at onstant time.

Figure 1.8: The red edge is dupliated into two half-edges eah one oriented aord-ing to own adjaent faet.



Chapter 2Mesh Surfaes
Several Computer Vision tasks require the estimation of the loal geometri prop-erties of the surfaes. Consider for example the problem of objets segmentation,that is, the problem of dividing the set of objet elements into sub-sets having sim-ilar geometri features (segments). The reognition of a partiular segment an bedriven by using some a priori knowledge about the surfae geometry. Furthermorelassi�ation problems need to deide if a segment belongs to some surfae type,like spherial surfaes, ylindrial surfaes, et. Suh segments desription is usedto simplify the reognition of a given objet in a 2D sene. In addition, 3D objetretrieval exploit segments to math an objet against a given model. In ontrast,reonstrution problems need to estimate the �ttest surfae approximating an un-organized and sparse loud of points, typially represented by range images.These tasks require the analysis of the input data by means of desriptors in-variant under di�erent transformations, like rotations, translation, saling, et.Aording to the di�erential geometry theory, the oordinate system used torepresent surfaes does not in�uene their properties, whih are ompletely desribedby �rst and seond-order derivatives.The problem of reovering surfae properties depends on the input data at hand,polyhedral meshes and range images are usually proessed with di�erent approahes.In range images, the grid on whih points are aligned gives a natural parametriza-tion of the surfae. In ontrast, triangular meshes have no natural parametrizationde�ned on them [63℄ and impliit parametrization is no suitable for approximat-ing arbitrary data [45℄. Here, mesh surfaes are typially desribed by seond-ordershapes as spheres, paraboloids, ellipsoids, ylinders, hyperboloids, et. Furthermore,experimental results show that higher-order surfaes gain little advantages [30℄.This hapter fouses on the proess of estimating di�erential quantities on trian-gle meshes. Noise an heavily a�et suh estimation, thus many methods, as surfaesmoothing (or fairing) have been developed in the past deades to redue noise dueto high frequenies on the surfaes. We will also disuss the basi priniples of meshdenoising.Important surfae features an be also aptured through a tensor voting ap-proah. As explained in setion 2.4, the shape of an objet an be inferred from aloud of points. The salieny of eah point an be desribed by tensors whih enodesome information and propagate it to its neighbourhood. Di�usion is implementedby a voting mehanism, where eah point ollets the votes (i.e. tensors) from itsneighbouring elements. The shape of the objet is then obtained by analysing thevotes olleted at eah site. This tehnique allows to de�ne very useful surfae



16 Chapter 2. Mesh Surfaesdesriptors that an be used for mesh segmentation purposes.2.1 Di�erential Geometry BakgroundDi�erential geometry has been used in Computer Vision for the desription of sur-faes [50℄. The loal geometry properties are omputed on some quadri surfaeapproximating a set of mesh verties. In this ontext the basi onept requiredfor surfae analysis is represented by the surfae fundamental forms, whih are ex-tremely important and useful in order to determine the metri properties of surfaes.Let us assume that S is a surfae embedded in R
3, represented by an arbitraryparametrization of two variables X(u, v) whih is smooth in the neighbourhood ofa point p(x, y, z).Eah mesh vertex is haraterized by a unit normal vetor de�ned as the nor-malised ross produt of the partial derivatives of X:n =

Xu ×Xv

‖ Xu ×Xv ‖For small variations of the parameters (u, v), the �rst fundamental form measuresthe amount of movement on the surfae. Suh measure is rotation and translationinvariant and does not depend on the surfae embedding and on the parametrization.While, the seond fundamental form depends on the embedding in the 3D spae andit measures the hanges of the surfae normal for some movements of the parameters
(u, v). Therefore, the �rst and seond fundamental forms are onsidered as impliitand expliit properties of surfaes, respetively. Suh forms are de�ned as follows [6℄:

I(u, v, du, dv) = dX · dX = duTGdu
II(u, v, du, dv) = −dX · dn = duTDduwhere

du = (du, dv)Tand
G =

( Xu ·Xu Xu ·XvXu ·Xv Xv ·Xv

)

D =

( n ·Xuu n ·Xuvn ·Xuv n ·Xvv

)The geometri properties of surfaes are related to the Eulidean geometry of 3Dspae by the linear shape operator β, whih generalises the urvature of plain urves.Suh operator is a map β : Γ(p)→ Γ(p), where Γ(p) is the tangent (hyper)plane tothe surfae at the point p.Given a vetor t tangent to the surfae S at p, the shape operator is de�ned as:
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β(t) = −∇tnwhere:

(∇tn)(p) = lim
τ→0

n(p + τt)− n(p)
τIn other words ∇tn represents the diretional derivative of n along the diretion t.The operator β an be expressed in vetorial form as:

β(t) = G−1DtWith β(t) at hand, the prinipal urvatures and prinipal diretions of S onpoint p are obtained by omputing the normal urvature of the surfae at p in thediretion of a vetor t. The normal urvature is de�ned as:
κn(t) = β(t) · t

‖t2‖ (2.1)whih measures the urvature of the plane urve obtained from the intersetion ofthe plane de�ned by t and n with the surfae.The minimum and maximum values of κn are alled the prinipal urvatures
κ1 and κ2, respetively. These values are obtained aording two diretions, repre-sented by the unit vetors e1 and e2 denoted as prinipal diretions. The prinipalurvatures are the eigenvalues of the shape operators, while the prinipal diretionsare the orresponding eigenvetors. The vetors e1 and e2, together with n de�nean orthonormal frame at p, alled prinipal oordinate frame.Aording to the Euler Formula, the normal urvature an be de�ned, withoutloss of generality, by onsidering the angle θ between e1 and t:

κn(θ) = κ1 cos
2 θ + κ2 sin

2 θ (2.2)The mean urvature H and the Gaussian urvature K are important surfaesdesriptors and they are derived from the prinipal urvatures:
H =

1

2π

2π
∫

0

κn(θ)dθ (2.3)and
K = κ1κ2. (2.4)Note that H and K are the determinant and the half-trae of S, respetively, andthey haraterize a surfae point p as ellipti (if K > 0), hyperboli (if K < 0),paraboli (if K = 0 and H 6= 0), or planar (if K = H = 0).A neighbourhood of a point p(x, y, z) on a surfae S an be approximated by aquadri surfae. Let us represent suh neighbourhood with z = h(x, y), where the



18 Chapter 2. Mesh Surfaesoordinate frame is entred on p and the z axis is aligned with the normal n at p.The funtion h is di�erentiable and by Taylor's expansion of h at p up to order 2,the expression for the prinipal quadri Q of S an be derived:
h(x, y) =

1

2
(hpxxx

2 + 2hpxyxy + hpyyy
2) +R(x, y)where hpxx is hxx evaluated at p and lim

(x,y)→(0,0)

R(x, y)

x2 + y2
= 0 andThe equation:

z =
1

2
(hpxxx

2 + 2hpxyxy + hpyyy
2) (2.5)approximates the surfae S, and its zero-set of z de�nes the prinipal quadri Q of

S at p.The surfae Q gives all of the important loal di�erential properties of the surfae
S. The prinipal quadri at p an be expressed in the prinipal oordinate frameby a loal parametrization X(x, y) = (x, y, h(x, y))T with n = (0, 0, 1)T , resultingin the following matries:

G =

(

1 0

0 1

)

S = D =

(

hpxx hpxy
hpxy hpyy

)The prinipal urvatures κ1 and κ2 are the eigenvalues of S, hene the prinipalquadri is:
z =

1

2
(κ1x

2 + κ2y
2) (2.6)2.2 Approximation of Loal Surfae PropertiesThough several methods have been proposed in literature to estimate several di�er-ential properties on triangular meshes, there is no onsensus on the most appropriateavailable tehniques [50℄. Furthermore, the hoie of a partiular method may de-pend on the types of data to be proessed. Despite there are several points of viewabout the best estimation methods of the surfae properties, it seems that the mostsuitable approahes are those using the disrete analogous of formulas in the on-tinuous ase. In this ontribution, the surfae properties are extrated by �ttestquadri, hene in the following we will give major emphasis to these tehniques.2.2.1 Prinipal Quadri EstimationGiven a triangulation T (see Chapter 1), the estimation of the prinipal quadri atsome point p on T involves the omputation of the normal n at p. Suh estimationdepends on the mesh struture around eah point, then di�erent meshing might



2.2. Approximation of Loal Surfae Properties 19produe di�erent results. Many approahes have been adopted to estimate themesh normals, and usually they are based mainly on the average of the normalsbelonging to the faets adjaent to p. Let us denote by N(p) and M(p) the sets ofverties and faets adjaent to p, respetively. The normal at p is estimated throughthe weighted average: n =

i=n
∑

i=1
wini

‖
i=n
∑

i=1
wini ‖

(2.7)where n = |N(p)|.The weights wi an be omputed aording to di�erent approahes [43, 24, 39℄.For instane it an be used the area of the baryentri ell at p (i.e. the ell obtainedby joining the entre of mass of eah faet with the middle point of its edges), orthe angles of the faets adjaent to p (wi = θi), see Figure 2.1 a and b.
a bFigure 2.1: Loal regions around a vertex [17℄. a) Finite volume region usingbaryentri ells. b) External angles of a Voronoi region.The verties of a mesh are expressed in the world (global) oordinate frame.One the normal is estimated, the quadri an be �tted by �rst aligning the neigh-bourhood N(p) of a vertex p with the prinipal oordinate frame assoiated with p.The prinipal oordinate frame an be moved on this world by a translation and arotation. The resulting oordinates x = (x, y, z)T of a point in the prinipal oordi-nate frame entred in p are related to the its world oordinates xw = (xw, yw, zw)

Tas following: x = R(xw − pw)where R is the attitude matrix [41℄ and pw are the global oordinates of p.The prinipal quadri at some point p an be expressed in a oordinate framex′ = (x′, y′, z′) entred in p, related to the prinipal oordinate frame by a rotationaround its normal at p: x =





cosα sinα 0

− sinα cosα 0

0 0 1



x′



20 Chapter 2. Mesh SurfaesThis yields to the rotated prinipal quadri:
z′ = a′x

′2 + b′x′y′ + c′y
′2The assoiated shape operator matrix is:

S =

(

2a′ b′

b′ 2c′

)and the di�erential properties of the surfae at point p are omputed as:
κ1 = a′ + c′ +

√

(a′ − c′)2 + b
′2

κ2 = a′ + c′ −
√

(a′ − c′)2 + b′2

α =
1

2
arctan(b′, a′ − c′)

K = 4a′c′ − b
′2 H = a′ + c′In order to obtain the rotated prinipal quadri, the rotation from the worldoordinates to the rotated prinipal frame must be de�ned. This is ahieved byaligning x′, with the projetion of xw onto the tangent plane de�ned by n [40℄x′ = R′(xw − pw)where the matrix R′ is de�ned as:

R = (r1, r2, r3)Twith r1 = (I − nnT )i
‖ (I − nnT )i ‖ , r3 = n, r2 = r3 × r1 (2.8)The vetor i is the �rst axis in the global oordinate frame, while I is the identitymatrix.The rotated verties are �nally �tted and the oe�ients of the rotated prinipalquadri are obtained by solving the following system of linear equations through aleast-squares method:
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The quadri reovery is greatly in�uened by the auray of the estimatednormal vetors at mesh verties. Aording to [40℄, the �tting an be improvedby iteratively re�ne the normal estimation, and the authors proposed the followingproedure:



2.2. Approximation of Loal Surfae Properties 211. estimate the rotated prinipal extended quadri;2. estimate the the surfae normal;3. use the new normal to ompute a new rotation matrix and rotate the data;4. repeat the above steps until the inremental hange in the diretion of thenormal falls below some tolerane levelAt eah iteration the estimate of the normal is omputed by using the oe�ientsof the extended quadri z′ = a′x2 + b′xy + c′y2 + d′x+ e′y:n =
(−d′, e′, 1)T

1 + d′2 + e′2Finally, the mean and Gaussian urvature are omputed as follows:
K =

4a′c′ − b′2

(1 + d′2 + e′2)2

H =
a′ + c′ + a′e′2 + c′d′2 + b′d′e′

(1 + d′2 + e′2)3/2Aording to the tehniques presented, the problem of reovering quadris ontriangle meshes an be divided into the following sub-problems:1. estimation of the normal of the surfae at some point p;2. omputation of the rotation matrix R′;3. rotation of the data expressed in the world oordinate frame;4. �tting of the rotated data with a quadri, alternatively with an extendedquadri;5. omputation of the di�erential properties and the angle α relating the rotatedprinipal quadri and the prinipal oordinate frame;6. estimation of the attitude matrix.2.2.2 Spatial AveragesThe de�nition of di�erential quantities in the ontinuous ase an be extended totriangular meshes by omputing some spatial average around eah vertex p of themesh. The work presented in [17℄ shows that there exist strong analogies between theontinuous ase and the disrete ase when the averaging is performed on speialregions ontained in the set M(p) of the faets adjaent to p. Suh regions aredenoted as �nite volumes and an be de�ned in di�erent ways (see Figure 2.2).The disrete form of the Gaussian urvature an be de�ned as:
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K(p) =

1

A

∫∫

A

KdA (2.9)where A is some hosen area around vertex p. The �nite volume assoiated with
A is denoted as AM . If the Gauss-Bonnet theorem is applied on AM , the disreteGaussian urvature at p an be omputed as:

1

AM

∫∫

AM

KdA = 2π −
∑

pi∈N(p)

θi (2.10)where θi is the angle at p of the ith faet in M(p) (see Figure 2.2 a). The Gauss-Bonnet is an important result of di�erential geometry, it onnets the geometryof surfaes to their topology expressed by the Euler harateristi. In order to toaurately estimate the spatial average, a suitable �nite volume must be de�ned.Voronoi ells provide tight error bounds [17℄ and assuming that M(p) ontains onlynon-obtuse triangles, the total area of the path surrounding p is:
AV oronoi =

1

8

∑

pi∈N(p)

(cotαi + cot βi)‖pi − p‖2 (2.11)As shown in Figure 2.2b, αi and βi represent the angles opposite to the edge
ppi. When the path ontains obtuse triangles, the Voronoi ells are onstrutedby taking into aount the irumenters of obtuse faets and the baryenters ofnon-obtuse ones. The resulting area is denoted as mixed area and the expression ofthe disrete Gaussian urvature beomes:

K(p) =
1

Amixed

(

2π −
∑

pi∈N(p)

θi
) (2.12)

a bFigure 2.2: Loal regions around a vertex [17℄. b) Loal region using Voronoi ells.d) Angles opposite to an edge.The disrete mean urvature at some vertex p of a mesh an be derived by usingthe Laplae-Beltrami operator K, de�ned as the divergene of the gradient of somefuntion f . On smooth surfaes, K maps a point p to the vetor K = 2Hpnp. On



2.2. Approximation of Loal Surfae Properties 23triangulations, the operator K over a �nite volume AM an be expressed as a lineintegral over the boundary of the volume:
∫∫

AM

KdA =
1

2

∑

pi∈N(p)

(cotαi + cot βi)× (pi − p) (2.13)Again, the mixed area is hosen and the Laplae-Beltrami operator is omputed as:
K(p) =

1

2AMixed

∑

pi∈N(p)

(cotαi + cot βi)× (pi − p) (2.14)Hene the mean urvature is Hp =
|K(p)|

22.2.3 Covariane MatriesThe omputation of di�erentiable properties of surfae may be not robust underadditive noise, and surfaes may not present suitable smoothness to support dif-ferentiation. These problems led several authors to adapt the ovariane matriesmethods to triangulations [34, 3℄. Given a point p of the mesh, the ovariane matrix
CI is omputed on the set N(p) as follows:

CI =
1

n

i=n
∑

i=1

(pi − p)(pi − p)T (2.15)where p =
1

n

i=n
∑

i=1
pi represents the mean position vetor.The eigenvetors t1 and t2 of CI de�ne the tangent plane at p, so that thedistanes of the surfae points in N(p) to this plane are minimized. In addition,the eigenvetor t3 is an estimation of the surfae normal n at p and thus CI an beonsidered as the disrete equivalent of the �rst fundamental form matrix G.Aording to [3℄ the disrete seond fundamental form matrix an be de�nedby projeting the di�erene vetors (p − pi) onto the tangent plane determined by

CI . The ontribute of eah di�erene vetor is weighted aording to the orthogonaldistane from pi to the tangent plan:
CII =

1

n

i=n
∑

i=1

(yi − y)(yi − y)T (2.16)where yi = [(pi − p) · n]((pi − p) · t1
(pi − p) · t2)The eigenvetors of CII are an estimation of the prinipal diretion at p.Alternatively, sine the prinipal diretions lie on the tangent plane, the ovari-ane matrix C

′

II an be built by projeting the normal vetors in N(p) onto the



24 Chapter 2. Mesh Surfaestangent plane. Given an estimation of the normal ni of the neighbouring verties piobtained by CI , the matrix C
′

II is omputed as CII :
C

′

II =
1

n

i=n
∑

i=1

(yi − y)(yi − y)T (2.17)with yi = (ni · tini · t2).2.3 Mesh De-noising PriniplesReal world objets are typially haraterized by smooth surfaes. Nevertheless,all the aquisition methods produe noisy and rough surfaes whih need somesmoothing proess in order to exploit the di�erential property of the meshes.Surfae smoothness refers to the notion of ontinuous di�erentiability, and meshde-noising (or fairing) is related to the appearane of the objet surfae and it is usedto ahieve more auray in the estimation of di�erential quantities (see Figure 2.3).

Figure 2.3: Example of mesh fairing.The lassi approah for mesh fairing uses a onstrained energy minimisation ona funtional E(S) de�ned for a surfae S:
E(S) =

∫∫

S

(κ21 + κ22)dA (2.18)The non-linear dependene of the prinipal urvatures on S led to employ themembrane and thin-plane funtionals denoted as Em(S) and Et(S), respetively.
Em(S) =

∫∫

S
(X2

u +X2
v)dudv (2.19)

Et(S) =

∫ ∫

S
(X2

uu + 2X2
uv +X2

vv)dudv (2.20)



2.3. Mesh De-noising Priniples 25Observing that the variational derivative orresponds to the Laplaian, fairingan be performed by integrating the di�usion equation over time:
∂X
∂t

= λL(X) (2.21)where L(X) = Xuu +Xvv , L2(X) = L ◦ L(X) and λ > 0The di�usion �ow redues the noise by smoothing the high frequenies on the meshsurfae. More details on the di�usion equation will be given in the Chapter 4.At eah point p the Laplaian an be approximated by the umbrella operator u:
u(p) =

∑

pi∈N(p)

wipi

∑

pi∈N(p)

wi
− p (2.22)where the summation wi are positive weights. In order to integrate the di�usionequation in the disrete ase, an iterative proess must be de�ned. The task is faedby generating a sequene of meshes by using the following update rule for a disretetime step ∆t = 1:

p(j+1) ← p(j) + λu(p(j)) (2.23)This proedure is known as Laplaian smoothing. At eah iteration a vertex ismoved by a displaement omputed as the average position of the neighbouringverties multiplied by some sale fator λ. Typial hoies of the weights are wi = 1,alternatively a funtion of the length of the edges ppi are used.Laplaian smoothing has several disadvantages: unnatural deformation on themesh surfae may appear if λ is not small enough, furthermore the result of smooth-ing depends on the sampling of the mesh verties. The restrition on the sale fatorrequires hundred of iterations to smooth signi�antly large meshes. Moreover smalldetails are lost due to the lak of loal shape ontrol.Variation of the original Laplaian smoothing methods have been proposed [65,66℄. Although the deformations an be minimised by omputing a weighted averageof L and L2, results are still a�eted by sale problems. Aording to di�erentauthors, the umbrella operator is not adequate to approximate the Laplaian fortriangular meshes.A better approah is the mean urvature �ow [17℄ whih uses the Laplae-Beltrami operator to approximate the Laplaian. Here the verties are moved alongthe surfae normal with a speed equal to the mean urvature. Given a mesh point
p, in the ontinuous ase the displaement for a time step is:

∂p

∂t
= −H(p)n(p) (2.24)In the disrete setting, the loal update rule is:

p(j+1) ← p(j) −H(p(j))n(p(j)) (2.25)



26 Chapter 2. Mesh SurfaesThis formulation yields to isotropi smoothing, namely, the smoothing proesshas the same behaviour along all diretions. The problem with this approah is theloal geometry loss, surfae features like boundaries, edges and ridges are smoothedin the same way as homogeneous regions. The detetion of high urvature pointsthrough the prinipal diretions an be used to perform anisotropi smoothing. Thisis required in order to redue or suppress smoothing on suh points and preservesmall-sale features. The di�usion should be redued or suppressed in the diretionof suh points. In [17℄ the following update rule is proposed:
p(j+1) ← p(j) − σH(p(j))n(p(j))where the smoothing weight σ is de�ned as follows:

σ =



































































1 if |κ1| ≤ τ and |κ2 ≤ τ

0 if |κ1| > τ and |κ2 > τ and K > 0

κ1
H

if |κ1| = min(|κ1|, |κ2|, |H|)

κ2
H

if |κ2| = min(|κ1|, |κ2|, |H|)

1 if |H| = min(|κ1|, |κ2|, |H|)where τ is a user de�ned parameters. This approah is also dependent on thesampling of the mesh points and may yield to over-smoothing as time inreases.Better results are obtained by ombining the properties of Laplaian smoothing andmean urvature �ow. The algorithm proposed in [47℄ moves the verties both alongthe normal and along some diretion on the tangent plane. This approah allowsto smooth the surfae while improving the sampling rate of the mesh verties. Theupdate rule thus beomes:
p(j+1) ← p(j) + λ(H(p(j))n(p(j)) + C[u0(p

(j))− (u0(p
(j) · n(p(j)))× u0(p

(j))])where C is a positive onstant or a funtion of the surfae urvatures, and u0 is theumbrella operator obtained with onstant weight wi = 1. See Figure 2.4 to see someresults obtained though the methods presented.The use of mesh denoising an improve the estimation of di�erential quantities.Sine mesh proessing algorithms often assume the knowledge of some desriptors asthe prinipal urvatures, smoothing an be used as a pre-proessing step althoughthere is no suitable upper bound in the number of iterations. More onsiderationsabout this problem will be given in the last hapter.



2.4. Tensor Voting Based Surfae Features Extration 27
Figure 2.4: Smoothing of a mesh. From left to right: original mesh, smoothingobtained by the method presented in [65, 66℄, mean urvature �ow, smoothingobtained by the method presented in [47℄.2.4 Tensor Voting Based Surfae Features ExtrationFrom the Gestalt theory we know that there exist several rules driving the reog-nition proess of the objets, aording to the spatial organization of the elementsomposing the sene. For instane, in Figure 2.5 a, it is possible to reognise twoplain urves surrounded by some isolated points. Proximity and good ontinuityare just two examples of priniples, used to aggregate the elements that omposehigher level strutures in the image, and Tensor Voting [42℄ allows us to simulatethe human reognition proess.Given an objet desribed by an unorganised set of points in both 2D and 3Dspae, its shape an be inferred by propagating the information enoded within eahpoint through a voting proess. Hene, voting produes new information aboutthe underlying global struture of the objet. For example, by referring again toFigure 2.5, the input image is just a olletion of oordinates (x, y), after voting,an estimation of the tangent at eah point is obtained. Through a given on�denemeasure, isolated point present negligible tangent information. The same reasoningan be applied for a three-dimensional images, where the normal at eah point anbe estimated through voting, and used to infer the whole shape of the objet.Note that, Tensor Voting theory also de�nes suitable surfae desriptors usefulto perform some objets segmentation, as desribed in Chapter 3.The Tensor Voting approah presented in [42℄ is a set of proedures alled thesalient feature inferene engine. Eah point in the input image maintains itsspatial information together with the estimates of its tangent and normal vetors.Note that the method requires at least the spatial position of the input points. Inputelements will be denoted as tokens.The whole algorithm an be summarised into three stages:1. Eah input token is enoded as a seond order symmetri tensor. When the to-ken maintains only the position information, the relative tensor is an isotropiball of unitary radius.2. First voting step. The tokens within in a neighbourhood ommuniate eahother their information. During this stage they are transformed into generi



28 Chapter 2. Mesh Surfaesseond order tensors enoding the on�dene of the urve and surfae orien-tation information.3. Seond voting step. A dense tensor map is omputed by di�using the infor-mation of eah token to its neighbours. This tensor map enodes the salienyof eah token, and it is used to infer the token point-ness, urve-ness andsurfae-ness.
a b cFigure 2.5: Shape reonstrution from a loud of point in 2D. a) Original data. b),) Voting steps.The hoie of tensors an be roughly argument as follows. A token may representdi�erent types of entities: a point or a urve, or a surfae, or these entities at thesame time. In Figure 2.5 the intersetion of the urves is both a point with noassoiated tangent, and two urves. Tensors allow to maintain all the possibleinformation at the same time.A seond order symmetri K tensor in matrix form is written as:
K =

(e1 e2 e3)λ1 0 0

0 λ2 0

0 0 λ3









eT1eT2eT3  (2.26)where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of K and e1, e2 and e3 are their relativeorthonormal eigenvetors.In order to make expliit the information enoded by eah token, the tensor
K an be deomposed into three omponents representing three di�erent types oftensors, namely, the ball tensor, the plate tensor and the stik tensor. These tensorsenode the point-ness, urve-ness and surfae-ness, respetively. From the spetrumtheorem [38℄, K an be deomposed as follows:

K = (λ1 − λ2)e1eT1 + (λ2 − λ3)(e1eT1 + e2eT2 ) + λ3(e1eT1 + e2eT2 + e3eT3 ) (2.27)where e1eT1 desribes a stik, e1eT1 +e2eT2 desribes a plate, and e1eT1 +e2eT2 +e3eT3desribes a ball.The �rst voting step uses a tensor voting �eld for eah type of tensor and produea tensor map. The tensor K relative to some data point p aumulates votes by



2.4. Tensor Voting Based Surfae Features Extration 29summing the tensors ontributions from neighbouring points. This is ahieved bymatrix summation.After the �rst step the tensor K is deomposed into the orresponding eigensys-tem, a seond voting step is then applied to estimate the orientation of the features.The ball tensor is not oriented and does not propagate any information. At the endof the whole algorithm, a tensor enodes likelihood (salieny) of a point belongingto a partiular type of feature and the orientation of suh feature. This means that:
• if a token has a relevant salieny value λ3 related to its point-ness, there is noorientation information. This ondition haraterizes juntion points;
• if a token has a relevant salieny value (λ2−λ3) related to its urve-ness, theestimate tangent is obtained by t = e3. This ondition haraterizes pointsbelonging to either smooth urves or surfae juntions;
• if a token has a relevant salieny value (λ1−λ2) related to its surfae-ness, theestimate normal is obtained by n = e1. This ondition haraterizes pointsbelonging to smooth surfaes.Finally the global struture of the input objet is reovered by inspeting thebehaviour of tensors along a partiular diretion. For instane, a point belongs tothe surfae of the objet if its salieny is loally extremal along the diretion of suha normal. Surfae extremality and urve extremality are the prinipal onditionsused to infer the shape of the input points set. Extremal surfae points an betriangulated to obtain a polygonal mesh (see Figure 2.6).

Figure 2.6: Inferring three-dimensional shape of an objet from a loud of point.Features orientation is estimated by voting within tensor �elds. Aording tohuman pereption priniples, these �elds are designed to desribe the orientationthat a surfae (or a urve) should have, when joining the entre of the �eld ananother generi point in�uened by suh �eld.We will see in Chapter 3 that tensor voting an be employed to perform edgedetetion on triangle meshes.





Chapter 3Mesh Segmentation
3.1 The Mesh Segmentation ProblemComputer Vision problems usually refer to the automati analysis and understand-ing of both 2D and 3D images. The segmentation task onerns with the partitioningof an objet into a set of meaningful segments (i.e. non-empty and not overlappingregions) aording to some riteria. Eah segment must ontain elements of theobjet having similar features and the set of segments have to over the whole inputdata. The resulting segments are used to represent data by higher-level struturesand an be used as input for other tasks.When an objet is represented by a 3D mesh, its segmentation produes a �niteset of sub-meshes that are olletions of elements of the mesh. Segmentation anbe arried out starting from either the verties, the edges or the faets of the mesh.More formally, given a mesh M = {V,E, F}, a sub-mesh M ′ = {V ′, E′, F ′} of Mis obtained by seleting one target subset S of either V , E or F and by gatheringthe other subsets so that their elements are in relation with the target one. Forinstane, when the target set is S = V ′ ⊆ V , then E′ ⊆ E and F ′ ⊆ F are thesubsets of elements adjaent to some verties of V ′.LetM = {M0, ...,Mt−1} the set of sub-meshes obtained by some segmentationof M . The elements ofM must satisfy the following onditions:1. M =

t−1
⋃

i=0
Mi;2. P (Mi ∪Mj) = 0 for any pair of adjaent regions Mi,Mj , with i 6= jwhere P is a prediate de�ned on eah Mi and it indiates if some riterion funtionis satis�ed by all elements within the same region.Mesh segmentation an be also stated as an optimization problem [58℄. In thissenario we needs to de�ne a riterion funtion J : P(S) → R, where P(S) is thepower set of S, and the goal is the minimization of J under a set of onstraints. Notethat J indues a partitioning of S into t disjoint sub-sets, S0, ..., St−1, by assoiatingeah Si to a sore.The problem of mesh segmentation is stritly related to onstrained graph parti-tioning. Indeed it is possible to de�ne the dual graph [16℄ G of a mesh M by repre-senting eah element of the target set S as a node of G and exploiting the adjaentrelation among the elements of S to link the nodes of the graph (see Figure 3.1).The segmentation of a mesh is equivalent to the partitioning of the dual graph byminimizing the number of ut-edges whih is an NP-Complete problem [20, 7℄.
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Figure 3.1: Dual graph of a mesh where S = F .The omputational omplexity of mesh segmentation requires to address ap-proximate solutions in feasible time. Di�erent strategies have been proposed andthe most important are: region growing, hierarhial lustering and spetral analy-sis, whih will desribed more aurately in the next setions. Furthermore, meshsegmentation algorithms have several aims and an be mainly distinguished into twokinds aording to the prinipal objetives: surfae-type methods and omponent-type methods.Di�erent works use variants of the L∞ and L2 norms to measure the planarityof segments. Let ax+ by + cz + d = 0 denote the �ttest plane of the elements of apath and suppose S = V , the above norms are de�ned as follows:De�nition 13 (L∞ distane norm) The maximum distane of a vertex v =

(vx, vy, vz) ∈ V from a plane ax + by + cz + d = 0 is omputed as
|(vx, vy, vz , 1) · (a, b, c, d)| ≤ εDe�nition 14 (L2 distane norm) The average distane of verties {v1, ..., vt|vi ∈
V } to a plane ax+by+cz+d = 0 is omputed as 1

t

t
∑

i=1
((vx, vy, vz , 1) · (a, b, c, d))

2 ≤ ε3.1.1 Surfae-base segmentationSurfae-based methods loate pathes, i.e. surfae regions whose elements satisfysome onditions (e.g. a onstant urvature).Many works [15, 5, 73, 22℄ refer to path segmentation for mesh simpli�ationand re-meshing problems. The basi idea is the replaement of a planar patheswith one or more polygons.Some authors [72℄ de�ne a spei� segmentation loating regions having smalldistortion after their parametrization onto the 2D spae to solve the texture mappingproblem. In omputer graphi appliations, textures an be onsidered as 2D imagesemployed to give more realism to 3D objets. The texture mapping problem onsistsin the mapping of texture points onto the mesh previously unfolded on a plane. Theunfolding proess applied on omplex surfae yields to big distortions errors, thusthe division into small pathes usually improves the result.



3.2. Mesh Segmentation Methods 33Morphing is used to turn an objet into another one through a �uid transforma-tion of the surfae and it is another �eld of omputer graphi that takes advantage ofpath segmentation. Indeed morphing algorithms an be enhaned by aomplishingtransformations between surfae pathes [73℄.Surfae-based methods have been also used to improve the performanes of thoseompression algorithms [71℄ relying on the Laplaian of a graph. Performanes arelargely improved when the Laplaian is evaluated on small pathes.3.1.2 Component-based segmentationUnderstanding an objet is often ahieved by the reognition of its di�erent semantiomponents. For example, a human body model an be divided into di�erent partrelated to the head, harms, legs, et. Component-type segmentation is used inseveral ontexts and is usually related to the deomposition of an image into itsmeaningful sub-parts.The disassembly of an objet allows the mathing of its sub-parts and improvesthe automati reognition proess [73, 4, 50℄. For example, shapes omparisonis required in database retrieval. Furthermore, several appliations deal with thereognition of objets against a given model. The 3D jigsaw problem onerns thereonstrution of an objet starting from its parts. The set of objets to be "glued"an be loated by �rst reognizing mathing sub-regions [48℄.Computer games often require to detet ollision between omplex models. Thebounding box (BB) of the whole objets is inappropriate, thus more preise olli-sion detetion an be performed by onsidering BBs enlosing eah single ompo-nents [69℄.

Figure 3.2: Example of a omponent-type segmentation [70℄ (left) and surfae-typesegmentation [56℄ (right).3.2 Mesh Segmentation MethodsWe have skethed di�erent segmentation strategies have been mentioned in order todesribe the main issues related with di�erent appliations. Although there exist a



34 Chapter 3. Mesh Segmentationvariety of methods, segmentation rely prinipally on two fators. First, the riteriaused to identify regions, namely, the rules adopted to assign an element to them.Criteria are usually de�ned by assuming some a priori knowledge about the objets,whih is related to some desriptor as urvature, symmetry, angles between polygons,onvexity and many other. Seond, the onstraints used to ontrol the dimensionand the shape of the regions during the segmentation.Regions identi�ation is typially performed by applying a bottom-up proess:regions are generated by starting from one element and by suessively adding newandidate elements. The insertion order is important, and di�erent orderings yield todi�erent results. To �nd sub-optimal solutions a ommon approah assoiates someost to eah insertion, thus the optimal ordering is typially ahieved by employingpriority queues of elements, where the priority of an element is in inverse proportionto its ost.3.2.1 Region GrowingRegion growing is a tehnique to loate sub-sets of elements in a input data set,satisfying some riteria. Let σ ∈ S be an element of the target set and let NS(σ)be the set of elements σ′ ∈ S adjaent to σ. The growth of a region Φ starts byinserting the seed element σ and its expansion is then performed by adding thoseelements of NS(σ) satisfying some riterion funtion. Region growing ontinues bytesting the neighbourhood of eah new inserted element until no more insertions anbe aomplished. The order used to hek for a valid element to insert is usuallymanaged by a priority queue on the boundary of Φ (see Figure 3.3). One a regionis loated, another growing proess begins from another seed not yet onsidered.The number of seed elements to initialize a region an be arbitrary. Note that theexpansion of a region an be implemented by a breadth �rst searh on the dual graphof S.The region growing segmentation methods might depend on the hoie of theseed elements, furthermore the regions are expanded separately during the exeutionof the algorithm. Thus region growing impose some limitations on the results froma global point of view.
Figure 3.3: Example of region growing. The neighbourhood of the red verties isanalysed. Grey verties are inserted into the priority queue for future proessing.Green verties have been proessed and inserted into the region whih are expandedfrom their boundary.The texture mapping problem introdued previously an be solved through a



3.2. Mesh Segmentation Methods 35region growing approah. Texture mapping atlases are obtained by a two-phasealgorithm [33℄: �rst, the features ontours are loated, then regions are expandedinward from the boundaries by adding mesh elements. This approah simpli�es thetest used to assoiate an element with an existing region beause its boundarieshave been de�ned, already.A general model used by many region growing segmentation algorithms is thewatershed transform. Although there exist several watershed methods, only a fewalgorithms apply it on 3D meshes. Watershed segmentation is based on the de�nitionof an height map f : S → R, obtained by di�erent tehniques, where S is the targetset. The method an be desribed by using the analogy with the �ooding proessof adjaent athment-basins. The segmentation algorithms proposed in this thesisde�nes a height map that we have used together with the watershed algorithm andwhose detailed explanation is provided in setion 3.3.3.2.2 Greedy Algorithms for ClusteringClustering algorithms are widely used in di�erent ontexts of data analysis, andsegmentation an be onsidered as a partiular lustering of the target set.Clustering methods for mesh segmentation do not fous on any partiular regionssine segments are not loated by independent proesses. Clustering algorithmsproeed toward a greedy global solution: regions are assembled by merging adjaentelements or already loated segments, and the algorithm always hooses the bestmerging operation aording to some ost funtion (see Figure 3.4).Hierarhial lustering methods start by generating a luster for eah element ofthe target set, then lusters are progressively merged until no more operations anbe done. The hierarhial fae lustering method [22℄ performs a partitioning onthe dual graph of S = F . The algorithm produes a sequene of segmentations suhthat for eah step, the loated regions are larger and ontain more elements than theprevious step. Merging of two lusters is performed by an edge ontrat operationon the dual graph. The merging ost is omputed by using an L2 based norm onthe new generated luster. This method has been used for di�erent appliations asprogressive-meshes, surfae simpli�ation and ollision detetion.Iterative lustering approahes assume that the number of output lusters isknown a priori. K-means methods are examples of iterative lustering. A set of trepresentative elements of the target set is initially used to represent t di�erent lus-ters. At eah iteration the remaining elements are assigned to one of the t lustersaording to the riterion funtion and the representatives are reomputed. A om-mon strategy onsiders as representative, the enter of mass of eah luster, henethe elements are assigned to the luster if their distane from its representative isshorter than the distanes from all the other representatives. Note that eah regionmust be a onneted omponent, while the non-planarity of the surfaes makes theEulidean distane unsuitable. Most iterative lustering algorithms overome thisissues by performing a region growing step before reomputing the new representa-tives. In [60℄ the k-means method is used in fae-based segmentation of two objets



36 Chapter 3. Mesh Segmentationfor morphing.
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1Figure 3.4: Example of lustering. Regions labelled with 1,2,3 and 4 are foundthrough region growing and assembled by using an optimal merge operations order-ing.3.2.3 Spetral AnalysisThe ombinatorial graph partitioning problem an be redued to geometri spaepartitioning problem by embedding a graph G into the spae R
n by using the �rsteigenvetors of the Laplaian matrix of G [59℄.The algorithm presented in [71℄ uses the Laplaian matrix to perform a om-pression of the mesh. In order to redue the exeution time, smaller sub-meshes areproessed separately.The method [53℄ uses a symmetri a�nity matrix W ∈ matn×n, where n is thenumber of faets in the mesh. The element wij enodes the probability that thefaets i and j are lustered in the same region. Suh matrix an be de�ned in twodi�erent ways, aording to the required type of segmentability [54℄.In the ase of strutural segmentability W ∈ matn×n(0, 1) is the adjaeny ma-trix, then

wij =







1 if ∃ eij ∈ E

0 otherwise.For geometrial segmentability, eah element wij is omputed by onsideringthe minimal prinipal urvature −→κi and −→κj of the verties i and j, respetively asfollowing:
wij =



























0 if eij /∈ E

(|−→κi |+ |
−→κj |) · 〈

−→e ,−→κ 〉 · l if κi < 0 or κj < 0

ε otherwise.Where −→ei is the diretion of the edge eij ∈ E and l is the normalized length of e.



3.3. The Watershed Transform 373.3 The Watershed TransformWatershed [52℄ is one of the most important region-based approahes. Suh methodemploys some height map f , de�ned on the image elements, and a graph represen-tation of the image.Let V be a sub-set of the lattie Z
2, and E ⊆ Z

2 × Z
2 be the set of edgesde�ning the adjaeny relations among the elements of V , we de�ne the graph asthe set G = (V,E).De�nition 15 (Geodesi distane) The geodesi distane dA(a, b) within A be-tween two points a, b ∈ A ⊆ Z

n is the minimum path length among all paths from
a to b within A. Moreover, the geodesi distane between the point a ∈ A and a set
B ⊆ A is de�ned as dA(a,B) = min

b∈B
dA(a, b).De�nition 16 (Geodesi in�uene zone) Given a set A ⊆ Z

n and a subset
B ⊆ A partitioned into t onneted omponents B0, ..., Bt−1, the geodesi in�uenezone gizA(Bi) of a set Bi within A is de�ned as:

gizA(Bi) = {a ∈ A | dA(a,Bi) < dA(a,Bj) ∀j ∈ [0, . . . , t− 1] and j 6= i}The union of all the in�uene zones of the sub-sets Bi is de�ned as:
GIZA(B) =

t−1
⋃

i=0

gizA(Bi)The set of points having the same geodesi distane from at least two nearest on-neted omponents indues a struture alled skeleton by in�uene zones. Suh stru-ture is de�ned as the omplement of the set GIZA(B):
SGIZA(B) = A \GIZA(B)Let V ⊆ Z

2 be a onneted domain, then C(V ) denotes the spae of real twieontinuously di�erentiable funtions on a V with only isolated ritial points.De�nition 17 Given a funtion f : V → R belonging to C(V ) and h ∈ R
+ ∪ {0},a h-level threshold set is:

Lh = {p ∈ V |f(p) ≤ h}.De�nition 18 (Topographial distane) Given f ∈ C(V ) and p, q ∈ V , thetopographial distane between p and q is:
Df (p, q) = inf

ν∈V

∫

ν ‖∇f(ν(s))‖ds,where ν is a generi path (smooth urve) in V suh that ν(0) = p and ν(1) = q.



38 Chapter 3. Mesh SegmentationThe watershed transform typially assigns a di�erent label to eah region. Suha proess starts from the minima for f and it propagates until the segmentation isompleted, then all the regions are labelled. In order to simplify the next de�nitionswe denote by mi a minimum of f ∈ C(V ) with label i, and with {mi}i∈I the set ofminima whose labels are in I ⊂ N.De�nition 19 (Cathment basin) Given a funtion f : V → R belonging to
C(V ) with minima {mi}i∈I for some set of indies I, a athment-basin Q relativeto the minimum mi of f is de�ned as:

Q(mi) = {p ∈ V |∀j ∈ I, i 6= j : f(mi) +Df (p,mi) < f(mj) +Df (p,mj)De�nition 20 (Watershed transform) Aording to de�nition 19, the watershedof the funtion f is de�ned as the set of points not belonging to any athment basin,formally:
wshed(f) = V ∩ (

⋃

Q(mi))
cThe the watershed transform of f is a mapping γ : V → I ∪W , where W /∈ I isa label:

γ(p) =







i if p ∈ Q(mi)

W if p ∈ wshed(f)In the disrete ase, the above de�nition of watershed transform is unsuitable ifthe funtion f exhibits plateaus, i.e. zones where f is onstant. Plateaus are veryommon features on images and objets surfaes. In order to label plateaus properly,two di�erent algorithmi de�nitions have been proposed: watershed by immersionand watershed by topographial distane. The former automatially takes are ofplateaus, the latter needs a pre-proessing on the image.Let hmin and hmax be the minimum and maximum values for f , respetively, theproblem of plateaus an be solved by de�ning a reursive proess that inreases thelevel of f from hmin to hmax. Let Xh denote the union of the athment basins atlevel h, the set Xh an be expanded by onsidering a onneted omponent obtainedfrom the threshold set Lh+1 at level h+1. Suh expansion is performed by omputingthe in�uene zone of Xh within Lh+1 resulting in an update Xh+1. Note that suhonneted omponent an be also a new regional minima.The watershed by immersion is de�ned reursively as follows:De�nition 21 (Watershed by immersion) Let MINh be the union of all re-gional minima at level h, then






Xhmin
= Lhmin

= {p ∈ V |f(p) = hmin}

Xh+1 = MINh+1 ∪GIZLh+1
(Xh), h ∈ [hmin, hmax)The watershed by immersion is the omplement of the set Xhmax

in V :



3.3. The Watershed Transform 39
wshed(f) = V \XhmaxAording the de�nition 21, all non-basins elements ontained in Lh+1 but notin Xh are potential andidates to be assigned to a athment basin in step h + 1.A de�nitive labelling as watershed pixel an only happen after all levels have beenproessed.The watershed by topographial distane assumes that the funtion f is plateaus-free, more preisely, eah non minimum element has a neighbourhood having lowervalues for f . In 2D images this restrition is relaxed by introduing the lowerompletion lc(f) of the funtion, whih transform f into lower omplete f∗ = lc(f).The set of neighbours of a point p ∈ V on G = {V,E} is denoted by NG(p).De�nition 22 Given a funtion f : V → R belonging to C(V ), the maximal slopelinking a point p ∈ V to any of its neighbours is alled the lower slope ls(p), where

ls(p) = max
q∈NG(p)∪p

f(p)− f(q)

d(p, q)and d(p, q) is the length of epq ∈ E.By onsidering a ost c(p, q) for eah edge epq ∈ E, the topographial distanealong a path πpq = {p0, .., pk | p0 = p and pk = q} of points is omputed as:
Dπ

f (p, q) =
k−1
∑

i=0

d(pi, pi+1)c(pi, pi+1)De�nition 23 (topographial distane) Let Bp,q denote the set of all possiblepaths joining p and q, the topographial distane between p and q is de�ned as theminimum distane path in Bpq:
Df (p, q) = min

π∈Bpq

Dπ
f (p, q)De�nition 24 (Path of steepest desend) A path πpq is alled path of steepestdesend if pi+1 belongs to the set of neighbours q of pi suh that f(pi)−f(q)

d(pi,q)
= ls(pi).Cathment-basins need to onsider the lower ompletition f∗ of f . A valuedgraph is alled lower omplete when eah node whih is not in a minimum has aneighbouring node of lower value. By employing f∗, the watershed by topographialdistane follows de�nition 20.Both de�nitions of watershed yield to two di�erent kinds of approahes typiallyknown as bottom-up and top-down watershed methods, whih may produe unsuit-able results on noisy data, that over-segment the image into many small regions.This problem is usually solved by a suessive merging proess, where adjaent re-gions are merged together aording to some metri indiating the salieny of asegment. Those an be mainly distinguished in area-based and boundary-based met-ris. In the former ase the salieny is evaluated by omputing the area of theregions, while in the latter one the boundary of the regions is onsidered.



40 Chapter 3. Mesh SegmentationIn [37℄ the watershed method is generalized to arbitrary meshes, the authors usedthe disrete urvature at eah vertex as height map and a top-down approah. Eahvertex v follows its steepest desend path until it reahes either a labelled minimumor a labelled vertex, in both ases their label is assigned to v. The salieny of aregion S is omputed as the di�erene between the vertex v ∈ S of lowest urvatureand the vertex on the boundary of S having lower urvature than all the otherboundary verties (watershed depth).The whole algorithm an be summarized as follows:1. ompute the urvature;2. loate and give an unique label to those verties v suh that ∀v′ ∈ N(v) :

f(v) < f(v′) (loal minima);3. Minimum plateaus (i.e surrounded by verties having a greater value of f ) arelabelled;4. desend eah unlabelled plateaus to a labelled region;5. desend all remaining unlabelled verties;6. merge regions whose watershed depth is smaller than a given threshold.A region Si is merged into the region Sj adjaent to the lowest urvature vertexwithin the boundary of Si. This merging proess is repeated until all regions havedepth greater than the threshold.The work presented in [8℄ uses a bottom-up approah and for eah vertex v theheight map is omputed aording to the onavity of the vertex. Those verties vhaving Gaussian urvature K(v) < 0 are lassi�ed as boundary verties and suhverties de�ne the boundary regions (or peaks of the mesh ). The height map f isthen omputed as f(v) = 0 when v is a boundary vertex, f(v) = 1 otherwise.Region merging is based on two riteria. First the regions to be merged areloated by onsidering the number of verties within the region. Then the regionsfound with the �rst riterion are merged to their adjaent regions with longestboundary.The whole algorithm an be summarized as:1. eah loal minima is labelled, the remaining areas are onsidered as peaks;2. peaks are eroded starting from the boundary between minima and peaks;3. regions are merged.3.4 Polygonal Mesh Edge-DetetionTwo-dimensional images are haraterized by sharp hanges in brightness, while thesurfae of 3D objets may present ridges and other types of disontinuities [50℄.



3.4. Polygonal Mesh Edge-Detetion 41The goal of edge-detetion is the loation of feature-edges, whih provides the mostimportant strutural information about the objet, thus reduing the overall amountof data.In order to avoid any ambiguity we denote with edges and feature-edges theedges in E and disontinuities, respetively.Likewise many other segmentation tehniques, a salieny funtions f must bede�ned on the target mesh elements. Edge-detetion algorithms an be onsideredomponent-based beause a region may be not disovered expliitly, rather it an bede�ned through a set of mesh elements bounded by some feature-edges. For thisreason, edge-detetion methods an be also onsidered as impliit methods.Depending on the nature of the objets, expliit segmentation algorithms anprodue regions suh that their boundaries desribe the feature-edges. For instane,by onsidering the boundaries of the broken surfaes on simple fragmented objets,feature-edges an be retrieved by region growing based on the polygon onnetivityand the fae normal distribution [48℄. Therefore, region growing segmentation meth-ods, based on the loal onavity of the surfae [8℄ (see setion 3.3), are unsuitablefor feature-edges detetion as ridges an not be extrated.3.4.1 Thresholding-based Edge-DetetionFiltering of f by lassi and hysteresis thresholding, an be suitable for simplemeshes, but usually it is unsuitable for very large and noisy meshes. In [25℄ theauthors ope this problem by performing a threshold in a multi-resolution setting,and their algorithm returns a set of line-type features by the following three steps:1. lassi�ation step - the salieny funtions is used to assign some weight to theedges of the mesh;2. detetion step - the threshold produes a set of feature-edges whih is sues-sively deomposed into onneted omponents (pathes);3. erosion step - the pathes are redued to lines by some skeletonizing method.Several operators have been proposed for step 1 (see Figure 3.5), eah one omputingthe weights on the neighbourhood of the edges. The simplest way to assign a weightto an edge is to ompute the dihedral angle between the unitary normals ni andnj of the adjaent faets fi and fj . A seond order operator (SOD) on a edge e isde�ned as:
w(e) = arccos

( ni

‖ni‖
·
nj

‖nj‖

) (3.1)This operator an be applied also on the average of the normal vetors of trianglesadjaent to the verties of fi and fj opposite to e. In this partiular ase it is namedExtended Seond Order Operator (ESOD).Other operators are based on �tting polynomials. Let π denote the plane per-pendiular to e and passing trough its middle point, it de�nes the set of points



42 Chapter 3. Mesh Segmentation
Pe resulting by interseting the mesh edges with π. Pe is used to ompute the�ttest polynomial funtion p(e) belonging to π. The weight of e is then de�ned as
w(e) = p′′(e).Sine Pe an be split into two subsets, eah one lying on the semi-planes de�nedby e, a di�erent method omputes the two �ttest polynomial funtions pl(e) and
pr(e), obtained from suh sets, and the weight is omputed as:

w(e) = arccos

(

(1, p′l(e))

‖(1, p′l(e))‖
·

(1, p′r(e))

‖(1, p′r(e))‖

) (3.2)These operators are denoted as Best Fit Polynomial operator (BFP) and AngleBetween Best Fit Polynomials operator (ABBFP), respetively (see Figure 3.5).The algorithm stores the progressive mesh representation, i.e, a oarse meshobtained through simpli�ation, and a set of vertex split operations that allow tosuessively reonstrut the original objet. The above steps are applied to theoarse mesh and during the reonstrution proess, feature-edges are adapted to thesurfae hanges.

Figure 3.5: Weighting operators de�ned in [25℄.3.4.2 Edge-Detetion Based on Loal Surfae AnalysisThe algorithm proposed in [12℄ omputes the so alled salieny of eah ar on thesurfae, through a fuzzy membership de�ned on a ontinuous domain. This domainis automatially generated and the fuzzi�ation proess infers a natural segmentationof the surfae, useful for loating ontours and edge-type features to represent theobjets. The key idea is to exploit the simple operators proposed in [25℄ to performa loal analysis over the mesh elements. The method omputes a weight w(v) foreah vertex v and analyses the distribution of the weights with respet to someneighbourhood.



3.4. Polygonal Mesh Edge-Detetion 43Let M = {V,E, F} denote the input mesh and πee′ be a path from e to e′ where
e, e′ ∈ E. Let us denote by Li(e) = {e

′ | min
e′∈E

length(πee′) = i}, then L0(e) = e andthe Li are disjoint layers. For the sake of simpliity, eah Li(e) is the i-th layer ofthe breadth �rst searh tree with root e. The neighbourhood Nr(e) of radius r isde�ned as follows:
Nr(e) =

i=r
⋃

i=0

Li(e) (3.3)the area of Nr(e) is denoted as Ar(e).Let νr(e) be the variane of the weights w relative to the elements inluded in
Nr(e) entred on e and with radius r. The salieny of an edge e is de�ned as:

s(e) =
∑

i>0

φi(e) (3.4)with φi(e) = ηi(e)
∂νi(e)

∂r
|ν1(e)− νi(e)|where ηi(e) = eAmin(e)−Ai(e) is used to lower the resulting values φi, when mov-ing far from e, with respet to the smallest window of radius r = 1, that is

Amin = min
e∈E
{A1(e)}.Atually, negative values of s orrespond to edges, positive values indiate ramps(i.e. surfae elements near to feature-edges), while values lose to zero denote smoothsurfaes. Therefore, the salieny formula s assigns a sore to eah ar e, thus todisriminate among edges, ramps and smooth surfaes.A similar approah is used in [13℄, where the lassi�ation rule is de�ned aord-ing to the slope of the regression straight line of the points (i, νi):

slope
(

Nr(a)
)

,

r
∑

i=1

(

i− r+1
2

)

(νi−ν)

r
∑

i=1

(

i− r+1
2

)2
with r>1 (3.5)where ν is the mean value of the varianes νi.In the partiular ase of low resolution meshes, it an be useful to onsider smallvalues of r. When r = 1, it is imposed:

slope
(

N1(e)
)

, ν ′1−ν1,where ν ′1 is the variane of N1(e) and ν1 is the variane of the �rst layer L1(e). Thatis, we hek if e is relevant with respet to its smallest neighbourhood.An ar e is lassi�ed as edge if both the following onditions hold:
1. w(e)×

∣

∣L1(e)
∣

∣>
∑

j
w(e1j);

2. slope
(

Nr(e)
)

<ε,



44 Chapter 3. Mesh Segmentationwhere ε is a threshold value, lose to 0, used to take into aount also very smallvariations of the weights w.3.4.3 Normal Voting and Watershed SegmentationAnother method to assign a weight to the target set of verties is the so alled normalvoting [64℄, whih adopts the watershed segmentation on a height map de�ned bymeans of a normal voting sheme. Eah vertex v ollets votes from the normals ofthose faets having geodesi distane from v less than a given value. The vote n′
igiven by the faet Ti to v depends both on the normal ni of Ti in its entroid v′ anda weight τi (see Figure 3.6), in partiular the authors onsidern′

i = 2(ni · τi)τi − ni (3.6)where τi =
(
−→
v′v ∧ ni) ∧

−→
v′v

‖(
−→
v′v ∧ ni) ∧

−→
v′v‖If M is the number of the faets inluded in the geodesi window, the vertex vollets a tensor T omputed as:

T =
M
∑

i=0

µin′
in′T

i (3.7)where µi dereases exponentially with the geodesi distane from v to v′.

Figure 3.6: The normal voting sheme presented in [64℄.In other words n′

i is obtained by transposing ni along the ar onneting v and v′.Let λ1 ≥ λ2 ≥ λ3 be the eigenvalues of T orresponding to the eigenvetors γ1,
γ2 and γ3. The weight of v is de�ned as:

w(v) =







1 if |n · γ1| < δ

1 if λ3 > α(λ1 − λ2) and λ3 > β(λ2 − λ3)

(λ2 − λ3)/λ2 otherwise (3.8)where n =
M
∑

i=1
µini and α, β and δ are pre-set values.



3.4. Polygonal Mesh Edge-Detetion 45The onditions in the above de�nition are based on the tensor voting theoryand, as already exposed in Chapter 1, tensor voting an be used to obtain surfaedesriptors. More preisely, the seond ondition gives maximum value to ornerverties, while the third one is used to approximate the weights in [0, 1]. Finally,the �rst ondition ensures sharp features detetion where tensor voting fails.3.4.4 Ative ContoursSnake urves [27℄ or ative ontours represent another relevant tehnique in the two-dimensional Computer Vision �eld to desribe a previously loated ontour area ofthe image. The segmentation is driven by the energy minimization of a deformablemodel subjeted to a set of fores that ahieve the equilibrium state. This proess isnot arried out on the entire image, but on a region of it, loated by either a manualor automati proedure. Needless to say that the energy minimization proess highlydepends on the initial position of the snake urve, whih is de�ned in parametriform, as:
ν(s, t) = (x(s, t), y(s, t))where t is the evolution time and s ∈ [0, 1].The basi mathematial model used to desribe ative ontours is represented bythe splines urves, whose evolution over time is ruled by both internal and externalenergies. Internal fores rely on the shape of the urve, while external fores arerelated to the underlying image.The internal energy Eint(ν) is haraterized by both an elastiity term and arigidity term. These values are omputed by the �rst-order derivative νs and theseond-order derivative νss of ν, respetively.In order to ontrol the evolution of the snake, two pre-set weights α and β mustbe provided, and the internal energy is de�ned as:

Eint(ν) =
α(s)‖νs‖

2 + β(s)‖νss‖
2

2
(3.9)The external energy Eext(ν) is hosen aording to the image features as gradient,urvature, et. Thus the total energy is desribed as the funtional:

E(ν) =

∫ 1

0
(Eint(ν) + Eext(ν))ds (3.10)Note that an ative ontour an develop a orner only if β(s) = 0.The minimum of this funtional is deteted by onsidering the zeros set of its�rst-order derivative. The resulting Euler equations in the ontinuous spae are:























α
∂

∂s
xs + β

∂2

∂s2
xss +

∂

∂x
Eext = 0

−α
∂

∂s
ys + β

∂2

∂s2
yss +

∂

∂y
Eext = 0



46 Chapter 3. Mesh SegmentationIn the disrete ase, snakes are represented by a set of n verties (xi, yi), andthe energy funtional beomes:
E(ν) =

n
∑

i=1

Eint(i) + Eext(i) (3.11)The derivatives are approximated by �nite di�erenes, and the Euler equationsbeome:
α(xi − xi+1)− α(xi+1 − xi) + β(xi+2 − 2xi+1 + xi)− 2β(xi+1 − 2xi + xi−1)+

+β(xi − 2xi−1 + xi−2) +
∂

∂x
Eext

α(yi − yi+1)− α(yi+1 − yi) + β(yi+2 − 2yi+1 + yi)− 2β(yi+1 − 2yi + yi−1)+

+β(yi − 2yi−1 + yi−2) +
∂

∂y
EextWe an also represent the energy minimization problem in matrix form:



















Ax+
∂

∂x
Eext = 0

Ay +
∂

∂y
Eext = 0Here A is a pentadiagonal banded matrix related to the disrete Euler equationsabove:

A =

























c d e 0 . . . 0 a b

b c d e 0 . . . 0 a

a b c d e 0 . . . 0

0 a b c d e 0 . . .. . . . . . . . . . . . . . . . . . . . . . . .
e 0 . . . 0 a b c d

d e 0 . . . 0 a b c

























a = β, b = −4β − α, c = 6β + 2α, d = −4β − α, e = βThe snake evolution an be implemented as an iterative proess. If thesnake deformation in t results in a derease of its energy with respet to s,
d

dt
ν(s, t) = −

dE(ν(s, t))

ds
, then the energy variation dE(ν(s, t)) = −

d

dt
ν(s, t)dsyields to the following equations:



















γ(xt − xt−1) = Axt +
∂

∂x
Eext(xt−1, yt−1)

γ(yt − yt−1) = Ayt +
∂

∂y
Eext(xt−1, yt−1)
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xt and yt are the oordinates of a point at time t, and the parameter γ ontrols theonvergene rate of the algorithm. Sine the snake at time t depends on its energyat time t− 1 the position (or deformation) update is given by:



















xt = (A+ γI)−1(γxt−1 +
∂

∂x
Eext(xt−1, yt−1))

yt = (A+ γI)−1(γyt−1 +
∂

∂y
Eext(xt−1, yt−1))

(3.12)To avoid the snake stagnates into energy loal minima, the evolution proessneeds to be supervised to plae the snake by moving some of its verties.The snake de�nition above an not be applied diretly on the surfae of a meshbeause it does not inlude the onstraints required so that the snake lies on thesurfae. Three types of approahes have been proposed to evolve ative ontours ontriangle meshes: level-set methods, 2D snake projetion, 3D snake evolution.Level-set methods represent snakes as the zero-level set of some level-set funtion,and partial di�erential equation are used to ontrol the urve over time. In [10℄ themotion of the snake is managed impliitly by the salar level-set funtion. Thisapproah may give poor results on open urves, furthermore it is unsuitable forinterative snake repositioning.2D snake projetion is ahieved by extrating the surfae path that enloses it(see Figure 3.7 top), and suh path is parametrized on a 2D plane and the snakeis evolved as above. Fast parametrization requires the surfae to be holes-free,and pathes should be small enough to avoid distortion errors. In [32℄ the authorsproposed a general framework where the snake is partitioned and eah sub-snake isevolved independently. Disontinuities arising at border points are then proessedto smooth the whole ative ontour. Let us onsider that ν(s) is partitioned in
νl(s) and νr(s), and the sub-snake νc(s) partially overlaps both νl(s) and νr(s) (seeFigure 3.7 bottom). The algorithm �rst evolves νl(s) and νr(s) independently, thenit re�nes the result by moving νc(s).Ative ontours an be diretly applied on the mesh surfae by a dynami pro-gramming approah [1℄. The energy of a snake ν = {v0, ..., vk−1} an be approxi-mated by the sum of the energy of its verties:

E(ν) =
k−1
∑

i=0

E(vi) (3.13)The minimization proess of E(ν) assigns a new position to eah snake vertex
vi in order to minimize the overall energy. In [26℄, to update a snake vertex vi =

(xi, yi, zi), the algorithm does not hek for all possible neighbours, but it onsidersonly those verties PDir(vi) lying along the prinipal diretions of vi. Then theexternal energy of a snake vertex is omputed as:
Eext(vi) =







−κ1(vi) if κ1(vi) > κ1(p), ∀p ∈ PDir(vi)

C ≫ 0 otherwise.
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Figure 3.7: A path enlosing the snake (top). Sub-snakes proessed afterparametrization (bottom)The internal energy is:
Eint(vi) = α ‖ vi − vi−1 ‖ +β ‖ vi+1 − 2vi + vi−1 ‖By using this approah the topology of the snake must be ontrolled to prevent itsverties to be disonneted. Furthermore, one the snake reahes its �nal position,results an be jugged as the snake verties are onstrained on the mesh verties andthey an not be moved on the surfae of a faet. Then results depend both on theresolution of the mesh and on the sampling of its points. Thus segmentation an beimproved only by re�ning the mesh area surrounding the ative ontours.



Chapter 4Di�usion-Based Mesh EdgeDetetion
There exist many physial problems stritly related to the evolution of urves andsurfaes. Material interfae propagation, �uid motion and rystal growth are someexamples of problems whose solution is modelled by non-linear partial di�erentialequations. Geometri evolution problems suh as surfae fairing, lead to similar vari-ational approahes whih allow the mathematial modelling on a ontinuous spae,without onsidering any domain disretization. Mean urvature �ow belongs to thelass of sale-spae approahes, it is related with the heat di�usion proess, and itis one of the most important representatives in the ontext of surfae fairing. Thismulti-sale approah allows to derive, from the input image, a family of images eahone haraterized by a di�erent level of detail. This formulation of the fairing prob-lem has been proposed to perform both surfae elements lassi�ation and surfaefairing.4.1 Di�usion-Based Image ProessingThe linear heat equation has been widely used to desribe the spatial variations ofsome funtion f over time. Let Ω ⊂ R

2 and f0 denote the domain of f and its initialvalue at time t = 0, respetively. The heat equation is:
∂tf −△f = 0 (4.1)where △f = fxx + fyy is the Laplaian of f .By evolving the system, a sequene of images {f(t)}t∈R+ is obtained. When Ω = R

2the solution oinides with the �ltering of the original data with a Gaussian �lter
G∞

σ (x) = (2πσ2)−1e−x2

/2σ2 with standard deviation σ:
f(σ2/2) = G∞

σ (x) ∗ f0In setion 2.3 we presented the Laplaian smoothing and themean urvature �ow.As explained, the major drawbaks of these approahes are objet shape deforma-tion and loss of small-sale features. The same problems arise in two-dimensionalimage proessing. Gaussian �ltering does not preserve the boundaries of the im-age, furthermore the regions boundary an not be loated easily when proessing atoarse sales beause suh boundaries shift from their original positions during thesmoothing proess. In [49℄, anisotropi di�usion has been used in order to redue the



50 Chapter 4. Di�usion-Based Mesh Edge Detetionblurring on image edges, and the di�usion oe�ient G(·) is modi�ed aording tothe gradient of the edges on a partiular loation. The anisotropi di�usion proessis:
∂tf − div

(

G

(

‖∇f‖

λ

)

∇f

)

= 0 (4.2)where div denotes the divergene operator and λ ∈ R
+. This results in the suppres-sion of smoothing on areas with high gradient, and it allows to perform both fairingand edge detetion on noisy images. The position of edges is preserved during thesmoothing proess, and this simpli�es the omparison among images at di�erentsales.4.2 Generalized Mean Curvature FlowGiven a surfae S, the Laplae-Beltrami operator KS presented in setion 2.3 gener-alizes the Eulidean Laplaian operator. The geometri di�usion of the oordinatesof a points p of the family of surfaes S(t) (by varying time t) is written as:

∂tp = KS(t)pThe mean urvature vetor H(p)n(p) is opposite to the Laplae-Beltrami oper-ator, where n is the normal at p:
H(p)n(p) = −KSpthen mean urvature motion an be written as:
∂tp = −H(p)n(p)Let M be an orientable manifold of dimension d and p : M → R

d+1 be animmersion with normal n :M→ βd, where β is the shape operator. The generalizedurvature motion [14℄ an be de�ned by onsidering general endomorphisms of thetangent spae T
a : TM → TMand the orresponding generalized mean urvature �ow:

∂tp = Han, Ha = trace(a ◦ β)From variational alulus the geometri di�usion problem an be formulated as:
(∂tp, ϑ) = −

∫

M

Ha(n · ϑ)dA (4.3)for all ϑ ∈ C1
0 (M,Rd+1).Suh a problem an be re-formulated by the relation KSp = −H(p)n(p) as:
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(∂tp, ϑ) =

∫

M

KSp · ϑdA (4.4)and the generalized mean urvature is obtained by the relation above. The operator
△a(·) = div(M)(a∇(M)·), applied to p, leads to tangential omponents given by thedivergene of the endomorphism a.Theorem 1 Let M be an orientable manifold of dimension d and p :M→ R

d+1be an immersion. If a : TM→ TM is di�erentiable, linear and symmetri to eahtangent spae TM, then there exists a seond-order di�erential operator Θa suhthat
Θap = −Hanwhere Ha = trace(a ◦ β).Moreover

Θa(·) = △a(·)− (divMa)(·)This theorem allows to express −Han by projeting divM(a∇Mp) onto the spaespanned by the normal n. The equation ∂tp = Han an be written as:
∂tp = (v · n)nwhere v = divM(a∇Mp).The lassi�ation of the surfae elements as edges, orners and smooth surfaesemploys a tensor whih depends on the shape operator βTpMσ . The surfaeMσ isobtained by �ltering M with a Gaussian-type �lter, implemented by a short-timestep τ = σ2/2 of mean urvature motion, where σ denotes the width of the �lter.In [14℄ the authors de�ned this tensor as a symmetri, positive, linear mappingon the tangent spae TpMσ:

aσTpMσ
: TpMσ → TpMσThe symmetri shape operator an be represented by means of the orthonormalbasis {κσ1 , κσ2} of TpMσ:

βTxMσ =

(

κσ1 0

0 κσ2

)and it is then used to de�ne the above tensor as:
aσTpMσ

=









G

(

κσ1
λ

)

0

0 G

(

κσ2
λ

)









(4.5)where λ is a user-de�ned threshold. This tensor lassi�es surfae elements as follows:



52 Chapter 4. Di�usion-Based Mesh Edge Detetion- if aσ
TpMσ

∼ diag[1, 1], then p belongs to a smooth surfae;- if aσ
TpMσ

∼ diag[1, 0], then p belongs to a feature-edge, having diretion κσ2assumed κσ1 ≫ κσ2 ;- if aσ
TpMσ

∼ diag[0, 0], then p belongs to a orner.Figure 4.1 shows an example of mesh proessed with the generalized mean urvaturemotion. The mesh is smoothed and the surfae elements are lassi�ed.

Figure 4.1: Classi�ation performed at four, interleaved time steps during the gen-eralized mean urvature motion [14℄ (from left to right).4.3 Surfae Curvature Di�usionIn several appliations it is often required to automatize the feature extration pro-ess. For instane, shape mathing and database retrieval algorithms should be ableto segment the objet without any user intervention. Nevertheless, some user-giventhresholds, weights or tolerane levels, seem to be neessary for all di�erent typesof segmentation strategies so far developed. Although the methods presented in theprevious setions are e�etive and produe good results, the tuning of the requiredparameters is a drawbak for a fully automati objet analysis.We propose a parameter-free and fast heuristi method for mesh edge-detetion,alled Surfae Curvature Di�usion (SCD). We exploit here the heat di�usion on thesurfae of an objet, that is a problem mathematially solved in the ontinuous aseby partial di�erential equations.In the ontinuous ase the heat di�usion is desribed by the equation:
∂f

∂t
= ∇2f (4.6)where f is the so alled heat funtion de�ned on all the surfae points.On disrete latties it is possible to solve the heat equation by an iterative proessthat updates the temperature of the mesh verties over time. Let M = {V,E, F}be a triangular mesh and f : S → R denote a real funtion on eah elements of thetarget set S = V , then the total variation of f an be disretized by:
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f(ti+1) = f(ti) +△(ft→t+1)Indeed, the PDE above is equivalent to ∂f = ∇2f∂t, and for eah time step weompute the value of f at time step ti+1, f(ti+1), by summing the value of f attime step ti, f(ti), with the total variation of f from time step t to t+1, △(ft→t+1).In order to disretize the di�usion equation we need to ompute the matrix L′ = ∇2and to apply the update rule for some time step τ :
f(ti+1) = f(ti) + L

′f(ti)τTo ompute L′, SCD needs to de�ne a weight matrix W assoiated to the mesh
M , as follows:

Wij =







1 if ∃vi, vj ∈ V | (vi, vj) ∈ E

0 otherwiseLet d(vi), with i = 1 . . . |V |, denote the number of edges in E adjaent to avertex vi. In order to derive the non normalized symmetri Laplaian matrix L, weuse the diagonal matries D and D′, de�ned as follows:
Dij =







d(vi) if i = j

0 otherwiseand
D′

ij =















1

d(vi)
if i = j

0 otherwiseThen L is omputed as:
L = D −WNow we use L to de�ne the normalized non-symmetri Laplaian L′:
L′ = D′ − L (4.7)SCD updates the values of f for the verties v over time, by performing the followingoperation for eah iteration:

f(v) = L′f(v)τ (4.8)By miming the heat di�usion for the adiabati proesses, where the total heatis onserved and it is redistributed on the surfae objet, SCD onserves the totalvalue of some energy funtion ϕ and it redistributes ϕ on the verties over time.



54 Chapter 4. Di�usion-Based Mesh Edge DetetionThe funtion used by the proposed algorithm is the absolute value of the meanurvature Hv of the vertex v, whose value is known at time t = 0:
ϕv(t = 0) = |Hv| (4.9)whereHv is omputed by using the extended quadri methods presented in Chapter 2.Figure 4.2 shows a mesh, the mean urvature H on it and the frequeny of H. SCDredistributes the urvature on the objet over time, and it observes asymptotiallythe behaviour of mesh verties with respet to their neighbourhood.
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Figure 4.2: Input mesh (top-left). Mean urvature H distribution of the input mesh,where red verties have H > 0, blue verties have H < 0 and green verties have
H ∼ 0 (top right). Frequeny histogram of H (bottom).In other words, as in the real physial phenomenon, we an onsider the mesh



4.3. Surfae Curvature Di�usion 55as in�uened by some heat or energy (urvature) soures. At time t = 0, thevalue of H on eah vertex v is known, and the soures are disabled instantaneously.Then the heat (urvature) propagates over the surfae objet until the whole objettemperature reahes the equilibrium state at time t = tmax. In the following, wewill study the ideal di�usion of the energy funtion ϕ on two partiular ases.In the heat di�usion, at the starting time t = 0, heat is onentrated on theedges and orners of the objet, whih dissipate energy isotropially towards theirneighbourhood during the di�usion proess. Similarly, feature verties have greaterurvature than their loal neighbourhood at t = 0 and exhange a few energy (ur-vature) among themselves, then they must release their urvature to the adjaentverties on smooth surfaes. On the ontrary, as in the physial phenomenon, surfaepoints absorb energy, both the verties belonging to some surfae and their ϕv valuemust inrease over time. Moreover, the absorbed energy is diretly proportional tothe distane between the surfae verties and some feature-edge.Sine in these two ases the urve ϕv(t) is either monotonially dereasing or mono-tonially inreasing, respetively, then SCD lassi�es the verties by analysing theurve support desribed by ϕv(t).In order to improve the segmentation quality, smoothing method an be applied.The main di�ulty of mesh fairing is the hoie of the suitable number of iterations,thus it an not be embedded in a fully automati segmentation system. One of theadvantages of the proposed method is the impliit urvature fairing, beause highfrequeny noise is typially haraterized by low energy whih is quikly dissipatedduring the di�usion proess. Furthermore, no anisotropi di�usion is required as weare interested in the total variation of energy on a vertex, over time.The energy ϕv(t) of a vertex v may osillate over time. For instane, let usonsider a vertex v lying on a smooth surfae and near some boundary havinghigher level of urvature. At the beginning of the di�usion proess v absorbs energyfrom the feature-edges of the boundary until some time step t = tc. Nevertheless, for
t > tc, v dissipates most of its energy towards the neighbouring verties haraterizedby a lower level of urvature. Thus, the trend of ϕv(t) should be the same as inFigure 4.3. Furthermore, the trend of energy in a vertex ould present several ritialpoints, as a vertex near to several feature-edges with di�erent urvature levels.The behaviour of this kind of verties, whih is learly time-sale, imposes thatSCD must onsider the trend of ϕv(t) for the total time interval, until the equilibriumis reahed (t = tmax).The analysis of the whole trend of the energy urve is required also to suppresshigh frequeny noise that ould be present on the surfaes. Indeed, when v is anoise-vertex, its energy is rapidly dissipated until some time step t = tc. Then,for the remaining time, it will usually absorb energy from its neighbourhood. Thisallows SCD to be a powerful unsupervised denoising tool for noise-verties (falsepositives) lose to the mesh boundaries.By onsidering t = tmax, SCD is also able to lassify properly surfae featuresomposed by verties having di�erent ranges of urvature. In fat, if v is a featurevertex with a low value of urvature and lose to other verties with higher energy,
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Figure 4.3: Examples of energy di�usion, where the red arrows represent the energydi�usion diretions (top). Energy di�usion urves for the vertex vs, on surfae, and
ve, on a feature-edge, respetively (bottom).then v will absorbs energy from the neighbouring feature verties, and then it willrelease suh energy to its neighbourhood.Aording to what has been said so far, the hange rate of ϕv(t), together withthe assoiated time interval, are neessary to evaluate the salieny of a vertex, withrespet to its neighbours at di�erent time sales. Spei�ally, Figure 4.4 shows thedi�usion urve of energy for three di�erent verties on the mesh of Figure 4.2 overtime.Thus, in order to lassify surfae verties, the key idea of SCD is to measure, foreah vertex, the global energy variation before the di�usion reahes the equilibrium(i.e. the �nal state). Formally, in the ontinuous ase:

∆ϕv =

tmax
∫

0

dϕv =

tmax
∫

0

ϕ′
vdt = ϕv(tmax)− ϕv(0)Hene, in the disrete ase, the total variation of ϕv an be omputed as follows:

∆ϕv =

tmax−1
∑

i=0

(ϕv(ti+1)− ϕv(ti)) =

ϕv(1) − ϕv(0) + ϕv(2)− ϕv(1) + · · ·+ ϕv(tmax)− ϕv(tmax − 1) =

ϕv(tmax)− ϕv(0)The value of ∆ϕv indues a partitioning of the target set S into two sets. The setof verties lying on smooth surfaes, whih are haraterized by ∆ϕv ≥ 0, beause
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Figure 4.4: Distribution of the absolute value of H on the input mesh (top-left).Detail of the input mesh (bottom-left) and energy urve support for three di�erentmesh verties (right). The verties are oloured from green (|H| ∼ 0) to red (|H| >
0).they reeive energy from the neighbourhood, and the set of feature verties di�usingtheir energy to the neighbourhood, for whih ∆ϕv < 0 (see Figure 4.5)Figure 4.6 shows the partitioning indued by ∆ϕv for three di�erent values of
tmax and their assoiated histograms.For segmentation purposes, we de�ne the following height map:

wϕ(v) =







−∆ϕv if ∆ϕv < 0

0 otherwise

(4.10)Figure 4.7 shows the feature edges deteted by SCD and the relative histograms,by using three di�erent thresholds t1 < t2 < t3 of tmax. It is lear that wϕ(v) is notsensitive to the value of tmax. On the ontrary, the map wnv(v) obtained by normalvoting, strongly depends on the radius of the geodesi window aording to the saleof the mesh (see Figure 4.8).The main steps of the SDC an be summarized as follows:
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Figure 4.5: Total variation of energy, ∆ϕv, used to lassify the mesh verties inFigure 4.4. 1. Compute the energy funtion on the mesh verties. Inpartiular, we have used the absolute value of the meanurvature whih has been estimated by �tting the meshverties with the extended quadri method presented inSetion 2.2. Di�use the urvature over the mesh and ompute ∆ϕv.3. Compute the height map wϕ(v).4. Segment the objet by using the watershed algorithm. Inpartiular, we have applied the watershed implementa-tion [64℄ and the region growing [8℄.
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Figure 4.6: Partitioning of a mesh surfae using three di�erent value of tmax,
t1 < t2 < t3 (from top to bottom). The more intense the blue is, the smaller ∆ϕv is;green olor represents ∆ϕv ∼ 0; the more intense the red is, the greater ∆ϕv is.4.4 Experimental ResultsWe have tested SCD on several kinds of noisy triangle meshes oming from datasetspublily available in http://www.yberware.om/produts/sanners/index.html,http://www-reh.teleom-lille1.eu:8080/3dsegbenhmark/dataset.html, andhttp://shape.s.prineton.edu/benhmark/.The watershed transform produes suitable mesh segmentations if the feature-edges desribe losed urves. This behaviour represents both an advantage and a
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Figure 4.7: Feature-edges loated by SCD at time steps t1 < t2 < t3 (from left toright). The red verties have wϕ(v) > 0 while green verties have wϕ(v) ∼ 0disadvantage. It is advantageous beause the spurious noisy feature verties whihhave not been suppressed during the di�usion proess are �ooded and eliminatedby the region growing proess. When the important feature-edges are not desribedby losed urves due to noise or defets on the mesh surfae, the watershed maybreak the segmentation integrity and merge di�erent areas. In order to redue thisside e�et we improve the feature-edges by adding those surfae points whih areadjaent to at least two feature verties, and assigning to them the lowest value of
wϕ(v).Note that the region merging proedure needs a threshold value to identify thesmall regions to be merged. We have used the same threshold value for all types ofmeshes.The segmentation integrity problem has been also addressed in [8℄, where theonave points are added to the feature-edges. As shown in Figure 4.9 this approahmay be very noise sensitive and add a lot of feature verties lying on smooth surfaes.As observed in [8℄, di�erent omponents of the objet are omposed by vertieswhih have ellipti (positive Gaussian urvature, K > 0) or paraboli behaviour (nullGaussian urvature, K = 0), while the verties belonging to the regions boundaryhave hyperboli behaviour (negative Gaussian urvature, K < 0) (see Setion 2.1).Sine SCD does not distinguish between negative and positive urvature, the seg-mentation an be onsidered both omponent-based and surfae-based. Indeed, SCDould use negative Gaussian urvatures to extrat the omponents and suessivelythese omponents an be further divided aording to the positive mean urvaturevalues. Hene, this approah an be used to produe an hierarhy of segments.Despite no standard methodology exists to ompare the outomes of di�erentsegmentation algorithms, some authors proposed to measure the di�erenes betweenthe results of segmentation algorithms and the ground truth segmentation obtainedby averaging the manually produed and supervised partitioning performed by hu-man users over the Internet [9℄.In the following we will present some results of mesh segmentation. Eah loated
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Figure 4.8: Feature-edges loated by normal voting [64℄ (left), and relative his-tograms (right). The red verties have wϕ(v) > 0, while green verties have
wϕ(v) ∼ 0.region is identi�ed by a di�erent olour, and its boundary is oloured in red (seeFigures from 4.10 to 4.13). SCD is able to loate all important regions of the objetsand it suppresses most of the noise. The algorithm maintains small features andvery few boundaries are �ooded due to their lak of integrity. Only small regions,due to noise, are maintained, as SCD fails to suppress their verties.As explained above, feature edges an be omposed by verties having di�erentranges of urvature. This harateristi heavily a�ets the threshold-based segmen-tation whih does not perform any loal surfae analysis. Threshold-based seg-mentation strongly depends on the funtions de�ned over the mesh verties and tohoose a suitable threshold it needs to observe their histograms.Figure 4.15 shows three di�erent segmentations obtained on a mehanial objet
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Figure 4.9: Conave verties on the mehani objet.

Figure 4.10: Original up objet (left). Feature-edges deteted by SCD (middle).Watershed segmentation (right).by using three di�erent threshold values of the mean urvature. We did not use theoperators de�ned in [25℄ beause they are very noise sensitive. These results alsodemonstrate that threshold-based segmentation is unstable when ompared to SCD.4.4.1 Conlusions and Future WorksThree-dimensional objet analysis is required in several �eld of researh and, aord-ing to di�erent appliations, objets an have di�erent representations. 3D data aretypially obtained from the real world by aquisition devies able to gather eithervolumetri information (volumetri data) about the objets or spatial informationabout the points belonging to the surfae of the objet (range data).In this thesis we foused on polygonal meshes whih are a very popular 3D datarepresentation, where the objet is stored by a loud of points together with the sets
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Figure 4.11: Original srewdriver objet (left). Feature-edges deteted by SCD(middle). Watershed segmentation (right).
Figure 4.12: Original bunny objet (left). Feature-edges deteted by SCD (middle).Watershed segmentation (right).of edges and faets.Many appliations require the segmentation of the objets in order to obtainan higher level representation whih simpli�es several suessive Computer Visiontasks. Aording to the problem at hand, the deomposition an be either surfae-based or omponent-based. The former loates those areas on the mesh surfaehaving similar features suh as onstant urvature, et. The latter individuates allthe semanti omponents of the objet.In order to segment an objet, it needs some a priori knowledge about it. Therules used to identify the mesh regions depend on some feature de�ned over theelements of the surfae. The required features an be omputed by using di�erenttehniques. The di�erential properties of surfaes are very useful and an be mainlyestimated by reovering quadri surfaes �tting the mesh verties and by spatialaverages (�nite volumes). In addition, tensor voting is a very powerful method that
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Figure 4.13: Original mehanial objet (left). Feature-edges deteted by SCD(middle). Watershed segmentation (right).

Figure 4.14: Original human model (left). Feature-edges deteted by SCD (middle).Watershed segmentation (right).an be employed to ompute robust surfae desriptors. Unfortunately there is nogeneral onsensus about the best approah to ompute surfae features. Surfaeproperties are noise dependent and in order to improve their estimation, di�erentsurfae denoising algorithms have been developed.Sine the segmentation of a mesh is stritly related to graph partitioning whihis a NP-Complete problem, then it is required to �nd approximate solutions e�-iently. Several mesh proessing algorithms have been presented in literature, eahone relying on a partiular segmentation paradigm suh as region growing, lusteringor Spetral Analysis. Mesh segments an be also loated by extrating the feature-edges of the mesh, i.e. the disontinuities of its surfaes. Most of the segmentationapproahes require to set some parameters or threshold values, and this does notallow to insert these algorithms in automati segmentation systems.In this thesis we proposed SCD, that is, a new automati edge-detetion al-gorithm based on the di�usion proess of some energy funtion de�ned over theobjets surfaes. SCD simulates the physial phenomenon of heat di�usion by using
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Figure 4.15: Histogram of the mehani objet showing three threshold values (top).Watershed segmentation for the hosen threshold levels (bottom).the urvature as power energy and distributes it on the objet over time, until theequilibrium state is reahed. The total variation of energy is used to lassify thesurfae verties and to suppress most of the noise. We validated our algorithm ondi�erent types of meshes and the results obtained show that SCD is robust, aurateand e�ient.Tensor voting requires to set some parameters to ompute the height map andit needs to set the radius of the geodesi window. Thus it depends on the partiularsale of the objet and moreover the evaluation of the geodesi distane is very timeonsuming. Threshold-based segmentations highly depend on the energy funtionde�ned over the mesh verties. They do not perform any loal analysis in theneighbourhood of the verties, thus they are not able to loate those importantfeatures having low levels of urvature.These highlighted limitations make SCD attrative for edge-detetion and seg-mentation of meshes obtained from range data.In the next steps of researh we will improve SCD as denoising tool by applyingsome statistial evaluations of the height map on the feature verties. Moreoverwe will perform an hierarhial segmentation by merging the negative Gaussianurvature and the height map produed by SCD.Some authors proposed reently a benhmark to test the results of segmentation



66 Chapter 4. Di�usion-Based Mesh Edge Detetionalgorithms against the segmentation ground truth obtained by users [9℄. In futureworks we will use suh benhmark to make a quantitative omparison with both themanual segmentation and the outome of SCD.
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