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Abstract Lakes and ponds are scattered on Earth’s

surface as islands in the ocean. The organisms inhab-

iting these ecosystems have thus developed strategies to

pass the barrier represented by the surrounding land, to

disperse and to colonize new environments. The

evidences of a high potential for passive long-range

dispersal of organisms producing resting stages

inspired the idea that there were no real barriers to

their actual dispersal, and that their distribution was

only limited by the ecological characteristics of the

available habitats. The development of genetic tech-

niques allowed to criticize this view and revealed the

existence of a more complex and diverse biological

scenario governed by an assortment of historical and

ecological factors. In this paper, we review the literature

related to the passive dispersal of organisms producing

resting stages among inland lentic ecosystems, with

special emphasis to temporary ponds, which represent

‘‘isolated’’ ecosystems both in space and in time, and

are characterized by high levels of biological diversity.

The existence of a sharp decoupling between ‘‘dispersal

potential’’ and ‘‘actual establishment rates’’ is stressed,

thus urging a definitive overcome of the so-called

‘‘Everything is Everywhere’’ hypothesis in order to gain

a proper understanding of the biogeography and

ecology of inland water organisms.

Keywords Dispersal vectors � Biogeography �
Dispersal-gene flow paradox � Priority effect �
Monopolization hypothesis � Cosmopolitanism

paradigm

Introduction

To explain the biosphere concept, Vladimir Vernad-

skij described the surface of our Planet as covered by a

continuous layer of a multitude of (micro)organisms

(Vernadsky, 1998). Although he was mainly interested

in the processes that these organisms perform in

shaping and moulding the Earth’s surface, one ques-

tion may arise from this perspective: how do the

organisms distribute and colonize the entire Planet’s

surface? Since the mid-eighteenth century, Biogeog-

raphy has been studying the patterns of species

distribution across geographical areas and through

geological time. However, even if well-established

hypotheses on the distribution patterns of species on
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continents exist, it is more difficult to explain these

patterns on geographical or biological islands, espe-

cially on the most remote and isolated ones (Whittaker

& Fernández-Palacios, 2007). In this frame, inland

lentic water bodies can be considered a special case of

‘‘biological islands’’ scattered across the land masses

(Ripley & Simovich, 2009), and the distribution

patterns of their biota, depending on dispersal abilities

and colonization successes, are not fully clarified yet

(Shurin et al., 2009).

The organisms inhabiting inland water ecosystems

have developed diverse active and passive strategies to

pass the barrier represented by the surrounding land,

disperse and colonize new environments. The most

effective strategy to achieve dispersal is the produc-

tion of resting stages. These (also called akinetes,

cysts, ephippia, statoblasts, spores, seeds in different

group of organisms) are dehydrated dormant stages of

the cell or of the embryo that show no measurable

metabolism and are enveloped in a highly protective

cover (Wells et al., 1997; Dumont & Negrea, 2002).

Prokaryotes, unicellular eukaryotes, and small multi-

cellular organisms less than 2 mm in length (micro-

organisms sensu Fontaneto & Brodie, 2011) have been

generally considered to have a cosmopolitan distribu-

tion because of their minute sizes and their ability to

form resting stages which facilitate dispersal by wind

and migrating animals. In this review, the passive

dispersal mechanisms of microorganisms and of larger

ones (e.g. some calanoid copepods, large branchio-

pods, stoneworts, mosses, quillworts, vascular plants)

producing resting stages in the same size range

(100–600 lm) of microorganisms will be discussed.

A high potential for long-range passive dispersal of

these organisms is supported by the very high

population sizes which microorganisms can attain

(up to an order of magnitude of 109 l-1) and by the

‘‘astronomical numbers’’ of resting stages (Foissner,

2006) produced by the larger ones (Fig. 1). This

potential is also supported (i) by the very fast

colonization of newly formed water bodies (see

Maguire, 1963; Jenkins & Buikema, 1998; De Meester

et al., 2002; Audet et al., 2013, and references therein)

and historically (ii) by the rapid recolonization of the

faunally depleted central and northern regions of the

northern hemisphere after the last Pleistocene glacial

event, which is genetically mirrored by the ‘‘southern

richness vs. northern purity paradigm’’ of the Holarc-

tic biota (Hewitt, 2000; Marrone et al., 2010).

Such evidences for a long time inspired the idea that

there were no real barriers to the dispersal of resting

stage producing aquatic organisms. Their distribution

(i.e. the actual presence of a given taxon in a given

site) should therefore only be limited by the ecological

characteristics of the available habitats themselves.

Accordingly, the differences observed in the biota

could be explained by the selective pressures operated

by the environment only (see Martiny et al., 2006).

This idea, known as the ‘‘Everything is Everywhere

(EiE) hypothesis’’, was already sustained by Darwin

(1859), and then formally defined at the beginning of

the twentieth century; it can be efficaciously summa-

rized by the renowned statement of the Dutch micro-

biologist L.G.M. Baas Becking: ‘‘Everything is

everywhere, but the environment selects’’ (see Wil-

liams, 2011 for a review).

Fig. 1 Ephippia of

cladocerans coating the

stranded aquatic vegetation

and the shores of Lake Iseo

(Northern Italy) in early

spring (photos by Federico

Marrone)
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From a genetic perspective, according to the ‘‘EiE

hypothesis’’, an extensive gene flow among popula-

tions should grant the genetic homogeneity of the

species throughout their whole extensive distribution

ranges, actually preventing the occurrence of allopat-

ric differentiation among populations and, eventually,

of allopatric speciation. Therefore, freshwater micro-

organisms should belong to a few, widely spread (i.e.

subcosmopolitan to cosmopolitan) species, and these

should be characterized by the absence of genetic

structuring throughout their whole wide distribution

areas, each of them actually acting as a single,

immense, potentially panmittic population (‘‘Cosmo-

politanism Paradigm’’).

However, according to Foissner (2006), the ‘‘EiE’’

hypothesis is not falsifiable, thus cannot be considered

a true scientific theory. At the base of this hypothesis

there is likely our poor ability in distinguishing the

different biological units based on morphology only

(e.g. Pfenninger & Schwenk, 2007; Packer et al.,

2009), which also hampers our ability to estimate how

dispersal is in fact realized (Fontaneto & Brodie,

2011). Moreover, the knowledge about the autoecol-

ogy of several organisms, which can offer important

clues in species identification, is still inadequate

(Kristiansen, 1996, 2008; Padisák et al., 2009).

Although some studies seem to support the EiE

hypothesis (cfr. Finlay, 2002; Audet et al., 2013), the

recent development and spreading of genetic tech-

niques offered an additional tool that, coupled with a

better understanding of the morphological and eco-

logical features of organisms, allowed to criticize the

EiE hypothesis even for bacterial communities (e.g.

Roberts & Cohan, 1995; Green & Bohannan, 2006;

Martiny et al., 2006; O’Malley, 2007; Fierer, 2008;

Foissner & Hawksworth, 2009 and literature therein)

and established phylogeography as a new discipline

aimed at studying biogeographical patterns under a

genetic perspective (Avise et al., 1987; Hickerson

et al., 2010).

One important step to understand aquatic microor-

ganisms distribution is to investigate their passive

dispersal potential and the factors that can make

effective a dispersal event, allowing thus the actual

colonization of a new ecosystem (Bohonak & Jenkins,

2003). This is not an easy task: some ecological groups

such as (phyto)plankton have cryptic dispersal meth-

ods (Shurin et al., 2009), and rare or even singly

occurring dispersal events, although biologically

significant, may remain undetected (Bilton et al.,

2001). Moreover, dispersal often occurs through

multiple processes and vectors (Higgins et al., 2003).

In this review, we will put a special focus on temporary

water bodies, since these ecosystems represent biodi-

versity hotspots (Williams et al., 2001; Zacharias et al.,

2007) and their functioning and conservation strictly

depends on the dispersal and colonization abilities of

their biota (Sahuquillo & Miracle, 2013; Marrone et al.,

2013; Korn et al., 2013). Moreover, temporary ponds,

alternating flooded and dry phases, add the duration of

their ponding phase as a further temporal dimension to

their ‘‘insular features’’ (Ebert & Balko, 1987; Naselli-

Flores & Barone, 2012). In addition, these ecosystems

provide important services in terms of aquatic

biodiversity-conservation since they (i) supply recruits

of (micro)organisms to permanent waters and eventu-

ally constitute ‘‘reservoirs’’ of biodiversity enhancing

the success of restoration measures in aquatic ecosys-

tems subject to high human impacts (Moustaka-Gouni

et al., 2012), and (ii) favour the observed northward

movement of species as a response to climate change

(Céréghino et al., 2014). In spite of this, the number of

temporary ponds has been drastically reduced in the

last decades due to climate change, to the increased

demand of land for agriculture and urban development,

and to the overexploitation of water resources (e.g.

Stoch & Naselli-Flores, 2014). This trend strengthens

an increasing geographical isolation of temporary

ponds, and may enhance both local and global

extinction of species (Florencio et al., 2014).

Understanding patterns of passive dispersal and

colonization as well as the mechanisms through which

the gene flow among temporary ponds’ populations

might occur can therefore contribute to preserve these

ecosystems and their striking inter- and intra-regional

biological diversity.

Passive dispersal mechanisms

Although papers documenting passive dispersal of

adult microcrustaceans, water mites and plants are

available in the literature (Dahms, 1995; Di Sabatino

et al., 2004; Allen, 2007; Frisch & Green, 2007; van

Leeuwen et al., 2013; Bruckerhoff et al., 2014),

passive dispersal mechanisms more generally require

the production of resting stages able to survive

unfavourable environmental conditions and to act as
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dispersal propagules, functionally performing as plant

seeds (see Van Damme & Sinev, 2013). Resting stages

are the most important propagules for many aquatic

taxa (Rundle et al., 2002) and are easily transported by

different physical and biological vectors (Fig. 2) on

short and long distances, even though the existence of

a direct relationship between the ability of producing

resting stages and dispersal efficiency is controversial

(Schulz et al., 2012; De Bie et al., 2012; Heino, 2013).

Several papers were published in the last years,

estimating the potentiality of physical and biological

agents in favouring dispersal of resting stages. In a

recent paper, Rogers (2014) showed that resting stages

directly dispersed by vectors that specifically move

between suitable habitats (like aquatic birds—see

Fig. 3) have a greater chance to effectively colonize a

new habitat than those randomly dispersed by wind.

However, the information contained in the scientific

literature is sometime contradictory with some authors

suggesting that wind can be more effective than

animals as dispersal vector and some other stating the

opposite (e.g. Cohen & Shurin, 2003; Allen, 2007).

These contrasting results may suggest that local

environmental conditions may favour one or more

dispersal vectors and that the effectiveness of dispersal

flows may vary depending on both vector and propa-

gule properties (Vanschoenwinkel et al., 2008a). In

addition, it has to be highlighted that the majority of the

examined studies investigated the potential dispersal

and not its effective realization (i.e. a successful

colonization event). However, irrespective of the

vector, dispersal certainly occurs and the existing

Fig. 2 Dispersal vectors

acting on freshwater

organisms during the water

phase (above) and the dry

phase (below) of a

temporary pond

Fig. 3 Himantopus himantopus preying on the notostracan

Triops cancriformis in a Mediterranean temporary pond (Photo

by Cristiano Liuzzi)
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studies on colonization have shown that new, artifi-

cially created ponds are quickly colonized by aquatic

organisms (Audet et al., 2013) and that these new

communities may have a species diversity comparable

to that of older, well-established ones (Louette & De

Meester, 2005). In this article, we briefly review the

principal outcomes from the studies on dispersal

vectors available in the scientific literature.

Dispersal by physical vectors

The action of wind on temporary ponds can potentially

disperse microorganisms or resting stages both from

water during the wet phase (Sharma et al., 2007), and

from soil during the dry phase (Graham & Wirth,

2008). Wind-mediated dispersal is known as anem-

ochory. As regards microalgae, not only resting stages

but also vegetative cells can be released from water by

bubble-burst processes generated by the action of the

wind on the water surface (Hamilton & Lenton, 1998).

Due to their small dimensions, phytoplankton taxa can

be trapped in the water bubbles and transported by the

wind. Several species produce mucilages (Reynolds,

2007) and have cell walls that can act as a protection

coating, allowing short-distance dispersal (Chrisosto-

mou et al., 2009). Phytoplankton belonging to cyano-

bacteria, chlorophytes, diatoms, cryptophytes and

euglenophytes have been described as air-dispersed

algae (Sharma et al., 2006) and this set of taxa has been

reported quite consistently in aerobiological investi-

gation worldwide (see the review by Genitsaris et al.,

2011a). The dispersal of vegetative phytoplankton

cells has been documented on short distances (1 km)

by Chrisostomou et al. (2009) who found that although

small cells (width\5 lm) were most easily dispersed,

also large organisms (e.g. Fragilaria capucina) or

colonies (Microcystis aeruginosa of [1,000 cells per

colony) can be subjected to air dispersal depending on

the wind speed. However, Genitsaris et al. (2011b) in

an analogous investigation pointed out the possibility

of long-distance dispersal of both vegetative cells and

resting stages. This latter hypothesis was based on the

lack of close suitable aquatic ecosystems as a source

for the microorganisms recorded in a set of water

containers designed to collect airborne algae.

In contrast to the above cited results, Vanschoen-

winkel et al. (2008b) report the absence of crustacean

resting stages dispersal by wind among temporary

rock pools when they are experiencing their ponding

phase. According to these authors, biological vectors

are the only effective dispersal agents during the wet

phase in temporary ponds. Conversely, during the dry

phase, wind causes erosion of soil by detaching

particles from its surface and moving zooplankton

resting stages even when it blows at low speed

(Graham & Wirth, 2008).

Soil erosion due to the action of wind is one of the

main environmental concerns in the Mediterranean

area (Hill et al., 1994) and the multi-millennial history

of intensive land use in this region may have had a role

in the dispersal and colonization events that led to the

forest-to-scrub transition in the mid-Holocene (Collins

et al., 2010). A similar effect on the vegetation might

well have taken place in the Mediterranean area even

before the Holocene: according to Pretus (1990), the

grazing impact exerted by the Balearic dwarf goral

Myotragus sp. in the Pleistocene caused a land

clearing and favoured the colonization of the Balearic

islands by, and the long-time persistence of, steppic

crustacean taxa in the temporary water bodies of the

archipelago.

Several studies have investigated the importance of

egg banks in the dry sediments of temporary ponds (e.g.

Thiéry, 1997; Brendonck et al., 1998; Mura, 2004,

2005) and the role of the wind in the dispersal of

zooplankton, large branchiopods eggs and other inver-

tebrates (Baujard & Martiny, 1994; Cáceres & Soluk,

2002; Graham & Wirth, 2008 and literature therein). As

already reported for phytoplankton, the effectiveness of

the dispersal of these animals seems to be linked to the

distance among sites. Jenkins & Underwood (1998)

found that only a few bdelloid rotifers could be

dispersed by wind when ponds were located 80 km

apart. Conversely, Champeau & Thiery (1990) sug-

gested a transport of crustacean eggs by Saharan winds

across the Mediterranean Sea. They hypothesized a

South-North gradient in the species distribution as a

consequence of the different fallout rates of the resting

stages because of their size (mass). Eggs of about

600 lm (like those of the notostracan Triops sp.) might

reach Sicily and Balearic Islands from the Maghreb,

while smaller ones (&100 lm), such as those of

calanoid copepods, might be transported further north

and reach central Italy, Corsica and southern France.

However, this hypothesis is not supported by a meta-

analysis aimed at investigating the role of the size of the

dispersing stages in determining the achievable dis-

persal distances in active and passive disperser:
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according to Jenkins et al. (2007), passively dispersed

propagules are less efficient on long distance than

active disperser, and their dispersal distances do not

depend on the propagule mass.

However, as shown by Alfonso & Belmonte (2013)

for Neolovenula alluaudi, actual dispersal is likely due

to mechanisms other than wind; this is in agreement

with the biogeographical patterns of the anostracan

Streptocephalus torvicornis pointed out by Dumont

et al. (1995). These two crustacean species have a

‘‘pincers-like’’ distribution in the Mediterranean area

(Fig. 4); they are both widely distributed in the

Maghreb and in Spain (but without passing the

Pyrenees barrier) from the West side and in the

Middle East and Balkan Peninsula up to the Pannonian

plain from the East. In Italy, both these species are

present in Apulia (likely having arrived from the

nearby Balkan Peninsula) but not in Sicily or in the rest

of Peninsular Italy; this limits the hypothesis of a

South–North dispersal primarily driven by wind (or by

migratory birds: see next chapter) across the central

Mediterranean Basin as further supported by the

absence in Sicily of several inland water crustacean

taxa able of passive dispersal and which are wide-

spread in northern Tunisia (Marrone et al., 2009).

Overflows after heavy rain were demonstrated to be

effective in mediating propagule dispersal among rock

pool metacommunities (Vanschoenwinkel et al.,

Fig. 4 Combined distribution pattern of the calanoid copepod

Neolovenula alluaudi and of the anostracan branchiopod

Streptocephalus torvicornis (for more details see the text). Both

physical (wind) and biological (migrating birds) vectors are

likely involved in determining this pattern. The arrow from

Spain to French Aquitaine was added on the basis of the results

by Cellamare et al. (2010)
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2008a; Meier & Soininen, 2014) and dispersal by

surface waters (hydrochory) like that occurring in

floodplains or during the rice-fields inundation (e.g.

Frisch et al., 2005; Akasaka & Takamura, 2012; Van

Leeuwen et al., 2013, and references therein) can also

be important. However, this mechanism is not treated

here in detail because its action is quite obvious.

Dispersal by biological vectors

A variety of animals has been described as dispersal

vector of a wide array of freshwater organisms through

a process called zoochory. The list of these vectors

should include also humans but, because of the

peculiar way in which humans may act as dispersal

agents, their role will be examined in a dedicated

subchapter.

The role of waterbirds as dispersal vehicles for

resting stages among freshwater sites has been docu-

mented in several arid zones (e.g. Figuerola & Green,

2002; Green et al., 2008 and literature therein).

Temporary ponds are often the preferred stopover

for aquatic birds (Grillas et al., 2004), which thus may

easily transport resting stages contained in the soil

stuck in their feet and feathers (‘‘epizoochory’’). In

addition, resting stages may pass undamaged through

their digestive systems (‘‘endozoochory’’). It has been

demonstrated that the dispersal operated by waterbirds

can have an important historical role on the current

phylogeography of crustacean species (see Muñoz

et al., 2013 and literature therein). Seasonally migrat-

ing birds can in fact contribute to long-distance

dispersal facilitating the colonization of aquatic envi-

ronments as they become available along their migra-

tory routes.

As shown in a series of papers by Brochet et al.

(2009, 2010a, b, c), endozoochory can be more

effective than epizoochory in favouring the dispersal

of plant seeds, Chara spp. oogonia, as well as eggs of

branchiopods and ostracods, and bryozoans’ stato-

blasts. Moreover, according to Rogers (2014), avian-

mediated endozoochory might even enhance the

fraction of resting stages which actually hatch once

they are released in a new water body. Conversely, a

study aimed at assessing the dispersal of freshwater

taxa among Mediterranean temporary ponds through

epizoochory and endozoochory on\in wild boars

(Vanschoenwinkel et al., 2008c) showed that, since

these environments are frequently used for mud

bathing by these mammals, a larger number of

hatching taxa was recorded in the mud coming from

the skin rather than from the faeces, thus suggesting

that over short distances epizoochory transport can be

more effective than endozoochory. The potential role

of large vertebrates as dispersal vectors was also

investigated by Allen (2007) who studied adult

zooplankton dispersal and found that it was more

successful (and colonization occurred) in mesocosms

which were open to large vertebrates like deer or

raccoons. Short-distance dispersal can be favoured by

several other vertebrates such as cattle, rats, rabbits,

amphibians and fish (e.g. Zedler & Black, 1992;

Bohonak & Whiteman, 1999; Beladjal et al., 2007;

Van Leeuwen et al., 2013 and literature therein) as

well as by invertebrates (Duthie, 1929); in particular,

crayfish (Pérez-Bote et al., 2005) and flying insects

(van de Meutter et al., 2008; Beladjal & Mertens,

2009) are documented vectors for the dispersal of

resting stages and seeds among temporary waters, and

water mites are known to be phoretic on insect larvae

and adults (Di Sabatino et al., 2004; Bohonak et al.,

2004).

Dispersal by human activities

The role exerted by human activities (i.e. ‘‘antropoch-

ory’’) as dispersers of freshwater organisms cannot be

neglected worldwide. As an example, the seasonal

movements of livestock (transhumance) traditionally

occurring since centuries in many Mediterranean

countries may have played an important role in the

dispersal of aquatic organism in this area even though

few existing studies on this topic are dealing with

terrestrial plants and animals (e.g. Fischer et al., 1996;

Auffret et al., 2012). Moreover, pastoral activity all

around the world is not the only human-driven activity

which may enhance organism dispersal. As pointed

out by Foissner (2006), species distribution changes

due to human activities are largely ignored in the

discussion of distribution of (micro)organisms. Since

the ‘‘agriculture revolution’’, which took place in the

Middle East and along the eastern coast of the

Mediterranean Sea (in the so-called ‘‘Fertile Cres-

cent’’—see Diamond, 1997) about 8,500 years BC,

the construction of canals for agriculture and trading

of goods and food have gradually moved millions of

tons of soil and water and likely contributed to the

actual distribution of several species inhabiting
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freshwater ecosystems in this area as well as in other

part of the world. What Old Romans called ‘‘Mare

Nostrum’’ was crossed by several trade routes and

people living on its shores have been sailing across it

since at least 5,000 years, founding settlements and

actively transporting goods (and drinking water) all

around the lands surrounding this sea (Abulafia, 2011).

Further to historical reasons, other more recent human

activities still contribute to freshwater organisms

dispersal: construction of canals connecting separated

watersheds (Dumont, 1995), recreational boating

(Albrecht et al., 2009; Bruckerhoff et al., 2014), trade

in ornamental species for aquaria (Padilla & Williams,

2004; Marrone & Naselli-Flores, 2011; Marrone et al.,

2011; Havel et al., 2014), and ecotourism and/or

scientific field-work (Waterkeyn et al., 2010) have

been found to be responsible of dispersal and new

species (even invasive) introductions. Trading of

living fish for sport and professional fishing can be

also responsible for the accidental introductions of

(micro)organisms and a huge number of nonindige-

nous species are reported as ‘‘invaders’’ in freshwater

ecosystems at a high frequency (Ruiz & Carlton, 2003;

Alfonso & Belmonte, 2010; Havens & Beaver, 2014).

Two calanoid copepods of Eastern origin, Boeckella

triarticulata and Neodiaptomus schmackeri, were

recently recorded in the Mediterranean area and their

presence has been related to fish farming (Ferrari &

Rossetti, 2006; Alfonso & Belmonte, 2008; Alfonso

et al., 2014). Further examples of accidental introduc-

tions are those of Pediastrum biwae, an endemic

microalga of Lake Biwa (Japan), now a well-estab-

lished species in the phytoplankton assemblage of

Lake Arancio, Sicily (Naselli-Flores & Barone, 2005),

and Isoëtes malinverniana, a quillwort known from

the Piedmont region of north-western Italy which is

considered a species of Asian origin, transported along

with rice seed to Italian rice fields (Hoot et al., 2006;

but contrasting results can be found in Gentili et al.,

2010). In addition to uncontrolled and accidental

spread of species, as that of the anostracan Artemia

franciscana commonly used as fish food in aquacul-

ture (e.g. Lavens & Sorgeloos, 1996; Amat et al.,

2007), deliberate introductions to support human

activities may occur (e.g. Tackaert & Sorgeloos,

1993; Su & Mulla, 2002) and this may influence the

natural biogeographical range of organisms (Muñoz

et al., 2013). Moreover, it has been demonstrated that

the introduction of exotic species reduces regional

biodiversity by promoting pond assemblage homog-

enization and contributing to the extinction of indig-

enous, even endemic, species (e.g. Florencio et al.,

2013).

Human-induced climate change has also been

regarded as modifying the distribution ranges of

several species, and the warmer climate may explain

the colonization success of many tropical and sub-

tropical species of microalgae as reported in the last

decades in the continental waters of Europe (e.g.

Cellamare et al., 2010 and literature therein).

What enhances or inhibits colonization processes?

Colonization of a new habitat by a propagule is a two-

step process which includes the actual existence of a

dispersal event, and the successful establishment in the

new habitat of the dispersed propagules. Since quan-

tifying dispersal can be a difficult task, colonization

rates (i.e. the arrival and successful establishment of

new species per time interval) are generally used as a

proxy (e.g. Cáceres & Soluk, 2002; Bohonak &

Jenkins, 2003; Cohen & Shurin, 2003). As pointed out

by Riccardi & Rossetti (2007), colonization rates

underestimate dispersal since several failed attempts

may occur for every successful one colonization event

(Williamson, 1996).

Several factors might influence each of these two

steps of the colonization, both with inhibitory and

facilitating effects on the process.

Resting stage characteristics, size, number

and ornamentation

Freshwater organisms are generally considered more

successful long-distance passive disperser than terres-

trial ones (Kappes et al., 2014). Although the dispersal

of adult snails and ostracods, or plant fragments

(Karanovic, 2012; Havel et al., 2014; Bruckerhoff

et al., 2014) can be related to their relatively high

resistance to desiccation and UV radiation (e.g. Van

den Broecke et al., 2012), or, as regard nematodes, to

their ability to undergo anhydrobiosis (Ptatscheck &

Traunspurger, 2014), resting stages are the main

dispersal propagules for several organisms in tempo-

rary ponds (Rundle et al., 2002). Moreover, although

several organisms inhabiting permanent waters pro-

duce resting stages and can be found in temporary
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waters, the opposite seldom occurs since ecological

interactions (e.g. fish predation) can prevent many

peculiar inhabitants of temporary ponds like large

branchiopods from colonizing permanent waters

(Dumont & Negrea, 2002).

Resting stages can be viable for years or decennia

(e.g. Hairston et al., 1995; Straka, 2004), and able to

survive pronounced environmental stresses (Wells

et al., 1997; Dai et al., 2011). Along with viability, the

number of resting stages (both considering the repro-

ductive potential of single individuals and of popula-

tions) has been found to have a role in promoting a

successful dispersal, since larger inocula have a higher

probability to successfully colonize a new environ-

ment (e.g. Drake et al., 2005 and literature therein). In

addition, their ability to sink, to float or to remain

attached to plants or sediment particles (Brendonck &

De Meester, 2003; Van Damme & Sinev, 2013)

actually contribute to determine the dispersal vec-

tor(s) and thus the range of dispersal.

Even morphologies and ornamentations likely have

a role in promoting resting stage dispersal. Protist

cysts are supposed to lack morphological adaptations

for air dispersal (Foissner, 2008). Conversely, the

seeds of flowering plants show morphologies that have

often been considered favouring dispersal, even

though Higgins et al. (2003) found that the relationship

between morphologically defined dispersal syndrome

and long-distance dispersal is quite poor. Moreover,

no information exists on the reasons underlying the

striking morphological convergence, both as regard

ornamentation and size, which can be observed in the

eggs and megaspores produced by phylogenetically

unrelated inland water organisms such as anostracan

crustaceans and quillworts (Fig. 5), and which could

have a role in the passive dispersal of these organisms

(e.g. Thiéry & Gasc, 1991; Mura, 2001; Samchyshyna

& Santer, 2010; Bagella et al., 2011). Conversely,

some information is available in the marine realm, e.g.

Belmonte et al. (1997) suggest that the widespread

spiny covering of resting stages in the marine

zooplankton might be the result of a convergent

evolution aimed at favouring flotation and at granting

a passive defence against predators and abiotic

adversities.

To date, factors shaping the external layer of resting

stages and their ornamentation in inland water crus-

taceans are largely unknown (Frey, 1982a; Thiéry

et al., 2007; Bruner et al., 2013) even though Dumont

et al. (2002) tentatively explained it as a possible

mechanism to decrease predation.

Environmental filters

The analysis of colonization rates may offer useful

insights to investigate what can hamper the dispersal

potential. Once a new potential colonizer reaches a

new habitat, it has to pass through sequential ‘‘filters’’

in the colonization sequence (e.g. Williamson &

Fitter, 1996; Muirhead & MacIsaac, 2005) before

becoming successfully established. The strength of

these filters encompasses local factors depending on

the (i) biological features of the species that is

colonizing the habitat; (ii) its tolerance range to local

physical and chemical conditions (Soininen et al.,

2013; Florencio et al., 2014); (iii) the morphological

features of the water body (e.g. water surface, depth)

to be colonized and its hydroperiod length, and (iv) the

structure of the receiving community (see next sub-

chapter). However, also regional factors related to

altitude distribution of water bodies (Catalán et al.,

2009; Wang et al., 2012), as well as the spatial distance

among water bodies, and thus their isolation and

density in a given territory, may act as important filters

(Soininen et al., 2007; Ripley & Simovich, 2009 and

literature therein) influencing colonization success.

By studying zooplankton colonization rates and

spatial patterns in a large-scale experimental system of

ponds in the Doñana National Park (Southern Spain),

Frisch et al. (2012) found that, in accordance to the

theory of island biogeography (MacArthur & Wilson,

1967), connectivity, spatial distance among ponds and

surface area of the studied water bodies (target-area

effect: larger surfaces are better receivers of inocula,

see Lomolino, 1990) were key determinants of

colonization rates for crustacean zooplankton. Con-

versely, in a study carried out in a network of

temporary ponds, Eitam et al. (2004) found that

crustacean species richness was positively related to

hydroperiod length but not to surface area. This result

could be explained by the assumption that increased

isolation of ponds due to the progressive disappearing

of the aquatic habitat during the dry phase, as it may

occur in a network of temporary ponds with different

hydroperiods, can limit local immigration and unbal-

ance the immigration/extinction patterns generating

nested patterns of ponds with species-poor sites

containing a subset of species-rich sites (Florencio
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et al., 2011). The degree of nestedness thus quantifies

the overlap in species composition between high and

low diversity areas (McAbendroth et al., 2005).

Conversely, Frisch et al. (2006) suggest that ponds

with a hydroperiod of intermediate length host a

higher species richness than those characterized by

longer or shorter hydroperiods.

As observed by Ebert & Balko (1987) and Floren-

cio et al. (2011), isolation in time, as resulting from the

different length of hydroperiod among the ponds of a

network, can give similar patterns to those observed

when it occurs in space, further confirming that both

pond density and hydroperiod length in a given area

are important in determining the colonization chances

(Ruhı́ et al., 2013).

Species dispersal on short distance minimizes the

fragmentation of metacommunities as caused by the

reduction in geographical pond density (Florencio

et al., 2014). As suggested by Allen (2007), this

reduction might lead to stronger priority effects (see

next subchapter), higher levels of inbreeding and

selection against traits favouring high dispersability.

Miracle (1982) and Sahuquillo & Miracle (2013), in

order to explain the distribution of some peculiar

crustacean assemblages in the ponds of the Iberian

Peninsula, hypothesized the existence of a former and

ancient network of wetlands which allowed the

presence of highly diversified crustaceans assem-

blages. Climate changes and human activities occur-

ring during the Holocene may have caused a reduction

in the number of suitable habitats for these assem-

blages, which nowadays represent a relic remnant

surviving in a few isolated ponds.

In recent years, anthropogenic impacts (including

global change) have reduced the number of ponds

worldwide (Williams, 2002). In the Mediterranean

area, as an example, temporary ponds are presently

disappearing at a very fast rate (Cancela da Fonseca

et al., 2008; Naselli-Flores & Barone, 2012). Their

deliberate destruction, along with the loss of pastoral

activities, contributes to a growing isolation of the

relic ponds which hinders dispersal among sites,

Fig. 5 Resting stages

morphological convergence.

Resting egg of the

anostracan branchiopod

Chirocephalus cf.

diaphanus. (A); megaspore

of the quillwort Isoëtes sp.

(B); resting egg of the

calanoid copepod

Hemidiaptomus gurneyi

(C) and ephippium of the

anomopod branchiopod

Moina diksamensis

(modified from Van Damme

& Dumont, 2008) (D)
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increases metacommunity fragmentation and leads to

a higher risk of local (and global) extinctions (Miyaz-

ono & Taylor, 2013).

Biological filters and reproductive strategies

The diversity and composition of the resident species

pool has been generally recognized as an important

factor determining the colonization success of later

immigrants (e.g. Case, 1990; Tilman, 1997; Levine,

2000; Louette et al., 2006). Species-poor communities

are generally linked to recently formed water bodies

(see Alfonso et al., 2010), or to particular environ-

mental conditions selecting for a reduced pool of

‘‘stress-adapted’’ species (Naselli-Flores et al., 2003).

Species-rich communities show stronger and more

complex biotic interactions that can impair the colo-

nization success of new immigrants (Shurin, 2000;

Cadotte et al., 2006). Moreover, immigrants can

undergo Allee effects (Sarnelle & Knapp, 2004) which

would further slow down their population growth

rates.

Biological interactions, e.g. predation, competition

and allelopathy, are frequently reported as strong filters

contributing to make difficult the establishment of new

immigrants (e.g. Eitam et al., 2004; Uronen et al.,

2007; Yawata et al., 2014); these interactions histor-

ically determine the composition of a community and

strengthen the relationships existing among its

members during time. Altogether they are named as

‘‘priority effects’’ (i.e. species or lineages already

present in a community affect the establishment of later

arriving immigrants) (Fig. 6) and are often considered

as powerful inhibitors of colonization success (Shurin,

2000; Allen, 2007; Louette & De Meester, 2007;

Symons & Arnott, 2014). In some conditions, however,

as those occurring in autogenic succession, priority

effects may have a facilitative role when a species

arriving earlier at a site alters the biotic and abiotic

characteristics in a way that enhance the colonization

chances of a species arriving later (Connell & Slatyer,

1977).

As suggested by Hoverman & Relyea (2008), the

phenotypic plasticity frequently observed in freshwa-

ter organisms can be an important driver behind

priority effects. Phenotypic plasticity can be due to

historical exposure to predators, as in the case of the

potential for inducible defence expressed when preda-

tors are present (e.g. Petrusek et al., 2009). The

seasonal cyclomorphosis in rotifers and cladocerans

(Dodson, 1989) or the production of spines in phyto-

plankton (Van Donk et al., 2011) is commonly

observed effect of inducible defences. Predators thus

(i) select those organisms which have defensive

phenotypes and (ii) alter their traits in different

environments (Werner & Peacor, 2003), therefore

decreasing the colonization success of those organisms

with phenotypes more susceptible to predation

Fig. 6 Sketch illustrating the effectiveness of biological filters

in the colonization processes (priority effects). Disperser

reaching a newly created habitat without an already established

community (left panel) can more easily colonize it compared to

those reaching an ‘‘old’’ one with an already well-structured

community (right panel)
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(Covich, 2010). Phenotypic plasticity is also an

adaptive response to resource limitation in highly

variable environments as temporary ponds (Naselli-

Flores & Barone, 2011) and thus the degree of

morphological plasticity of the species historically

present in a given environment can be regarded as an

adaptive tool, which improves species fitness and

enhances priority effects against new colonizers with

different phenotypes.

Competition (or its absence) can determine the

presence and distribution of organisms in a given area.

As an example, the calanoid copepod Copidodiapto-

mus numidicus is commonly found in temporary

waters in Tunisia (Turki & El Abed, 1999), while in

Sicily it only occurs in permanent, recently built

reservoirs (Calvo et al., 1993). The lack of this taxon in

Sicilian temporary waters has been attributed to the

presence of already existing species-rich and well-

structured calanoid copepod assemblages which effec-

tively hinder its settling in these environments (Mar-

rone et al., 2006a, b). Similarly, Alfonso et al. (2010)

suggested that the differences observed between the

zooplankton assemblages of lakes and reservoirs in

Southern Italy and Sicily are to be ascribed to the

absence of pure lacustrine taxa in Sicily. This absence,

due to the lacking of natural lakes in the island which

might serve as source habitats for the colonization of

man-made reservoirs, allows typical littoral or pond

crustacean species to colonize a sub-optimal habitat

(i.e. the pelagic zone of large reservoirs), where they

are usually outcompeted by the more specialized

lacustrine taxa.

Reproductive strategies used by different taxa

might influence their dispersal and colonization rates.

The first, more evident, effect is related to the actual

chance of a given propagule which reaches a new

habitat to establish a vital population. A taxon which is

able to reproduce asexually or parthenogenetically can

successfully establish a population even when a single

specimen reaches a new water body. Conversely, for

those organisms with obligate sexual reproduction,

colonization requires the dispersal of a mated female

or, less realistically, the synchronic dispersal of one

male and one female which have to reach the sexual

maturity contemporarily, and to meet in the new

environment. Furthermore, non-gonochoric popula-

tions have a higher intrinsic potential for demographic

growth when compared to the sexual ones as each

member of the population is able to produce offspring

versus the ‘‘female’’ individual only in the sexual

populations.

The combination of (i) the costs (and uncertainties)

related with the search of the partner and (ii) the

slower demographic increase in the sexual organisms,

which is known as the ‘‘twofold cost of sex’’ (Maynard

Smith, 1978; Schön et al., 2009), gives an advantage to

non-gonochoric taxa or strains over gonochoric ones,

which present lower dispersal and colonization abil-

ities. The higher colonizing abilities of non-gonoch-

oric taxa or lineages is empirically confirmed by two

independent lines of evidences: (i) artificial (thus

recently built) habitats do much more often host

asexual taxa or lineages than sexual ones, and (ii) the

asexual/parthenogenetic lineages coming from south-

ern refugia proved to be much more efficient than their

sexual counterparts in colonizing the newly available

waterbodies in deglaciated Europe (e.g. Korn et al.,

2006; Muñoz et al., 2008; Schmit et al., 2013), leading

to a scenario of ‘‘geographical parthenogenesis’’ (see

Horne & Martens, 1998; Haag & Ebert, 2004). On the

other hand, there are some evidences that sexual

populations are competitively superior to the asex-

ual\parthenogenetic ones in the more ecologically

variable habitats, thus allowing them not to be

completely outcompeted by the non-gonochoric

strains (e.g. Schmit et al., 2013; Park et al., 2014).

Genetic evidences about dispersal and colonization

The ‘‘EiE’’ hypothesis and the ‘‘Cosmopolitanism

paradigm’’ were based on the finding of apparently

identical organisms in different continents, e.g. the vast

majority of Cladocera were till recently considered

cosmopolitan or subcosmopolitan taxa (e.g. Smirnov &

Timms, 1983; Margaritora, 1985; Araya & Zuňiga,

1985; Seaman et al., 1999; Flössner, 2000), so that

investigating their biogeography was considered impos-

sible or worthless (Fontaneto & Brodie, 2011). However,

upon more detailed morphological studies, some evi-

dences began to pop up about the presence of overlooked

morphological characters which in fact allow to distin-

guish among complexes of closely related and allopatric

taxa (e.g. Frey, 1982b, 1986, 1995; Reid, 1997).

Afterwards, with the advent and spreading of molecular

techniques, an ever increasing amount of evidences

showed that as a rule, in clear antithesis with the

‘‘Cosmopolitan paradigm’’, inland water organisms
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belong to a high number of different species, and that

these are characterized by a noteworthy degree of

endemism (e.g. Korn et al., 2006; Belyaeva & Taylor,

2009; Bode et al., 2010; Komárek & Mareš, 2012;

Krienitz & Bock, 2012; Marrone et al., 2013, and

references therein). The taxa belonging to these species

complex are sometimes hard or impossible to be told

apart based on morphology (e.g. Fontaneto et al., 2007;

Packer et al., 2009), while sometimes they prove to be in

fact distinguishable based on morphological micro-

characters which were previously neglected (e.g. Korn

et al., 2010). Nowadays, a large consensus is achieved on

the fact that the cosmopolitanism paradigm has to give

way to the evidences of pronounced ‘‘regionalism’’ or

‘‘provincialism’’ which emerged in almost all the

investigated taxa (e.g. De Gelas & De Meester, 2005;

Xu et al., 2009; Crease et al., 2012).

At a within-species level, quite a low ongoing gene

flow between conspecific populations is usually

observed (Boileau et al., 1992), which contributes to

the presence of marked phylogeographic structures in

the vast majority of inland water taxa (e.g. Gómez

et al., 2000; De Gelas & De Meester, 2005; Muñoz

et al., 2008; Marrone et al., 2013). Actual genetic

connectivity seems to be, as a rule, scarce to absent

even among nearby conspecific populations (De

Meester, 1996; Meglécz & Thiéry, 2005, Ketmaier

et al., 2003, 2012, but see also Aguilar, 2011), or it is

not possible to single out a coherent geographic

pattern in the distribution of the genetic lineages (e.g.

McCafferty et al., 2010), although a few exceptions

are known (Schwentner et al., 2012).

The evidences of a sharp regionalism and of a

noteworthy molecular structuring of even proximate

populations suggest the absence of a dispersal-med-

iated extensive gene flow among them: when this issue

was explicitly tested, it resulted that no measurable

gene flow occurred among populations of a temporary-

pond-dwelling anostracan for distance greater than a

few tens of kilometres (Ketmaier et al., 2012). The

apparent conflict based on the empirical evidences of

the absence of a significant gene flow among geo-

graphically close and conspecific populations of

organisms which have the potential for long-range

passive dispersal is known as the ‘‘dispersal – gene

flow paradox’’ (De Meester et al., 2002).

Boileau et al. (1992) were among the first authors

who stressed the importance of the ‘‘persistent founder

effect’’ in shaping the distribution patterns of

molecular diversity in pond-dwelling organisms;

according to them, the first lineages which colonize

a newly available habitat rapidly constitute very large

populations and egg banks in the sediments, that might

require an extremely long time to be interested by

genetic erosion. The rapid establishment of very large

populations saturates the habitat to its carrying

capacity in few generations and actually prevents

other conspecific lineages to successfully establish in

the site through diluting the contribute of invading

haplotypes in the resident population. Furthermore,

due to wallowing activities of large animals, pond

substrate where resting stages are laid might be turned

over, allowing the hatching of the viable resting stages

produced long time before (even decennia or centu-

ries, cf. Hairston & Kearns, 2002, and literature

therein) and until then buried in the sediments. This

buffering phenomenon stabilizes the genetic structure

of local populations, and hinders the successful

establishment of new immigrant genotypes (Rogers,

2014).

Such a neutral ‘‘dilution’’ effect on the invading

lineages is a priority effect and it is further reinforced

by the rapid establishment of local adaptations in the

resident populations. This selective process gives to

the residents a competitive advantage on the new-

comers, which reduces the impact of the new migrant

lineages. Although local adaptations might have a

primary role in shaping the geographical pattern of

genetic diversity in pond-dwelling organisms, this

aspect was overlooked for a long time. Only recently

the importance of the ‘‘isolation by adaptation’’ in

shaping the geographical distribution of genetic

diversity has been adequately stressed, when

approaches to the detection of the relative importance

of ‘‘isolation by adaptation’’ and ‘‘isolation by

dispersal limitation’’ were described (Orsini et al.,

2013).

The combination of the two processes (i.e. a neutral

dilution effect due to the priority effects and a

selective effect due to the establishment of local

adaptations in the resident lineages) was described as

the ‘‘Monopolization Hypothesis’’ (De Meester et al.,

2002), and it currently constitutes a cornerstone in the

interpretation of the distribution of the genetic diver-

sity in freshwater organisms.

This way, due to the additive effects of ‘‘priority

effects’’ and ‘‘local adaptations’’, in spite of the actual

existence of an ongoing and effective short- and long-
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range dispersal of freshwater organisms, the current

pattern of genetic diversity for these organisms does

much more mirror the historical events of colonization

rather than the actual existence of a contemporary

gene flow (cfr. Orsini et al., 2013; Ventura et al.,

2014). In fact, during the very first years after the first

colonization of a new habitat, it is actually still

possible for immigrant conspecific specimens to

establish themselves, possibly taking advantage of

the ‘‘outbreeding vigour’’, however, priority effects

become soon fully operational, thus hindering or

halting the establishment of alien lineages and

sustaining the genetic differentiation of the local

population from those inhabiting nearby water bodies

(Ortells et al., 2014 and references therein).

The accumulation of largely consistent genetic

evidences shows that in spite of the existence of a

significant realized short- to long-range dispersal for

organisms producing resting eggs, their dispersal is

actually followed by a local establishment of migrat-

ing genetic lineages only when they reach sites where

no conspecific lineages are already established (cfr. De

Meester et al., 2002; Orsini et al., 2013; Ventura et al.,

2014) or during the very first few years after the first

colonization of the site, i.e. before the combination of

priority effect and local adaptations grants the local

population an insurmountable resistance and resil-

ience against newcomers (Ortells et al., 2014).

Final remarks

Although a general consensus on the relative impor-

tance of different physical and biological vectors has

not to date been achieved, sound evidences are

available on the actual ability of inland water organ-

isms for long- and short-range passive dispersal, with

obvious idiosyncrasies linked to each taxon, habitat

typology, and landscape characteristics of the different

case studies. In good accordance with the early

observations carried out in the XVIII and XIX

centuries, it is now demonstrated that the combination

of both physical and biological vectors is actively

influencing dispersal of freshwater taxa from an

‘‘aquatic island’’ to another across unfavourable

habitats like both ‘‘terrestrial’’ and ‘‘marine’’ oceans.

However, the progresses achieved in the last decades

in taxonomy and genetic studies, and their careful

integration, have first highlighted the existence of an

apparent ‘‘dispersal – gene flow paradox’’. A clearer

distinction between the ‘‘dispersal’’ and the ‘‘actual

establishment’’ steps in the processes of colonization

by organisms producing resting stages allowed to

overcome the paradox. This distinction was achieved

through the identification of the effects and processes

which might condition the realization of a significant

gene flow among conspecific populations.

In spite of the high potential for passive dispersal,

current inland water communities are now considered

outcomes of both ancient historical processes and

ongoing local adaptations. Furthermore, they host

well-diversified (and often private) taxa and lineages

even at a small geographical scale. This highlights the

need for a careful protection and management of the

relic habitats and biota, which are the result of an

extremely long history of independent evolution.

In the light of the current status of knowledge, the

theoretical scenario depicted by the EiE hypothesis,

and its implications in conservation and biogeography,

has thus to be definitively forsaken. Moreover, the

development of modern and effective conservation

management strategies needs further in-depth inves-

tigations on the geographical distribution of genetic

diversity and on the historical and current relation-

ships among different populations and biota.
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Korn, M., F. Marrone, J. L. Pérez-Bote, M. Machado, M. Cristo,

L. Cancela da Fonseca & A. K. Hundsdoerfer, 2006. Sister

species within the Triops cancriformis lineage (Crustacea,

Notostraca). Zoologica Scripta 35: 301–322.

Korn, M., A. J. Green, M. Machado, J. Garcı́a-de-Lomas, M.

Cristo, L. Cancela da Fonseca, D. Frisch, J. L. Pérez-Bote
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