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Introduction

Constant technological worldwide development and increasing world popu-
lation are the most appropriate indicators to understand how much rapidly
energy demand increases. The reached levels impose incisive and well artic-
ulated energy production and stock plans, in order to sustain such global
growth rate. These problems leaded to the concept of Sustainable Devel-
opment, a body of relationships among human activities and biosphere in
which they take place, assuring actual and future generations needs.

Nowadays, continuous energy demand is mainly satisfied by non-renew-
able fonts. Sustainable development of the energetic system has the target to
improve human being quality, developing production energy methods with
low environmental impact. Actual transformation energy systems are not
enough efficient to match the present needs with the sustainability require-
ments well defined in the Brundtland report.

All that acts as a strong driving force towards development of high ef-
ficiency energy production and distribution. Great expectations to help in
finding solutions to these questions are placed on solid protonic conductors.
They propose as efficient devices for energy conversion through their use in
fuel cells, besides playing a fundamental role in realizing reactors for nuclear
fusion plants. Protonic conduction process is not well understood and many
groups around the world are hardly working in this fast growing field. From
a fundamental physics viewpoint studies on proton conduction and its coun-
terpart, proton trapping, appear to show the same exciting ingredients of
the electron conduction/trapping in silver halides in the 50s of last century.
That is, great pressure towards applications and the challenge to understand
structural and dynamic properties of matter at microscopic level. Essentially
two main approaches are used: experimental and computational ones.

The study here proposed has the aim to investigate the local environ-
ment of protonic sites and the protonic transfer phenomenon by means of
computational techniques, in order to bring a further contribution to the
interpretation of experimental data and to suggest specific researches in de-
signing new protonic conducting materials. In fact, results coming from
computation can shed light in fundamental physical aspects and subtleties
virtually impossible to study experimentally.

In particular, barium cerate and barium zirconate perovskites and their
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8 INTRODUCTION

derived protonic conductors are studied, making correspondences among
structural modifications induced on the native compound by cation sub-
stitution and the proton conducting ability. Ab initio as well as Molecular
Dynamics computational methods are used. Among the outcomes, non triv-
ial features of the yttrium atom as a substituent for the tetravalent cation in
perovskite materials is inferred. Our findings reproduce experimental results
and provide a novel structural explanation of them. Also, first simulation
results on proton dynamic reveal unexpected features which open room to
further research work.

The first chapters is a survey on proton conduction mechanisms and
related materials; next, a general overview on computational models and
the state of art of the title compounds is given, describing in details the
models used for the present calculations. Finally, three chapters are devoted
to the presentation of the obtained results, discussing related implications
on designing new protonic conducting materials.



Chapter 1

Protonic Conductivity and
Related Materials

The ability of conducting protons is a characteristic owned by as many as
different class of structures — be them crystalline, molecular or amorphous
ones, and have a fundamental role in many important processes like photo-
synthesis or electricity production. Studies on it span across many scientific
field of interest, and efforts are mainly devoted to understand the protonic
conduction mechanism and to design, as the last aim, protonic conduct-
ing materials. The latter are fundamental part of devices of technological
interest, Fuel Cells among the most important. These are a good candi-
date for energy conversion satisfying either the actual progress needs or the
requirements for a sustainable development.

Nonetheless, the details of the elementary processes on which protonic
conduction is based are still not clear, since they often depend on the specific
systems taken into consideration. So, in order to describe the phenomenon
of the protonic conductivity in a unitary framework, a good starting point
could be to single out which are the common features of the proton be-
haviours in the different environments it can reside.

1.1 Chemistry of the Proton

Complexity of the protonic conduction mechanism can be easily viewed if
we look briefly to the chemistry of the proton. The proton is the only ion
which is not surrounded by electronic shells, so it is strongly interacting
with the electron density of its environment. In metals, for example, the
delocalized electron density of the conduction band encloses the proton,
thus creating a positive or negative ion according to the position of H 1s
energy level relatively to the Fermi energy of the pure metal. In non-metallic
environment, the proton interacts with the electron density of its nearest
neighbour atoms. If the latter are oxygen atoms, proton can create with
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10 CHAPTER 1. PROTONIC CONDUCTIVITY

them an O−H bond of about 1 Å length and hydrogen bonds of about 2.6
Å length, all with a strong directional character.

In compounds with a low concentration of electronic charge carriers,
proton can be considered confined within the electron density enclosing it.
This situation is observed, for example, in a rigid array of host species like
a crystalline oxide, where no significant translational motion of protons is
allowed and only the local ones (e.g. vibrations) occur. Nonetheless, in the
1960s, Fischer, Hofacker and Rathner understood that the dynamic of the
proton environment may assist proton diffusivity [1, 2, 3, 4].

The ways in which proton diffuses can be grouped into two big mecha-
nisms, both sharing the hypothesis that proton is not free but it is bounded
to some chemical species. The first simple one is the vehicle mechanism [5],
in which proton migration is due to the translational dynamics of bigger
species: the proton is bound to a vehicle (e.g. H3O+) whose diffusion rate
determines the one of the proton. If the “vehicle” cannot have a drift veloc-
ity but only local motions (e.g. oxygen atoms in a crystalline matrix), the
protons can be transferred from one “vehicle” to another through reorgani-
zations of the proton environment; this second one is termed as Grotthuss
mechanism [6]. The reorganization usually involves the rearrangement of
the vehicle and its surrounding as well as dipole reorientation*. The rele-
vant rates for this mechanism are the ones relative to the proton transfer
and the reorganization of its environment; also, increasing the temperature,
proton diffusion progressively changes from Grotthuss-type dominated to
vehicle-type dominated mechanisms.

1.2 Protonic Conduction Models

In order to understand the details of protonic conduction mechanisms, it
turns to be necessary to analyse the general features of the hydrogen bond
and to single out which are its peculiarities in proton conducting materials.

The hydrogen bond is a weak directional interaction, whose energy values
range from 0.1 to 0.6 eV, about 1 order of magnitude lower than those of
other types of chemical bonds. This enables hydrogen bond to adapt easily
to the environment and to be sensitive to thermal fluctuations. In liquid
systems where hydrogen bonding is the main intermolecular interaction,
like H2O and NH3, short-range ordering appears with strong fluctuation in
time and space, leading to “flickering clusters”, as they were termed in first
studies on local structure of liquid water [7].

The isolated dimer H5O+
2 has a minimum when the separation O· · ·O

is of 2.40 Å, corresponding to a symmetrical hydrogen bond; this bond is
as much weaker as more hydrogen bonds are found in the nearby like, for

*Electron density relative to the bond between the proton and the bounded vehicle
usually singles out a dipole because of the strong ionic character of the proton.



1.2. PROTONIC CONDUCTION MODELS 11

example, in the bulk of liquid water. Stronger proton donor/acceptor bonds
confine the proton donor/acceptor distance, so determining the hydrogen
bond interaction. It seems that compounds with the highest proton diffu-
sivity are hydrogen bonded liquids or solids; examples of these situations
are heteropolyacid hydrates (e.g., H3PW12O40·29 H2O) or acidic salts of
oxoacids with big cations (e.g.,CsHSO4) [8]. Deeper understanding of pro-
ton diffusivity, therefore, must include hydrogen bond fluctuations as well
as the role of the environment on its properties.

The hydrogen bond must provide a path for letting the proton transfer
from its donor to the acceptor species, since this seems to be the most
limiting step of the overall proton diffusion.

As usually happens in most proton conductors, the proton is bound to
an oxygen atom and it is transferred towards an other oxygen one. As a
first simplified attempt of describing the proton transfer, let us consider
the position of all the nuclei except for the hydrogen one fixed; let us call ~r
and ~R the proton transfer coordinate and the oxygen coordinate respectively.
Following the Born-Oppenheimer approximation [9], let us suppose that only
the electronic cloud is allowed to adapt itself to the position of the proton
along the transfer coordinate ~r. Studies on a large variety of compounds
show that the equilibrium position of the proton in a hydrogen bond for
a given O· · ·O separation is quite uniform and the closest possible O· · ·O
distance is about 2-4 Å with a symmetrical strong hydrogen bond [10]; by
using these data, the energy potential has been parametrized to a Lennard-
Jones type potential [11]. With this choice, the energy potential curve versus
the oxygen separation ~R assumes a symmetric double well shape with a
barrier that decreases when the O· · ·O separation diminishes. During the
transfer, the proton is always surrounded by a non-zero electron density; the
more significant is this last one, the lower is the height of the energy barrier
the proton must overcome. In short, proton transfer can be described as a
hopping process.

The average oxygen O· · ·O distance ~R0 in proton conductors is usually
higher than 2.6 Å and the corresponding transfer energy barriers are higher
than the observed activation enthalpies of the whole protonic conduction
process. This happens probably because thermal fluctuation in ~R can lower
the effective barrier in the energy surface E(~r, ~R). In this simplified picture,
in presence of a rigid array of proton donors and acceptors, the activation
enthalpy is provided only by the proton vibration with corresponding O−H
vibration frequency of ∼ 1014s−1. Excitations in ~R lower the energy barrier,
so creating a proton transfer path that can become of diffusive type for
low O· · ·O separations (adiabatic transfer). In this latter case, the only
relevant frequency is that one of the proton donor/acceptor oscillation which
is usually about 2 order of magnitudes lower than the O−H stretching one,
as it depends on the masses of the moieties of the vehicle.

In our simplification, the total energy E(~r, ~R) can be written as follows:
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E
(
~r, ~R

)
= E~R (~r) + E

(
~R
)

(1.1)

where the first term is the Lennard-Jones model potential and the second
one contains second or higher order correction terms. Last term takes into
account the fundamental vibration frequency of an oxygen atom in an oxide
lattice (e.g. 1013s−1), and possible anharmonic and repulsive effects which
prevent that proton donor to acceptor distance shorten below a limit value.
Generally, strong anharmonicity is shown by all kind of protonic conductors,
because of strong vibrational coupling among more than one normal mode
[8].

In the case of harmonic donor/acceptor vibration, the transition state en-
ergy and the donor/acceptor separation are reduced compared to the static
barrier. Reducing the frequency values of ~R normal modes results in a
shortening of the average donor/acceptor separation; by further reduction
of the ~R frequencies, the energy of the transition decreases keeping almost
unchanged the ~R equilibrium value around 2.4 Å, at which the barrier along
~r disappears. In the last case the proton transfer frequency is that of the
donor/acceptor vibration, often similar to the one of the vehicle diffusion.

The simplified approach in describing terms contributing to the total
energy of a protonated system is completed by taking into account all the
remaining species besides the proton and its carrier, that is, those moieties
belonging to the solvent. This last one can be described by using a multi-
dimensional coordinate ~S, modifying the symmetry of the proton transfer
potential, for example, by polarizing the hydrogen bond. In this scenario,
the symmetric double well potential discussed above becomes asymmetric
making inequivalent the two possible sites in the hydrogen bond.

Let us call ~S0 an isotropic average solvent configuration not changing the
symmetry of the double well proton potential. A fluctuation of ~S0 can be
produced by proton motions in the hydrogen bond and, at the same time,
this fluctuation can induce proton-transfer events (see Figure 1.1).

When ~S = ~S0, the proton-transfer potential is symmetrical. The longer
the proton oscillates in one of the two equivalent stable positions, the more
it stabilizes this site at the expense of the other one, assisted by the sol-
vent relaxation. Solvent interactions decrease the rate of proton transfer
because the activation enthalpy increases by the amount equal to the sol-
vent activation energy; this depends on the coupling between the solvent
and the protonated moiety, and on the rate of proton-transfer compared
to that of solvent relaxation. Diffusion and structural reorganizations like
rotation and reorientation are phenomena that can be described by time
changes of the ~R, ~S and ~r coordinates, as elements of the proton-conduction
process; in this sense, the above discussion about the contributions to the
total energy, applies as a rule irrespective of which processes the coordinates
represent. Like the proton-transfer mode, also the rates of diffusion, rotation
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Figure 1.1: Schematic representation of the protonic transfer: ~r and ~R are
the proton and oxygen coordinates respectively, while with ~S the multi-
dimensional solvent coordinate is indicated.

and reorientation are expected to depend on fluctuations of the positional
coordinates of the environment. Therefore, the rate of proton transfer and
of breaking the hydrogen bond is expected to be affected by fluctuations of
the O· · ·O separation. The weakness of the hydrogen bond makes it sensi-
tive to the coupling with the environment so favouring pattern of hydrogen
bond networks [8]; in the extreme cases, this patterning could result in a
totally disordered or totally ordered network in which the number of sites
is reduced to the number of protons.

To establish proton transport over macroscopic distances, all the ele-
ments involved in the transport process have to cooperate in order to pro-
duce an uninterrupted proton-transport trajectory. The problem is that
the elementary reactions may conflict due to their coupling with the en-
vironment. Short hydrogen bonds allow proton transfer between adjacent
donor and acceptor species but deny the possibility of diffusion, rotation,
and reorientation of the involved moieties, whereas weak hydrogen bond-
ings favour the opposite behaviour. Good proton-conducting phases usually
don’t show strong hydrogen bonding. In any case, thermal fluctuations of
the protonated structure let the system pass through configurations assisting
proton hopping, to configurations in which hydrogen bonds are weakened,
so allowing structural relaxation.

The modes involved in the solvent rearrangement contribute to the self-
localization of the proton at one side of the hydrogen bond; on the other
hand, they contribute to the formation of a proton diffusion trajectory. In
this sense, non polar compounds with big, rigid anions are among the best
proton conductors. Rigid anions give only small contributions to the solvent
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effect because they efficiently separate neighbouring hydrogen bonds by their
large size, this diminishing the mutual polarization of neighbouring hydrogen
bonds. In this way, proton disorder provides an isotropic environment that
minimizes the barrier for the reorientation of these anions, averaging solvent
effects and supporting conduction through Grotthuss mechanism.

1.3 Protonic Conductors

Protonic conductors, in general, are electrolytic materials able to sustain
protonic transport, through which hydrogen migrates from the anode to the
cathode during electrolysis. Using this definition, protonic conductors are
those compounds in which electric conduction is realized by protonic species
whose charge is positive - i.e. the bare proton, the hydronium ion, ammo-
nium ion (H+, H3O+, NH+

4 ), or any other species that can be considered a
protonic carrier like the HS – ion.

Classification of protonic conductors can be done according different pa-
rameters: i) working temperature, ii) method of synthesis, iii) nature of the
compound, by dividing them, as a first attempt, in organic and inorganic
ones. Water contents, its physical phase, the presence and the amount of
proton excess allow a further subdivision of the proton conducting materials.

Several protonic conductors are characterized by the presence of domains
in which liquid water is present; these are considered two-phases systems.
An example of these systems are polymeric membranes, having a perfluori-
nated backbone and side chains terminated by acidic −SO3H groups, het-
eropolyacids or acidic phosphonates [8]. These materials must be hydrated
in order to establish an equilibrium between protons and water molecules
(H2O�H3O+), assuring the protonic transport. Protons are inserted into
the polymeric structure through ionic exchange of alkaline cations. The
high protonic conduction, in these systems, is mainly produced by the fast
dynamic of the water molecules that are, in membranes, ideal protonic ve-
hicles.

An other group of protonic conductors is formed by compounds charac-
terized by the presence of crystallographic protons. Organic and inorganic
hydrated compounds belong to this group. In these materials some oxygen
atoms (oxide ion) are bound to two of three hydrogen atoms, or one single
proton is present per each anion, like in the cesium hydrogen-sulphonate
(CsHSO4). Other examples are acidic salts, hydroxides, hydroxicarbonates
and other protonated species. Formation of defects like protonic vacancy or
interstitial protons is a necessary condition for the conduction in hydrated
crystallines, acid or hydroxides. Structural defect are created mainly by
thermal disorder changing the local stoichiometric ratio of the compound or
by doping it with species with oxidation number different from the stoichio-
metric formal one. These materials here discussed have the disadvantage to
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decompose themselves at temperatures higher than 373 K. The decomposing
temperature is higher if the water contents is lower, but also lower, on the
other hand, its protonic conducting efficiency.

A third protonic conductors group is formed by materials in which pro-
tons do not belong to the structure, but are present as defects acquired when
materials are synthesized or after absorption of hydrogen or water from the
atmosphere in which they are. These materials are able to tolerate high
temperatures or dehydration treatments, without fundamental structural
alterations. In these materials, one proton is incorporated into interstitial
sites and its mobility does not depend overall on native defects. The ability
to acquire protonic defects may be improved by doping the compound with
ions that promote the creation of defects like oxygen vacancies. Therefore,
several studies are addressed to the investigation of the equilibrium that
involve water vapour, protons and structural vacancies in the compound.
A large number of structures, called High Temperature Protonic Conduc-
tors (HTPC), such as perovskitic compounds with general stoichiometry
X:ABO3 (i.e Y:BaZrO3) or complex perovskites like Ba3(CaNb2)O9, and
other similar structures (i.e. Ba2In2O5 brownmillerite[12]) belong to this
class.

1.4 General Properties of Protonic Conductors

Each of the classes of compounds above mentioned is represented by those
conductors that have a maximum conductivity in the range of 10−3 − 10−2

S/cm as a function of temperature. These values are characteristic of the
specific material and can undergo variation after physical treatments: at
high temperature, conductivity decreases due to reversible or unreversible
water loss (polymeric compounds), due to decomposition of the material
(hydroxides or acidic salts) or due to reversible loss of protons in the case of
the oxides. On the other hand, high temperatures are required, in general,
to get good conductivity values. In general, protonic conductors have their
largest yield in a narrow temperature range.

In the Arrhenius diagram of Figure 1.2, conductivity curves of some sub-
stances, representative of each class, are shown as a function of the working
temperature [8, 13, 14, 15]. From the analysis of the figure, it is possible
to observe that the high conductivity of the hydrated NAFIONr polymeric
membrane, at about 400K, is comparable with that of an aqueous solution
of HCl 1M; beyond that temperature, the material starts to dehydrate. In
the same figure, conductivity curve of CsHSO4 is reported, representative of
systems with crystallographic protons: it behaves as fast proton conductor
round 440K; on the other hand, it melt at a temperature of about 500K. At
last, some phosphates and oxides show a good conductivity up to 900K. At
higher temperatures, their protonic conductivity usually reaches a maximum
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Figure 1.2: Conductivity data for different kind of protonic conductors as
reported in [13] (redrawn).

and then decreases after protonic defect loss. Data available for Ba2YSnO5.5

[13] and for Y:BaZrO3 [15] show that conductivity of these materials is sim-
ilar to that of BaCeO3 compound at low temperature. Furthermore, data
related to mixed perovskite Ba:LaErO3 [16] and to Sr:LaPO4 [17], show that
their related curves raises up to a maximum conductivity value without be-
ing this a significant conductivity improvement.

Polymeric membranes are used in various industrial processes for their
fair good conductivity and technological features, but their major draw-
backs are that their damage in extreme chemical environment or at high
temperatures; furthermore, in many application like hydrogen separation,
gases must be cooled and then reheated, an energy expensive process, ob-
taining a low purity gas at flux rates suitable for industrial purposes [18].
Some crystalline compounds with crystallographic protons, like CsHSO4,
have the tendency to lose the hydration water with increasing temperature;
it is then necessary to increase the pressure to keep the conductivity at rel-
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atively high values. Alternatively, other similar compounds like zirconium
sulfoaryl phosphonates show that a high hydration of the compound tends
to level the acidic strengths of the sulfonic group, thus determining its full
dissociation. Substitution of the −SO3H group with thermally more stable
acid groups (i.e. phosphobic acid group) lead to protonic conductors stable
up to 580 K [19]. At temperature higher than 700K, High Temperature Pro-
tonic Conductors family of materials shows pronounced proton conducting
properties; notwithstanding their valuable feature of working at high tem-
peratures, they still suffer from chemical degradation against acidic gases,
such as CO2 and SO2, that can be present in the reaction environment[20].

1.5 Solid Oxide Protonic Conductors

In the early 1980s, Iwahara and co-workers demonstrated that proton con-
ductivity occurs in doped SrZrO3 and SrCeO3 [21, 22] perovskite com-
pounds, attracting great interest towards ABO3 perovskite materials be-
cause of their potential as electrolyte materials in several electrochemical
devices [23, 24]. Since then, this kind of ceramic oxides gained great inter-
est, proposing themselves as promising materials for their chemical stabilities
along with high proton conductivity [13, 20, 23].

A ceramic protonic conductor is a solid solution whose structure is, usu-
ally, of perovskite type. Strictly speaking, with the term perovskite� it is
named the calcium titanate mineral with CaTiO3 as structural formula;
however, all mixed oxides with isomorphic structure are also called with the
name perovskite.

A crystal of perovskitic type has structural formula ABX3. In this, A and
B are positive ions while X is a generic negative ion. The ideal perovskitic
structure is made by octahedra formed by oxygen atoms lying on the vertices
like shown in Figure 1.3�.

The symmetry group of the ideal perovskite structure is Pm3̄m. The
axes formed by B−X octahedral bonds can be taken as the crystallographic
ones. A solid oxide of perovskitic type has seldom the ideal structure just
described; more often, according to several kinds of A, B and X cations and
anions, the structure show distortions with respect to the cubic symmetry
[25].

In order that protonic conduction can occur, hydrogen atoms must be
incorporated into material structures. This can be usually accomplished by
a two-step procedure. In the first step, a certain amount of tetravalent B
atoms are substituted by trivalent species. In this way, one oxygen vacancy

�Perovskite is named after a Russian mineralogist, Count Lev Aleksevich von Perovski,
who was appointed Russian secretary of the internal affairs in 1842 [25].

�All the figures concerning molecular structures reported in this work have been real-
ized with the help of VESTA [26] and Gimp [27] softwares.
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(a) (b)

Figure 1.3: Ideal cubic perovskite structure. The blue and brown spheres
represent the position of the A and B cations respectively, while the red
spheres indicate the position of the X anions.

per couple of doping cations is introduced in the material. In the second step,
water vapour is steamed on the doped material producing structural O−H
groups. In this sense, water adsorption is a dissociative process producing
acidic centres (i.e. mobile protons) that is schematically represented by
using the Kröger-Vink notation§:

H2O(g) + V••O + OX
O � 2OH•O. (1.2)

In this way, protons are introduced into the host matrix and hydrogen
diffusion, occurring through adjacent oxygen atoms [8, 28], may arise [29,
30]. As a consequence, local distortions involving doped B-sites [12] affect
the proton environment, strongly influencing the mechanism of protonic
conduction. Therefore, the study of the doped sites and their surrounding
becomes of crucial importance in rationalizing local conduction details [29].

Although the substitution of tetravalent cation is the starting point to
incorporate protonic defects into perovskite structures, it seems that it can
reduce the proton mobility, as seen, for example, in proton conductivity
measurements on BaZrO3 where the activation energy for proton hopping
is strongly dependent on dopant species [31]. Moreover, dopants can act
as local “traps” for the protons, further affecting their mobility and their
migration activation energy [32, 33, 34, 35, 36]

Ceramic protonic conductors of perovskitic kind, if put into atmosphere

§In Kröger-Vink notation Xb
a means that the defect X with charge b substitutes for

the element a; the charge b is indicated with ′ if positive, x if null, • if negative.
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containing hydrogen at temperatures round 1000K, show a drop of elec-
tronic conductivity and the appearance of protonic transport phenomena
[23]. In these experimental conditions, typical conductivity values are of the
order of 10−2 S/cm. In these oxides the protonic conduction phenomenon
in these oxides has been verified through experiments on the electrochem-
ical transport of hydrogen in atmosphere containing hydrogen or water
vapour at high temperature[22, 37]. Some doped zirconates like calcium,
strontium and barium ones, (CaZrO3,SrZrO3 and BaZrO3), show hydra-
tion and successive appearance of the protonic conduction phenomenon at
high temperature[15, 38]. However, the related conductivity values are one
magnitude order lower than those characteristic of the cerium perovskitic
compounds. Among the mentioned oxides, ceramic compounds BaCeO3 de-
rived show the highest conductivity values; on the other hand, zirconates
hardly react in acidic environment and are stable in carbon dioxide CO2

containing environments, unlike the cerate compounds that already a tem-
peratures lower than 1000K start to form carbonates [20].

1.6 Technological Applications of CeramicProtonic
Conductors

Ceramic protonic conductors can be used as electromotive force (e.m.f.) gen-
erators or as electrochemical carrier of hydrogen in solids. In some kinds of
galvanic cells, the solid oxide works as an electrolyte. If the e.m.f. of the cell
is used as indicator of the hydrogen chemical potential, the corresponding
device is called activity sensor ; if the power produced by the cell is used,
the device is called fuel cell [23]. As underlined in the previous sections,
an important function of the protonic conductors is the hydrogen transport,
based on the migration of the proton from a chemical species to an other
one inside the solid oxide. This feature can be applied in devices called hy-
drogen pumps, that have the aim of separating and extract hydrogen from
gas mixtures. Protonic conductors can also work as electrolysers if used for
extracting hydrogen atoms from compounds like water or other chemical
species that contain hydrogen.

Other possible applications of the protonic conductors as solid state elec-
trolyte materials are listed in Table 1.1.

Hydrogen Gas Sensors. A proton concentration difference between two
sides of a diaphragm, made by a protonic conductor, generates an electro-
motive force (EMF ). This is a kind of hydrogen concentration cell in which
the EMF calculated is proportional to the logarithm of the ratio of the
hydrogen partial pressures at the two sides of the membrane.

If both pressures values are known, the EMF electromotive force is a
measure of the hydrogen activity. In this electrochemical cell, the electrode
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Table 1.1: Devices using High Temperature Proton Conducting solid elec-
trolytes.

Function Applicability Devices

EMF Power Fuel Cells
Signal Steam sensor

Hydrogen sensor for molten metals
Hydrogen gas sensor
Hydrocarbons sensor
H+−D+ isotope sensor

Electrochemical Electrolysis Steam electrolyser for hydrogen
permeation production

H2S electrolyser for desulfurization
HCl electrolyser for Cl2 recovery
Electrolyser for NOx removal
Electrolyser for tritium cycle

Separation Hydrogen extractor
Hydrogen pump for tritium cycle
Regulator of hydrogen gas pressure
Steam pump
Isotope concentrator

Reaction Membrane reactors for
hydrogenation and dehydrogenation
of organic compounds

with the higher partial hydrogen pressure is the negative one.

Hydrogen sensors of this kind have been examined using test cells in
which the electrolytic material is made by ceramic conductor derived by
SrCeO3, BaCeO3 and CaZrO3[39, 40, 41]. This kind of cell generates a
stable and reproducible e.m.f.; the response is fairly fast (it needs about 20
s for the EMF reaching the 90% of the theoretical value) and the trend of
the electromotive force is in a good agreement with the expected values [39].

In order to individuate a standard, among systems analogous to those
here described, several kind of solids have been examined [42]. A good
candidate seems to be a mixture of aluminium phosphate (AlPO4), partially
hydrated, and lantanium cobaltite (LaCoO3).

This kind of sensors can also be used at high temperature, to individuate
the presence of water vapour or gaseous hydrocarbons [43].

Hydrogen Sensors for Melted Metals. Sensors of this kind use indium-
doped calcium zirconate compounds (i.e. CaZr0.9In0.1O2.95) and have porous
platinum electrodes. The gaseous phase comes into contact with melted
aluminium at about 1000K and hydrogen chemical potential in this phase
is equal to the one relative to hydrogen content in the melted aluminium.
Knowing the EMF of the cell with a fixed hydrogen concentration, it is



1.6. APPLICATIONS OF HTPC 21

possible to know the hydrogen partial pressure, thus the amount of hydrogen
present in the aluminium.

The usefulness of a fair accurate measure of the presence of hydrogen in
metals lies in the increasing demand of metallic material with a high purity
degree. This kind of sensors can also be used with elements like zinc or
copper. In the case of copper, aluminium compounds are preferable because
of their stability at high temperature, even if their conductivity is not so
high[44].

The problem with this devices is the difficulty of finding materials to be
used as standard for the reference hydrogen partial pressure in the sensor,
because of their instability at high temperatures.

Hydrogen Isotope Sensors. The structure of a device able to reveal
the presence of hydrogen isotopes is similar to a concentration cell for the
protium. The sensitive element is always a ceramic protonic conductor: if
on one side of the membrane protium is introduced while on the other one
deuterium is present, the cell generates a stable and reproducible electro-
motive force [23]. An important relation that connects the EMF generated
by the cell to the other main physical quantities is the following equation:

EMF ∝ ln

uH
γh
p
′1/2
H2,I

+ uD
γD
p
′1/2
D2,I

exp
(
−∆µ
2RT

)
uH
γh
p
′1/2
H2,II

+ uD
γD
p
′1/2
D2,II

exp
(
−∆µ
2RT

) (1.3)

where

∆µ =
(
2µ0

D − µ0
D2

)
−
(
2µ0

H − µ0
H2

)
(1.4)

and µ0, p, γ, u are, respectively, the standard chemical potential, the
partial pressure, the activity coefficient and the mobility of the species spec-
ified by subscript (H for protium and D for deuterium) p

′
H2

and p
′
D2

are the
partial pressures of H2 and D2 in equilibrium while roman numbers distin-
guish between the two sides of the cells [45]. The validity of the equation
1.3 has not been completely verified because it is difficult to determine the
quantity ∆µ, since the measure of the standard potential of protium and
deuterium in the electrolyte is not easy. However, once the temperature and
the kind of electrolyte are fixed, the Equation 1.3 reproduce the trend of the
EMF with a unique ∆µ value for the different kind of cells for the hydro-
gen isotopes. Indeed, it was shown that EMF depends linearly on the D2

concentration, if a mixture of protium and deuterium is used. This feature
can be used to measure the concentration of hydrogen isotopic species in
systems used in nuclear fusion processes [45].
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Hydrogen Pumps. Hydrogen is the main species carried in protonic con-
ductors. Thanks to this feature, it is possible to use ceramic protonic con-
ductors to separate hydrogen from other moieties in a gas mixture. A system
qualified to this aim is called hydrogen pump.

A hydrogen pump can also extract hydrogen from compounds in which it
is present like H2O and H2S; in this case, the device works as an electrolyser.
Several research group have studied these systems and their performances
[31, 46, 47, 48, 49, 50]. Recently, it has been found that the hydrogen
amount carried by ceramic electrolytes derived from SrCeO3, grows in a
drastic way when a few percentages of water vapour is present [51]. However,
separation rate is still relatively low to use these devices in systems for energy
production.

Solid Electrolyte Membrane Reactors. A generic solid electrolyte
membrane reactor (SEMR) is made, in a schematic picture, by a membrane
separating two reaction chambers. This membrane has the role to transfer
at least one reactant or one product from one side to the other of the reactor
with the advantage that a single device is able to trigger a reaction (act-
ing like a catalyst) and to separate the related components (reactant and
products)[52].

Solid oxide ceramic membranes belong to the general category of inor-
ganic dense membranes. On both sides of a membrane two porous electrodes
are deposited; at high temperatures, selective permeation of only one ionic
species like O 2 – , H+, Na+ or Li+ is allowed. The SEMR are devices sim-
ilar to fuel cells, thus they can be exploited to produce electric energy or
chemical energy; in literature, applications like catalysts are also reported
[53, 54, 55, 56, 57, 58, 59, 60, 61].

A SEMR is mainly made by a solid state electrolyte membrane (that,
in the most of cases, carries O 2 – or H+), on the sides of which two porous
electrodes are deposited. A counter electrode and reference electrodes are
exposed to gas mixtures containing oxygen or hydrogen, while the load elec-
trode is exposed to the reactant mixture and serves also as catalyst of the
chemical reaction. If the hydrogen or oxygen chemical potential is different
in the two chambers separated by the membrane, a drift force is generated
which allows to the ionic species O 2 – ] or H+ to cross the lattice structure
of the electrolyte. The appearance of a current or of a potential difference
between the electrodes is associated to this process.

This kind of cell can act as: i) electrochemical sensor — cell potential
depends on the concentration of compounds present on both sides of the
membrane [62]; ii) fuel cell — the free reaction energy is directly converted
into electric energy, overcoming the thermodynamic limitations of the con-
ventional thermal engines [63, 64]; iii) reactor in which catalytic activity
is modified to get higher conversion rates [61, 65]. Other interesting ap-
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plications are solid state batteries [60], oxygen separators and dehumidifier
[22].

The common feature to almost all the kind of SEMRs is that of carrying
only one chemical species, let them be used to separate oxygen from the
nitrogen in the air or for hydrogen production. In the first case, if the
cathode is exposed to the air or to some mixture containing oxygen, only
this last one is usually transferred through the electrolyte. This diminishes
the volumetric flux of the reactants; furthermore, presence of impurities that
can inhibit the catalysis are avoided [60].

It has experimentally shown that oxygen electrochemical contribution
to the membrane electrodes can change and eventually improve reaction
conversion rates, modifying selectivity and removing unwanted processes like
coke formation [66, 67]. Similarly, an equilibrium shifting of hydrogenation
reactions has been observed if hydrogen develops at the electrodes [68].

SEMRs can also operate as devices in which the production of chemical
reactants is coupled with energy production. Keeping a concentration differ-
ence between active species on one side and on the other of the membrane,
it is possible, to produce electric energy and, at the same time, to increase
the reaction conversion rate [61, 69].

1.7 The Key-role of the Protonic Conductors for
a Sustainable Development.

Constant demographic growth and continuous technological worldwide de-
velopment coincide with constant increase of energy demand; the reached
growth level and its consequences made indispensable an evaluation of the
future availability of energetic stocks sufficient for sustaining the global
growth. So, we got the concept of Sustainable Development, a body of re-
lationships among human activities and biosphere in which they take place.
Such relationships should assure the current needs without compromising
that future generations will do the same¶.

Table 1.2 compares the consumption of different energy forms, expressed
as million tonnes of oil equivalent (MTOE)�, with the world population and
the per capita energy use in the years between 1900 and 1997 [70, 71, 72].

The quick development of industries and transports, together with an
improvement of life standard corresponds to an energy consumption growth
from 911 MTOE in the year 1900 to 9647 MTOE of the 1997. This growth
of energy request is due to only partially to the rapid growth of world pop-
ulation from 1762 to 5847 million people in the here considered period.

¶The first definition of Sustainable Development was given in the Brundtland report
of the 42th General Assembly of the ONU in 1987.

�A ton of oil equivalent corresponds to about 42 GJ.
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Table 1.2: Worldwide energy use in million tonnes of oil equivalent (MTOE),
world population and per capita energy consumption in the 20th century
[70].

Energy source 1900 1997
MTOE % MTOE %

Petroleum 18 2 2940 30
Natural gas 9 1 2173 23
Coal 501 55 2122 22
Nuclear 0 0 579 6
Renewable 383 42 1833 19
Total 911 100 9647 100
Population (million) 1762 5847
Per capita energy use (TOE) 0.517 1.649
Global CO2 emission from fossil fuels (MMTC) 534 6601
Per capita CO2 emission (MTC) 0.3 1.13
Atmospheric CO2 (ppmv) 295 364
Life expectancy (years) 47 76

The same table shows also data on CO2 emissions; these have grown
more than one order of magnitude in almost 100 years, to coincide with the
increase of fossil fuels consumption. In order to control overall greenhouse
gases emission, interventions of different kind are necessary, such as energetic
efficiency improvement, use of fuels with low carbon content and carbon
dioxide sequestration in geological formations.

A representative example of the balance between energy supply and de-
mand in western society is given by the United States situation. Figure 1.4
shows a summary diagram of such situation.

USA energetic system is mainly based on fossil fuels use, that constitute
the 58.92% of the primary energy sources; renewable energy sources are
only the 6.87% of used resources. The 33.64% of the energy coming from
primary energy sources is used to produce electric energy; more than the
65% of this energy is lost in conversion processes, due to the thermodynamic
limits imposed by the Second Law [70].

From this rough outline, it is clear that the target of sustainable de-
velopment of the energetic system is to develop highly efficient production
energy devices using low environmental impact processes. The efficiency
of actual transformation energy systems is not satisfactory, because more
than 60% of initial energy is lost in conversion processes. Moreover, from an
environmental point of view, the use of fossil fuels implies the emission of
pollutants, such as SOx and NOx, that are involved in the formation of the
greenhouse gases. Nowadays, polluting substances are partially retained in
purification plants, but the total elimination is guaranteed if they are absent
in the starting fuels. Within these problems sketched since now, fuel cells
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Figure 1.4: USA energy flux (quadrillion Btu) in the United States in 1998.
Diagram redrawn from [70].

represent a good candidate as efficient energy conversion devices.

General Features of a Fuel Cell. The working principles of the fuel cells
were first discovered by Sir William R. Groove, in 1839, a British jurist and
physicist. Groove used hydrogen and oxygen as fuels, catalysed on platinum
electrodes [73].

A fuel cell is an electrochemical device in which chemical energy stored
in the fuel is directly converted into electric current. It is made by a mate-
rial of electrolytic nature, able to produce ionic transport, inserted between
anode and cathode; these come into contact, respectively, with a fuel —
containing, in general, hydrogen atoms, and with an oxidizing agent, usu-
ally oxygen. Some atoms separate from the fuel becoming ions and cross
the electrolyte reaching the cathode, where they will recombine with the
oxidant; at the same time, free electrons are generated and from the an-
ode reach the cathode through an external electric circuit. The products of
the whole reaction are heat and water (liquid or vapour), eventually CO2 if
the fuel is a hydrocarbon. An essential feature of the electrolytic conductors
used in fuel cells is that they must be poor electric conductors and good ionic
conductors, both for activity and selectivity, in order to promote chemical
reactions required for the optimum cell work.

The amount of current produced depends on the chemical activity of
the reactants and on the power loss inside the cell; the production process,
furthermore, continues until reactants are present. The electrodes and the
electrolyte are chosen in such a way that they do not participate to the
global reaction. A fuel cell can generate an e.m.f. of about 0.5-0.9 V; high
e.m.f. can be reached making a series of many single cells.
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Efficiency of Fuel Cells. Conversion energy efficiency in fuel cells can be
examined by considering their maximum theoretical efficiency [74]. Limit
efficiency ηCarnot for engines based on heat exchange, such as those ones
with steam turbines, is described by Carnot formula

ηCarnot =
T2 − T1

T2
(1.5)

where T2 is the temperature (higher) of the heat source and T1 is that
one (lower) at which steam is released. For a steam turbine, operating at
400 °C with a condensation temperature of 50 °C, the limit efficiency is of
52%. This value is quite far to be reached if the steam, as it happens in the
most of cases, is obtained burning fossils fuels. The situation is different for
fuel cells, that are based on chemical processes, such as hydrogen oxidation
and water formation. The variation of Gibbs free energy ∆G of these last
processes is converted into electric energy. The e.m.f. of the cell, in the
following equation represented as ∆U0, is related to the free energy by the
equation

∆G = −nF∆U0 (1.6)

where n is the number of electron involved in the reaction, F is the
Faraday constant and ∆U0 the potential difference of the cell at the ther-
modynamic equilibrium without any current flux [75]. If the fuel is hy-
drogen and the oxidizing agent is oxygen, ∆U0 = 1.23V corresponding to
∆G = −237kJ/mol for the whole reaction in standard conditions

H2 +
1

2
O2 → H2O. (1.7)

Efficiency ηfuelcell can be calculated directly as

ηfuelcell =
∆G

−∆H
(1.8)

where ∆H values change according to the water phase: ∆H is higher
for liquid water because of condensation heat release. If water vapour is
created, ∆H = −286kJ/mol and the maximum efficiency of the fuel cell
would be 83%.

Kind of Fuel Cells. Fuel cells can be distinguished according to the
kind of electrolyte used. A rough classification is the following: i) alkaline
(Alkaline Fuel Cell), ii) with phosphoric acid (Phosphoric Acid Fuel Cell),
iii) with melted carbonate salts (Molten Carbonate Fuel Cell) iv) with solid
oxide (Solid Oxide Fuel Cell). Each kind of cell is characterized by different
reactions that take place at the anode and cathode due to the transport of
ionic species that generate an electric current flowing in an external circuit.
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A common feature is that electrodes must be porous in order that gases can
reach the electrode and the electrolyte at the same time. Main features of
the four kind of fuel cells are reported in [70].

Fuel cells in which the electrolyte element is of solid oxide type, show the
highest efficiency and stability. The electrolyte of SOFCs is of ceramic type;
this reduces corrosion effects at the electrodes and eliminates those problems
present in the cells in which the electrolyte is at liquid phase. In order to
get a suitable ionic conductivity, the working temperature of these systems
must be in the range between 1150 and 1300 K. The most used electrolyte
in these cells is the yttrium oxide (Y2O3) stabilized with zirconium oxide
(ZrO2); the anode is usually a cermet** of nickel-zirconium (Ni−ZrO2) or
cobalt-zirconium (Co−ZrO2), while the cathode is made by magnesium or
strontium doped with lanthanum manganate (LaMnO3).

The heat produced by the cells during the conversion of the chemical en-
ergy into electric energy, can be easily used in conventional thermal plants
for electric energy production; on the other hand, because of the high work-
ing temperature, conditioning times needed by the system to reach the full
load are long and it is necessary that the cell materials tolerate a big ther-
mal stress. A solid state electrolyte makes easy to modify cell properties
according to the logistic or technological needs [76].

Actual SOFCSs based plants can reach a power of 160 KW. The high
working temperature (about 1300K) allows an enough wide choice of fuels
with yields that can reach the 85% of the total thermal efficiency.

All fuel cells work without burning the fuel while the moving parts are
few with respect to the conventional units for electric energy production
(mechanical generators); furthermore, they are three times more efficient
than internal combustion engines and energy production continues until both
fuel and oxidizing agent are present at the electrodes.

Thus the advantages of fuel cells are due to the following features:

� high efficiency in energy conversion;

� nearly zero emission of polluting agents;

� great reduction of greenhouse gases emission in comparison with con-
ventional devices;

� very low acoustic pollution;

� simplicity of conversion processes from chemical to electric energy;

� modular project for large scale production;

� quick response to the load;

**A cermet is a compound made by ceramic and metal.
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� different kind of fuel can be used.

Thanks to all these features, fuel cells can find application in industrial,
commercial, residential plants, transport and portable electronic devices;
therefore, such fuel cells are pointed as the most promising technology that
can satisfy, for a long time, the energetic needs of a modern society.

Nevertheless, disadvantages and problems to be resolved are still a lot.
The cost per kW in building energy conversion plants based on fuel cells
are still high compared with ones of traditional plants; moreover, some kind
of cells require hydrogen in gas phase, that must be produced in the same
place where it will be used, because of the lack of a distribution system; at
last, using hydrocarbons as fuel requires the presence of desulphurization
plants, that are, in general, potential source of pollution.



Chapter 2

Computational Models and
Data Analysis

The study of a physical system is usually carried out through experimental
techniques that are based on the analysis of sample responses to external
stimulations. It often happens, however, that we cannot manage and gauge
external stimulations to address experiments towards a particular goal be-
cause the system under investigation is “unreachable”, either because it is
far from us like, for example, interstellar gases, or because we cannot con-
trol the details of the experiment as accurately as we need, like in studying
atomic motions. In these cases, an alternative way of investigation is trying
to recreate the system with a virtual model and simulate the experiment
with a computer, that is to create a virtual sample and to perform a virtual
experiment on it. In this sense, computer simulations are also called in silico
experiments*.

Computer simulations are thus a complementary tool to understand ex-
perimental data, contributing to discriminate the different aspects of a phys-
ical phenomenon and are an aid in formulating predictions on system be-
haviours under different environmental conditions. Protonic conduction and
the elementary processes that lie on it are an immediate example on how
this quite recent “experimental technique” is of fundamental importance to
obtain a clear survey of a physical phenomenon, in order to reproduce it and
to design devices to exploit its potentialities.

In the following, among the several computational techniques nowadays
available, only those ones used in the present study will be outlined, paying
attention to informations that can be obtained, the related accuracy and
how to get them.

*The expression in silico was first used in 1989 by Pedro Miramontes, a mathematician
from National Autonomous University of Mexico (UNAM) [77].

29
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2.1 Computational Models

A computational model consists, in general, in choosing a geometry that
reproduces the atomic positions of the system under consideration and a
method, that allows to calculate its properties, possibly able to refine the
already existing structural representation. The set of atoms chosen to build
the model can coincide exactly with the whole real system or, as it happens
in most of cases (particularly if studied in solid state), it only represents
the part we want to study in details. A method consists, in general, in the
theory be applied in order to get the required informations. The choice of
the model is strongly conditioned by the computational resources at own
disposal: it is the result of a compromise among the accuracy of the desired
results, the time required to get them and the power of the computational
resources available.

The geometry chosen for describing the system under study is initially
taken from experimental data. For systems in solid state phase, like the solid
oxide barium cerate and zirconate in this work analysed, data usually come
from Neutron Powder Diffraction (NPD) experiments or similar techniques
able to individuate atomic positions. Starting geometries will be chosen
among those ones obtained in the desired experimental conditions. As we
stated in section 1.5, protonic conduction in solid oxides is possible only if
protonic defects are acquired by the host matrix, but this is allowed only
by doping the native material with trivalent species; so, we can already
individuate at least three different starting geometries for three different
situations: the undoped structure, the doped one and the protonated system.
If we take into account the experimental structures resolved at different
temperatures [78], the number of geometries to be considered starts to grow
very quickly.

In studying a crystalline system, it is common practice [12, 79, 80, 81] to
choose one unit cell or a block of m×n× l unit cells (this block called a su-
percell, with m, n and l positive integers) to which apply Periodic Boundary
Conditions (PBC). This is in order to reproduce the crystalline structure
and to take account of more than one cation substitution or lattice defects.
Other approaches [82, 83, 84], suggested by experimental evidences [85, 86],
showed that, also for crystalline systems, a good starting point can be a set
(cluster) of atoms extracted from the crystalline network, without impos-
ing PBC on it. The choice between the two approaches is dictated by the
system considered and by the details we want to inspect. Overall, starting
geometries must contain at least the system’s main area of interest and its
nearest environment, in order to get a minimal representation; furthermore,
the shape of the geometry must be chosen accurately in order to avoid cutoff
truncation outcomes, greatly affecting the results.

The bigger is the model structure, the more accurately it reproduces the
real system; unfortunately, the larger is the model geometry, the greater is
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the computational load which, depending on the used method, it is propor-
tional to powers of N , the number of atoms involved.

Once the model geometry has been established, a computational method
must be chosen in order to describe the properties of the chosen structure.
It can be a physical model that describes atoms as made by electrons sur-
rounding a positively charged nucleus, or that considers them or group of
them as owning some features typical of the environment in which they are
embedded.

In the first case the model is the Quantum Mechanic description of the
matter, and all the methods based on it are called ab initio. They lean on
the Schröedinger equation

− i} ∂
∂t

Ψ (~r, t) = Ĥ (~r, t) Ψ (~r, t) (2.1)

where Ĥ (~r, t) is the Hamiltonian energy functional operator of the system
and Ψ (~r, t) is the wave function that describes the system at the time t all
over the physical space {~r}. Once Ψ (~r, t) has been determined − that is
once the above equation has been resolved, it is possible to get any observ-
able physical quantity O related to the system through the corresponding
operator Ô, being

O = 〈Ψ (~r, t) |Ô|Ψ (~r, t)〉 (2.2)

its expectation value in Dirac notation.

Actually, due to the complexity of the functional form of the Hamiltonian
Ĥ, the only system for which it is possible to exactly solve the Schröedinger
equation is the hydrogen atom, taking into account only the coulombic in-
teraction between its charged constituents, one proton and one electron. All
the other single atomic species and all the systems deriving from interactions
among some them, such as molecules, crystals or amorphous structures, al-
ways obeys to the equation 2.1 but its solution is carried out only by means
of several approximations. First of all, in the most of cases, it is possible
to assume that the energy is a constant of the system, so as to deal with a
time independent Schröedinger equation

Ĥ (~r) Ψ (~r) = EΨ (~r) , (2.3)

with Ĥ the energy functional of the system including only kinetic and elec-
trostatic terms of point-like nucleus and electrons:

Ĥ =
∑
α

P 2
α

2Mα
+
∑
i

p2
i

2m
+ V (Qα, qi) (2.4)

where Pα and pi are the momentum operators of the α-th nucleus and of
the i-th electron respectively, Mα and m are the mass of the α-th nucleus
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and of the electron, and

V (Qα, qi) = −
∑
i,α

Zαe
2

riα
+
∑
α<β

ZαZβe
2

rαβ
+
∑
i<j

e2

rij
(2.5)

is the potential energy operator of the entire system of nucleus and electrons.
Then, an other strong approximation, usually made in dealing with solid
state systems, is the one first proposed by Max Born and Robert Oppen-
heimer [9], taking advantage of the difference between nuclear and electron
masses, in order to separate the nuclear motion from the electronic one. In
this approximation, nuclei are supposed to be fixed in their initial position
Q′α; then equation 2.3 is solved in its simplified form[∑

i

p2
i

2m
+ V

(
Q′α, qi

)]
ψ
(
Q′α, qi

)
= E′

(
Q′α
)
ψ
(
Q′α, qi

)
. (2.6)

Eigenfunction ψ (Q′α, qi) is an electronic wave function while E′ (Q′α) is the
corresponding eigenvalue when the nuclei are fixed in the position Q′α.

A further assumption is to set

Ψ (Qα, qi) = ψ (Qα, qi) ν (Qα) (2.7)

that is, the wave function is supposed to be a product between an electronic
wave function ψ (Qα, qi) and a ν (Qα) function of only nuclear positions to
be determined.

Despite the potential energy operator 2.5 contains only coulombic terms,
an atomic description by means of the first principles of the quantum me-
chanics can assure good results. However, model geometries with a large
number of atoms can involve a heavy computational load in terms of re-
sources and time needed for the calculation�. In this case, a good choice is
to substitute the quantum description of the system 2.3 with a completely
classical one. This choice establishes a second class of computational meth-
ods: interactions among N particles, atoms or groups of them, are described
with a potential V (~r1, . . . , ~ri, . . . , ~rN ), an analytic function of 3N coordi-
nates, which takes into account interactions among two or more particles;
the force acting on the i-th particle is then derived as the gradient of such
potential with respect to the atomic positions:

~Fi = −∇V (~r1, . . . , ~ri, . . . , ~rN ) . (2.8)

Since V (~ri) is analytic, the ~Fi component values are straightforwardly
derived. Obtaining the optimized geometry is in this case a simple iterative
search of the ~ri values for which all the ~Fi components are below a fixed

�To get an idea on how computational load depends on the number of atoms see, for
example, I. N. Levine, Quantum Chemistry, 5th edition, (2000).
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threshold. Also, by using relation 2.8 and Newton’s second law of motion
it is possible to get the evolution of the system as a function of time and
calculate any required physical quantity (see section 2.4).

The expression for the potential V in Equation 2.8 is usually derived i)
starting from a quantum description of the system, obtaining an expression
as a function of the nuclei position by means of successive approximations
or ii) by fitting the potential on experimental data, without considering
any relations with the first principles. In all cases, potentials are designed
only for a limited set of systems, but sometimes they work well in situations
far from those ones used for modelling them. The ability of a potential
to properly describe different environments is called transferability ; since a
good transferability is difficult to get but it is a crucial point to get reliable
results, it is better to use a potential only for those systems where they were
designed on.

According to the features of the system we are studying and depending
on informations we want to get from simulations on it, one or the other
computational method is to be preferred, always keeping in mind the com-
putational load required, the resources available and the time needed to get
the desired results.

2.2 The Hartree-Fock Method

The simplest ab initio method used in calculations carried out in the present
work is named Hartree-Fock method. To understand how it works, let us
consider the time independent Schröedinger equation for a neutral atom
with N electrons:

ĤΨ (~r) ≡


N∑
i=1

[
p2
i

2m
− Ze2

ri

]
+

N∑
i<j

e2

rij

Ψ (~r) = EΨ (~r) (2.9)

in which we have neglected the relativistic terms. Let us suppose that the
solution is of the following form:

Ψ (~r1, . . . , ~rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1 (~r1) ψ2 (~r1) · · · ψN (~r1)
ψ1 (~r2) ψ2 (~r2) · · · ψN (~r2)

...
... · · ·

...
ψ1 (~rN ) ψ2 (~rN ) · · · ψN (~rN )

∣∣∣∣∣∣∣∣∣ (2.10)

such determinant is called Slater determinant ; its elements ψi (~rj), called
atomic orbitals, are functions of the ~rj coordinate of the j-th electron, sub-
ject to the orthogonality condition

〈ψi (~rj) |ψk (~rj)〉 = δij (2.11)
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with δij the Kronecker delta and ψi (~rj) chosen so that they satisfy the
variational principle

δ〈Ψ|H|Ψ〉 = 0. (2.12)

The choice of a solution as in 2.10 is called Hartree-Fock approach. Now,
let us suppose that the Hamiltonian Ĥ in Equation 2.3 is the same as in
2.4 with V chosen as in 2.5. With the same hypotheses as for the atomic
case just considered, the tentative solution Ψ (~r1, . . . , ~rN ) of Equation 2.3 is
built by using a set of function ψi (~rj), as in 2.10, this time called molecular
orbitals, which have the following characteristics:

� a molecular orbital is an eigenfunction of a Hamiltonian functional
made by one-electron operators and depends on the coordinates of
only one electron;

� a molecular orbital is defined all over the space: it describes one elec-
tron with a non-zero probability to be everywhere in the space without
being localized on any atoms of the molecules;

� it can represent the properties of at most two electrons according to
the Pauli principle; the product of a molecular orbital with a spin
function is called molecular spin-orbital and it can be occupied only
by one electron;

� each molecular orbital belongs to an irreducible representation of the
transformation group under which the Hamiltonian of the system is
invariant.

A further simplifying hypothesis, first proposed by Roothan in 1951 [87], is
to state that the molecular orbitals ψi (~r) can be expressed as linear combi-
nation of atomic orbitals (LCAO) φµ:

ψi =
∑
µ

cµiφµ. (2.13)

All the {φµ} functions are called basis set ; their analytical form is arbitrary
and it is usually chosen according flexibility criteria in numerical imple-
mentations. The Roothan’s assumption transformed the problem of solving
differential equations into an algebraic equations system, known as Self Con-
sistent Field equations (LCAO-SCF)�. This simplification allows to search
for solutions of the time indipendent Schröedinger equation starting from a
tentative one like in 2.13, and refining the cµi coefficients through iterative
methods, whose details can vary according to the way they are implemented,
involving particular algorithms to drive the calculation to numerical conver-
gence (see [88] as an example).

�For a derivation of the Hartree-Fock method and the Roothan equations see, for
example, M. Weissbluth, Atoms and Molecules, Academic Press, New York, (1978).
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The choice of a Slater determinant like in 2.10 is a good starting point to
build the solution of the Schröedinger equation for a multi-electron system;
nonetheless, such determinant does not correspond to the exact eigenfunc-
tion of the ground state. According to the variational principle, the expec-
tation value of the Hamiltonian Ĥ of the system (e.g. its energy), calculated
on a trial wave function which is Slater determinant, will be surely higher
than the lowest of its eigenvalues. This last one, within Born-Oppenheimer
approximation and leaving out relativistic effects, is defined as the exact
energy E0 of the ground state [89]. By setting

EHF = 〈ΨSlater|H|ΨSlater〉 (2.14)

in which ΨSlater is a Slater determinant, we call correlation energy EHFC the
difference

EHFC = E0 − EHF , (2.15)

that is a measure of the error introduced by adopting the Hartree-Fock
scheme.

To take into account this energy term, several computational schemes
have been developed that are able to better estimate the exact energy value
with respect to the method discussed up to now, but heavily increasing
the computational cost. Some of them can be considered as an evolution
of the Hartree-Fock scheme, and this is why they are called post-Hartree-
Fock methods; other methods approach the problem in a different way, by
exploiting the Density Functional Theory (DFT).

2.3 The Density Functional Theory

An electronic wave function of N electrons depends on 3N spatial and N
spin coordinates. The need of reducing the computational load required to
calculate a wave function with 3N + N degrees of freedom, was the boost
for elaborating methods that attain same results using a narrow number
of variables. In 1964, Pierre Hoenberg and Walter Kohn [90] proved that,
given a molecule in the non degenerate ground state, the molecular energy,
the wave function and all the other electronic properties are uniquely deter-
mined by the probability electron density of the electronic ground state, as
a function of only three spatial coordinates.

To explore the relation between electronic ground state wave function
Ψ (~r1, . . . , ~rn) and the corresponding probability density, let us consider the
expression

|Ψ0 (~r1, . . . , ~rn)|2 d~r1 · . . . · d~rn; (2.16)

this is the probability to find, at the same time, electron 1 in the volume
element d~r1, electron 2 in the volume element d~r2 and so on. The probability
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to find the i-th electron in a generic volume element d~ri is got by integrating
Equation 2.16 on the other volume elements:∫

|Ψ0 (~r1, . . . , ~rn)|2 d~r1d~r2 · . . . · d~ri−1~ri+1 · . . . · d~rN ; (2.17)

this probability being the same for each of the N electrons, the probability
of finding an electron in a volume element is equal to N times the 2.17.
Therefore, the probability density ρ0 (~r) of finding an electron in a space
point ~r is

ρ0 (~r) = N

∫
|Ψ0 (~r1, . . . , ~rn)|2 d~r1d~r2 · . . . · d~ri−1~ri+1 · . . . · d~rN . (2.18)

Let us consider now an observable O (~ri), function only of the spatial coor-
dinates of the i-th electron. The mean value of this function on the whole
electronic ground state is

〈Ψ0|
N∑
i=1

O (~ri)|Ψ0〉 =

∫
Ψ∗0

[
N∑
i=1

O (~ri)

]
Ψ0d~r1 · . . . · d~rN =

=

N∑
i=1

∫
|Ψ0|2O (~ri) d~r1 · . . . · d~rN ;

(2.19)

since electrons are indistinguishable, each term of the sum in the last member
of the 2.19 takes the same value; so

〈Ψ0|
N∑
i=1

O (~ri)|Ψ0〉 = n

∫
|Ψ0|2O (~r1) d~r1 · . . . · d~rN . (2.20)

Remembering that O (~r1) depends only by ~r1, integration of 2.20 on all
the other coordinates results in expression 2.18. Thus the expression 2.20
becomes

〈Ψ0|
N∑
i=1

O (~ri)|Ψ0〉 =

∫
ρ (~r)O (~r) d~r (2.21)

where the subscript was not specified because unnecessary. This result shows
that any mean value of any observable can be calculated, as represented by
a function of the spatial variables, once the electronic density ρ (~r) is known.
This can be done without calculating the electronic wave function Ψ0 of all
the system.

Let us now consider the purely electronic Hamiltonian of a system:

Ĥel =
∑
i

P 2
i

2m
+
∑
i

ν (~ri) +
∑
j

∑
i>j

e2

rij
(2.22)
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where

ν (~ri) = −
∑
α

Zαe
2

riα
(2.23)

is the nuclear attraction energy, function of the distance riα separating the
i-th electron from the α-th nucleus.The Hamiltonian 2.22 is written in the
Born-Oppenheimer approximation; as a consequence, in the Schröedinger
equation for the electronic wave function Ψ0 of the system in the ground
state

ĤΨ0 = E0Ψ0 (2.24)

the only variables are electronic coordinates, and the nuclear positions are
only a parameter through the term ν (~ri). In the Density Functional Theory,
this term is considered as an external potential acting on the i-th electron.
Once the number of electron and the external potential have been fixed,
eigenvalues and eigenfunctions of the Hamiltonian 2.22 are unambiguously
determined. Because Hoenberg and Kohn demonstrated that there is a
bijective correspondence between the eigenfunction Ψ0 and the probability
density ρ0 = |Ψ0|2 of the ground state, the electron probability density of
the ground state determines the external potential. Consequently it also
determines the Hamiltonian of the system, the wave function of the ground
state, the energy E0 and all the properties obtainable from it. The ground
state energy E0, thus, is a functional of the density:

E0 = 〈Ψ0|Ĥ|Ψ0〉 =

= T̄ [ρ0 (~r)] +

∫
ρ0 (~r) ν (~r) d~r + V̄ee [ρ0 (~r)] =

= E0 [ρ0 (~r)]

(2.25)

in which

T̄ [ρ0 (~r)] + V̄ee [ρ0 (~r)] (2.26)

is a unknown functional of the density independent of the external potential.

In this way, Hoenberg and Kohn showed that all the properties of a
system in the ground state can be determined without calculating the cor-
responding wave function. Nevertheless, they didn’t show how to do it. The
problem was resolved by W. Kohn and L. J. Sham in 1965 [91] who devel-
oped a way to calculate ρ0 and, from it, the energy of the ground state;
on the other hand, by using their method it is not possible to obtain exact
results because the unknown potential 2.26 can be estimated only approx-
imately. Over the years, several formulations have been proposed (Local
Density Approximation, General Gradient Approximation and others [89]),
also taking into account for the energy term in 2.15, each of them to be
chosen always according to the reliability of the results for the system under
consideration.
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2.4 Molecular Dynamics

When details of the electronic structure are not important for our purposes
and we need to look at the system only at a larger scale, a great opportunity
is offered by Molecular Dynamics (MD) methods. These methods allow
simulations on very large systems involving up to one million atoms (see for
example [92]).

Molecular Dynamics is a computer simulation technique through which
the time evolution of a set of interacting particles is described by integrat-
ing their equation of motion. Physical laws used are those of the classical
mechanics, with the Newton’s second law of motion the main one:

~Fi = mi~ai; (2.27)

where ~Fi is the force acting on a particle with mass mi, generating an accel-
eration ~ai. By integrating this equation for a system of N particles, a trajec-
tory in a 6N -dimensional phase space is generated. According to statistical
physics, physical quantities are represented by averages over an ensemble of
configurations in the phase space: such configurations can be provided using
trajectories obtained by a dynamical simulation. Such trajectories can be
used if in the system studied is valid the ergodic hypothesis:

〈O〉 = lim
T→+∞

1

T

∫ t0+T

t0

O (~r(t), ~p(t))dt = lim
Nc→+∞

1

Nc

Nc∑
i=1

Oi (~ri, ~pi) (2.28)

stating that the time average value 〈O〉 of an observable O is equivalent
to the ensemble average of the same observable. Thus, ensemble averages
can be calculated as an average over the Nc configurations calculated in a
dynamic simulation; i.e., to evaluate a physical quantity it is sufficient to do
an arithmetic average of the instantaneous values assumed by that quantity
during time evolution of the system. Since the equality in Equation 2.28
holds for a fully sampled phase space volume, we can expect that acceptable
averages can be obtained in simulation of very long times. Due to the finite
time span of simulations, it is then necessary to check if sampling is adequate
and the system has reached equilibrium.

We can perform our simulations of isolated, thermal bath coupled or
open systems (microcanonical, canonical and grand canonical systems re-
spectively), depending on information we want to get and on the system
we study; so, in addition to forces, an integration algorithm is able also to
calculate and control other quantities at each dynamic step, such as tem-
perature, volume and pressure. In any case, integration is based on finite
difference methods, where simulation time is discretized in Nc timesteps of
width ∆t.

Discretization and integration scheme itself introduce calculation errors;
these can be grouped in: i) truncation errors, related to the accuracy of the



2.5. DATA ANALYSIS 39

finite difference method, leaning generally on a truncated Taylor expansion,
hence owning an intrinsic error; ii) round-off errors, related to the finite
number of digits used to represent a number in a computer. Both errors can
be reduced by decreasing ∆t, at the expense of longer simulation times.

2.5 Data Analysis

Analysis of the ab initio results presented in this work are based on the
inspection of the equilibrium geometry of the systems. Born-Oppenheimer
approximation allows to calculate, in a simple manner, the force generated
by a system of atoms on one of the nuclei belonging to the same system,
deriving it directly from the classical potential 2.5. This result is known
as Hellmann-Feynman theorem [93] and is of fundamental importance in
the research of an equilibrium geometry starting from a given one. Indeed,
such research is the result of an iterative procedure: once the computation
of the electronic Hamiltonian eigenvalues is finished, nuclear positions Q′α
(see discussion on Equation 2.6) are varied by a finite quantity, and the
forces acting on the nuclei are calculated; if the highest value among the
force components on each nucleus is lower than a fixed threshold, then the
geometry used for the force calculation is the stable one and the calculation
has converged ; otherwise, the procedure is repeated calculating the energy
E′ (Q′α) corresponding to the new nuclear positions. This kind of research
is called geometrical optimization and the stable geometry is said optimized
[94]. Convergence criteria and algorithms to get it can be varied according
to what we are interested to; generally, an atom can be considered laying
in a stable position if the value of the force acting on it is equal or smaller
than 0.02 eV/Å§.

Structural informations can be better understood and enriched by elec-
tronic analysis of the optimized system. In the used approaches, ab initio
calculations supply the ground state wave function written as linear com-
bination of atomic orbitals belonging to the chosen basis set (see Equa-
tion 2.13). Analysis of atomic orbital contributions to each of the molec-
ular orbital of the system (electronic population) allows obtaining several
informations, as, for example, the electronic distribution on a particular
atomic site. Among the schemes that have been proposed in literature
[95, 96, 97, 98, 99, 100, 101, 102, 103, 104], only Mulliken Population Anal-
ysis and C-Squared Population Analysis will be presented, being the one
used for our purposes.

§Geometries representing transition states of a reactions also satisfy these conditions;
this notwithstanding, they are not stable points of the energy hypersurface. One of the
methods to ensure that an optimized structure corresponds to a local minimum of the
system energy is to evaluate the eigenvalues of the energy (Hessian matrix) in that point:
a negative or an imaginary frequency states that such geometry is a transition state along
the corresponding eigenvector [94].
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In Mulliken Population Analysis [95, 96, 97, 98], the net contribution
ρα,i of atomic orbital φα to the i-th molecular orbital is

ραi =
∑
j

cαicji〈φα|φj〉; (2.29)

by summing over all atomic orbitals describing an atom A, the electronic
(Mulliken) atomic population of the atom A is

MAP =
∑
i

ni
∑
α∈A

ραi (2.30)

where ni = 0, 1, 2 are molecular orbitals occupation numbers. In this way, it
is possible to estimate the electronic charge of an atom A for a given system.
As it is possible to see from Equation 2.29, this kind of population analysis
is basis set dependent, as well as all the other ones relying on atomic orbital
expansions; for this reason, reliable comparisons between different systems
can be done only if the corresponding calculations are performed with the
same basis set.

If we are more interested in analysing molecular orbitals composition, ex-
cluding the overlap population coming from integrals of the kind 〈φi|φj〉, an
alternative way is the C-Squared Population Analysis [103]. In this method,
the contribution ρα,i of atomic orbital φα to the i-th molecular orbital is

ραi =
c2
αi∑
j cji

2
, (2.31)

while the contribution to the same MO of a given cluster of atoms A is given
by

ρAi =

∑
α∈A c

2
αi∑

j cji
2
. (2.32)

Equations 2.31 and 2.32 allow us to isolate and compare the electronic
contributions to single molecular orbitals or to molecular orbital arrange-
ments corresponding to a given energy bin (∆εi), fixing the discrete energy
units in the electronic population analysis. A continuous function ρ (ε) is
achieved by a convolution of fixed width Lorentzian functions weighted by
ρAi and centred on the energy eigenvalue εi.

If atomic details of the electronic distribution give us informations on
how molecular orbitals are formed and where the charge is localized, the
stability of the system after electron density variations can be studied also
by considering the energetic cost of creating a charged defect, that is its
formation energy. In our calculations, charge variations are accomplished
by adding or subtracting electrons from the system; the formation energy
∆Ef of such charged defect can be calculated according to the following
formalism [105]:

∆Ef (µ) = ∆Ed − q (εTV B − µ) (2.33)
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where ∆Ed is the energy difference between the defective and the uncharged
system, q is the net charge of the system, εTV B is the energy of the top of
the valence band of the clean host (without any impurities, i.e. dopant or
charges) and µ is the chemical potential for electrons. The curves of ∆Ef

vs µ are straight lines with slope equal to −q; once the model system is
fixed and only the net charge is varied, different ∆Ef lines with different
slopes are obtained. The interesting part of such graphs is an energy range
including the top valence band and the bottom of the conduction band of
the native system. This is because ab initio calculations here presented carry
out stable geometries corresponding to zero Kelvin structures, so electrons
can be removed from the last occupied energy levels or added to the lowest
unoccupied ones. By varying the electron chemical potential µ within this
range, the most stable system, thus the most stable defect, is the one with
the lowest total energy.

If ab initio geometrical optimizations are able to describe systems at
zero Kelvin, classical molecular dynamics simulations allow us to follow time
evolution of a structure at different temperatures. In this case, geometrical
features can be described by the Radial Distribution Function g(r). This
function describes how particle density varies by varying the distance from
a given fixed point. In other words, if for N particles in a volume V , the
mean density is ρ0 = N/V , then the mean density at a distance r from a
given space origin is

ρ (r) = g (r) ρ0 (2.34)

that is, g(r) is a measure of how much different is ρ(r) from ρ0 because
of interactions among different particles. Equivalently, g(r) is the relative
probability of finding a particle at a distance r from the origin. If the origin
is fixed on another particle, this probability can be related to the interaction
between the two particles by using the Boltzmann distribution law. That
is, the probability of finding two particles at a distance r at equilibrium can
be expressed by:

g (r) = e−φ(r)/kBT (2.35)

where kB is the Boltzmann constant and φ(r) is the so called potential
of mean force [106]. Only two non interacting particles in vacuum have
φ(r) = 0 and g(r) = 1 for all r. At variance, even two non interacting
particles in a system of N particles have a non zero φ(r) due to entropic
contributions. In fact, as a rule φ(r) has a free energy character and it
can be dependent on temperature. Let us suppose that in a solid system
given r = r0, g(r0) is a local maximum in a neighbourhood of r0; if in such
interval the radial distribution function can be approximated by a Gaussian
function, that is

∃ ε > 0 : g (r) ≈ e−
(r−r0)

2

2σ2 ∀ r ∈ (r0 − ε, r0 + ε) , (2.36)
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the mean force potential φ(r) can be approximated by a harmonic potential
with harmonic constant k which is approximately independent on tempera-
ture in solids; in this way, the radial distribution function becomes

g (r) = e
− k(r−r0)

2

2kBT . (2.37)

By equating Equation 2.35 with Equation 2.36, we can derive the following
linear relation between σ2 and the temperature T :

σ2 (T ) =
kB
k
T (2.38)

that is valid if Equation 2.34 holds and allows one to estimate the mean
force constant k.

Since the radial distribution function describes how atoms are arranged
in space, it is ordinary used to evaluate how many atoms of A kind are there
in a spherical shell of thickness dr at a distance r from a C one. In this
way, g(r) can be calculated straightforwardly from the molecular dynamical
trajectory as

gA−C (r) =
〈
∑

ij δ (rij − r)〉
ρ0V

(2.39)

where δ(rij−r) is the Dirac’s delta, rij is the distance between the i-th atom
of A kind and the j-th atom of C kind and the average 〈· · · 〉 is done over
the number of timesteps of the whole trajectory.

If gA−C (r) is evaluated between atomic centres of the same kind (i.e.
A = C) and approximation 2.36 holds, then σ2 is an estimation of the mean
square displacement from the equilibrium position of a given atom; from it,
the B atomic temperature factor [107], called also Debye-Waller factor, can
be estimated, this being

B = 8π2〈(r − r0)2〉, (2.40)

supposed to be the same for those atoms of the same kind in a given struc-
ture.

Another important physical quantity that can be calculated from molec-
ular dynamics trajectories is the self-diffusion constant for an atom which
is essentially free to move throughout the system; in our simulations, this
will be the hydrogen atom. Using the results on Brownian motion, the self
diffusion constant, or diffusion coefficient, is related to the mean square dis-
placement of the atom through the following linear relation as a function of
the time t:

〈|r (t)− r|2〉 = 6Dt (2.41)

where the 〈· · · 〉 denotes an ensemble average and r is the position at time
origin. Ensemble average can be substituted by a time average if the ergodic
hypothesis holds.
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For particle moving in a liquid D can be related to particle mobility µ
through the Einstein relation D = µkBT . Thus, the problem of knowing D
becomes the development of a model for mobility. Another way to build a
model for diffusion coefficient is to recognize that macroscopic proton dif-
fusion in a protonic conducting material is a thermally activated process.
Once a proton concentration gradient has been established inside the mate-
rial, protons can move in the opposite way of the concentration gradient to
establish uniform concentration. This motion is hindered by forces acting
on the hydrogen. Such forces are exerted by surrounding atoms and depend
on the system geometry and on the involved atomic species. In other words
activation of diffusion motion requires an amount of energy which can be
considered independent of temperature. In protonic conduction process, this
amount of energy is the one needed by the proton in order to jump from one
oxygen atom to another. This amount of energy is called activation energy
for the overall diffusion process.

For an activated process, at fixed temperature and if the whole system
is at the equilibrium, the diffusion coefficient has the form

D (T ) = D0 exp (−Ea/kBT ) (2.42)

where Ea is the activation energy for the diffusion process. By taking the
logarithm of both side of Equation 2.42, the relation can be rewritten as

lnD (T ) = lnD0 −
Ea
kB

1

T
(2.43)

underlining the linear relation between the logarithm of the diffusion coeffi-
cient D(T ) and the inverse of the absolute temperature T . Calculating the
mean square displacement from the trajectory obtained by the simulation
and using Equation 2.41, it is possible to evaluate the activation energy Ea
for the diffusion process and the pre-exponential factor D0, that is a measure
of the diffusion if no activation energy is needed or in the limit T → +∞.

A different way of calculating the activation energy Ea of a process is
given by the Arrhenius equation, that bounds the dependence of the rate
constant k of a chemical reaction to the absolute temperature T :

k (T ) = k0 exp (−Ea/kBT ) (2.44)

in a form analogous to that one of Equation 2.42. For our purposes the
reaction is the proton hopping and Ea is the energy barrier that the proton
must overcome in order to jump from one oxygen atom to another one. The
pre-exponential factor k0 contains the information on how many attempts
to overcome the barrier can be successful according to its geometrical envi-
ronment. In other words, k0 is a measure of the activation entropy for the
proton hopping.
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Taking always as reference the proton hopping process, reaction rate k is
related to the proton resident time τ on a stable site through the following
relation:

k =
1

τ
; (2.45)

so, for our analysis, Equation 2.44 can be rewritten as

τ (T ) = τ0 exp (Ea/kBT ) . (2.46)

Proceeding as for Equation 2.43:

ln τ (T ) = ln τ0 +
Ea
KB

1

T
(2.47)

obtaining a linear relation between the logarithm of the residence time τ(T )
and the inverse of the absolute temperature T . Analysing dynamics trajecto-
ries, it is possible to calculate the residence time τ for each of the simulation
temperature T and, from Equation 2.47, evaluate the activation energy Ea
and the pre-exponential factor τ0.



Chapter 3

The BaCeO3 and BaZrO3
Perovskite Systems

Great interest is addressed towards BaCeO3 and BaZrO3 perovskites materi-
als because of their potential as electrolyte materials in several electrochem-
ical devices [23, 24]. BaCeO3 and BaZrO3 derivatives are regarded as ones
of the most promising materials, because of their chemical features together
with high proton conductivity [20]. Research efforts were thus addressed
to understand the elementary processes involved in protonic phenomena re-
lated to these materials, mostly to improve their stability and efficiency in
working temperatures ranging between 600 and 1100 K.

BaCeO3 undergoes a sequence of phase transitions [78]: it transforms
from Pmcn to Incn space group at 563 K, then, after further tilting of the
oxygen octahedra, this last phase becomes F32̄/n at 673 K up to 1173 K, at
which the structure becomes cubic with space group Pm3̄m. The width of
the phase can change according to the dopant content. BaZrO3 crystalline
structure, instead, has a cubic Pm3̄m symmetry, not showing any phase
transitions after temperature changing [108, 109].

Calculated proton conductivities from data on proton concentrations
and mobilities (see Figure 3.1) allow to compare the title materials with
similar solid oxide protonic conductors, and show that BaCeO3 derivatives
are among the best proton-conducting oxides.

The first elements that allow to understand the origin of such charac-
teristics must be searched in the mechanism responsible of protonic carriers
formation in perovskite materials.

As we saw about chemical reaction 1.2 for the incorporation of protonic
defects, a water molecule is split into a hydroxide ion and a proton. The
enthalpy of this reaction has been studied in different works [34, 110, 111];
it seems that hydration enthalpy tends to become more exothermic with de-
creasing electronegativity of the cations interacting with the lattice oxygens.
In particular, an increase of the B-site cation electronegativity corresponds

45
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Figure 3.1: Protonic conductivities of various kinds of proton conducting
oxides as reported in [20] (redrawn).

to a decrease of the equilibrium constant of the hydration reaction 1.2, in
the order cerate, zirconate, stannate, niobate, titanate [15].

At a first sight, the thermodynamics of the formation of protonic de-
fects is affected by the dopant concentration only when the dopant changes
the electron density of the surrounding oxygens, as it was supposed for
Y:BaZrO3 [31]; on the other hand, computational works on the same or
similar compounds [35, 81] infer the role of the geometrical structure of the
doped octahedron environment, as experimental data on Y:BaZrO3 with Y
concentrations up to 60% seem to point out [112]. Thermogravimetrical
analysis on Y:BaCeO3with different doping percentages show similar trends
for different yttrium content: samples exposed to laboratory air hydrate
within 24 hours, while measurements of water absorption in dry and wet
H2 show hysteresis between 200 and 500 � and the maximum amount of
absorbed water is retained at room temperature [113]. The presence of pro-
tonic defects also at low temperature and without dopant is allowed because
the tetravalent cation in this compound can have +3 charge valence as sug-
gested in luminescence experiments in which 2D → 4F5/2 and 2D → 4F7/2

transitions of the Ce 3+ have been observed [114].
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If electronegativity seems to stabilize protonic defects, the stability with
respect the presence of acidic gases such as CO2 and SO2 has the opposite
trend, while it is less affected by reduction of the crystallographic symmetry
[20]. For example, BaCeO3 and SrCeO3 show the same stability against car-
bonate formation, while protonic defects are better incorporated in BaCeO3

than in SrCeO3 which have a stronger orthorhombic distortion; analogously,
Y:BaZrO3 compared with BaZrO3, show a higher proton stabilization than
in the case of Sc:SrTiO3 and Y:BaCeO3, this dopant leaving unaltered the
cubic BaZrO3 structure at any concentrations [112], as inferred also by ab
initio atomistic simulations on it [115, 116, 117].

Proton is usually described outside the BO6 octahedron, forming a highly
bent hydrogen bond [15, 78, 79, 118, 119]. This probably because the pos-
itively charged B-site cation avoids the formation of linear hydrogen bond
and favour the distortion of the protonated octahedron, increasing the ac-
tivation energy for proton hopping; this consideration is supported by com-
paring structural and dynamic features in Y:BaCeO3 and Y:SrCeO3 [120], in
which proton specializes the equivalent oxygen positions in the cubic struc-
ture, changing the electron density distribution and the configuration energy
with respect to the unprotonated structure. Although it is commonly ac-
cepted that the chemical match of the dopant does not affect the diffusion
of the proton [20], simulations on Y,In:BaCeO3 [84] highlight the relevance
of the dopant electronic contribution to the electronic structure of the whole
system.

Proton preferential structural site can be different at different temper-
atures also for the same compound. NMR data on BaCe1−xYxO3−δ [121]
show a split of the hyperfine line of 1H at increasing temperature, pointing
out to formation of two different sites for the proton while, this was not ob-
served for the protonated SrCe0.95Y0.05O3−δ; this was put in correspondence
with the transition phase of the Y:BaCeO3. Nonetheless, different oxygen
sites seem to be present for some protonated doped compounds that own
only one structural oxygen site in the corresponding unprotonated structure.
Infrared experiments has been done on Ga, In and Y doped zirconates of
Ca, Sr and Ba, revealing more than one structural site for the proton for
different dopant atoms [122]; among these, a relevant case is that one of
Y:BaZrO3 derivatives: the proton preferred structural oxygens are two de-
spite the structure is cubic. In this last case, proton can be used as a probe
for the local arrangement of the doped octahedra, supporting the model of
Y clustering for Y doped BaCeO3 and BaZrO3 perovskites (see chapters 4,
5 and 6) [116].

Concerning the transport mechanism, it is almost fairly recognized that
rotational diffusion and hopping between two nearest neighbour oxygen
atoms are the two main features of the proton transport throughout the
material. Computational simulations [123, 35, 119] has already shown that
the rate-limiting step is the hopping event, since rotational diffusion has
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been shown owing low activation barrier; this is confirmed also by QENS or
IR experiments on hydrated compounds [33, 122]. Proton transfer between
oxygens implies breaking and forming of more than two hydrogen bonds,
since the proton can “see” up to eight oxygen atoms. Depending on the kind
of perovskite, the hydrogen transfer can occur between oxygens belonging
to the same octahedron or to two different octahedra surrounding the same
A cation: the mechanism is called intra-octahedral or inter-octahedral in the
first and in the second case, respectively. In a sketched view, one or the other
mechanism occurs according to the size of the cell, with the intra-octahedral
one most likely for larger lattice constants [8, 124].

In ideal conditions, protonic concentration is equal to the dopant one:
increasing the dopant concentration should lead to a higher incorporation of
protonic defects, thus improving the conductivity of the material. This in-
deed leads, in general, to a reduction of the proton mobility, because doping
induces local or crystalline distortions, lowering structural symmetries that
are thought to be fundamental for the phonon assisted hydrogen transfer.
As an example, indium can enter into BaZrO3 structure in concentrations
up to 75%, nonetheless affecting in a dramatic way protonic conductivity
of this material [125]. On the other hand, Y:BaZrO3, for Y concentration
up to 20%, show high proton mobility, high proton solubility and high sta-
bility against the presence of CO2 in the reaction environment, unlike its
Y:BaCeO3 counterpart [20].

Samples prepared with different synthesis methods show different con-
ductivity behaviours. For example, gel-to-crystallite technique favours the
presence of oxygen defects in doped BaTiO3 samples and conductivity de-
pends also on the environment in which the samples has been prepared before
measurements, i.e. from its hydro-thermal history [126]. On the other hand,
in Y:BaZrO3 samples, synthesis methods affect mainly the grain conductiv-
ity, likely through the dopant distribution on the grain surface or the grain
size, while bulk contributions change in a more complex way [127, 128].

3.1 Computational Models of BaCeO3 and BaZrO3

Derivatives

One of the most adopted approaches for the computational study of systems
derived from BaCeO3 is that one of Islam and co-workers [36, 79, 81, 129].
Simulations on crystalline structures are based on the Born model in which
potential energy is partitioned into coulombic long range terms and couple
of Buckingham potentials

Vij = Aij exp

(
−r
ρij

)
− Cij

r6
(3.1)

for the short range part, where Aij , ρij and Cij are parameters assigned



3.1. COMPUTATIONAL MODELS 49

according to the characteristics of the interaction between i and j ions. If
the lattice contains charged defects, it is necessary that the potential can
reproduce the polarizability. The shell model gives a simple description of
this effect [130]: electronic cloud is divided into a core component, made by
the nucleus and the internal electrons, and a valence one (shell), bounded
to the first through a harmonic force.

The most used methodology to model a defect is that one proposed by
Mott and Littleton [131]. The part of the lattice surrounding the defect is
divided into two regions, including more than 200 atoms, while the external
region extend up to infinity. The energy of the system is, in this case, calcu-
lated using the mean field approach. In this, interaction energies are scaled
with the occupancy x of the site: it is defined a hybrid atom (1− x)Ce4+

and xM3+ in which M is the substituent of the tetravalent cation coordinat-
ing the oxygen octahedron. Thus, the interaction between the hybrid atom
and the oxygen ones can be expressed as

Vhybrid = (1− x)VCe4+···O2− + xVM3+···O2− (3.2)

while O−H interaction is modelled using an attractive Morse potential

V (r) = D{1− exp−β(r−r0)}2 (3.3)

where D, β and r0 have been developed for this purpose [132].

Besides the empirical approach discussed above, ab initio methods have
also been used for both BaCeO3 and BaZrO3 perovskite systems [31, 36, 123,
133, 134, 135, 136]. These are based on LCAOs in the Kohn-Sham scheme
within LDA or GGA approximations. The model geometry for such calcula-
tions are supercells up to 3x3x3 unit cells of the starting diffraction resolved
structures, to which Periodic Boundary Conditions have been applied.

3.1.1 BaCeO3 Ab Initio Models

The starting geometries of the model systems for BaCeO3 derivatives inves-
tigated in this work, have been chosen after preliminary calculations [137].
These geometries are clusters of atoms extracted from the orthorhombic
crystalline structures refined by neutron diffraction data and belonging to
the Pmcn space group [78]. In order to avoid cutoff truncation outcomes af-
fecting the calculated properties of the B-site local environment, large crystal
fragments of suitable geometry were chosen in order to build two different
model clusters. The first geometry, with stoichiometry X:Ba8Ce26O62, takes
into account the substitution of only one tetravalent cation, while the sec-
ond, with general composition XZ:Ba12Ce22O61H2, involves the substitution
of two cerium atoms, both belonging to vicinal octahedra — see figures 3.2
and 3.3. Since now on, they will be called single substitution and double
substitution model respectively.
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Figure 3.2: X:Ba8Ce26O62 fragment for the single substitution model: Ba,
Ce and O centres are in blue, brown and red respectively; the X site
(X−−Ce,Y,In,Gd) inside the central octahedral moiety is in green.

The composition of the fragment X:Ba8Ce26O62 with X−−Ce corresponds
to a null-charged singlet state Ba8Ce26O62 system, attributing to the in-
volved atoms the formal charges that they have in the crystalline structure.
The doped fragments are considered as hydrated, i.e. without any oxygen
vacancies, and they were calculated with a multiplicity equal to 1|e| and a
resulting charge equal to -1|e|. The latter is saturated in the simulations
that include the protonic species.

Along the calculations, the positions of the barium atoms and of the
centres included in the XO6 octahedral moiety of the starting fragments
have been optimized, keeping fixed to the crystalline structure coordinates
the remaining species belonging to the external frame.

Figure 3.4 shows the detail of the Ba8XO6 moiety, that was relaxed along
the optimizations. PBC were not applied to the simulation on BaCeO3 and
its derivatives, avoiding the typical ordered structural replicas characteriz-
ing the periodic applications. The average crystal structure observed by
diffraction is produced by insertion of dopants in the B-sites of barium cer-
ate and depends on the dopant concentration. Therefore, it is assumed that
in the present model, the Ba8XO6 central cluster relaxes in the environment
of the average structure experimentally observed, with the rigid external
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Figure 3.3: XZ:Ba12Ce22O61H2 fragment for the double substitution model:
Ba, Ce, O and H centres are in blue, brown, red and white respectively; the
X and Z sites (X,Z=Ce,Y) inside each of the central octahedral moiety are
in green.

frame bringing in an average way the interaction with the matrix.

The fragment XZ:Ba12Ce22O61H2 has been built to explore the effect of a
double yttrium substitution into two adjacent octahedra. As for the cluster
described above, the stoichiometry has been chosen in such a way that the
system has a null charge if the formal charges of the atoms are those of the
crystalline structures by setting X−−Z−−Ce; moreover, the geometry shape
allows to study the relaxation of the environment of two adjacent octahe-
dra, i.e. the moiety XZBa4O11 — see figure 3.5, embedded in a rigid cage
reproducing the mean properties of the crystal as for the single octahedron
model.

In both substitutional models, the octahedral protonated environment
has been studied by adding one hydrogen atom to the atomic moieties to
be relaxed, so building a protonated model for the corresponding hydrated
compounds — see figures 3.6 and 3.7.

The Gaussian03 suite of programs [138] was employed to perform the
calculations in the frame of the HF paradigm [139], by setting X−−Ce,Y,In
or Gd as octahedral cation in the single octahedron model, and by choosing
X,Z=Ce,Y in the double substitution model. In detail, HF energy func-
tional has been employed for the geometry optimizations, after the Gaus-
sian03 standard convergence criteria. Moreover, the SCF component of each
calculation was performed by a linear minimum search method, followed,
if needed by quadratic minimum search methods [140]. Unless expressly
stated, the multiplicity of the systems was fixed to 1, so considering closed
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Figure 3.4: Ba8XO6 moiety of the single substitution model. The colour
legend is the same as in Figure 3.2.

Figure 3.5: XZBa4O11 moiety of the double substitution model. The colour
legend is the same as in Figure 3.3.

shell systems.

In the calculations of the geometric and energetic properties of the sin-
gle and double substitution model fragments, the O atoms belonging to the
central octahedra and the external cage were described by the 6-31+G(d,p)
[141, 142] and 3-21G [143, 144, 145, 146, 147] basis set respectively. The
6-31+G(d,p) basis set was used to describe also the hydrogen atom in the
protonated models. The CRENBL ECP pseudopotential was used for de-
scribing the Ba atom, while the SBKJC VDZ ECP was used for the internal
octahedral cation (i.e. the XO6 moiety of the atoms to be optimized), unless
otherwise specified in the corresponding results chapter 4. These basis sets
have been chosen after preliminary calculations performed to balance the
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Figure 3.6: Ba8XO6H moiety of the single substitution protonated model.
The white sphere represents the hydrogen atom; the colour of the other
atomic centres follow the colour convention as in Figure 3.2.

Figure 3.7: Ba4XZO11H moiety of the double substitution protonated model.
The colour legend is the same as in Figure 3.3.

reliability of the results with the computational resources at our disposal
[84].

3.1.2 BaZrO3 Ab Initio Models

The model systems used to study BaZrO3 derivatives with ab initio ap-
proaches are 3 × 3 × 3 and 4 × 3 × 3 supercells (see figures 3.8 and 3.9)
built according to the crystalline structure as refined in neutron diffraction
experiments and belonging to Pm3̄m cubic space group.

In order to study the Y-doped octahedral environment, the doped struc-
tures have been built by substituting one or two zirconium atoms in the start-
ing geometries with corresponding yttrium ones. In particular, in 3× 3× 3
supercells, only one zirconium atom has been replaced with an yttrium one,
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Figure 3.8: Cubic Pm3̄m 3x3x3 supercell of X:BaZrO3: Ba, Zr and O atoms
are represented by blue, brown and red spheres respectively; the X site
(X=Zr,Y) is in green.

while in 4 × 3 × 3 BaZrO3 supercells, both single and double substitutions
have been taken into account. Double substitutions have been realized by
replacing two nearest neighbour zirconium atoms each by an yttrium one.
Structural rearrangements around one oxygen vacancy have been studied
using doped 3×3×3 and 4×3×3 supercells, by removing one oxygen atom
from the Y first neighbour shell as shown in Figure 3.10.

Local modifications induced after hydration have been explored by us-
ing model geometries built by adding one hydrogen atom to the undoped
and Y-doped optimized structures. In this case, before the calculation, the
hydrogen atom was added in such a way that it can be thought as bound
to one of the octahedral oxygen atoms, forming i) an O−H distance of 1.1
Å, ii) a planar angle of 80.0°with the oxygen to which is bound and the
nearest octahedral cation, and, finally, iii) a dihedral angle of 17.0°with the
oxygen to which is bound, the nearest octahedral cation and the oxygen
atom forming a hydrogen bond with it.

Along the calculations, the charge of the systems was fixed to zero except
for the structures with one oxygen vacancy, for which different charge values
have been considered (from -2 to +2 |e|). Moreover, the multiplicity of each
system was chosen to be the lowest allowed according to the number of
electrons present in the system.
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Figure 3.9: Cubic Pm3̄m 4x3x3 supercell of X:BaZrO3: Ba, Zr and O atoms
are represented by blue, brown and red spheres respectively; the X and Z
sites (X,Z=Zr,Y) are in green.

Figure 3.10: Octahedral environment of either 3 × 3 × 3 and 4 × 3 × 3
cubic Pm3̄m XZ:BaZrO3: X=Zr,Y and Z=Zr for 3× 3× 3 supercells, while
X,Z=Zr,Y for 4 × 3 × 3 supercells. The colour legend is the same as in
Figure 3.9; the red circle with label “4” represents either one oxygen atom
or one oxygen vacancy, depending on the model to which it is referred.

SIESTA package [148] has been used to perform geometrical optimiza-
tions, within DFT-LDA approximation, with the CA energy functional [149].
The Ba and O atoms were described with the basis set optimized for the
BaTiO3 perovskite structure [150], while Zr and Y atom basis sets were opti-
mized in BaZrO3 and Y2O3 systems. All the atomic positions are optimized,
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while the lattice vectors are kept fixed. Periodic boundary conditions are
used throughout all these calculations.

3.1.3 BaZrO3 Molecular Dynamics Models

Besides the ab initio simulations, pure and Y-doped barium zirconate has
been also studied by Molecular Dynamics approach, using the Reax Force
Field as recently developed for Y:BaZrO3 systems [151].

The model starting structures are 4 × 3 × 3 supercells of cubic Pm3̄m
BaZrO3 as resolved by neutron diffraction data [108] and they are geomet-
rically identical to the 4 × 3 × 3 clusters used for the ab initio simulations
on the same compound – see Figure 3.9.

In order to simulate the Y-doped compound, one or two zirconium atoms
has been substituted by corresponding yttrium ones, while proton diffusion
has been studied through protonated structures obtained by adding one
proton to the doped and undoped ones.

MD simulations have been carried out at various temperatures: 100, 250,
500, 750, 1000 and 1250 K with a simulation time of 2 ns, applying Periodic
Boundary Conditions to the model clusters.



Chapter 4

BaCeO3 Derivatives Ab
Initio Results

As described in subsection 3.1.1, single and double substitution models have
been considered, starting from the crystalline orthorhombic Pmcn structure.
The results obtained with each model will be presented as grouped for pro-
tonated and unprotonated systems, comparing the different structures and
discussing the features characterizing them.

4.1 Single Substitution Model

The here proposed approach should give locally un-constrained results [152]
on the studied octahedral environment, although it introduces structural and
electronic constrains on the surrounding fixed framework. Notwithstanding
this, as we will show, the considered fragment is however large enough and
these border restrictions are not affecting the local properties of the central
Ba8XO6 moiety.

4.1.1 Unprotonated Fragments

Unprotonated fragments will be considered invariantly with all the oxygen
sites occupied, i.e. without any oxygen vacancies, since the hydrated average
structure is taken into account.

Undoped Fragment. In order to investigate the structural rearrange-
ments after substitution of the tetravalent octahedral cation (i.e. Ce) with a
trivalent one, for the Ba8XO6 moiety the dopant atom X was chosen to be Y,
In and Gd. In Table 4.1, the main geometrical features of the experimental
and optimized Ba8CeO6 moiety are reported.

The sets of oxygen atoms {O5, O1, O6, O2}, {O4, O6, O3, O5} and
{O3, O1, O4, O2} single out three different planes containing the central Ce

57
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Table 4.1: Relevant geometrical parameters characterizing the central oc-
tahedron environment of the undoped orthorhombic, Pmcn BaCeO3, frag-
ment.

distancesa/ Å NPDb EXAFSc Ce0d Ce1d

Ce−O1 2.25 — 2.27 2.24
Ce−O2 2.25 — 2.27 2.24
Ce−O3 2.24 — 2.28 2.24
Ce−O4 2.24 — 2.28 2.24
Ce−O5 2.25 — 2.28 2.24
Ce−O6 2.25 — 2.28 2.24
<Ce−O>e 2.25 2.27 2.28 2.24
Ce−Ba1 3.91 — 3.80 3.83
Ce−Ba2 3.77 — 4.00 3.87
Ce−Ba3 3.69 — 3.74 3.68
Ce−Ba4 3.84 — 3.83 3.78
Ce−Ba5 3.84 — 3.83 3.78
Ce−Ba6 3.69 — 3.74 3.68
Ce−Ba7 3.77 — 4.00 3.87
Ce−Ba8 3.91 — 3.80 3.83
<Ce−Ba>e 3.80 3.81 3.84 3.79

angles / ◦ NPD EXAFS Ce0 Ce1

O1−Ce−O5 89.0 — 91.3 90.1
O2−Ce−O3 91.6 — 89.7 90.8
O3−Ce−O5 90.4 — 90.5 91.4

a For the atomic labelling see Figure 3.4. b Neutron
powder diffraction parameter values as determined at
liquid helium temperature in [118]. These geometri-
cal parameters were also used as starting input in the
optimizations whose results are summarized in the
Ce0 and Ce1 columns. c Results at liquid nitrogen
temperature reported by [85] d The Ce0 and Ce1
labels refer to the SBKJC VDZ ECP and CRENBL
ECP basis sets used for the Ba atoms, respectively.
e Mean values of the corresponding atomic distances.

cation, both before and after the calculations. In each of these planes, two
couples of oxygen atoms, together with the Ce one, individuate two incident
lines, making two opposite-to-the-vertex pair of angles. Since no constraint
are imposed to the optimized coordinates, the results demonstrate that the
atomic arrangement of the central cluster fits into the average long-range
structure determined by neutron diffraction experiments, without large local
distortion. Comparisons with other calculations show good agreement with
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the Ce−O found distances [79].

Y-doped Fragment. Structural modifications after inserting Y into the
structure, have been investigated by also describing the dopant atom with
the Stuttgart RSC 1997 ECP pseudopotential and basis set [153, 154, 155],
giving a description more accurate than the SBKJC VDZ ECP ones. With
this choice, four model systems has been considered, named CS1, CS2, CS3
and CS4, as shown in Table 4.2.

By using CS1, we intended to investigate the effect of a higher level basis
set on the inner atom of the central octahedron, with the charge and multi-
plicity state unchanged with respect to those employed for the CR system.
On the other hand, with CS2 model we investigate the effect of changing the
multiplicity state, imposing the triplet state to the Y:Ba8Ce26O62 fragment.
By CS3 approach, we analysed the effect of a larger atom cluster optimiza-
tion, by relaxing also the positions of the Ce atoms directly linked to the O
atoms of the central octahedron. Finally, we also considered a bisubstituted
fragment, 2 Y:Ba8Ce25O62, which was treated by CS1 approach. The geo-
metrical features found for angles and distances opposite to the Ce vertex
in the CeO6 octahedron still hold for all the yttrium-doped structures here
considered.

The use of a higher level basis set for the Y atom in the CS1 approach did
not carried significant variation on the optimized geometrical parameters,
while on the whole, results are in a satisfying agreement with experimen-
tal values. The models disregards some inferences originating by EXAFS
analysis [86]. These suggested that structural vacancies, not considered in
the model may occur. Despite this, it is interesting to notice that both the
experimental and the computational results agree in pointing out a slight
contraction of the barium shell toward the yttrium species.

The two sets of Y−O distances observed by EXAFS [86] and attributed
to an axial elongation of the YO6 octahedron, were not reproduced by the
computational approaches. The length inhomogeneity could be experimen-
tally produced by the structural vacancy defects above or by other local
distortion not taken into consideration by the models so far described. The
Y−O distance inhomogeneity is present at temperatures as high as 773 K,
also under very different hydration conditions [86]. Furthermore, the relax-
ation of a larger atom cluster (Ba8YCe6O6 instead of Ba8YO6) of the CS3
simulation did not increase the reliability of the optimization.

The 2 Y model was investigated in order to find a possible origin of the
bimodal distribution pointed out by the EXAFS results, which were not
reproduced by any of the CSn single Y considered models. To this purpose,
considering the structure optimized by the CS1 approach, at first we per-
formed a preliminary calculation in which the position of the second yttrium
(introduced by substitution of the Ce atom linked to O4) and its octahe-
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Table 4.2: Relevant geometrical parameters characterizing the central octa-
hedron environment of the Y-doped orthorhombic, Pmcn Y:BaCeO3, frag-
ment.

distancesa/ Å EXAFSb SBc CRc CS1d CS2d CS3d 2Ye

Y−O1 — 2.32 2.28 2.28 2.28 2.25 2.26
Y−O2 — 2.32 2.28 2.28 2.28 2.25 2.28
Y−O3 — 2.31 2.27 2.27 2.28 2.25 2.20
Y−O4 — 2.31 2.27 2.27 2.28 2.25 2.37
Y−O5 — 2.33 2.28 2.28 2.27 2.26 2.28
Y−O6 — 2.33 2.28 2.28 2.27 2.26 2.30
<Y−O>f 2.26 2.32 2.28 2.28 2.28 2.25 2.28
Y−Ba1 — 3.72 3.77 3.77 3.81 3.64 3.56
Y−Ba2 — 3.91 3.80 3.80 3.80 3.67 3.87
Y−Ba3 — 3.67 3.62 3.62 3.55 3.47 3.56
Y−Ba4 — 3.75 3.73 3.72 3.76 3.62 3.78
Y−Ba5 — 3.75 3.73 3.72 3.76 3.62 3.55
Y−Ba6 — 3.67 3.62 3.62 3.55 3.47 3.63
Y−Ba7 — 3.91 3.80 3.80 3.80 3.67 3.81
Y−Ba8 — 3.72 3.77 3.77 3.81 3.64 3.82
<Y−Ba>f 3.76 3.76 3.73 3.73 3.73 3.60 3.70

angles / ◦ EXAFS SB CR CS1 CS2 CS3 2Y

O1−Y−O5 — 88.9 89.9 89.9 89.3 91.6 90.5
O2−Y−O3 — 89.5 89.1 90.9 90.4 89.3 92.5
O3−Y−O5 — 90.3 90.9 90.9 91.3 91.6 95.1

a For the atomic labelling see Figure 3.4. b Results at 120 K reported by
[86]. c The SB and CR labels refer to the SBKJC VDZ ECP and CRENBL
ECP basis sets employed for the Ba atoms, respectively.
d In the CSn calculations the Y atom was treated by the Stuttgart RSC
1997 ECP basis set: in the CS1 and CS2 calculations closed-shell singlet-
state and open-shell triplet-state systems were considered while in the CS3,
closed-shell, calculation the Ce atoms linked to the O atoms of the central
octahedron were also relaxed. e The 2 Y:Ba8Ce25O62 system was treated
as the mono substituted CR Y:Ba8Ce26O62 one. The second yttrium atom
is linked to the first one through the O4 atom.
f Mean values of the corresponding atomic distances.

dral oxygen environment were allowed to optimize then, starting from the
locally optimized structure, the central octahedron and the barium atoms
were relaxed as usual. By this procedure, the sets of oxygen planes {O5, O1,
O6, O2}, {O4, O6, O3, O5} and {O3, O1, O4, O2}, and the characteristic
symmetry around yttrium inside the central octahedron were as expected
lost.

Analysing the results on the 2 Y system above, it is possible to attempt
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a rationalization of the Y−O bimodal distance set, around 2.33 and 2.23 Å,
with weight 2/3 and 1/3 respectively, determined by the EXAFS approaches
applied to Y:BaCeO3 derivatives [86]. As a matter of fact, three character-
istic Y−O distances, with different statistical weights, can be recognized in
the 2 Y data in Table 4.2: 2.20, 2.30 and 2.40 Å, being the longest and
the shortest distance on the same line including the two Y atoms present
in the 2 Y:Ba8Ce26O62 fragment. From this result, we could infer that the
experimental Y−O distance distribution could be given by a bimodal spread
originated by the clustering of the Y−O−Y local arrangements.

In-doped Fragment. In contrast with yttrium, that has a solubility limit
of ∼ 15%, indium can be inserted into the barium cerate matrix in any
amount, producing eventually a change in the symmetry of the In:BaCeO3

mixed oxide. At low indium concentration, the doped oxide is still or-
thorhombic, with space group Pmcn.

Relevant distances and angles of the Pmcn In:BaCeO3 fragment and
corresponding experimental findings are reported in Table 4.3

The In0 approach shows that both the In−O and In−Ba distances should
be characterized by specific distributions. Increasing the level of the In
basis set (aug-cc-pV5Z-PP basis set is supplied for In in AUG calculation),
only one In−O distance is singled out, satisfactory in agreement with the
experimental trend [156].

Like for the other calculated doped and undoped systems, the geometri-
cal features concerning pairs of angles and distances opposite to the In atom
still hold, when the aug-cc-pV5Z-PP are employed. Finally, AUG approach
is able to capture the larger shrinking of the octahedral oxygens and the
surrounding barium atoms on the indium one respect to the yttrium atom,
as found by EXAFS experiments on doped BaCeO3 derivatives [156].

Gd-doped Fragment. Octahedral trivalent cation environment in gad-
olinium-doped barium cerate has been studied by choosing X−−Gd for the
BaXO6 moiety to be optimized. We performed geometrical relaxations
with different basis set and pseudopotential used for the gadolinium atom:
Stuttgart RSC 1997 ECP and Stuttgart RSC ANO/ECP [159], setting to
0 and 1 the charge and multiplicity values, respectively. A simulation with
a null charge and a triplet spin state was also performed with Stuttgart
RSC 1997 ECP pseudopotential and basis set, in order to explore possi-
ble open-shell effects. Moreover, to take into account correlation effects,
without increasing the computational cost, a third geometrical optimiza-
tion was performed, following ONIOM prescriptions [160]. In the last case,
Gd:Ba8Ce26O62 fragment was fractioned into two layers: the Ba8GdO6 and
the Ce26O56 fragments. The former (model system), corresponding to the
central octahedron environment, was treated at B3LYP level [161, 162, 163],
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Table 4.3: Relevant geometrical parameters characterizing the central octa-
hedron environment of the In-doped orthorhombic, Pmcn In:BaCeO3, frag-
ment.

distancesa/ Å EXAFSb In0c AUGd

In−O1 — 2.13 2.20
In−O2 — 2.13 2.20
In−O3 — 2.23 2.20
In−O4 — 2.23 2.20
In−O5 — 2.26 2.22
In−O6 — 2.26 2.22
<In−O>e 2.16 2.21 2.21
In−Ba1 — 3.68 3.70
In−Ba2 — 3.75 3.75
In−Ba3 — 3.52 3.53
In−Ba4 — 3.67 3.67
In−Ba5 — 3.67 3.67
In−Ba6 — 3.52 3.53
In−Ba7 — 3.75 3.75
In−Ba8 — 3.68 3.70
<In−Ba>e 3.64 3.65 3.66

angles / ◦ EXAFS In0 AUG

O1−Y−O5 — 89.9 90.1
O2−Y−O3 — 90.6 89.7
O3−Y−O5 — 90.7 89.9

a For the atomic labelling see Figure 3.4.
b Results at liquid nitrogen temperature re-
ported by [156]. c The In0 labels refer to the
calculation performed by using the CRENBL
ECP basis set for the Ba atoms. d In the
AUG calculation the In atom was treated by
the aug-cc-pV5Z-PP basis set as reported in
https://bse.pnl.gov/bse/portal [157, 158].
e Mean values of the corresponding atomic
distances.

while the latter (real system) was treated at HF level. In this last calcula-
tion, the Stuttgart RSC 1997 ECP basis set and pseudopotential was used
for the Gd atom.

Gd−O distance values, calculated with the Gd0, Gd1 and Gd2 ap-
proaches (see table 4.4), show narrow distributions round one mean value,
lower than that one observed in EXAFS measurements [164]; the discrepancy
is removed in the ONIOM calculation. On the other hand, the spreading
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Table 4.4: Relevant geometrical parameters characterizing the central
octahedron environment of the Gadolinium-doped orthorhombic, Pmcn
Gd:BaCeO3, fragment.

distancesa/ Å EXAFSb Gd0c Gd1c Gd2c ONMd

Gd−O1 — 2.17 2.16 2.19 2.28
Gd−O2 — 2.17 2.16 2.19 2.28
Gd−O3 — 2.16 2.18 2.19 2.30
Gd−O4 — 2.16 2.18 2.19 2.30
Gd−O5 — 2.21 2.19 2.19 2.32
Gd−O6 — 2.21 2.19 2.19 2.32
<Gd−O>e 2.32 2.18 2.18 2.19 2.30
Gd−Ba1 — 3.78 3.80 3.82 3.78
Gd−Ba2 — 3.84 3.84 3.84 3.79
Gd−Ba3 — 3.61 3.62 3.78 3.56
Gd−Ba4 — 3.78 3.73 3.78 3.73
Gd−Ba5 — 3.78 3.73 3.68 3.78
Gd−Ba6 — 3.61 3.62 3.68 3.56
Gd−Ba7 — 3.84 3.84 3.82 3.73
Gd−Ba8 — 3.78 3.80 3.82 3.79
<Gd−Ba>e 3.54 3.75 3.75 3.78 3.71

angles / ◦ EXAFS Gd0 Gd1 Gd2 ONM

O1−Gd−O5 — 89.9 89.8 90.1 88.3
O2−Gd−O3 — 90.1 90.4 90.6 89.7
O3−Gd−O5 — 90.6 91.1 90.8 90.3

a For the atomic labelling see Figure 3.4. b Results at 25K re-
ported in [164]. c In Gd0 and Gd1 label calculations the Gd
atom was treated by the Stuttgart RSC/ANO and Stuttgart
RSC 1997 basis set respectively, in which close-shell systems
were considered while in Gd2 calculation an open-shell system
was considered describing Gd atom with Stuttgart RSC 1997
pseudopotential and basis set.
d In ONM calculation, the optimized Ba8GdO6 model system
was treated at B3LYP level while the remaining Ce26O56 real
system was treated at HF level; the basis sets and the multi-
plicity of the system were the same as in Gd1 calculation.
e Mean values of the corresponding atomic distances.

of the Gd−Ba distance values carried out in all calculations, allow to single
out a bimodal distribution, whose mean values of 3.56 and 3.76 Å found
with ONIOM simulation are different from the corresponding experimen-
tal values; nonetheless, they reasonably reproduce the statistical weight of
2/8 and 6/8 for the shorter and longer Gd−Ba distances found in the cited
experimental work, describing also the increase of volume of the GdO6 octa-
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hedron and the contraction of the barium coordination shell compared with
the undoped case.

In a computational work on BaCeO3 derivatives [84], the ONIOM ap-
proach was used to investigate the possible structural modifications induced
on the octahedral environment by the correlation effects for the cerium atom,
being this one a lanthanide; as shown, significative differences in the Ce−O
distances were found when the basis set describing the barium atom was im-
proved within the HF scheme, while the ONIOM calculation gave the same
results of the low level one. Since correlation is known to shrink bonds in
materials of this kind, these results must be checked to ensure the reliability
of the model, despite the agreement with experimental findings*.

4.1.2 Protonated Fragments

Structural modifications induced after hydration of BaCeO3 perovskite com-
pounds have been studied by considering structures containing one hydrogen
atom. Starting from the optimized geometries of the models discussed in the
preceding section, one proton has been added into the structure, as if bound
to the oxygen labelled as 4 in Figure 3.6. The proton position before per-
forming the geometrical optimizations is set the same for all the fragments
here discussed: O4−H distance, H−O4−X angle and H−O4−O2−O6 dihe-
dral angle were set to 1.10 Å, 80.0°and 17.0°respectively. This configuration
is the starting point for the research of one of the proton stable positions
near the octahedral site. In order to do this, proton coordinates has been
left free to optimized without any restraints.

Undoped Fragment. Since protonic defects are mainly present in doped
structures (see section 1.5), this model is intended to be a possible descrip-
tion of a portion of the crystal far from the substitutional point defect, i.e.
the environment of an octahedral undoped site, far from a doped one.

As starting configuration, the optimized atomic positions of Ce1 geom-
etry has been considered (see Table 4.1) together with the same pseudopo-
tentials and basis set; then, the coordinates of the Ba8CeO6H moiety have
been relaxed. Relevant distances and angles so obtained are reported in
Table 4.5, together with the undoped reference structure.

The Ce−O distances produce a strong deformation of the octahedral
site, ranging between 2.13 and 2.38 Å. Comparing these results with those
ones found for the unprotonated system, we found that the octahedral vol-
ume remains nearly the same, while the Ce−Ba distances increase, leading
to an expansion of the proton environment; in particular, the perturbation
on the distances Ce−O3, Ce−O4 and Ce−O6 is stronger compared to the
other Ce−O ones. Due to the little value of the H−O4−Ce−O6 dihedral

*Thanks to Prof. L. Seijo for having point out this comment.
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Table 4.5: Relevant geometrical parameters characterizing the central oc-
tahedron environment of the protonated undoped orthorhombic, Pmcn
BaCeO3H, fragment.

distancesa/ Å Ce1b Ce1Hc Ce1H-TSd

Ce−O1 2.24 2.20 2.19
Ce−O2 2.24 2.22 2.23
Ce−O3 2.24 2.13 2.10
Ce−O4 2.24 2.38 2.30
Ce−O5 2.24 2.21 2.17
Ce−O6 2.24 2.29 2.40
<Ce−O>e 2.24 2.24 2.23
Ce−Ba1 3.83 4.21 4.19
Ce−Ba2 3.87 3.79 3.70
Ce−Ba3 3.68 3.77 3.79
Ce−Ba4 3.78 3.82 3.86
Ce−Ba5 3.78 3.89 3.88
Ce−Ba6 3.68 3.65 3.71
Ce−Ba7 3.87 4.08 4.26
Ce−Ba8 3.83 3.87 3.79
<Ce−Ba>e 3.79 3.89 3.90
O4−H 1.10 0.95 1.01

anglesf/ ◦ Ce1 Ce1H Ce1H-TS

H−O4−Ce 80.0 86.1 66.7
H−O4−O2−O6 17.0 37.7 20.9

a For the atomic labelling see Figure 3.6.
b Geometrical parameters of the Ce1 system as pre-
sented in Table 4.1, used as starting input in the
optimizations whose results are summarized in the
Ce1H column. Values are reported for compari-
son purposes. c Optimized values for the hydro-
genated system with the proton in the stable po-
sition. d Calculated parameters for the system
with the proton in a transition-like state along the
hopping path. e Mean values of the correspond-
ing atomic distances. f Planar and dihedral angle
values of the specified atoms are reported. For the
Ce1 system, values are a starting guess for proton
position (see the text).

angle (13.6°), we can regard to the proton as nearly lying onto the plane
individuated by O4−Ce−O6 atoms and we can call as planar the induced
distortion, inferring a certain directionality of the proton perturbation. At
last, the O4−Ce−O2, O4−Ce−O6 and O2−Ce−O6 angles have smaller val-
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ues than the starting ones.

This optimized geometry was used as starting point for a further calcula-
tion, intended to investigate the features of the proton environment during
the hopping event. The starting position of the hydrogen atom was cho-
sen like if it were about in a median position between two oxygen atoms,
in order to search for a likely transition state along the transfer path. In
this aim, the initial O2−H, O4−H, O6−H and Ce−H distances were set to
2.25, 1.56, 1.60 and 1.96 Å respectively. During the calculation, the posi-
tion of the proton was kept fixed, while the Ba8CeO6 cluster were left free
to optimize; in this way, we don’t impose any constraints to the protonic
transfer path to be investigated. This choice, in our opinion, is a valid al-
ternative to that one of keeping fixed all the coordinates of all the atoms
and searching for a transition state by sampling the potential energy surface
using the proton as a probe, especially if we take into account the com-
putational cost (time and resources) needed to get enough samples at the
calculation level here discussed. The results carried out with this approach
are summarized in the columns Ce1H-TS shown in the Table 4.5. Com-
paring the distances with those found for Ce1H system, it turns out that
the octahedral volume remains nearly the same as well as the Ce−Ba mean
distance, with the increased Ce−Ba3 distance due to the presence of the
proton between them (see Figure 3.6). Compared with the Ce1H system,
Ce−O distances undergoes a further planar distortion, while the Ce−O axial
ones are not changed; moreover, Ce−O3, Ce−O4 and Ce−O5 distances are
shorter whereas Ce−O4 and Ce−O6 seem to have exchanged their role in
stabilizing proton position, being now the former shorter than the latter.

O4−Ce−O2, O4−Ce−O6 and O2−Ce−O6 angles have even smaller val-
ues than the starting ones, as well as the H−O2−O4−O6 dihedral angle:
globally, the oxygen geometrical configuration is further distorted toward
the proton position, while the volume of the proton environment, e.g. the
Ba8CeO6 moiety, remains unchanged.

Y-doped Fragment. Y-doped protonated octahedral environment has
been studied using the computational model CS1 of the corresponding un-
protonated system (see Table 4.2). Geometrical optimizations has been
performed as usual, carrying out the results briefly summarized in Table 4.6

Similarly to what we found for the undoped protonated systems, the dis-
tances between the octahedral cation and the oxygen atoms surrounding it
show a strong deformation ranging from 2.15 and 2.34 Å. Compared with the
corresponding undoped structure Ce1H, these findings show that the overall
octahedral volume remains almost the same while the Y−Ba distances, in
average, increase, obtaining again an expansion of the proton environment.
The Y−O3 and Y−O4 distances are longer and shorter than the starting
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Table 4.6: Relevant geometrical parameters characterizing the central oc-
tahedron environment of the protonated Y-doped orthorhombic, Pmcn
Y:BaCeO3H, fragment.

distancesa/ Å CS1b CS1Hc CS1H-TSd CS1H-TS2e

Y−O1 2.28 2.26 2.23 2.23
Y−O2 2.28 2.28 2.30 2.32
Y−O3 2.27 2.15 2.12 2.18
Y−O4 2.27 2.34 2.27 2.29
Y−O5 2.28 2.24 2.20 2.12
Y−O6 2.28 2.29 2.38 2.32
<Y−O>f 2.28 2.26 2.25 2.24
Y−Ba1 3.77 4.11 4.06 3.95
Y−Ba2 3.80 3.73 3.64 3.72
Y−Ba3 3.62 3.65 3.68 3.50
Y−Ba4 3.72 3.72 3.76 3.82
Y−Ba5 3.72 3.78 3.78 3.67
Y−Ba6 3.62 3.59 3.64 3.73
Y−Ba7 3.80 4.06 4.25 4.10
Y−Ba8 3.77 3.71 3.65 3.68
<Y−Ba>f 3.73 3.79 3.81 3.77
O4−H 1.10 0.95 1.01 2.26

anglesg/ ◦ CS1 CS1H Ce1H-TS CS1H-TS2

H−O4−Ce 80.0 76.7 64.8 55.41
H−O4−O2−O6 17.0 29.63 18.4 14.18

a For the atomic labelling see Figure 3.6. b Geometrical param-
eters of the CS1 system as presented in Table 4.2, used as start-
ing input in the optimizations whose results are summarized in the
CS1H column. Values are reported for comparison purposes.
c Optimized values for the hydrogenated system with the proton in
the stable position. d Calculated parameters for the system with
the proton in the transition-like state along the hopping path.
e Relevant geometrical parameters for the system with the proton
nearly at the end of the transfer path. f Mean values of the cor-
responding atomic distances. g Planar and dihedral angle values
of the specified atoms are reported. For the CS1 system, values
are a starting guess for proton position (see the text).

ones respectively, showing again a strong planar perturbation of the Y−O
distances as found for the corresponding undoped protonated system. More-
over, the H−O4−O2−O6 optimized dihedral angle results smaller than that
one of the optimized Ce1H system.

Using the same protocol for the Ce1H-TS calculation of the paragraph
above, we used this optimized geometry as a starting point for a further cal-
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culation in the aim to study the local environment of the protonated doped
site in YBaCeO3 perovskite during proton migration. The initial O2−H,
O4−H, O6−H and Y−H distances were set to 2.29, 1.56, 1.57 and 1.93 Å
respectively. As for Ce1H-TS simulation, we don’t impose any constraints
to the transfer path to be investigated, trying to optimize the ratio between
the computational cost and the amount of informations needed to study a
proton transfer path. The results are shown in the Table 4.6.

Inspecting the obtained values, it comes out that all but Y−O2 and
Y−O6 distances are shorter than the starting ones, resulting the Y−O6
distance the most elongated; moreover the O4−Y−O2, O4−Y−O6 and
O2−Y−O6 angles and the H−O2−O4−O6 dihedral angle have smaller val-
ues than the starting ones. All Y−O starting and final distances, except
those concerning O1 and O2, have almost the same value of the correspond-
ing undoped systems CS1H and CS1H-TS; furthermore, for each couple of
systems with the same octahedral cation, the differences between the corre-
sponding H and H-TS systems are almost the same and with the same sign,
except for the H−O2−O4−O6. This last one, results larger for the Ce1H
than the CS1H model, acquiring practically the same value in the corre-
sponding H-TS systems. Concerning the Y−Ba distances, a significantly
increasing of the Y−Ba3 distance is found, being the Ba3 atom the nearest
one to the proton, leaving unaltered the volume of the Ba8YO6 moiety. Fi-
nally, it is worthy to note that X−O distances in Ce1H-TS and CS1H-TS
systems have very close values, suggesting that the proton, at that point of
the transfer path, rearranges X−O distances in the same way, regardless of
the octahedral cation species.

Starting from the last optimized configuration (CS1H-TS), we performed
a further geometrical optimization, choosing for the proton, as starting
point, a mean position along a probable path toward the closest O6 oxygen
atom. As before, only the Ba8YO6 moiety was left free to optimize, keeping
fixed the starting proton position. The results are shown in the column
CS1H-TS2 in Table 4.6.

In this last simulation, all the Y−O distance values changed except for
the Y−O1 and Y−O2 that maintain nearly the values they had at the be-
ginning of the optimization. In particular, if we compare the resulting Y−O
distance values with those of the CS1H system, the distances are rearranged
like if O6 and O4 oxygen atoms exchanged their position, as well as the
O3 and O5 atoms, while the Y−O2 and Y−O1 distances slightly change,
increasing the former, since O2 and H atoms lie on the same halfspace indi-
viduated by the O4−Y−O6 atoms.

Following this point of view, also the respective angles result exchanged,
being the O2−Y−O6 angle smaller than the O4−Y−O2 one, while the
O2−Y−O6 angle have almost the same value obtained with the first YH
calculation; the same consideration hold for the H−O2−O4−O6 dihedral
angle, being this value of 14°. Among the Y−Ba distances, only the Y−Ba3
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changes significantly, being the Ba3 the nearest one to the proton, not af-
fecting the volume of the protonated site.

In-doped Fragment. The AUG model for indium doped barium cerate
is the one that better reproduce the geometrical features of this system; for
this reason, this has been used as starting geometry to study the proton
influence of an In-doped octahedral site, by performing one geometrical op-
timization as already discussed about the other protonated systems, whose
results are reported in Table 4.7 Similarly to what we found for the pro-
tonated systems discussed since now, the distances between the octahedral
cation and the oxygen atoms surrounding it show a strong deformation rang-
ing from 2.03 to 2.27 Å. Comparing these values with those ones obtained
for the corresponding unprotonated system, we find, once again, that the
overall octahedral volume keeps almost the same value while the Y−Ba dis-
tance, in average, increases. Furthermore, a strong planar perturbation of
the In−O distances appears, leaving unaltered the In−O1 and In−O2 axial
distances. The longest and the shortest In−O distances are again the In−O4
and In−O3 ones, and the In−Ba3 distance value results the most enlarged
among the In−Ba distances; accordingly, after inserting the proton, the
volume of the proton environment increase. The O4−In−O2, O4−In−O6
and O2−In−O6 angles have smaller values than the starting ones, following
the same trend of the corresponding values in the geometrical optimizations
showed above. The H−O2−O4−O6 optimized dihedral angle results smaller
than the corresponding one in the undoped and Y-doped structures.

Gd-doped Fragment. Modifications induced by the presence of one pro-
ton on a Gd-doped site have been studied by using the model Gd1 of the
corresponding unprotonated geometry. Starting from this configuration,
one proton has been added to the structure following the general prescrip-
tions described in the introduction to this section, then the positions of
Ba8GdO6H moiety have been relaxed by setting the charge and multiplic-
ity values at -1 and 1 respectively. Relevant distance and angle values so
obtained are reported in the column Gd1−H of the Table 4.8. Although
Gd1−H model has been built starting from the Gd1 one, that does not re-
produce the experimental geometrical features of the system, calculations
on it can be used as a probe to understand if correlation effects, found for
Gd1 system, can be neglected when one proton lies near a Gd-doped site.

The Gd−O distances found are spread over a wide range from 2.06 to
2.32 Å. Comparing these values with the corresponding ones of the start-
ing model, Gd−O mean distance remains almost the same, keeping nearly
constant the octahedral volume, while the Gd−Ba mean distance increase,
expanding the proton surrounding environment as for the other already anal-
ysed protonated systems. Inserting one proton into the structure, a strong
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Table 4.7: Relevant geometrical parameters characterizing the central oc-
tahedron environment of the protonated In-doped orthorhombic, Pmcn
In:BaCeO3, fragment.

distancesa/ Å AUGb AUG-Hc

In−O1 2.20 2.18
In−O2 2.20 2.21
In−O3 2.20 2.03
In−O4 2.20 2.27
In−O5 2.22 2.14
In−O6 2.22 2.26
<In−O>d 2.21 2.18
In−Ba1 3.70 4.05
In−Ba2 3.75 3.68
In−Ba3 3.53 3.57
In−Ba4 3.67 3.63
In−Ba5 3.67 3.71
In−Ba6 3.53 3.49
In−Ba7 3.75 4.05
In−Ba8 3.70 3.60
<In−Ba>d 3.66 3.72
O4−H 1.10 0.95

anglese/ ◦ AUG AUG-H

H−O4−Ce 80.0 73.0
H−O4−O2−O6 17.0 25.15

a For the atomic labelling see Figure 3.6.
b Geometrical parameters of the AUG
system as presented in Table 4.3, used
as starting input in the optimizations
whose results are summarized in the
AUG-H column. Values are reported for
comparison purposes.
c Optimized values for the hydrogenated
system with the proton in the stable
position. d Mean values of the corre-
sponding atomic distances.
e Planar and dihedral angle values of the
specified atoms are reported. For the
AUG system, values are a starting guess
for proton position (see the text).

planar perturbation of the Gd−O distances occurs, leaving unaltered the
Gd−O1 and Gd−O2 axial distances. Like what we found for the other pro-
tonated doped structures, the O4−Gd−O2, O4−Gd−O6 and O4−Gd−O6



4.1. SINGLE SUBSTITUTION MODEL 71

Table 4.8: Relevant geometrical parameters characterizing the central oc-
tahedron environment of the protonated Gd-doped orthorhombic, Pmcn
Gd:BaCeO3, fragment.

distancesa/ Å Gd1b Gd1-Hc Gd2b Gd2-Hd

Gd−O1 2.16 2.15 2.19 2.30
Gd−O2 2.16 2.16 2.19 2.38
Gd−O3 2.18 2.06 2.19 2.16
Gd−O4 2.18 2.32 2.19 2.44
Gd−O5 2.19 2.14 2.19 2.30
Gd−O6 2.19 2.23 2.19 2.32
<Gd−O>e 2.18 2.18 2.19 2.31
Gd−Ba1 3.80 4.19 3.82 4.20
Gd−Ba2 3.84 3.76 3.84 3.76
Gd−Ba3 3.62 3.74 3.78 3.75
Gd−Ba4 3.73 3.77 3.78 3.81
Gd−Ba5 3.73 3.85 3.68 3.86
Gd−Ba6 3.62 3.62 3.68 3.68
Gd−Ba7 3.84 4.06 3.82 4.07
Gd−Ba8 3.80 3.81 3.82 3.87
<Gd−Ba>e 3.75 3.85 3.78 3.87
O4−H 1.10 0.95 1.10 0.95

anglesf/ ◦ Gd1 Gd1-H Gd2 Gd2-H

H−O4−Ce 80.0 82.3 80.0 73.1
H−O4−O2−O6 17.0 34.2 17.0 25.7

a For the atomic labelling see figure Figure 3.4.
b Geometrical parameters of the Gd1 and Gd2 systems as
presented in Table 4.4, used as starting input in the op-
timizations whose results are summarized in the Gd1-H
and Gd2-H column. Values are reported for comparison
purposes.
c Optimized values for the hydrogenated system with the
proton in the stable position; for this system, charge and
multiplicity have been set at -1 and 1, respectively.
d Optimized values for the hydrogenated system with the
proton in the stable position; for this system, charge and
multiplicity have been set at 0 and 2, respectively.
e Mean values of the corresponding atomic distances.
f Planar and dihedral angle values of the specified atoms
are reported. For the Gd1 and Gd2 systems, values are
a starting guess for proton position (see the text).

angles have smaller values than the starting ones, while the H−O2−O4−O6
optimized dihedral angle is larger than the corresponding one in the other



72 CHAPTER 4. BaCeO3 AB INITIO RESULTS

protonated doped models and comparable to the value it has in the proto-
nated undoped system.

In order to deepen the study on the influence of the proton on the Gd-
doped octahedral environment, we performed a further geometrical opti-
mization, starting from the Gd2 model, and setting the charge and multi-
plicity values at 0 and 2 respectively. The system built in this way has been
called Gd2-H and relevant distances and angles obtained are reported in the
corresponding column in the Table 4.8.

In the same way as the just discussed closed shell calculation, the features
of the Gd−O distances hold, with Gd−O4 and Gd−O3 the longest and
shortest ones. Comparing these results with the Gd1-H calculation, the
Gd−Ba mean distance appears to be almost the same; however, Gd−O
distances increase expanding the octahedral site and producing the same
effect when Gd substitutes for cerium in unprotonated systems.

As found for the other protonated doped systems, the X−O1 and X−O2
distances (i.e. the axial ones) have nearly the same value both before and af-
ter inserting the proton into the structure; since their mean value for Gd2-H
system (2.34 Å) is the same found in EXAFS experiment [164], we can infer
that, in presence of one proton in the Gd-doped octahedral environment,
correlation effects, relevant for the unprotonated system, do not contribute
in a significant way to the determination of the dopant local geometry.

4.1.3 Electronic Population Analysis

In order to deepen our insight into the electronic characteristics of the
Ba8XO6 moiety and to shed light on the effects of the dopant species on the
corresponding local electronic properties, we applied C-SPA/P-DOS analy-
sis and M-ca approach on the Pmcn X:Ba8Ce26O62 fragments, on systems
treated at the same level of calculation, namely the Ce1, CR and In0 ones,
in the hypothesis that local electronic changes could be related to changes
in the protonic conduction properties.

X:Ba8Ce26O62 fragment was clustered to form four sets of atomic species
to be simultaneously analysed: i) the Ba8XO6 moiety, ii) the Ba8 atomic
cluster, iii) the X species and iv) the O6 atomic cluster of the central octa-
hedron. The ρ vs. ε curves of these atomic groups are reported in Figure 4.1
with the bar representation of the X:Ba8Ce26O62 fragment eigenstates. The
ρ curves represent the orbital contribution of a given atomic set, among
those considered, to the MOs characterizing the Ba8XO6 central moiety,
while the abscissa ε fits the energy range considered.

An energy range, close to the HOMO region and interesting the Ba8XO6

central moiety of the X:Ba8Ce26O62 fragment, is analysed in the following.
At first, it should be noticed that, in the considered energy limits, the eigen-
value ranges of the whole X:Ba8Ce26O62 fragment, individuated by the red
bars, are roughly coincident with the P-DOS peak widths of the selected
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(a)

(b)

(c)
Figure 4.1: C-SPA/P-DOS analysis of the X:Ba8Ce26O62 fragment: orbital
contribution of atomic sets, included in the Ba8XO6 central cluster (Ba8

group: green line; X atom: blue line; O6 group: purple line; Ba8XO6 moiety:
black line), to the Ba8ΞO6 MOs against energy values, ρ vs. ε: (a) undoped,
(b) Y-doped, (c) In-doped Pmcn systems. The red bars individuate the i
eigenstates of the whole X:Ba8Ce26O62 fragment. The ρ lines are obtained
by a convolution of fixed-width Lorentzian curves centred on the energy bin
used in the DOS analysis, being the height proportional to the weight of the
AO set contribution in the bin. The red line on the top shows the border
between HOMO and LUMO.

atomic sets belonging to the Ba8XO6 moiety. Moreover, the presence of
two characteristic peaks can at first be observed in Figure 4.1. These are
centred at about -38.0 and -19.9 eV and correspond to MOs almost entirely
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constructed with the Ba8 atomic orbitals, independently of the X cation.
Concerning the Y-doped system, it can be noticed that the yttrium to-

gether with the barium and oxygen AOs are the main contributors to the
MOs corresponding to the eigenvalues in the range -15.0 ÷ -6.0 eV. Con-
versely, in the undoped systems, the cerium atom of the central octahedron
clearly gives a smaller contribution to the MOs in this energy range as well
as in the remaining range here analysed. Interestingly, the MOs related to
the eigenvalues in the range starting from ca. -6.0 eV up to the HOMO
region are entirely attributable to the barium AOs in the undoped systems
while in the Y-doped system, the same MOs seem to be produced by a mix-
ing of barium and yttrium AOs. The C-SPA/P-DOS plot of the In0 system
seems to strictly resemble that of the undoped system, being however the
indium AO contribution mainly centred at ca. -22.7 eV, where the MOs
seem to be entirely determined by the same indium AOs.

Moreover, the substitution of cerium with yttrium atoms seems to local-
ize a negative charge on the doped sites [86]. Following the M-ca procedure,
this characteristic is plainly captured by our calculations, which show a de-
crease (towards negative values) of the Mulliken charge on the Y-substituted
site by about -2 au, referring to the same calculations used for the C-SPA/P-
DOS analysis.

Interestingly, this effect is not observed in the In-doped fragment, which
conversely is characterized by an increase, ca. +0.4 au, of positive charge on
the indium site in respect of the undoped one. Therefore, with the caution
that has to be deserved in considering and comparing Mulliken charges, we
can infer an opposite local behaviour of In-doped and Y-doped materials.
The speculation above is supported by the observation that all the satu-
rated oxygens but the octahedral ones, have very similar Mulliken charge,
irrespective of the X:Ba8Ce26O62 fragment considered, while the average
Mulliken charge of the oxygens on the central octahedron has a character-
istic behaviour oppositely related to that of the charge of the central atom
inside it. The average charge difference on the oxygens surrounding yttrium
and indium, taking as zero the average charge of the oxygens neighbour-
ing cerium, is indeed ca. +0.2 and -0.2 au. These findings are indeed in
agreement with a higher local basicity of the XO6 moiety, in the case of
In with respect to Y derivatives. The considerations above and the inspec-
tion of Figure 4.1, allow us to explain the larger miscibility and the lower
conductivity of indium respecting yttrium atoms in the BaCeO3 perovskite
structures [86, 156].

Concerning the miscibility, it can be argued that indium, although in-
ducing local shrinking distortions, caused by its smaller size, could be in-
troduced in the BaCeO3 materials in any amount since its AOs seems to
behave like those of the Ce atom – see the Ce- and In- contribution to the
large peak around 10 eV in Figure 4.1. An opposite behaviour is conversely
shown by the yttrium centre that strongly interacts with the neighbouring
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oxygen and barium atoms and induces local isotropic expansion of the sur-
rounding octahedron environment (see section 4.1.1). This could contribute
to the experimentally observed structural instability, producing un-mixing
phenomena in the Y:BaCeO3 compounds [85].

With respect to the conductivity, it can be inferred that the contrac-
tion of the central octahedron including the dopant, observed in the case
of the In:BaCeO3 derivatives, should cause a reduced ability in the proton
transport. This fact coupled with the higher electron charge, determined by
M-ca, on the oxygens surrounding the indium atom in respect to the yttrium
one, easily could explain the reduced conductivity of the In-doped materials
[86, 156], since the smaller doped octahedron should have limited exchange
capability with neighbouring octahedrons (even more limited if the latter
were also doped and as a consequence smaller) while the higher negative
charge should even increase the resistance of the proton diffusion from the
same In-doped octahedrons. Moreover, a proton moving from one oxygen of
the latter to one of an undoped octahedron has to overcome an unfavourable
charge gradient — protons have actually to move towards more positive sites
— at variance with the event involved in the proton displacement from the
oxygens of the Y-doped to the oxygens of the undoped octahedrons. This is
in agreement with the interpretation proposed in [20] which directly relates
the conductivity of a doped BaCeO3 material to the basicity variations of
the oxygen octahedral environments.

Summarizing, the oxygen net, own of the BaCeO3 perovskite deriva-
tives, defines a complex allocation matrix for the structural protons. This
allows one to hypothesize the existence of an extended conformational space,
defining the proton placement in the X:BaCeO3 material bulk. However,
it is already possible to hypothesize that preferred placements on oxygen
site in the octahedral arrangement — in the order: InO6 > CeO6 > YO6

— as well as preferential inter-octahedral diffusion way — in the order:
YO6 → CeO6 > CeO6 → CeO6 > InO6 → CeO6 — can prevail for protons
belonging to BaCeO3 perovskite derivatives.

Final considerations deserve the un-mixing phenomena characterizing
the Y:BaCeO3 materials [86]. Figure 4.1 reports the ρ vs. ε plot of the
2 Y:Ba8Ce26O62 fragment. The main characteristics concern the presence of
two broad bands in the ranges -40 ÷ -35 eV and -28 ÷ -10 eV, respectively
and the shift to lower energy values of the bands that we attributed to ef-
fects produced by the barium AOs. In fact, the two broad bands have the
same properties — specifically a large mix of Ba, O, and Y AOs — of the
band centred at ca. -10 eV already found when considering the mono-doped
Y fragment. More interestingly, a remarkable contribution of the lateral Y
atom is also found in these bands. Of course, a symmetric behaviour, here
not shown, of the central Y AOs is observed on the MOs formed by yttrium,
barium and oxygen atoms defining the lateral Y atom environment. These
interactions, in presence of high percentage of yttrium atoms in barium cer-
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ate matrices, reinforce the structural instability mentioned above and could
be straightforwardly related to the occurrence of YO6 moieties’ clustering,
which could induce the experimentally observed un-mixing phenomena of
the Y:BaCeO3 derivatives, with production of yttrium and barium oxide
species [86].

4.2 Double Substitution Model

Following the suggestions given by the results obtained with the unpro-
tonated Y:BaCeO3 models discussed in the preceding section, the Double
Substitution Model is intended in the aim to investigate the possible local
clustering of the Y atom in substituting for the Ce one. As for the Sin-
gle Substitution Model, it will be shown that constraints on electronic and
geometric structure do not compromise the reliability of the results. Since
only undoped and Y-doped moieties will be investigated, the computational
outcomes will be grouped by distinguishing between protonated and un-
protonated structures only, highlighting how the structural features change
after progressive substitutions.

4.2.1 Unprotonated Fragments

The choice to consider CeCe, CeY and YY:Ba12Ce22O61H2 systems is re-
lated to their representation ability of the different environments that should
characterize Y-doped BaCeO3 materials. The experimental structure pa-
rameters used to start the calculation on the XZ:Ba12Ce22O61H2 fragments
were determined at room-temperature by neutron powder diffraction (NPD)
[118]. Relevant relaxed distances and angles obtained after optimizations are
reported in Table 4.9.

Concerning the CeCe systems (i.e. X=Z=Ce), the three oxygen atom
sets {O1, O3, O2, O4}, {O1, O5, O2, O6}, {O4, O6, O3, O5} individuate
three different crossing planes that include into their intersection the central
cerium atom, both before and after the calculations. In each of these planes,
two couples of oxygen atoms, together with the cerium atom, single out two
incident lines, making two opposite-to-the-vertex pair of angles. The same
holds true for the three sets {O4, O10, O9, O11}, {O7, O10, O8, O11},
{O7, O4, O8, O9} of oxygen centres. This result shows that the calculated
atomic arrangements of the central clusters fit, as previously reported, into
the average long-range structure experimentally determined by diffraction
analysis, without introducing large distortion. Inspecting 4.9, we see that,
despite the presence of two short values (X−O3 = Z−O9 = 2.12 Å), the
calculated Ce−O distances are in agreement with the experimental ones.

As a matter of fact, molecular dynamics simulations performed on yttri-
um-doped barium zirconate perovskites (see chapter 6), also show a charac-
teristic local anisotropy around the zirconium centres [117]. However, the
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Table 4.9: Relevant geometric parameters characterizing the XZBa4O11 en-
vironment of the unprotonated orthorhombic Pmcn Y:BaCeO3 calculated
models.

distancesa/ Å CeCeb YYb CeYb distancesa/ Å CeCeb YYb CeYb

X−Ba1 3.65 3.54 3.59 Z−Ba1 3.82 3.69 3.78
X−Ba2 3.80 3.72 3.75 Z−Ba2 3.83 3.82 3.82
X−Ba3 3.91 3.74 3.93 Z−Ba3 3.75 3.65 3.76
X−Ba4 3.77 3.67 3.68 Z−Ba4 3.70 3.58 3.62
<X−Ba>c 3.78 3.67 3.74 <Z−Ba>c 3.78 3.68 3.74
X−O1 2.24 2.34 2.29 Z−O4 2.26 2.29 2.22
X−O2 2.24 2.28 2.27 Z−O7 2.26 2.33 2.29
X−O3 2.12 2.16 2.23 Z−O8 2.24 2.29 2.24
X−O4 2.27 2.28 2.31 Z−O9 2.12 2.17 2.14
X−O5 2.28 2.26 2.28 Z−O10 2.28 2.28 2.30
X−O6 2.27 2.33 2.29 Z−O11 2.27 2.35 2.24
<X−O>c 2.24 2.27 2.28 <Z−O>c 2.24 2.28 2.24
<XZ−Ba>d 3.78 3.68 3.74 <XZ−O>d 2.24 2.28 2.26

a The reported atomic labelling is coherent with that of Figure 3.5. b Geometric pa-
rameters that characterize the XZ:Ba12Ce22O61H2 fragments, being XZ=CeCe, CeY
and YY. c Average values calculated on homonym distance parameters. The corre-
sponding averaged EXAFS values are shown in Tables 4.1 and 4.2 [85].
d Average values calculated on the distance parameters involving, separately, either
Ba or O atoms and both the X and Z. The corresponding averaged NPD values [118]
are reported in Table 4.1. It is, in passing, recalled that the NPD crystallographic
analysis cannot distinguish between yttrium and cerium atoms [165, 84].

shortest Zr−O distances, isolated at 3K and corresponding to the Ce−O
ones present in the title Y:BaCeO3 derivatives, already disappear at 77K.
As a consequence, the distance anisotropy, characterizing the surrounding
environments of the zirconium centres, is removed [117]. The shortest dis-
tances characterizing different perovskite materials, and namely Y:BaCeO3

derivatives, could hence disappear because of the occurrence of thermal mo-
tions. In the present case this fact could contribute to reproduce the found
experimental Ce−O values. The Ba−Ce distances are arranged according
to a bimodal distribution centred at around 3.68 and 3.82 Å. The first set of
distances is characterized by the presence of the X−Ba4 and Z−Ba1 inter-
actions while the second one by the remaining six Ba−Ce interactions. Both
the average values and their relative weights (i.e. 1:3) are in very well agree-
ment with the corresponding parameters found by the EXAFS experiments
(see note c in Table 4.9).

As mentioned in the preceding sections, also the Y−O distances, present
in the Y:BaCeO3 materials, experimentally showed distinctive bimodal dis-
tributions [86]. In order to find a possible origin of this feature, we already
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proposed a Y-doped model (see paragraph Y-doped fragments in sec-
tion 4.1.1), in which two clustered yttrium atoms were each other bound by
one bridge oxygen centre. The present model is actually characterized by the
same Y−O−Y moiety but, in addition, shows larger local details around the
octahedral yttrium centres; hence, it can be considered, as already stated,
an extension of the former model.

In this, both the octahedral centres of the XZ:Ba12Ce22O61H2 fragment
were yttrium atoms (i.e. X = Z = Y) while the inner XZBa4O11 moiety was
optimized inside a surrounding rigid cage. Relevant distances are shown in
Table 4.9. Three characteristic Y−O distances can be recognized, at about
2.17, 2.28 and 2.34 Å. These distance values show relative weight of 1/6,
3/6 and 2/6, respectively. As argued for the shortest Ce−O distance, found
in the CeCe:Ba12Ce22O61H2 fragment, the short and the medium Y−O dis-
tances characterizing the YY:Ba12Ce22O61H2 fragment, due to thermal mo-
tion, could together contribute to define the weight of the shorter Y−O
distance of the experimentally found bimodal distribution.

In this case, the calculated average distances (2.25 and 2.34 Å) as well
as their relative weights (4/6 and 2/6) would result in excellent agreement
with the EXAFS findings (see note c in Table 4.9). The Ba−Y distances are
spread in the range 3.54÷3.82 Å, showing a mean value of 3.68 Å. The slight
disagreement with the experimental values (see notes c and d of Table 4.9)
can be explained by taking into account the geometric and stoichiometric
characteristics of the XZ:Ba12Ce22O61H2 fragments (see Figures 3.3 and
3.7). In fact, in the analysis of the YY system only the four central Ba
atoms are considered in evaluating the average Ba−Y distance. Whereas, a
more correct evaluation should at least involve the consideration of the two
sets of four Ba atoms at the left and at the right side of the X and Z centres,
respectively. These are in-between Ce and Y atoms and are fixed in the
YY fragment. For this reason the characteristics of the Ba−Y distances will
deserve a deeper discussion and will be reexamined considering the following
CeY fragment.

The latter, built by substituting one of the Ce atoms of the inner octa-
hedra with one Y atom (i.e. X = Y, Z = Ce), mimics local arrangements of
the border zone characterizing Y-doped sites. As usual, a partial geometric
optimization was performed in order to study the local changes induced on
the structure. The starting geometry was unchanged with respect to those
of the previous calculations. Significant calculated distances are reported
in Table 4.9. The average <Ce−O> value (2.24 Å) is the same as that we
already found for the CeCe system, but with a larger spread of the value.
Moreover, the first oxygen coordination shell of the Y atoms resulted more
expanded than that characterizing the Ce atoms, present in the other inner
octahedron of the same fragment. In particular, the Y−O distances are dis-
tributed in a range varying from 2.23 to 2.31 Å while the average distance
is equal to 2.28 Å. However, the Y−O distance spread does not allow one to
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single out an unambiguous bimodal distribution, as conversely suggested by
the EXAFS data collected on the Y:BaCeO3 systems [86]. It has conversely
to be stressed that the interesting geometric property already observed for
the CeCe fragment, regarding the pair of opposite-to-the-vertex angles, is
still holding in the CeY system.

Finally, the EXAFS Ba−Ce distances are better reproduced by the CeCe
than the CeY system. This result, as previously discussed, has to be con-
nected to the double substituted systems here studied, hence to the fact that
the CeCe fragment are, for statistical reasons, more suitable than the CeY
fragment for analysing the Ba−Ce distances. On the contrary, as before
prefigured in discussing the YY fragment, the Ba−Y distances, as evaluated
by the CeY fragment, are well arranged in a wide range according to a sin-
gle distribution centred around 3.74 Å, in agreement with the single Ba−Y
distance found by EXAFS experiments on Y:BaCeO3 materials.

4.2.2 Protonated Fragments.

Suitably modified XZ:Ba12Ce22O61H2 fragments were also employed to anal-
yse the effects of the proton on the environment of the octahedral centres.
In these structures one of the two hydrogen atoms was removed from the
original position and placed close to the O4 centre. In starting the opti-
mization, the O4−H distance, H−O4−X planar angle and H−O4−X−O2
dihedral angle were set to 0.95 Å, 80.0°and 45.0°, irrespective of the pro-
tonated system considered. Relevant distances and angles obtained after
the optimizations, also including the hydrogen coordinate relaxation, are
reported in Table 4.10.

The analysis of the latter shows that when the proton is included in the
inner octahedra environment of the fragments, it modifies to some extent
the starting local geometric arrangements (i.e. those of the unprotonated
fragments). In particular, the values of the X−O and Z−O distances of the
CeCe systems were changed, especially along the X−O4−Z moiety. Indeed,
the X−O4 and Z−O4 distances increased whereas the opposite ones - that
is the X−O3 and Z−O9 distances - similarly to the X−O5 and Z−O8 dis-
tances, decreased. As a result, the volume of the XZO11 inner octahedra in
the CeCe fragment resulted almost unchanged in agreement with analogous
behaviours that have been observed in studying single octahedron models of
protonated BaCeO3 fragments [117]. Also the X−Ba and Z−Ba distances
increased, in this way, expanding the surrounding barium coordination shell,
characterizing the CeCe system. The main structural distortions discussed
above for the CeCe system also affect the protonated YY and CeY systems.

However, in the CeY fragment as well as for the CeCe one, the octahedral
volume remains unchanged while in the YY fragment the distribution of the
Y−O distances were centred, as for the homonym unprotonated fragment,
around the values found by the EXAFS analysis [86]. With respect to this,
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Table 4.10: Relevant geometric parameters characterizing the XZBa4O11

environment of the protonated orthorhombic Pmcn Y:BaCeO3 calculated
models.

distancesa/ Å CeCe YY CeY distancesa/ Å CeCe YY CeY

X−Ba1 3.84 3.79 3.78 Z−Ba1 4.00 3.94 3.95
X−Ba2 3.97 3.92 3.94 Z−Ba2 4.05 3.97 4.01
X−Ba3 4.05 3.86 4.05 Z−Ba3 3.86 3.72 3.87
X−Ba4 3.87 3.80 3.81 Z−Ba4 3.80 3.70 3.74
<X−Ba>b 3.93 3.84 3.89 <Z−Ba>b 3.93 3.83 3.89
X−O1 2.18 2.31 2.26 Z−O4 2.40 2.37 2.41
X−O2 2.23 2.25 2.28 Z−O7 2.24 2.30 2.25
X−O3 2.10 2.14 2.13 Z−O8 2.20 2.24 2.21
X−O4 2.40 2.37 2.37 Z−O9 2.04 2.09 2.06
X−O5 2.18 2.22 2.25 Z−O10 2.26 2.27 2.26
X−O6 2.26 2.30 2.28 Z−O11 2.26 2.34 2.23
<X−O>b 2.22 2.26 2.26 <Z−O>b 2.23 2.27 2.24
<XZ−Ba>c 3.93 3.84 3.89 H−Xd 2.44 2.43 2.33
<XZ−O>c 2.23 2.26 2.24 H−Zd 2.48 2.47 2.58

anglesa/ ◦ CeCe YY CeY anglesa/ ◦ CeCe YY CeY

H−O4−X 81.3 82.1 75.8 H−O4−Z 83.8 83.4 89.5
H−O4−X−O2 4.9 8.0 8.0 — — — —

a For the indexing of distances and angles, see Figure 3.5.
b Average values calculated on homonym distance parameters. The corresponding aver-
aged EXAFS values are shown in Tables 4.1 and 4.2 [85]. c Average values calculated
on the distance parameters involving, separately, either Ba or O atoms and both the
X and Z centres. For corresponding experimental parameter references, see Tables 4.1
and 4.2 [118] d In the optimizations of the protonated systems, one of the external
hydrogen atoms present in the XZ:Ba12Ce22O61H2 fragment (see Figure 3.3) is placed
close to the O4 centre of the XZO11 moiety (see Figure 3.7) and relaxed with the latter.

it has to be stressed that the bimodal distribution, corresponding to the
protonated fragments, is characterized by a large spread of the distance
values that is also in agreement with the large Debye-Waller factor reported
in [86].

Finally, the H−O4−Z and H−O4−X angles as well as the H−O4−X−O2
dihedral angles are quite similar irrespective of the considered system; in
particular, due to the small dihedral angle value found for the different XZ
systems, we can regard the proton as lying onto the plane individuated by
the O4, X and O2 centres, an effect of the directionality of the O−H bond
embedded in the local octahedral environment.
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4.2.3 Electronic Population Analysis

In order to deepen our insight into the electronic properties of the XZBa4O11

moiety and to analyse the effects of the yttrium centres on its local envi-
ronment, we performed C-SPA/P-DOS and M-ca analyses on the calculated
Pmcn XZ:Ba12Ce22O61H2 fragment, hypothesizing that local electronic re-
arrangements could be related to changes in the protonic conduction. The
XZ:Ba12Ce22O61H2 fragment was clustered to form seven sets of atomic
species to analyse simultaneously: i) the XZBa4O11 moiety, ii) the Ba4

atomic cluster in-between the central octahedra, iii) the X and iv) Z cations,
v) the O4 centre, and finally the clusters vi) OX and (vii) OZ formed by
the central octahedral oxygen atoms — except for the O4 centre — around
the X and Z cation, respectively.

The ρ vs. ε curves of Figures 4.2 and 4.3 represent the orbital contri-
bution of a given atomic set to the MOs of the XZ:Ba12Ce22O61H2 frag-
ment while the abscissa values fit the energy range considered. The in-
volved atomic sets are either those of the systems i) - vii), belonging to
the XZBa4O11 moiety, or that of the whole XZ:Ba12Ce22O61H2 fragment.
It should be, at first, noticed that the eigenvalue ranges individuated by
the grouped red bar sets that characterize the XZ:Ba12Ce22O61H2 fragment
peaks are nearly coincident, irrespective of the XZ system, with the P-DOS
peak widths of the i) - vii) atomic sets, which belong to the XZBa4O11

moiety. The presence of two sharp peaks can be also observed for all the
different systems; they are centred at about -39.0 and -20.0 eV. These corre-
spond to MOs almost entirely attributable to the Ba4 cluster and are always
present regardless of the considered protonated and unprotonated XZ sys-
tem. Another common feature of the C-SPA curves concerns the OX and
(vii) OZ orbital contributions, which in any case overlap (see Figures 4.2
and 4.3). The findings above show that both the octahedral sites are elec-
tronically similar, hence anisotropic effects can be excluded for the different
model clusters.

Concerning the YY system, we see that for eigenvalues ranging from
-16.0 to -5.0 eV, both the yttrium atoms, together with the Ba4 moiety,
represent the main contributors to the corresponding MOs range; on the
contrary, in the CeCe system, the cerium atoms of the inner octahedra give
a smaller contribution to MOs in that energy range. In the latter system,
MOs running in the interval included between about -5.0 eV and the HOMO
region are entirely attributable to the barium AOs while in both the systems
containing yttrium, the Y and Ba AOs mix together, producing MOs in the
same energy range. These last features, together with the characteristic
barium peaks, were already observed for eigenvalues in the same energetic
region characterizing single substitution model fragments.

The C-SPA of the protonated and unprotonated systems show quite
similar behaviour. However, a characteristic small peak, caused by the AO
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contribution of the Ba4 moiety and of the O4 centre, can be observed for
all the protonated XZ fragment at ca. -17.5 eV. In fact, the insertion of the
hydrogen atom into the XZO11 inner octahedral environment would seem to
modify the orbital contribution of just the Ba4 moiety and the O4 centre,
producing a MO finger-print for the protonated systems in the eigenvalue
interval ranging in-between -20.0 and -16.0 eV. In passing, it is here recalled
that an analogous behaviour have been also observed in protonated and
unprotonated single substitution model structures [117].

It was already argued that the substitution of cerium with yttrium atoms
in perovskite materials localize an increased electronic density around the
Y-doped sites [86]. According to the M-ca procedure, this feature, as shown
by 4.11, is captured by the CeY and YY systems, which actually show a
decrease towards more negative values of the Mulliken charge on the oxygen
atom placed in-between the X and Z centres when at least one of these is
an yttrium atom. Table 4.11 reports the Mulliken charges of the atoms that
have mainly modified the C-SPA curves of the protonated with respect to
the unprotonated XZ:Ba12Ce22O61H2 fragments, i.e. the O4 atom — and
for completeness the remaining oxygen atoms of the central octahedra —,
the barium atoms in-between the octahedra and the hydrogen that char-
acterizes the protonated systems. Interestingly, the analysis of the oxygen
environments characterizing the XZ systems allowed us to fix local charge
configurations, able to drive proton diffusion in the title materials [84].

Table 4.11 clearly points that the different XZ systems are characterized
by homogeneous charge behaviours. The unprotonated CeCe system, as an
example, shows equal values irrespective of the oxygen centre considered. A
similar situation also holds for the unprotonated CeY and YY systems, be-
sides a characteristic rise of the negative charge values that can be observed
for the X−O−Z bridging O4 centres. It is interesting to notice that the
average oxygen charge present in the external-frame is very close to -1.4 au,
as found for the oxygens of the inner octahedra in the CeCe system, both in
the unprotonated and protonated systems and irrespective of the nature of
the X and Z centres; this contributing to validate the here proposed models.
As expected, the distribution of the charges in the barium centres show a
more isotropic behaviour in the system not containing Y atoms. This fact
shows the ability of the doping atoms to modify both the local structural
properties and the corresponding local electronic environments.

The introduction of hydrogen in the central octahedra, corresponding
to the formation of the protonated models, clearly produces changes in the
charge distribution of the oxygen atoms. In particular, while we can notice
a decrease of the absolute value in the O4 atom for all the systems, the
hydrogen charges resulted higher of ca. 0.1 au in the YY with respect to the
CeY and CeCe systems. Besides the changes on the O4 atoms, the remaining
oxygen centres of the fragments are not very affected by the introduction
of the hydrogen into the XZO11 inner octahedra and the average value of
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Table 4.11: Mulliken charges of relevant atomic centres, characterizing the
XZBa4O11 environment of the unprotonated and protonated orthorhombic
Pmcn Y:BaCeO3 calculated models.

atomic centrea CeCeb YYb CeYb

Ba1 0.2 | 0.0 0.9 | 0.1 0.0 | -0.1
Ba2 0.1 |-0.2 0.1 |-0.1 0.2 |-0.1
Ba3 0.1 | 0.0 0.9 | 0.9 0.7 | 0.6
Ba4 0.2 | 0.4 1.2 | 1.0 1.0 | 0.8
O1 -1.4 |-1.4 -1.4 |-1.4 -1.4 |-1.3
O2 -1.4 |-1.4 -1.4 |-1.5 -1.4 |-1.5
O3 -1.4 |-1.4 -1.5 |-1.3 -1.5 |-1.3
O4 -1.4 |-0.9 -1.8 |-0.9 -1.6 |-0.8
O5 -1.4 |-1.3 -1.4 |-1.4 -1.4 |-1.4
O6 -1.4 |-1.3 -1.4 |-1.3 -1.4 |-1.3
O7 -1.4 |-1.4 -1.4 |-1.3 -1.4 |-1.4
O8 -1.4 |-1.4 -1.4 |-1.4 -1.4 |-1.4
O9 -1.4 |-1.3 -1.4 |-1.3 -1.4 |-1.3
O10 -1.4 |-1.3 -1.4 |-1.3 -1.4 |-1.3
O11 -1.4 |-1.4 -1.4 |-1.4 -1.4 |-1.4
H — | 0.3 — | 0.4 — |0.3

a The reported atomic labelling is coherent with that of
3.7. b The vertical bar employed for the value repre-
sentation distinguishes between the Mulliken charges of
the unprotonated (left) and protonated (right) model.

the Mulliken charges of the protonated XZ systems remains quite similar to
that of the unprotonated ones.

Taking into consideration the charge distributions that characterize the
different XZ systems, it is possible to infer hypotheses on the hydrogen dif-
fusion mechanism occurring in the Y-doped BaCeO3 materials. In doing
this, we hypothesize that a large amount of di-yttrium (clustered) sites are
formed in the Y-doped BaCeO3 materials and we assume, as already stated,
that the different XZ systems are representative of different local situations
in the same materials. The mimicking ability of the YY fragment in repro-
ducing the experimental structural evidences concerning the bimodal Y−O
distance distribution is, in our opinion, a plausible reason to state the first
inference while the second is supported by the homogeneous oxygen charge
behaviour, own of the external-frame of the different fragments, that is co-
herent with the local properties of the CeY and CeCe systems.

The findings reported in Table 4.11 — and in particular the relative
charge value characterizing the O4 with respect to the neighbouring {O5,
O6, O10, O11} horizontal and {O1, O2, O7, O8} vertical oxygens — see



84 CHAPTER 4. BaCeO3 AB INITIO RESULTS

Figure 3.5, show that the hydrogen centre can diffuse in the bulk being,
in any case, favoured by the present charge gradients, independently of the
considered XZO11 inner octahedra pairs, i.e. CeCe, CeY and YY. Hence, it
is clear that the intra-octahedral diffusions should be always allowed, irre-
spective of the nature of the metallic centre inside the octahedron. Whereas,
the inter-octahedral diffusions, which clearly are also not prevented by op-
posite charge gradients, should have lower occurrence probabilities due to
the larger distance ”jump” needed [35, 124].

The local charge density variations, connected to the local basicity re-
arrangements, [166] occurring in the material bulk and their influence on
the proton diffusion deserve a final comment. It has been reported that the
local basicity of the sites could play an important role in driving the con-
ductivity phenomena of the Y-doped BaCeO3 perovskite materials [84, 166].
At variance with this, by the M-ca approach summarized in table 4.11 and
admitting that the hydrogen diffusivity mostly occur by intra-octahedral
motions, it seems that the local and static charge gradients, produced by
the clustering of the defects introduced with the doping procedure, are not
able to affect the hydrogen diffusion. This peculiarity actually would occur
because the hydrogen centres during the diffusion processes should be in
any case able to dynamically change their neighbouring environments and
the surrounding oxygen properties leaving, however, unchanged the hydro-
gen diffusion ability, because of the favourable and almost isotropic charge
gradients always occurring in the intra-octahedral O→O jumps.
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Figure 4.2: C-SPA/P-DOS analysis of the XZ:Ba12Ce22O61H2 fragments
when hydrogen is not embedded in the framework, XZ = CeCe (a), CeY
(b), YY (c): orbital contribution of atomic sets included in the XZBa4O11

moiety to the MOs of the same moiety against energy values, (ρ vs. ε).
Ba4 group, green line; X atom, blue line; Z atom, purple line; O4 atom,
light blue line; OX moiety, red line; OZ moiety, yellow line; XZBa4O11

cluster: black line. The red bars individuate the eigenstates of the whole
XZ:Ba12Ce22O61H2 fragment. The ρ lines are obtained by a convolution of
fixed-width Lorentzian curves centred on the energy bin used in the DOS
analysis, being the height proportional to the weight of the AO set contri-
bution in the bin. The black segment on the top individuates the HOMO-
LUMO edge.
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Figure 4.3: C-SPA/P-DOS analysis of the XZ:Ba12Ce22O61H2 fragments
when hydrogen is embedded in the framework, XZ = CeCe (a), CeY (b),
YY (c): orbital contribution of atomic sets included in the XZBa4O11 moi-
ety to the MOs of the same moiety against energy values, (ρ vs. ε). Ba4

group, green line; X atom, blue line; Z atom, purple line; O4 atom, light
blue line; OX moiety, red line; OZ moiety, yellow line; XZBa4O11 cluster:
black line. The no influential H orbital contribution is not reported. The
red bars individuate the eigenstates of the whole XZ:Ba12Ce22O61H2 frag-
ments. The ρ lines are obtained by a convolution of fixed-width Lorentzian
curves centred on the energy bin used in the DOS analysis, being the height
proportional to the weight of the AO set contribution in the bin. The black
segment on the top individuates the HOMO-LUMO edge.



Chapter 5

BaZrO3 Derivatives Ab
Initio Results

The crystallographic phase of the BaZrO3 is cubic over a wide range of tem-
peratures, as observed in chapter 3, keeping the symmetries of the space
group Pm3̄m even when a high percentage of yttrium is inserted into the
structure [112]. Starting from the suggestions given by preceding results
on Y:BaCeO3 (see relative sections in chapter 4 and [84]), Y:BaZrO3 per-
ovskitic system have been investigated also in the aim to understand if the
inferred yttrium local clustering is a characteristic feature of the yttrium as
a substituent for the tetravalent cation in perovskite materials.

Preliminary calculations were made in order to optimize simulation pa-
rameters together with the basis sets for Zr and Y. In the following, results*

will be grouped according to the size of the supercell used along the calcu-
lations, discussing also the corresponding protonated structures; the atom
labelling used along the sections refers to the one depicted in Figure 3.10.

5.1 BZO and BZH Models

Undoped barium zirconate was initially studied by means of a 3× 3× 3 and
4×3×3 supercell of BaZrO3, showed in Figure 3.8 and in Figure 3.9. Opti-
mized positions of all the atoms of both supercells reproduced all the starting
experimental values together with the geometrical features of the octahedral
environment deserved to the Pm3̄m space group. Since PBC were applied
and no constraints are imposed to the coordinates of all the atoms in the
supercell, this result make us confident that the atomic arrangement de-

*Results presented in this chapter have been obtained by means of the computa-
tional resources of the “Centre d’Investigació en Nanociéncia i Nanotecnologia” (CIN2,
CSIC-ICN, Barcelona – Spain) within the collaboration with the “Theory and Simulation
Group”, where I was kindly introduced by Prof. Pablo Ordejón, head of the group, during
my visit in Barcelona.
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scribe quite well the long range structure determined by neutron diffraction
experiments without introducing any kind of geometrical distortions.

In order to model protonic defects into the bulk of the Y:BaZrO3 crys-
talline structure, far from a doped site, the 4 × 3 × 3 supercell system has
been considered: one hydrogen atom has been added to this undoped opti-
mized structure, bound to the O7 and according to the general geometrical
prescription stated in subsection 3.1.2; then, this starting structure was left
to relax. Relevant distances and angles of the proton environment resulted
from the performed geometrical optimization are reported in BZH column
of Table 5.1; in this, X−−Z−−Zr.

In the BZH model, the O4−H bond forms an angle of 23.4°with the plane
containing the O7, O11 and O4 oxygen atoms; moreover, it lies in the plane
individuated by the {O4, X, O5} set of atoms, containing also the O3, O6,
O8, Z, O9 and O7 ones. Comparing the X−O and Z−O distances of the
BZH model with those ones in the unprotonated reference structure (BZO),
it can be readily seen that the distances involving the atoms in the plane are
affected by the presence of the proton while the ones out of this plane result
unchanged. So, also in this case as we found for the protonated BaCeO3 sys-
tems (sections 4.1.2 and 4.2.2), we can call as planar the distortion induced
by the proton; accordingly, distances lying in and out of the individuated
plane will be referred as planar and axial distances, respectively. Despite the
oxygen octahedron round the Z cation results distorted, its overall volume
remains unchanged and no tilting is observed respect to the other unpro-
tonated octahedra. Similarly, the Z−Ba distances are more affected than
the X−Ba ones, however not changing the Ba first shell volume round the Z
cation. These geometrical outcomes show how the modifications induced by
the proton to the surrounding undoped environment are strictly local ones,
essentially involving only the proton nearest neighbour atoms.

5.2 3x-YBZ Models

The dopant effect on the octahedral geometry was investigated by the 3x-
YBZ model structures, built by using the geometry of the undoped BaZrO3

model where one zirconium atom has been substituted by an yttrium one.
After Y-doping, oxygen vacancies are created into the BaZrO3 perovskite
structure (see section 1.5); in the present model, all the oxygen sites are fully
occupied, so describing a saturated oxygen vacancies doped compound.

Experimentally [109], only one value is reported for each of the Zr−O
and Zr−Ba distances in undoped BaZrO3, being these ones 2.10 and 3.63
Å respectively. Comparing these values with those ones reported for the
present 3x-YBZ model (see Table 5.2), the octahedral cation first coordina-
tion shell results more expanded round the Y atom, slightly modifying that
one of its Zr atoms first neighbours.
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Table 5.1: Relevant distance and angle values for the unprotonated and
protonated BZO and BZH systems.

distancesa/ Å BZOb BZHb distancesc/ Å BZH

X−O1 2.08 2.08 Z−O10 2.08
X−O2 2.08 2.08 Z−O11 2.08
X−O3 2.08 1.98 Z−O9 2.00
X−O4 2.08 2.20 Z−O4 2.17
X−O5 2.08 2.12 Z−O7 2.08
X−O6 2.08 2.05 Z−O8 2.07
<X−O>d 2.08 2.09 <Z−O>d 2.08
X−Ba1 3.61 3.82 Z−Ba1 3.77
X−Ba2 3.61 3.60 Z−Ba11 3.59
X−Ba3 3.61 3.68 Z−Ba3 3.67
X−Ba4 3.61 3.57 Z−Ba10 3.57
X−Ba5 3.61 3.68 Z−Ba5 3.67
X−Ba6 3.61 3.57 Z−Ba9 3.59
X−Ba7 3.61 3.82 Z−Ba7 3.77
X−Ba8 3.61 3.61 Z−Ba12 3.59
<X−Ba>d 3.61 3.67 <X−Ba>d 3.65

anglese/ ◦ BZO BZH anglese/ ◦ BZH

H−O4−X — 80.5 H−O7−Z —
H−O4−X−O5 — 0.1 H−O7−Z−O4 —
H−O4−O2−O5 — 23.4 H−O7−O11−O4 —

a X−O and X−Ba distance values between the X cation and its first
neighbour oxygen and barium atoms; X−−Z for the considered sys-
tems. For the atom labelling see Figure 3.10. b Results for 4×3×3
supercells calculations: unprotonated (BZO) and protonated (BZH)
BaZrO3 model systems. c Z−O and Z−Ba distance values between
the Z octahedral cation and its first neighbour oxygen and barium
atoms: Z−−Zr for the considered systems. For the atom labelling see
Figure 3.10. The order of the labelling has been chosen following the
correspondence occurring between the Z first neighbours and the X
ones, by considering the plane individuated by the {Ba3, Ba5, Ba1,
Ba7} set of atoms as a symmetry plane for the moiety shown in Fig-
ure 3.10. d Mean values of the corresponding atomic distances.
e Relevant planar and dihedral angles formed by the hydrogen atom
with its three nearest neighbours cation and oxygen atoms.

Taking as reference the Figure 3.10, the sets of oxygen atoms {O2, O4,
O1, O3}, {O2, O5, O1, O6} and {O3, O5, O4, O6} single out three or-
thogonal planes containing the Y atom; in each of these planes, two couple
of oxygen atoms, together with the Y one, individuate two incident lines,
making two opposite-to-the-vertex pair of angles, that, in this case, are all
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Table 5.2: Relevant distance values with their statistical weight character-
izing the Y-doped octahedron environment of the unprotonated 3x-YBZ
systems.

3x-YBZa X−Ob/ Å Z−Ob/ Å

No vacancy 6x2.17 1x2.01, 5x2.08
Vacancy, -2 1x2.22, 4x2.16 1x2.10, 4x2.08
Vacancy, -1 1x2.22, 4x2.16 1x2.09, 4x2.08
Vacancy, 0 1x2.14, 4x2.16 1x2.01, 4x2.08
Vacancy, +1 1x2.08, 4x2.17 1x1.93, 4x2.07
Vacancy, +2 1x2.08, 4x2.17 1x1.93, 4x2.07

3x-YBZ X−Bac/ Å Z−Bac/ Å

No vacancy 8x3.59 4x3.61, 4x3.60
Vacancy, -2 4x3.57, 4x3.63 4x3.61, 4x3.63
Vacancy, -1 4x3.57, 4x3.62 8x3.62
Vacancy, 0 4x3.63, 4x3.64 4x3.67, 4x3.63
Vacancy, +1 4x3.72, 4x3.65 4x3.76, 4x3.63
Vacancy, +2 4x3.73, 4x3.65 4x3.75, 4x3.62

a 3x-YBZ systems with and without oxygen vacancy;
each integer number refer to the charge value set for the
corresponding oxygen deficient system. For reference,
see Figure 3.10 where X=Y and Z−−Zr for 3x-YBZ sys-
tems. b X−O and Z−O distance values between the
X and Z octahedral cations and their first neighbour
oxygen atoms.
c X−Ba and Z−Ba distance values between the X and
Z atoms and their first neighbour barium atoms.

right ones (see Table 5.3). Furthermore, the doped octahedron does not
show any tilt respect to the crystallographic axes. In this sense, the calcula-
tion show how the geometry of the oxygen octahedron coordinated by an Y
atom is completely compatible with the Pm3̄m cubic structure, as reported
by experimental data on Y:BaZrO3[112].

The effect of one oxygen vacancy near a doped site was also taken into
account. In order to describe this kind of system, the model structure has
been created starting from the oxygen saturated 3x-YBZ system and remov-
ing one of the six� oxygen atoms surrounding the yttrium one; in particular,
always taking Figure 3.10 as reference, the oxygen atom labelled as “4” has
been removed. Several geometrical optimizations have been performed on

�Since the structure is cubic with the symmetries of Pm3̄m space group, all the oxygen
sites are equivalent, irrespectively of the octahedral cation: neutron powder diffraction
experiments are not able to distinguish between Y and Zr atom, being the experimental
data refined on their relative abundance.
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Table 5.3: Relevant angle values characterizing the Y-doped octahedron
environment of the 3x-YBZ unprotonated systems.

anglesa/ ◦ No vac.b Vac.c-2 Vac. -1 Vac. 0 Vac. 1 Vac. 2

O2−X−O3 90.0 87.9 87.9 95.0 100.7 100.7
O2−X−O6 90.0 89.9 89.9 90.0 88.0 88.0
O3−X−O6 90.0 87.9 88.0 95.0 100.7 100.7

O11−Z−O9 89.7 91.0 91.2 95.5 100.6 100.6
O11−Z−O8 90.0 89.9 90.0 89.5 88.0 88.0
O9−Z−O8 90.0 91.0 91.2 95.5 100.6 100.6

a Angle values between the X and Z octahedral cations and their first neighbour
oxygen atoms: X−−Y and Z−−Zr for 3x-YBZ systems; for the atom labelling, see
Figure 3.10. b Results for 3x-YBZ system without any oxygen vacancies.
c Each “Vac. n” column refers to the oxygen deficient system whose charge value
was set to n.

this system, differing for the net system charge chosen in the integer values
range between -2 and +2 |e|. Corresponding results are reported in Tables
5.2 and 5.3.

In all the charged systems, the presence of one oxygen vacancy generates
a bimodal distribution of the Y−O and Z−O distances, where Z is the other
octahedral cation nearest to the vacancy, that, in these cases, is a Zr atom.
The difference between the two mean values found for each of the Y−O and
Y−Ba distances is lower for the neutral system while is more pronounced
for high absolute charge values. Different trend is shown in the case of
the Z cation. In the null charged system, the Z−O distance distribution is
the same found for the saturated case; on the other hand, while a negative
charge makes the distance values practically all the same, a positive charge
enhances the difference between them. Similar trend is found for the Z−Ba
distances, for which all the considerations done on the Y−O still hold.

Analysing the formation energy of the charged defect as described in
Equation 2.33, the most stable system turns out to be the one with charge
+1|e|. If we consider the formal charges assigned to each atom�, according
to the 3x-YBZ geometry, the system owns a charge equal to +1|e|, as indeed
it should be according to the results on the formation energy.

In all the optimized 3x-YBZ systems, both Y and Z cations lie on a line
parallel to a crystallographic axis: the effect of the vacancy is to modify the
positions of the nearest cations generating a displacement along one of the
crystallographic axis, affecting mainly the distances between the octahedral
cations and Ba atoms surrounding the vacancy. As a consequence, the Y−O3
and Z−O9 distances result strongly modified after a vacancy is created (see

�For the Y:BaZrO3 system, the formal charges are: Ba=+2|e|, Y=+3|e|, Zr=+4|e|
and O=-2|e|.
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distances with statistical weight of 1 in Table 5.2), leaving almost unaltered
all the others involving the remaining octahedral oxygens. Accordingly, the
O−Y−O and O−Z−O right angles of the oxygen saturated structure result
modified in such a way that the {O3, Y, Z, O9} set of atoms singles out a
quaternary symmetry axis for all the 3x-YBZ systems (see Table 5.3).

5.3 4x-YBZ Models

Unprotonated Systems. In the aim to deeply investigate the local envi-
ronment round a defect, the 4x-YBZ and 4x-2YBZ models have been built,
extending the geometry of the 3x-YBZ preceding ones. Initially, undoped
BaZrO3 has been reproduced by means of an optimized 4×3×3 supercell, as
shown in Figure 3.9. The reliability of this starting model has been ensured
by the ability to reproduce the geometrical features of the barium zirconate
structure, result obtained without imposing any geometrical constraints and
applying periodic boundary conditions.

The effect of zirconium substitution with an yttrium atom has been first
analysed by means of the 4x-YBZ model, built using the undoped BaZrO3

4 × 3 × 3 supercell where one zirconium atom has been substituted by an
yttrium one. Since no oxygen vacancies have been considered in this first
calculation, this system has been built in the aim to model the fully hydrated
doped compound; moreover, comparisons with the corresponding 3x-YBZ
model allow to investigate the effect of the cell size on the obtained results.

As shown in tables 5.4 and 5.5, the distance and angle values found
are the same already individuated for the corresponding 3x-YBZ systems;
moreover, using the labelling of Figure 3.10, the geometrical features of the
planes individuated by the sets of atoms {O2, O4, O1, O3}, {O2, O5, O1,
O6} and {O3, O5, O4, O6}, together with the opposite-to-the-vertex angles
lying on them, still hold. Also the doped octahedron does not show any
tilt, reproducing a doped environment compatible with the Pm3̄m cubic
structure, as already observed for the smaller system (see section 5.2). This
results show also that the oxygen saturated 3x-YBZ model is sized enough
to catch the essential geometrical parameters for this kind of substitutional
configuration.

Vacancy defect has been also considered with this model. Starting from
the optimized oxygen saturated 4x-YBZ geometry, the oxygen labelled as
“4” has been removed, building the model structure for the unhydrated com-
pound. Since the vacancy is a charged defect for the Y:BaZrO3perovskite
structure (see Equation 1.2), geometrical optimizations performed on this
systems differ for the net charge, chosen in the integer values range between
-2 and +2 |e|. Relevant distances and angles obtained in the corresponding
simulations are reported in tables 5.4 and 5.5.

As it was found for the 3x-YBZ systems with a vacancy, the Y−O and
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Table 5.4: Relevant distance values with their statistical weight character-
izing the Y-doped octahedron environment of the 4x-YBZ unprotonated
systems.

4x-YBZa X−Ob/ Å Z−Ob/ Å

No vacancy 6x2.17 1x2.01, 5x2.08
Vacancy, -2 1x2.14, 4x2.16 1x2.02, 4x2.07
Vacancy, -1 1x2.20, 4x2.16 5x2.08
Vacancy, 0 1x2.14, 4x2.16 1x2.02, 4x2.08
Vacancy, +1 1x2.08, 4x2.17 1x1.94, 4x2.07
Vacancy, +2 1x2.08, 4x2.17 1x1.94, 4x2.07

4x-YBZ X−Bac/ Å Z−Bac/ Å

No vacancy 8x3.59 4x3.61, 4x3.60
Vacancy, -2 4x3.63, 4x3.65 4x3.67, 4x3.63
Vacancy, -1 4x3.58, 4x3.63 8x3.63
Vacancy, 0 4x3.63, 4x3.64 4x3.67, 4x3.63
Vacancy, +1 4x3.72, 4x3.64 4x3.76, 4x3.62
Vacancy, +2 4x3.73, 4x3.64 4x3.76, 4x3.62

a 4x-YBZ systems with and without oxygen vacancy;
each integer number refer to the charge value set for
the corresponding oxygen deficient system. For refer-
ence, see Figure 3.10 where X=Y and Z−−Zr for 4x-YBZ
systems. b X−O and Z−O distance values between
the X and Z octahedral cations and the correspond-
ing first neighbour oxygen atoms. c X−Ba and Z−Ba
distance values between the X and Z atoms and their
corresponding first neighbour barium atoms.

Z−O distances are spread according to a bimodal distribution, where Z is
the other octahedral cation nearest to the vacancy, that is a Zr atom. Also in
these present cases, the differences between the two Y−O mean values are as
more pronounced as higher the absolute charge values are; conversely, the
difference between the Z−O mean distances is enhanced only by positive
charge values of the whole system. The analysis of the formation energy
for each charged defect indicates that, among those considered, the most
stable system is the one with charge +1|e|, in agreement with the ideal
stoichiometric charges (see footnote � on page 91).

Finally, once again as in 3x-YBZ systems, in presence of one Y atom,
the distance distributions and angle values between the oxygen atoms and
their coordinating octahedral cation are distributed in such a way that the
{O3, Y, Z, O9} set of atoms singles out a quaternary symmetry axis for all
the 4x-YBZ systems. These results show that the 3x-YBZ models are suffi-
ciently sized for describing a dopant geometrical configuration in which only
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Table 5.5: Relevant angle values characterizing the Y-doped octahedron
environment of the 4x-YBZ unprotonated systems.

anglesa/ ◦ No vac.b Vac.c-2 Vac. -1 Vac. 0 Vac. 1 Vac. 2

O2−X−O3 90.0 95.5 91.8 95.0 101.3 101.3
O2−X−O6 90.0 89.5 90.0 90.0 87.8 87.8
O3−X−O6 90.0 95.5 91.8 95.0 101.3 101.3

O11−Z−O9 89.7 95.5 92.6 95.5 101.0 101.1
O11−Z−O8 90.0 89.5 89.9 89.5 87.9 87.9
O9−Z−O8 90.0 95.5 92.5 95.5 101.0 101.1

a Angle values between the X and Z octahedral cations and their first neighbour
oxygen atoms: X−−Y and Z−−Zr for 4x-YBZ systems; for the atom labelling, see
Figure 3.10. b Results for 4x-YBZ system without any oxygen vacancies.
c Convention on “Vac. n” columns is the same as in Table 5.3.

one zirconium atom is substituted by an yttrium one, without introducing
artificial numerical effects.

Protonated Systems. Structural rearrangements in hydrated Y:BaZrO3

have also been studied by taking into account the presence of one proton
in the dopant environment. In this aim, optimized structure of oxygen
saturated 4x-YBZ model has been used as starting geometry to build the
protonated model system. One proton has been added to the structure in
such a way that it can be thought as bound to one of the oxygen atoms
surrounding either an yttrium or a zirconium one. As previously observed
(see footnote � on page 90 and discussion on unprotonated 4x-YBZ systems),
according to the symmetries of Pm3̄m space group, in Y:BaZrO3 all the
oxygen sites are geometrically equivalent; nonetheless, the insertion of one
yttrium atom into the crystalline matrix specializes some oxygen sites, at
least because it makes different their coordination shells, and their features
are as more enhanced as nearer the doped octahedron is. These features are
highlighted in presence of a proton, that acts as a probe for their behaviour
against a structural perturbation. In order to explore this kind of doped
environment, and according to the size of our 4x-YBZ model, four oxygen
distinct sites have been considered and corresponding four protonated 4x-
YBZ model systems have been built: 4x-YBZ-H1, 4x-YBZ-H2, 4x-YBZ-H3
and 4x-YBZ-H4. In Figure 5.1, the four distinct oxygen sites are indicated
by means of spheres with different colours and labelled according to the four
models used to describe them. Therefore, 4x-YBZ-H1 model is intended to
describe rearrangements of the structure when the proton lies in its stable
position near one of the oxygen sites labelled as “1” and so on; analogously,
the corresponding proton stable position will be called “H1”.

Following the convention of Figure 3.10 with X−−Y and Z−−Zr, the first



5.3. 4X-YBZ MODELS 95

two geometries of the 4x-YBZ-H1 and 4x-YBZ-H2 models have been ob-
tained by placing the hydrogen atom near the O4 and O7 oxygen atom, re-
spectively, and the whole systems was relaxed; relevant optimized distances
and angles are reported in Table 5.6.

The description of the local environment of the proton in the 4x-YBZ-
H3 and 4x-YBZ-H4 models concerns the portion of the 4 × 3 × 3 supercell
involving two zirconium atoms aligned with the yttrium one. Thus, in Fig-
ure 3.10, both X and Z octahedral cation are zirconium atoms and the O3
oxygen is bound to the yttrium atom not shown in the same figure. In these
models, the corresponding starting geometries have been built by placing
one hydrogen atom near the O4 and O7 oxygen atoms respectively; then,
the structure was optimized. Geometrical parameters obtained with these
two last models are shown in Table 5.7.

In all the protonated system considered, the proton lies in the plane in-
dividuated by the oxygen to which is bound, the nearest octahedral cation
and the oxygen forming a hydrogen bond with it, as can be seen from the
dihedral angle values showed in the corresponding tables. A common feature
of all the protonated octahedra§ is that the planar distances are distorted
compared with the unprotonated case, being the longest ones those involv-
ing the octahedral cation and the two octahedral oxygens nearest to the
proton; on the other hand, the axial distances keep their values practically
unchanged, contributing, together with the planar distortion, in keeping al-
most unaltered the octahedral volume. An other common feature to all the
4x-YBZ-Hn systems is that the proton changes the distances of the octa-
hedron in which resides without producing any tilt of it; conversely, the
octahedron adjacent to the protonated one and containing the oxygen form-
ing an hydrogen bond with the proton, undergoes a rotation round an axis
perpendicular to the plane containing the proton and the cations of the two
involved octahedra. The tilting of the Y coordinated octahedron is greater
than in the case of the Zr one.

As observed above, the oxygen sites are not all strictly equivalent in
Y:BaZrO3 structure; despite this, in presence of a proton, the planar dis-
tances of the protonated octahedron are arranged in the same way, almost
independently from the kind of octahedral cation. Let us consider the 4x-
YBZ-H1 model. In this, the X−O planar distances of the protonated octahe-
dron are arranged according to the relation X−O4>X−O5>X−O6>X−O3,
being X−O4 the longest one. This behaviour is the same for all the re-
maining 4x-YBZ-Hn systems, making suitable correspondences among the
oxygen atoms. The differences in the numerical values are due to the fact
that the involved oxygen atoms do not belong to equivalent sites. In this

§Since the proton is bound to an oxygen O which always is a common vertex for two
adjacent octahedra, each coordinated by a X and Z generic cation respectively, the X
coordinated octahedron can be said protonated if the H−O−X angle is smaller than the
H−O−Z one.
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(a)

(b)

Figure 5.1: Positions of the oxygen distinct sites in 4x-YBZ models: blue,
brown and green spheres represent the barium, zirconium and yttrium
atoms, respectively; all the remaining spheres are oxygen atoms. Equiv-
alent oxygen sites correspond to equally coloured spheres. The oxygen dis-
tinct sites have been numbered as in (b), where a particular section of the
structure in (a) is shown.
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way, the proton overlaps its ability to locally specialize the oxygen sites to
their features due to the position they occupy in the structure. For this
reason, the study of the unprotonated doped environment alone could not
be sufficient to make predictions on its behaviour after proton defects are
acquired by the structure.

The effect of this overlapping is better visualized if the energy differences
among protonated systems are considered. In Figure 5.2, the energy of the
4x-YBZ-H4 system is taken as reference. The proton stablest position turns
out to be near one of the oxygens surrounding the Y atom (O(1) sites); from
these, the energy grows progressively as the proton jumps towards the O(2)
and then to the O(3) site to finally reach the undoped zones (O(4) sites). In
this pathway, the proton must overcome at least three energy barriers, one
for each jump between two different oxygen sites; the number of barriers
could become two if the O(1)→O(2)→O(4) path is followed but, actually
they are much more if the jumps between equivalent sites are also taken into
account. Looking at the Figure 5.1, it is clear that after substituting one
zirconium atom with an yttrium one, the O(1), O(2) and O(3) oxygen sites
are created besides the O(4) one already existing in the undoped BaZrO3

structure, and they extend over a volume of about 3× 3× 3 unit cells. Such
volume is a sample of BaZrO3 with about 4% of Y doping; this implies that,
for higher yttrium percentages, the shell of O(1), O(2) and O(3) oxygen sites
around an yttrium atom overlaps with others of the same kind, producing
more than the four distinct oxygen sites found for the 4x-YBZ systems.
Correspondingly, the number of different proton hopping barriers grows as
more as higher is the yttrium content into the structure.

The relative energies of the 4x-YBZ-Hn systems give an idea on the
stability of the proton position but nothing can be said about the height of
each barrier the proton must overcome. Surely, the values must be higher
than 0.04 eV and 0.17 eV, in order to have hopping events instead of simple
diffusion between two Hn stable positions; moreover, if we take into account
also the hopping events between equivalent sites, it is possible to estimate
the role of entropy effects. Keeping in mind that the absolute energy values
depend on the calculation method, the differences between the stabilization
energies found for each of the here discussed systems are not enough alone
to explain the activation energy of 0.43 eV, experimentally found for the
overall process of protonic conduction [20]. A rough evaluation of other
contributions can be done by considering further details of the protonated
octahedron geometry.

The O−H bond distance is about 1.01 Å for all the here considered sys-
tems. Different behaviour is found for the planar and dihedral angle formed
with the nearest neighbour atoms: the larger is the distance form the yttrium
site, the larger is the corresponding value. The planar angle values range be-
tween 73.0 and 77.0°while the dihedral angles are in the 16÷20°range. Lower
values correspond to stable sites that favour the intra-octahedral hopping
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Figure 5.2: Energy diagram for 4x-YBZ-Hn systems. The energy of each
system is referred to the one of the 4x-YBZ-H4 optimized structure. The
insets show how the oxygen sites are arranged in the proton environment of
the corresponding system; the colours used for the atomic positions follow
the same convention of Figure 5.1.

within the same octahedron, and to higher (reorientation) barriers along
that pathways leading to other external octahedral sites. If the energy bar-
rier for the hopping event between two equivalent O(1) or O(2) oxygen sites
is lower than the remaining ones, these sites constitute a trapping zone for
the proton, being not able to go far from the yttrium and diffuse in the rest
of the structure.

5.4 4x-2YBZ Models

Unprotonated Systems. Following the hints of the results obtained from
the previous calculations on Y:BaCeO3 (see chapter 4) and extending the
4x-YBZ models, the effects of zirconium substitution with yttrium atoms
have been explored by the following 4x-2YBZ models. The geometry of
these models have been built starting from a 4× 3× 3 supercell of undoped
BaZrO3, substituting two first neighbour zirconium atoms with two yttrium
ones.

Initially, no oxygen vacancy has been considered, in the aim to describe
fully saturated systems. In order to investigate the effects of unbalanced
charges that can be locally found in the doped octahedron environment
[167], five geometrical optimizations have been performed on this systems,
differing for the structure net charge chosen in the range of integer values
between -2 and +2 |e|. In all the simulations, irrespective of the charge of
the system, the Y−O distances found take all the same value. Taking as
reference Figure 3.10, where X−−Z−−Y for all the 4x-2YBZ systems, we found
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the following values: i) X−O3 and Z−O9, 2.16 Å; ii) X−O4 and Z−O4, 2.11
Å; iii) all the other X−O and Z−O distances relative to the remaining oxy-
gen atoms used as reference, 2.17 Å; iv) all the X−Ba and Z−Ba distances,
3.59 Å. These results show how an excess or a defect of electronic charge
does not affect the local geometrical features of the doped sites. Moreover,
irrespective of the local excess or defect of charge, such yttrium configura-
tion for zirconium substitution, that is a Y−O−Y local cluster, singles out a
bimodal distance distribution for the Y−O distances, round the mean values
of 2.11 and 2.17 Å respectively. Among the considered systems, according
to the energy formation defect analysis as described in Equation 2.33, the
most stable one is the system with charge -2|e|.

On the other hand, charge effects are prevailing when one oxygen va-
cancy is created by removing one of the oxygen atoms surrounding a doped
octahedron. This has been investigated by performing structural relaxations
on 4x-2YBZ models in which, as already done for the oxygen deficient 3x-
YBZ and 4x-YBZ systems, the O4 oxygen atom has been removed from the
structure, imposing to the systems the same charge values chosen for the
oxygen saturated 4x-2YBZ systems just discussed; the relevant geometrical
parameters are reported in Tables 5.8 and 5.9 as usual.

In all the 4x-2YBZ systems with one oxygen vacancy but that one with
charge equal to -1, the spreading of the X−O and Z−O distances single
out a bimodal distribution centred on 2.08 Å and 2.18 Å with statistical
weight of 1/5 and 4/5 respectively; in both cases, among the considered
atoms, the shorter distance is the one involving the oxygen atom farthest
from the vacancy (i.e. O3 and O9). Similar consideration holds for the
X−Ba and Z−Ba distances. From this results it turns out that, a charge
of -1|e| counterbalances the effect of the oxygen vacancy on the distances
involving the octahedral cations. However, according the usual analysis on
formation energy of charge defects, the most stable systems turns out to be
the one with null charge. In all the analysed cases, the doped octahedra do
not show any tilt with respect to the other undoped ones; in this way the
{O3, X, Z, O9} aligned atoms individuate a four-fold axes of symmetry for
the Ba12XO5ZO5 moiety here considered, allowing it to be compatible with
the experimental reported Pm3̄m cubic structure.

The discussed outcomes on unprotonated 4x-2YBZ models, are quite in
agreement with the NPD data on Y:BaZrO3, since, the distances and the
found octahedra reciprocal orientation are in line with the features concern-
ing the symmetry of the system; the presence of the X−O and Z−O shorter
distance can be neglected in this comparison because this can disappear al-
ready at 77K (see chapter 6) and could be not resolved because of its small
statistical weight. In this sense, these models describe quite well the aver-
aged structure in experimental data. On the other hand, these outcomes
need to be compared with local informations round dopant atoms (coming,
for example from EXAFS experiments), that, to our knowledge, are still not



102 CHAPTER 5. BaZrO3 AB INITIO RESULTS

Table 5.8: Relevant distance values with their statistical weight character-
izing the Y-doped octahedron environment of the 4x-2YBZ unprotonated
systems.

4x-2YBZa X−Ob/ Å Z−Ob/ Å

No vacancy 1x2.11, 4x2.17, 1x2.16 1x2.11, 4x2.17, 1x2.16
Vacancy, -2 1x2.08, 4x2.18 1x2.08, 4x2.18
Vacancy, -1 1x2.14, 4x2.17 1x2.14, 4x2.17
Vacancy, 0 1x2.08, 4x2.18 1x2.08, 4x2.18
Vacancy, +1 1x2.08, 4x2.17 1x2.08, 4x2.17
Vacancy, +2 1x2.08, 4x2.18 1x2.08, 4x2.18

4x-2YBZ X−Bac/ Å Z−Bac/ Å

No vacancy 8x3.59 8x3.59
Vacancy, -2 4x3.66, 4x3.73 4x3.73, 3x3.66
Vacancy, -1 8x3.64 8x3.64
Vacancy, 0 4x3.73, 4x3.64 4x3.72, 4x3.64
Vacancy, +1 4x3.73, 4x3.64 4x3.73, 4x3.64
Vacancy, +2 4x3.73, 4x3.65 4x3.73, 4x3.65

a 4x-2YBZ systems with and without oxygen vacancy; each integer num-
ber refer to the charge value set for the corresponding oxygen deficient
system. The reference system, without any vacancies, has charge equal to
zero and correspond to the null-charge 4x-2YBZ oxygen saturated model
discussed in the present paragraph. For reference, see Figure 3.10 where
X−−Z−−Y for these systems. b X−O and Z−O distance values between
the X and Z octahedral cations and their corresponding first neighbour
oxygen atoms. c X−Ba and Z−BA distance values between the X and
Z atoms and their corresponding first neighbour barium atoms.

available; nonetheless, the 4x-2YBZ as the 4x-YBZ and 3x-YBZ models are
a useful tool to make predictions on the proton environment, supporting the
analysis of the classical dynamic simulations still performed on Y:BaZrO3

perovskite system and presented in the next chapter 6.

Finally, a further oxygen saturated 4x-2YBZ model have been consid-
ered, in which two yttrium atoms substitute for two zirconium ones not
belonging to adjacent octahedra (i.e. they are not first neighbours in their
corresponding cation coordination shell), but they are aligned with a zirco-
nium atom lying in-between them, forming a Y−O−Zr−O−Y configuration.
This configuration can be visualized by considering the Figure 3.10, where
X−−Y, Z−−Zr and the remaining not shown Y atom is bound to O9 in such
a way that the {X, O4, Z, O9, Y} atoms are aligned. The geometrical opti-
mization performed on this system yielded the following distance values: i)
Y−O, 2x2.15, 4x2.17 Å; ii) Z−O, 2x2.02, 4x2.10 Å; iii) Y−Ba, 8x3.58; iv)
Z−Ba, 8x3.60. Moreover, the Y and Z coordinated octahedra do not suffer
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Table 5.9: Relevant angle values characterizing the Y-doped octahedron
environment of the 4x-2YBZ unprotonated systems.

anglesa/ ◦ No vac.b Vac.c-2 Vac. -1 Vac. 0 Vac. 1 Vac. 2

O2−X−O3 90.0 101.3 96.2 101.0 100.9 101.0
O2−X−O6 90.0 87.8 89.3 87.9 88.0 87.9
O3−X−O6 90.0 101.3 96.2 101.0 100.9 101.0

O11−Z−O9 90.0 101.3 96.2 101.0 100.9 101.0
O11−Z−O8 90.0 87.8 89.3 87.9 88.0 87.9
O9−Z−O8 90.0 101.3 96.2 101.0 100.9 101.0

a Angle values between the X and Z octahedral cations and their first neighbour
oxygen atoms: X−−Z−−Y for 4x-2YBZ systems; for the atom labelling, see Fig-
ure 3.10. b Results for 4x-2YBZ system without any oxygen vacancies.
c Convention on “Vac. n” columns is the same as in Table 5.3.

of any tilt with respect to the remaining undoped ones. These values are
practically the same as those found for the oxygen saturated 3x-YBZ and
4x-YBZ models; thus, this last model show as the peculiar Y−O distance
distribution of the doubly substituted 4x-2YBZ systems is lost when two
yttrium atoms do not belong to the same first neighbour coordination shell
of the octahedral cation. Because of the very little difference between the
two Y−O mean distances, this configuration could be inferred only as an ex-
trapolation if the two different Z−O distances are experimentally resolved.
Anyway, since this system is intended to model a hydrated compound, the
structural disorder due to the presence of protons and the thermal disorder
would make hard to recognize this kind of configuration. Finally, it is here to
be said, that this last geometrical configuration results more stable than the
corresponding 4x-2YBZ, being their energy difference of 1.76 eV, leading one
to choose the stablest geometry to describe the doped system. Nonetheless,
the structure of the bulk as well as the grain kind (size, shape, composition
and so on) strongly depend on the synthesis method and the details of the
reactions that from the starting nanoclusters lead to the formation of the
whole material [112, 127, 128, 168, 169].

Protonated Systems. The double zirconium substitution in 4x-2YBZ
structures, although observe the symmetry of the Pm3̄m space group, spe-
cialize oxygen atomic positions present in the surrounding environment, in
a more incisive way than a single substitution can do (see section 5.3). As
a matter of fact, the oxygen sites keep all the geometrical equivalence but
their features will be disclosed by their behaviour against a structural per-
turbation.

According to the configuration of the oxygen saturated 4x-2YBZ model,
eight distinct oxygen sites have been individuated (see Figure 5.3) and cor-
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Figure 5.3: Positions of the oxygen distinct sites in 4x-2YBZ models: blue,
brown and green spheres represent the barium, zirconium and yttrium
atoms, respectively; all the remaining spheres are oxygen atoms. Equally
coloured spheres correspond to equivalent oxygen sites. The oxygen distinct
sites have been numbered as in Figures 5.4, 5.5 and 5.6.

responding eight protonated 4x-2YBZ model systems have been built. Fol-
lowing the convention adopted in section 5.3, the name of the models will be
4x-2YBZ-Hn, where n is an integer corresponding to the label of the oxygen
site as depicted in Figures 5.4, 5.5 and 5.6, and Hn will be called the proton
stable position near the O(n) oxygen site.

The starting geometry for all the 4x-2YBZ-Hn protonated system is the
one of the oxygen saturated null charged 4x-2YBZ structure, where one
proton has been added near the O(n) oxygen site, according to the general
prescription described in subsection 3.1.2. Geometrical optimizations have
been performed on these systems and the corresponding results are reported
in Tables 5.10, 5.11, 5.12, 5.13.

In all the protonated systems, the proton lies in the plane individuated
by the oxygen to which is bound, the nearest octahedral cation and the
oxygen forming an hydrogen bond with it (see the dihedral angle values
showed in the corresponding tables). Irrespective of the oxygen site near
which the proton resides, the planar distances result distorted compared
to the unprotonated case, and the longest are those involving the proton
with the octahedral cation and the two nearest oxygen atoms. The axial
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(a)

(b)

Figure 5.4: (a) Particular atomic plane of the 4x-2YBZ model geometry. (b)
Numbering of the oxygen distinct sites contained in the atomic plane shown
in (a). The colour legend is the same used as in Figure 5.3.

distances result unperturbed, maintaining unaltered the octahedral volume.
In any of the considered cases, no tilting is observed for the octahedron
containing the proton; conversely, the octahedron adjacent to the protonated
one and containing the oxygen forming an hydrogen bond with the proton,
rotates round an axis perpendicular to the plane containing the proton and
the cations of the two involved octahedra. The tilting observed for the Y
coordinated octahedra is greater than those for the Zr one. Finally, it must
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be noted that in 4x-2YBZ-H8 system, the distances involving the octahedral
atoms near the proton site are practically the same ones obtained with the
undoped BZH model, showing that the O(8) oxygen site is equivalent to
oxygens’ one in the undoped BZH model.

Although the presence of yttrium atoms in the structure differentiate the
oxygen sites, the planar distances perturbed by the proton are arranged in
the same way almost independently from the kind of octahedral cation and
from the kind of oxygen site. For example, the X−O planar distances of
the 4x-2YBZ-H1 system are arranged in the order X−O4>X−O5>X−O6>
>X−O3, with X−O4 the longest one; the same holds for all the remaining
4x-2YBZ-Hn systems, making the suitable correspondences among the oxy-
gen atoms. Differences in numerical values reflect differences among those
sites occupied by the protonated oxygen. The protonic perturbation is thus
mixed with the features owned by each oxygen site due to the position they
occupy in the structure. This mixing can be neglected only if a rough and
not detailed analysis of the general features of the structure is required.

The features of each oxygen site can be also visualized by considering the
diagram of the relative energies of the 4x-2YBZ-Hn models, shown in Fig-
ure 5.7. In this figure, the energy of each system, so each stable proton site,
is represented by a bar coloured according to the convention used in Figures
5.4, 5.5 and 5.6, for labelling the oxygen sites. Each dashed line represents
the intraoctahedral transfer pathway between two corresponding connected
stable sites; the proton can go back and forth along the same path, overcom-
ing, in general, energy barriers with different values (the energy landscape
could not be symmetric along the hopping path). Furthermore, the number
(multiplicity) of pathways connecting two particular stable sites depends
on the local geometry of the involved sites; at the same time, the number
of equivalent sites (with the same energy) reachable from a particular Hn
stable position, is different for each of the considered cases. These are the
configuration entropy contributions to the proton residence time on a par-
ticular site. So, for example, while eight O(2) sites are accessible from the
O(1) one, for each O(2) site only one pathway is available for the O(2)→O(1)
jump: despite the energies of both sites have almost the same value, it is
more likely that the proton will spend more time near the oxygen occupying
the O(2) position in the structure.

Giving a survey on the energy diagram, the stable proton sites can be
grouped into three sets according to the differences between their energies.
In this way, {H1, H2}, {H3, H4, H5, H6} and {H7, H8} sets of stable sites
are individuated, being roughly 0.78, 0.56 and 0.14 eV the energy mean
values within the same set, respectively. Let us call H(I), H(II) and H(III)
the three groups of stable sites, in the same order they have been shown;
according to the energy diagram in Figure 5.7, the relevant number of path-
ways connecting the three groups are: i) H(I)→H(II), 6; ii) H(II)→H(I), 9;
iii) H(II)→H(III), 13; iv) H(III)→H(II), 10. Since the number of pathways
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to go from a group to another is nearly the same to go back, the energy dif-
ferences between stable sites play a major role in the proton diffusion with
respect to one played by available pathways to go far from the oxygen shell
round the yttrium atoms. It is here to be recalled that, besides the trans-
fer pathways showed in the energy diagram of Figure 5.7, hopping events
between two equivalent sites, whereas they are allowed¶, increase proton
residence time onto the same site, preventing it from escaping and diffusing
towards other different oxygen sites. Therefore, the geometry of H(I) and
H(II) groups of stable sites appear to act as a trap for the proton, producing
one of the main contribution to the activation energy for the overall protonic
conduction process across the material. Further details on this point will be
inspected in the next chapter.

¶Since only intra-octahedral transfers are being considered, some stable sites do not
have their equivalent one in their first coordination shell. It happens for H1, H3, H5 and
H6 stable sites: one proton, for example, in H1 position cannot jump to a nearby H1 site
since there are no intra-octahedral jumps that connect two H1 distinct sites.
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(a)

(b)

Figure 5.5: (a) Particular atomic plane of the 4x-2YBZ model geometry. (b)
Numbering of the oxygen distinct sites contained in the atomic plane shown
in (a). The colour legend is the same used as in Figure 5.3.
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(a)

(b)

Figure 5.6: (a) Particular atomic plane of the 4x-2YBZ model geometry. (b)
Numbering of the oxygen distinct sites contained in the atomic plane shown
in (a). The colour legend is the same used as in Figure 5.3.



110 CHAPTER 5. BaZrO3 AB INITIO RESULTS

T
a
b

le
5
.1

0
:

R
elevan

t
d

istan
ce

a
n

d
an

gle
valu

es
th

e
Y

-d
op

ed
o
ctah

ed
ron

en
v
iron

m
en

t
of

th
e

4x
-2Y

B
Z

-H
1

an
d

4x
-2Y

B
Z

-H
2

p
roto

n
ated

sy
stem

s.

d
ista

n
ces

a/
Å
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Å
4
x
-2

Y
B

Z
-H

3
b

4x
-2

Y
B

Z
-H

4
b

d
is

ta
n

ce
sc /

Å
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Chapter 6

BaZrO3 Derivatives
Molecular Dynamics
Simulations Results

Ab initio simulations performed on model systems for Y:BaZrO3, and dis-
cussed in the previous chapter, clarify some geometrical features of the
dopant site surrounding environment, and how these affect the overall pro-
tonic conduction process in this material. Nonetheless, in order to get a
more detailed overview of proton hopping mechanisms, we need to know the
height of the energy barriers the proton must overcome along its transfer
path.

Classical dynamics simulations can supply these informations and, also,
they give details on how geometrical parameters change with different tem-
perature, adding further details to the ab initio description in a complemen-
tary way. In the following, results* will be presented according to the yt-
trium content of the supercell used in the simulations (see subsection 3.1.3):
BaZrO3 alone, single yttrium substitution and double yttrium substitution.
It is here to be recalled that temperature values used in the following simu-
lations are 100, 250, 500, 750, 1000 and 1250K, with a simulation time of 2
ns.

6.1 D-BZO and D-BZH Models

The structure of undoped barium zirconate was modelled by means of a
4× 3× 3 cubic Pm3̄m supercell as shown in Figure 3.9, here called D-BZO
model. In the range of temperatures investigated, the cell parameter a turns
out to be directly proportional to the temperature value, growing linearly

*Results presented in this chapter have been obtained by means of the Reax Force
Field, kindly provided by Prof. Adri van Duin, Department of Mechanical and Nuclear
Engineering, Pennsylvania State University.
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according to the relation ∆a(T ) = 2.11(1 + 2.42 × 10−5T ). The thermal
expansion coefficient of 2.42× 10−5K−1 is quite in agreement with that one
experimentally found [170], as well as the extrapolated value a(77) = 4.22
Å at 77 K as found from NPD data [109]. Also, at low temperatures,
the Ba−Ba and the Zr−Zr distances are the ones less affected by thermal
motions; for this reason, they can be taken as a further reference to test the
geometrical outcomes for this model. Consistently with the atomic positions
in the unitary cell, the shorter Ba−Ba and Zr−Zr distance values should
be equal to the lattice length; indeed, the radial distribution function g(r)
obtained at 100 K for the Ba−Ba and the Zr−Zr couple of atoms has its
first local maximum at about 4.22Å, and the corresponding mean square
displacements of 0.012 and 0.007 Å2 are in agreement with the value 0.011
and 0.009 Å2 as resulted from neutron diffraction experiments cited above.
Moreover, using the relation 2.38, we can derive the force constant for the
mean force potential between Zr−O and Zr−Ba for the undoped system;
these turn out to be 8.46 and 5.75 eV/Å2 respectively.

Geometrical arrangement of the oxygen atoms in the structure is of fun-
damental importance for the global process of the protonic conduction, so
analysing how it changes with temperature turns to be interesting. Taking
as reference one of the oxygen atoms of the structure, radial distribution
function gO−O(r) for the couple O−O has been calculated for each of the
temperature values investigated. As it is shown in Figure 6.1�, the gO−O(r)
functions calculated at the temperature of 100 and 250K reveal a well de-
fined oxygen substructure that changes with temperature, with O−O mean
distance values that are not simply the result of temperature broadening
but are characteristic of that temperature, like, for example, the bimodal
O−O distance distribution round the mean values of 2.84 and 3.26 Å at
the temperature of 250K. This substructure is definitively modified at 500K
and it will keep almost unvaried at higher temperatures: the temperature
broadening of the gO−O(r) at such temperature generates the corresponding
functions at higher temperatures.

This model was used as starting point for studying how proton modifies
the features of the Y-doped BaZrO3 structure far from a doped site. In order
to do this, the protonated model D-BZH was built, where one hydrogen atom
was added to the structure.

The trend of the cell parameter a as a function of the temperature is
substantially unvaried compared to the unprotonated case; the presence of
hydrogen in the structure does not significantly changes the volume of the lo-
cal undoped environment and the linear relation between the lattice param-
eter and the temperature still holds, being ∆a(T ) = 2.11(1 + 2.48× 10−5T )
for D-BZH models. By means of the relation 2.38 we can derive the force
constant for the Zr−O and Zr−Ba mean force potential; the corresponding

�All the graphs reported in this chapter have been realized with Gnuplot [171] software.
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Figure 6.1: Radial distribution functions gO−O(r) for the O−O couple of
atoms, calculated at different temperatures for the D-BZO system.

calculated values are 8.53 and 5.85 eV/Å2, slightly higher than the un-
protonated case. According to these findings, the vibration frequencies of
the Zr−O and Zr−Ba distances should result shifted towards higher val-
ues than the unprotonated case; in this sense, the proton has the effect to
make the lattice more rigid than in its absence. In assisting protonic trans-
fer, cation-anion vibrational contributions result, in this way, less important
than bending motions: O−Zr−O and O−Y−O octahedral axes are allowed
to rotate rather than to strecth.

Comparing the radial distribution function for the couple of atoms Zr−O
of the unprotonated model with the protonated one, the mean distances
distributions and the corresponding spreading width have almost the same
value. This trend shows that the proton does not affect the Zr−O long
range structure. Analogous results have been obtained for the Zr−Ba dis-
tances. Concerning the results for the couple O−O, the radial distribution
function gO−O(r) show a temperature trend similar to the one obtained for
the unprotonated case, with an oxygen substructure not changing with tem-
perature equal or above 500K. On the other hand, comparing the gO−O(r)
on D-BZO and D-BZH taken at the same temperature, oxygen substructure
of the unprotonated system results significantly modified by the presence
of the proton at low temperatures; for temperatures higher than 250K, the
oxygen geometrical arrangement is substantially the same for both unproto-
nated and protonated cases. For each of the considered temperature values,
the gO−O(r) calculated on D-BZH systems shows a very narrow distribution
of the O−O mean distance around the value of 1.2Å, this lacking in the
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Figure 6.2: Radial distribution functions gO−O(r) for the O−O couple of
atoms, calculated at different temperatures for the D-BZH system. The
narrow distribution of the O−O mean distance around the value of 1.2 Å is
due to oxygen atoms lying in the proton first coordination shell.

D-BZO model and corresponding to those oxygen atoms lying in the proton
first coordination shell (see Figure 6.2).

The simulation time is long enough to enable the proton explores the
whole simulation box, allowing a good sampling of the proton diffusion co-
efficient for each of the considered temperature value. By means of Equa-
tion 2.43, this allows to evaluate the activation energy Ea of the proton
hopping process between two oxygen sites, that are all equivalent for un-
doped BaZrO3 compounds. For D-BZH systems, Ea turns out to be 0.32
eV, a value smaller than 0.46 eV experimentally found for the Y:BaZrO3

compound [20]. This result can be checked by calculating the activation
energy Ea through the analysis of the residence time of the proton near
an oxygen atom for each temperature value. This is done by means of the
Arrhenius relation 2.47, that relates the proton residence time τ to the abso-
lute temperature T . The activation energy Ea calculated with this relation
is 0.30 eV, coherent with the one found through the analysis of the diffusion
coefficient but, as before, lower than the experimental outcome. This re-
sult shows that simple hopping process between two zirconium coordinated
equivalent oxygen atoms is not enough to account for the global protonic
conduction process experimentally observed and other contributions to the
activation energy must be considered.That is, only refinement of the present
structure do not appear capable of justifying this large difference. It has also
to be noted that our simulation model do not include the presence of any
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type of defects. It is well known that electron mobility in metals and semi-
conductors depends strongly upon concentration and type of defects [172].
Absolutely, our simulation model lacks of any type of defects. Oxygen va-
cancies, e.g., can surely slow proton hopping. Also, we expect that model
of doped BaZrO3 describes more correctly the corresponding real system
because doping is just equivalent to add specific defects.

6.2 D-YBZ and D-YBZ-H Models

Y-doped barium zirconate was modelled starting from the same 4 × 3 × 3
cubic Pm3̄m supercell used for the D-BZO model, in which one zirconium
atom has been substituted by an yttrium one, building the D-YBZ model
for the present simulations. The relation of the lattice parameter a vs. the
temperature T is ∆a(T ) = 2.11(1+9.29×10−5T ): the cell volume increases
more rapidly with the temperature than the undoped case. As seen for the
undoped D-BZO system, the Ba−Ba and Zr−Zr distances are the one less
affected by thermal motions; they can be taken as a further reference to
check the a(T ) relation, since the shorter Ba−Ba and Zr−Zr distance values
should be equal to the lattice length. The radial distribution function g(r)
calculated at 100K for these couple of atoms has its first local maximum
at about 4.22Å, and the corresponding mean square displacements of 0.012
and 0.007 Å2 are in agreement with the values reported in [109].

The relation 2.38 allow us to derive the force constant for the mean
force potential concerning the octahedral cation and its nearest oxygen and
barium atoms, that is, for the couples Zr−O, Zr−Ba, Y−O and Y−Ba;
the corresponding calculated values are 8.28, 5.70, 11.68 and 4.87 eV/Å2,
respectively.

Taking as reference one of the oxygen atoms of the doped octahedron,
radial distribution functions gO−O(r) has been calculated for each of the
considered temperature values. As it is shown by the gO−O(r) functions in
Figure 6.3, an oxygen atom substructure is clearly identified, changing with
the temperature. The O−O mean distances at 100K differ from those at
250K, revealing a particular oxygen sub-network activated by the tempera-
ture. From 500K on, this sub-network is not changing any more: peaks in
the corresponding gO−O(r) undergo temperature broadening, keeping unal-
tered the pattern of the mean values.

The Y-doped model was extended by adding one proton into the 4×3×3
supercell, so building D-YBZ-H model. This is intended to reproduce the
protonated doped environment in order to study related geometrical features
and their influence on the protonic conduction process.

The presence of one proton does not affect the linear dependence of the
lattice parameter a with the temperature found for the D-YBZ unprotonated
model; increasing the temperature, the lattice parameter a increases more
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Figure 6.3: Radial distribution functions gO−O(r) for the O−O couple of
atoms, calculated at different temperatures for the D-YBZ model. The
reference atom is one of the oxygen atoms surrounding the yttrium atom in
the structure.

rapidly than the unprotonated case according to the linear law ∆a(T ) =
2.11(1 + 9.50 × 10−5T ). Also the force constants carried out with D-YBZ
model increase if one proton is inserted into the octahedral environment:
the whole cation-anion network results more rigid than in the unprotonated
case. Thus, the relevant force constants calculated with this model are: i)

Zr−O, 8.34 eV/Å
2
; ii) Zr−Ba, 5.80 eV/Å

2
; iii) Y−O, 11.78 eV/Å

2
; iv)

Y−Ba 4.91 eV/Å
2
. These values suggest that the corresponding vibrational

frequencies are shifted towards higher values compared to the unprotonated
case; globally, this can have the effect to reduce the vibrational contribution
and to favour the bending one in the proton hopping process.

The radial distribution functions calculated at different temperatures
show almost the same distance pattern of the corresponding ones in the
D-YBZ model, indicating that the proton does not affect the long range
structure. On the other hand, comparing the low temperature gO−O(r)
functions of D-YBZ and D-YBZ-H, the oxygen substructure of the unproto-
nated system results significantly modified by the proton; at temperatures
higher than 250K, the oxygen network is definitely established, being the
corresponding distance pattern only broadened by thermal motions.

As observed in section 5.3, when one zirconium atom is substituted with
an yttrium one, the oxygen sites, that are all equivalent in the cubic undoped
structure, are differentiated, gaining features characteristic of the place they
occupy into the structure. Recalling the nomenclature used in section 5.3,
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Figure 6.4: Arrhenius plot of the proton residence time for the H(I), H(II)
and H(III) sets of proton stable sites in D-YBZ model.

D-YBZ-H geometries own the H1,· · · ,H4 different oxygen sites found in the
analogous 4x-YBZ-H systems. Different hopping path are thus created, with
corresponding different hopping barriers. Analysing how proton diffusion
coefficient changes with temperature, it is possible to evaluate the activation
energy for the whole protonic conduction, but it is not possible to distinguish
which of the hopping paths are the limiting ones for the global process; in
other words, the activation energy Ea, calculated by considering the entire
simulation time, should be regarded as a macroscopic average of the all
contributions. By means of Equation 2.43, the extrapolated value of Ea for
D-YBZ-H systems is about 0.40 eV, slightly lower than the reference value
of 0.43 eV experimentally found [20].

How the different proton pathways weigh in the determination of the
global Ea value can be determined analysing the proton residence time near
a particular oxygen atom. Looking at the energy diagram showed in Fig-
ure 5.2, the oxygen atoms of the D-YBZ-H geometry can be divided into
three clusters, according to their stabilization energy. Let us call H(I), H(II)
and H(III) the {H1}, {H2} and {H3, H4} sets of stable sites and let us con-
sider the residence time in each of these three clusters. The Arrhenius plot
of the residence time τI in the cluster H(I) allows to know the activation
energy EIa for the intra-octahedral proton hopping between those oxygen
atoms belonging to the cluster H(I); in a similar manner, EIIa and EIIIa are
calculated for the H(II) and H(III) clusters.

Looking at the Figure 6.4, it is possible to see that the relation between
ln(τI) and 1/T is not linear in the range of considered temperatures; in order
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to obtain the corresponding EIa value in the same manner as for the other
cases, i.e. by applying Equation 2.47, we will limit to consider only the two
values of τI corresponding to the temperatures of 1000K and 1250K, the or-
dinary working temperatures of these materials, always keeping in mind this
strong restriction. The activation energies found for the three clusters are: i)
H(I), 0.05 eV; ii) H(II), 0.23 eV; iii) H(III), 0.28 eV. None of these energies
is higher than the value of 0.40 eV extrapolated by the diffusion coefficient
as a function of the temperature, suggesting that the limiting pathways of
the whole proton transfer could be those connecting two of the three consid-
ered clusters. However, the global barrier value of 0.40 eV is lower than 0.43
eV, the experimental one; this can be related to an undersampling of inter-
cluster hopping of our simulation, whose energy barrier may be higher than
the experimental value. Thus, correct estimation of inter-cluster hopping
energy barriers requires much longer simulation time. Also this result show
that the D-YBZ-H model is not suitable to describe the proton conduction
mechanisms in Y:BaZrO3 at different temperature and that it should require
refinement; nonetheless, results obtained using D-YBZ-H model suggest that
the arrangement of equivalent oxygen atoms sites, according also to their
stabilization energies, plays a fundamental role in discriminating about the
limiting pathways of the whole protonic conduction process, suggesting to
take as reference the ab initio results on alternative dopant environment
geometries.

6.3 D-2YBZ and D-2YBZ-H Models

Ab initio results on Y:BaCeO3 (see section 4.2) inferred the formation of
yttrium clusters when doping with yttrium atoms; so we extended this sug-
gestion to the case of the barium zirconate exploring this peculiar dopant
geometrical configuration by means of ab initio methods (see section 5.4). In
particular, we observed that, when two nearest neighbour zirconium atoms
are each substituted by an yttrium one, oxygen structural sites are dis-
tinct, despite they turn out to be equal from considerations on symmetries
owned by the system. The effect of such kind of substitution is to single
out eight different oxygen sites, so eight corresponding proton stable sites,
that we called H1,· · · ,H8, with energy relative values like those shown in
the diagram 5.7. In order to explore how this structural arrangement affects
protonic conduction, we considered a 4×3×3 supercell of Pm3̄m cubic bar-
ium zirconate where two nearest neighbour zirconium atoms are substituted
by two yttrium ones, building the D-2YBZ model for the MD simulations
here presented.

The cell parameter a increases with the temperature according to the
law ∆a(T ) = 2.11(1 + 2.40× 10−5T ); the value 2.40× 10−5K−1 of thermal
expansion coefficient is similar to that one we found with D-BZO model. It
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is also in quite agreement with that experimentally found [170]. Compared
to the D-BZO and D-YBZ models, the D-2YBZ shows the lowest expansion
coefficient, suggesting that the dopant particular configuration counterbal-
ances the volume growth with the temperature. The Ba−Ba and Zr−Zr
distances are the ones less affected by thermal motions; they, indeed, repro-
duce the lattice length of about 4.22 Å at 100K as well as the mean square
displacement values as reported in literature [109].

The relation 2.38 allow us to extrapolate the force constant for the mean
force potential concerning each kind of octahedral cation and its nearest
oxygen and barium atoms. For the couples Zr−O, Zr−Ba, Y−O and Y−Ba

the corresponding calculated values are: i) Zr−O, 8.44 eV/Å
2
; ii) Zr−Ba,

5.87 eV/Å
2
; iii) Y−O, 10.43 eV/Å

2
; iv) Y−Ba 5.34 eV/Å

2
. Highest values

correspond to highest bond oscillation frequencies. Comparing these force
constants with the corresponding ones in D-YBZ model, we note that only
the value relative to the Y−O bond results lower; this can be related with the
different geometry of the present model, in which the two nearest neighbour
yttrium atoms produce a softening the Y−O bond, making more rigid the
other ones.

Taking as reference the oxygen atom bound to the two yttrium ones (see
Figure 3.9), radial distribution functions have been calculated for each of the
considered temperature values; these are shown in Figure 6.5. An oxygen
atom substructure is clearly identified, changing with the temperature. The
O−O mean distances at 100K differ from those at 250K, revealing a particu-
lar oxygen sub-network activated by temperature. The oxygen sub-network
at 250K results well established: it holds the peaks position pattern unvaried
after temperature increases, spreading the surrounding values according to
a typical temperature broadening. Thus, the features of the dopant environ-
ment result well defined already at 250K and, in comparison with D-YBZ
model, they are less affected by temperature.

The present model was extended by adding one proton into the struc-
ture, building the protonated D-2YBZ-H model. The aim is to reproduce
the protonated doped environment and to study the related features, com-
paring them with those of the D-YBZ-H one, in which one yttrium atom is
surrounded by only zirconium ones in its octahedral cation first coordination
shell.

The lattice length a increases linearly with the temperature more rapidly
than for the undoped case, according to the relation ∆a(T ) = 2.11(1 +
2.71× 10−5T ). Unlike D-YBZ model, the presence of two nearest neighbour
yttrium atoms single out a bimodal distribution of the Y−O and Y−Ba dis-
tances in yttrium first and second coordination shell; the Y−O mean values
found are 2.21 and 2.34 Å while the values for the Y−Ba case are 3.61 and
3.77 Å. Correspondingly, applying the relation 2.38 to values distribution
round each of these mean values, two different force constants can be cal-
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Figure 6.5: Radial distribution functions gO−O(r) for the O−O couple of
atoms, calculated at different temperatures for the D-2YBZ model. The
oxygen atom used as reference is the one bonding with both the two yttrium
atoms of the structure.

culated for the Y−O and Y−Ba mean force potentials; these are: i) Y−O,

9.48 and 7.47 eV/Å
2

for the mean values of 2.21 and 2.34 Å; ii) Y−Ba, 7.64

and 3.89 eV/Å
2

for the mean values of 3.61 and 3.77 Å. The present force
constants values appear to be the split of the corresponding D-YBZ ones, as
well as the relative mean distances; this corresponds to two different vibra-
tional frequencies for each of the considered bonds. In particular, within the
same doped octahedron, the oxygen atoms oscillate in two different ways,
making more anisotropic the intra-octahedral proton transfer. This is a pe-
culiar feature of the dopant geometrical environment due to the particular
mutual position of the two yttrium atoms. The remaining force constants

found are: i) Zr−O, 8.37 eV/Å
2
; ii) Zr−Ba, 4.78 eV/Å

2
. Almost all the

values are lower than the corresponding ones in the undoped case; at vari-
ance of what we saw for D-BZH and D-YBZ-H models, the presence of the
proton softens the host matrix, lowering the bond vibrational frequencies.

The oxygen sub-structure still holds the behaviour found in the unpro-
tonated case as a function of the temperature. The peculiar feature is the
further narrow distribution of the O−O mean distances around the value of
1.3 Å, corresponding to those oxygen atoms lying in the proton first coor-
dination shell.

The eight different oxygen sites single out hopping pathways with dif-
ferent activation energy barriers. Analysing how proton diffusion coefficient
changes with temperature, it is possible to estimate the activation energy
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Figure 6.6: Arrhenius plot of the proton residence time for the H(I), H(II)
and H(III) sets of proton stable sites in D-2YBZ model.

Ea for the whole protonic process without to distinguish about the different
transfer paths; in this way, Ea should be seen as a macroscopic average of
the single contributions. By means of Equation 2.43, the extrapolated value
of Ea for D-2YBZ-H systems is about 0.47 eV, higher than the experimental
value of 0.43 eV [20].

By analysing the proton resident time near an oxygen atom lying in
a given site, it is possible to estimate how different proton pathways con-
tribute to the determination of the global Ea value. Looking at the energy
diagram of Figure 5.7, the oxygen atoms of the D-2YBZ-H geometry can be
grouped into three clusters, according to their stabilization energy. Let us
call H(I), H(II) and H(III) the {H1, H2}, {H3, H4, H5, H6} and {H7, H8}
sets of stable sites and let us consider the residence time in each of these
three clusters. The Arrhenius plot of the residence time τI in the cluster
H(I) allows to extrapolate the activation energy EIa for the intra-octahedral
proton hopping between those oxygen atoms belonging to the cluster H(I);
in a similar manner, EIIa and EIIIa are calculated for the H(II) and H(III)
clusters.

The residence time τ calculated at 500K for all the three clusters (see
Figure 6.6), cannot be taken into account for extrapolating the activation
energy, since at that temperature, the proton does not significantly change
its position along the simulation; however such values can be taken as lower
limits for the corresponding residence times.

The relation between ln(τII) and 1/T is not linear in the range of the
considered temperature values; in order to obtain the corresponding EIIa
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value in the same way as for the other clusters, we will limit to consider
only the two values of τII for temperatures equal and higher than 1000K,
being these values inside the working temperatures range of the considered
material. This strong limitation is useful only to make a rough estimation
of the activation energy barrier for cluster H(II) in a way coherent with
the extrapolations for H(I) and H(III) clusters. The deviation of τII from
Arrhenius behaviour suggest a more detailed analysis of the mechanisms of
proton hopping inside the cluster H(II), whose EIIa value can be regarded as
the result of a first order approximation of a more complex τ(T ) expression.

The activation energies found for the three clusters are: i) H(I), 0.17 eV;
ii) H(II), 0.45 eV; iii) H(III), 0.31 eV. Because of the low activation energy
of H(I) cluster, the number of O→O jumps per unit time between the H1
and H2 stable sites is higher than others: the proton motion in the zone
between two yttrium atoms is faster than in the others. This situation is
better illustrated in Figure 6.7. In the abscissa, simulation time is reported;
the red line is referred to the y-axis on the left which reports the atomic
labels assigned to oxygen atoms while the green line refers to the y-axis on
the right representing the cluster label. The red line specifies the oxygen
atom nearest to the proton at simulation time reported in abscissa; the green
line represents the cluster to which the proton belongs at the corresponding
time. It is evident from the figure that the proton jumps rapidly between
oxygen atoms belonging to the H(I) cluster while it resides for longer time
near one and the same oxygen atom when this last one belongs to the H(II)
cluster.

Since none of the three activation energy values are higher than the en-
ergy of 0.47 eV found analysing the temperature dependence of the diffusion
coefficient, the limiting pathway of the whole proton transfer could be one
connecting two of the considered clusters. On the other hand, the energy
differences between all the stable sites calculated by means of the 4x-2YBZ-
Hn models suggest the presence of barriers higher than 0.50 eV for a proton
migration between H(II) and H(III) clusters. However, let us recall here
that the yttrium contents of the 4 × 3 × 3 supercell used for the present
dynamics simulations resemble about a 4% of yttrium doping; as observed
in section 5.4, higher dopant concentrations will lead to an overlap of the
three considered clusters. In particular, H(II) cluster would increase its size
to the detriment of H(III) one, becoming the region of the material in which
the proton would spend most of the time; correspondingly, EIIa activation
energy would be the predominant contribution to the global value observed
for the whole protonic conduction process. Indeed, the EIIa value seems to
reproduce quite well the experimental one.

Besides giving a contribution to the explanation of the experimental find-
ings, this result suggest also that a reliable model of the protonic conduction
process in Y:BaZrO3 should pay attention more to the local environment in
which the proton moves than to the system global features due to con-
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Figure 6.7: Proton hopping in H(I), H(II) and H(III) clusters of D-2YBZ
model as a function of the time. The red line is referred to the y-axis on the
left, which reports the label of the oxygen atoms, and represents the oxygen
atom nearest to the proton at simulation time reported in abscissa; the
green line refers to the y-axis on the right, which reports the cluster label,
and represents the cluster to which the proton belongs at the corresponding
time. The proton jumps rapidly between oxygen atoms belonging to the
H(I) cluster.

siderations based on the kind of the involved atomic species. If the last
approach could be a good starting point to study the protonic diffusion as a
whole, local details give important informations on the limiting steps of the
conduction mechanism. According to the obtained results, the most reli-
able dopant environment geometry in Y:BaZrO3 should be the one in which
two yttrium atoms are first neighbour in the octahedral cation coordination
shell. Furthermore, stabilization energies of the 4x-YBZ models, activation
energies extrapolated with D-YBZ-H model, considerations on proton res-
idence times and the rapidity of the proton motion near the doped sites,
together with the conclusions about the geometry of the doped site, suggest
that protonic conduction in Y:BaZrO3 could be improved avoiding yttrium
clusterization in moieties of the kind Y−O−Y. In order to do this, it turns
out to be necessary a detailed analysis of the reaction mechanisms that from
the initial reactants lead to the formation of the final material.





Conclusions

As stated in the Introduction, aim of this study is to do a further step
in understanding structural and dynamical aspects of proton conduction in
a class of solid protonic conductors. Specifically, computational studies (ab
initio and molecular dynamics) have been done on barium cerate and barium
zirconate perovskite structures, doped with different trivalent species in the
tetravalent cation octahedral site.

We have summarized our results into two sections: results from ab initio
models and results from molecular dynamics.

Ab Initio Results. Models of barium cerate derivatives have been ob-
tained by substituting cerium atom with yttrium, indium or gadolinium
ones. The size of the suggested fragment was shown to be a good com-
promise between the physical consistency of the numerical results and the
computational resources used to get them. Particular care were devoted to
the choice of the basis sets, in order to get structure results in better agree-
ment with the experimental ones. In fact, this appears critical in In:BaCeO3

derivatives. Similarly, results on Gd:BaCeO3 system suggest that also the
choice of the energy functional is of fundamental importance to get a reliable
description of such doped systems.

For BaCeO3 compounds, concurrent use of C-SPA/P-DOS analysis and
the M-ca procedure, considered together, would seem able to rationalize
both structural and conducting properties of the doped sites on pure elec-
tronic basis. In particular, in order to increase the material conductivity, a
dopant species has to leave unchanged, or even decrease, the local basicity
of the oxygen octahedral environment; moreover, small structural changes,
not affecting the basicity, seem to be less effective in producing conductivity
modifications.

The present approach suggested a possible origin of the bimodal Y−O
distance distribution recently found by EXAFS experiments on Y-doped
BaCeO3 materials. By means of our double substitution models, such ex-
perimental findings are explained on the basis of local clustering of yttrium
atoms.

Starting from the structural outcomes, based on geometric and elec-
tronic considerations, it is possible to self-consistently analyse also the charge
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distributions characterizing the Y-doped BaCeO3 materials. In particular,
charge gradient considerations let us to confirm the common view that the
protonic intra-octahedral hopping is more likely to occur than the inter-
octahedral one in the bulk of BaCeO3 derivatives; furthermore, the gradi-
ents in the concentration of the charge density around dopant atoms should
play a minor role in the same protonic diffusion.

The models of barium cerate compounds summarized above have been
used to describe the corresponding protonated environment. Proton sur-
rounding atomic geometries during the hopping event, were explored by
keeping fixed proton positions along a possible hopping path, with respect
to an external cage. Results show that the proton reorganizes the octahe-
dral distances and charges distribution in a way essentially irrespective of
the type of the octahedral cation; in particular, oxygen atoms octahedron
shows an axial and a planar distortions. Four octahedral oxygen atoms are
arranged in a plane containing the hydrogen atom; during proton motion
from one oxygen site to another, such plane always contains the hydrogen
atom together with the oxygen ones. In this sense, proton motion in barium
cerate derivatives has been called as planar, inferring that it should keep its
directional characteristics against thermal vibrations: the property of being
planar is due only to the presence of the proton and not to the type of the
nearest octahedral cation. On the other hand, the octahedral cation atomic
type mainly determines distance and angle values between the proton and
the involved anions and cations; as an example, in In:BaCeO3, the shrinking
of the oxygen atoms octahedron round the dopant atom and a small dihedral
angle value involving the proton make unfavourable a proton jump towards
cerium-coordinated oxygen atoms, lowering proton ability to diffuse into the
bulk.

Relevant results on Y:BaCeO3 have leaded to the formulation of analo-
gous models to study the yttrium-doped barium zirconate perovskite. Single
and double zirconium substitutions with yttrium atoms have been consid-
ered, in the aim to understand if the inferred yttrium local clustering is
a general feature of the yttrium atom as a substituent for the tetravalent
cation in perovskite materials.

Singly and doubly substituted Y:BaZrO3 models shows that yttrium
doping does not change the Pm3̄m cubic structure of the undoped com-
pound; with such symmetry, oxygen sites are all equivalent. After yttrium
doping, more than two distinct oxygen sites are singled out, despite symme-
tries of the undoped system are preserved. When only one zirconium atom
is substituted by an yttrium one, four distinct oxygen sites are individu-
ated with four different stabilization energies for the proton. The number
of distinct oxygen sites grows up to eight by considering the simultaneous
presence of two nearest neighbour yttrium atoms.

The features of such distinct oxygen sites are highlighted in presence of
a proton, that acts as a probe of their response to a structural perturbation.
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Distinct proton stable sites correspond to distinct oxygen sites. Proton
ability of locally specialize oxygen sites overlaps with the features of these
last ones. The effect of this overlapping is reflected into the relative energies
of the proton stable positions.

Differences among stabilization energies found for the singly doped bar-
ium zirconate models are not able alone to explain the activation energy
for the proton hopping process obtained in experiments. In presence of two
nearest neighbour yttrium atoms, relative energy differences of the eight
proton stable sites reproduce the correct order of magnitude of the proton
hopping activation energy value. Distribution of such energy values clearly
suggest to group distinct oxygen atoms into three clusters, owning pecu-
liar structural features not immediately evident from an inspection of the
geometrical positions of their constituents.

Molecular Dynamics Results. Ab initio results on BaZrO3 derivatives
are the basis of MD simulations performed on yttrium-doped barium zir-
conate. Dynamics simulations models take into account undoped as well as
singly and doubly doped structures. Results of MD simulation add temper-
ature dependence to ab initio outcomes i) of structural details, ii) of proton
motion. As to structural details, a peculiar oxygen sub-network is individu-
ated, changing its characteristics up to a temperature value which depends
on the yttrium content. Protonated models reproduce the behaviour in-
ferred by the corresponding ab initio results: only the system with two
yttrium atoms is able to account for the macroscopic protonic conduction
activation energy. This fact confirms the ab initio suggestions that the three
oxygen atoms clusters had their own peculiar structural features; in particu-
lar, two of them act as a multilevel trap for the proton, delaying its diffusion
across the bulk. A singular feature of this proton trap is found in the cluster
near a doped site: a very high number of proton hopping events per unit
time between those oxygen atoms surrounding an yttrium one.

Summing up ab initio and dynamics simulation results on yttrium-doped
barium zirconate systems, it appears that yttrium clusterization occurs also
for such compounds; eventually, protonic conduction in these materials could
be improved avoiding such clusterization, that is preventing the formation
of protonic traps.

All results have shown the close interrelation between structure and dy-
namics of matter at a microscopic level. They also show the importance of
combined use of experimental and computational approaches to the proton
conduction problem to clarify all the story. As a fruitful consequence of this
view, we suggest that better efficiency of proton conduction of perovskite
can be accomplished by studying in details (experimentally and computa-
tionally) the reaction mechanisms that from the initial reactants lead to the
formation of the final material.
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