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Sommario 
Il metodo della cava anulare o Ring-Core Method è un metodo meccanico utilizzato per l’analisi delle tensioni 

residue in componenti meccanici. Sia per  tensioni residue uniformi che per tensioni residue variabili nello 

spessore del componente esaminato, il metodo da luogo in genere a risultati accurati sebbene allo stato attuale, 

contrariamente a quanto accade per altri metodi come il più famoso metodo del foro, l’utilizzatore non dispone 

di appropriate procedure per la correzione di eventuali errori sistematici né per la stima della incertezza dei 

risultati, dovuta agli errori casuali. Allo scopo di superare questi inconvenienti, attraverso una sistematica analisi 

delle principali grandezze di influenza, nel presente lavoro sono proposte delle appropriate procedure per la 

correzione degli errori dovuti alle principali grandezze di influenza, nonché per la valutazione della incertezza 

delle tensioni residue principali calcolate e del relativo orientamento. L’applicazione pratica delle procedure 

proposte consente altresì all’utilizzatore di evidenziare l’entità degli errori e della incertezza introdotta da 

ciascuna delle grandezze di influenza, indicando cosi possibili setup sperimentali che consentono di minimizzare 

errori ed incertezza. 

 
Abstract 
The Ring-Core Method is a technique used for the experimental analysis of the residual stresses in mechanical 

components. For uniform and non-uniform residual stresses estimation, the use of the method leads in general to 

accurate results but, unfortunately at present the user does not have appropriate procedures to correct the 

obtained results from systematic errors as well as to estimate the uncertainty due to random errors. In order to 

overcome such drawbacks, in the present work, the procedures for the correction of the effects of the main error 

sources and for the stress uncertainty estimation, are proposed. The practical application of such procedures 

allow the user to highlight the relative magnitude of the error and stress uncertainty associated with the main 

influence parameters. 

 

Parole chiave: Ring-core method, residual stresses, uncertainty estimation. 

 

 

1. INTRODUCTION 
 

The Ring-Core Method (RCM) is a semi-destructive method used for the residual stress (RS) 

evaluationin mechanical components [1-4]. Respect to the more known Hole Drilling Method (HDM), 

it is characterized by a higher stress relaxation that allows the user to reach higher depth from the 

surface of the analyzed component and, in general, leads to a lower error’s sensitivity. Although 

various contributions have been published in literature, the Ring-Core method has still not been 

standardized. In practice, the computational approach used for the evaluation of non-uniform RS by 

the RCM is the same as used for the HDM and reported in the well-knownASTM E837-13a standard 
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[5], but the experimental conditions are different because the geometrical variation introduced by 

using a proper annular cutter is very different from the HDM and, consequently, it is characterized by 

different influence parameters from which the accuracy of the RS evaluation depends.  

Although the use of the RCM is increased in recent years, especially in Europe also thank to new 

modern equipment commercially available, only few research works devoted to the error and 

uncertainty analysis [6-8] have been reported in literature. Therefore, the aim of this work is to give a 

contribution to the evaluation of the uncertainty of the RS estimated by the RCM, by summarizing all 

the factors influencing the accuracy of calculated RS and, subsequently, accomplishing an appropriate 

procedure to the correction of the main systematic errors as well as to the stress uncertainty estimation. 

Obviously, such a procedure allows the user to increase the accuracy of the computed RS as well as to 

obtain a reliable estimation of their uncertainty. In fact, as it is well known, a reliable uncertainty 

estimation can be carried out only after the systematic errors are properly detected and corrected.  

Exploiting the similarities between RCM and HDM, the work has been carried out by considering all 

the literature [9-11] on the estimation of the uncertainty of the RS computed by the HDM, with 

particular reference to the recent works ofScafidiet al. [12] and Schajerand Altus [13]. 

 

 

2. PROCEDURE FOR THE RESIDUAL STRESS UNCERTAINTY ESTIMATION 
 

A general procedure for the correction of the main errors affecting the RS evaluation, as well as for the 

RS uncertainty estimation by considering the main mutually independent influence parameters, is well 

described in Oettel´s work [9] and successive works [10, 14]. 

As occur in most practical cases, the RS is not directly measurable, but depends on various parameters 

that can be computed or measured by the user. Indicating by Y the unknown RS and assuming that it 

depends on N independent variables X1, X2,…,XN, i.e.: 

 

𝑌 = 𝑓(𝑋1 ,𝑋2 ,… ,𝑋𝑁)          (1) 

 

then, in general,the vector (X1, X2,…,XN) is constituted by some variables whose values and 

uncertainties are directly determined during the measurement process, and other variables whose 

values and uncertainties are transferred to the measurement procedure from external sources 

(manufacturer´s specifications, data provided by calibration and from other certificates, etc.). 

Consequently, the uncertainty of Y is determined indirectly from known and estimated causes. In 

accordance to the ISO/IEC GUIDE 98-3:2008, the estimated value of Yis usually represented in the 

following way: 

 

𝑌 = 𝑦 ± 𝑈,           (2) 

 

where y is the test (or measurement) mean result, U is the so called expanded uncertainty associated 

with y. Such expanded uncertainty is obtained by multiplying the standard uncertainty 𝑢𝑐 𝑦  by a 

proper coverage factor k, i.e: 

 

𝑈 = 𝑘 · 𝑢𝑐(𝑦)           (3) 

 

Commonly it is used k=2, that for a normal distribution corresponds to a coverage probability, p, of 

approximately 95%. 

In case of the RS evaluation by a mechanical method, as RCM or HDM, due to the impossibility to 

repeat the measure under the same conditions, y represent the values obtained from the direct RS 

evaluation, after correction of the systematic errors due to the various influence parameters. 
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3. INFLUENCE PARAMETERS 
 

In the present work the determination of the main parameters (error sources) that influences the RS 

evaluation by using the RCM,is carried out by considering the use of a modern automaticequipment as 

that commercialized by the SINT Technology [15],that in general usesstrain gage rosette type HBM - 

RY51 [16] or similar. In detail, an accurate analysis of the actual experimental conditions shows that 

the RS measurement is influenced by the following main parameters: 

 

1. residual stresses induced by the milling cutter; 

2. core-rosette eccentricity; 

3. plasticity effects due tostress concentration at the notch bottom; 

4. core axis inclination (with respect to the normal to the component surface); 

5. temperature variations of the zone close to the strain gage, due to the milling; 

6. effects of the slope/radius at the notch bottom; 

7. zero depth offset (due to a wrong mill initial positioning); 

 

As it occurs in a generic mechanical method, in the RCM the residual stresses induced by the cutter, 

depend on the milling procedure, on the material type and on the particular material thermal treatment 

(hardening, quenching etc.). In detail, thanks to the relative distance between the strain gages and the 

core surface,if amilling procedure is used, then the experimental evidence shows that in general the 

residual stresses induced by machining are characterized by relatively low mean values. Obviously, 

since the magnitude of such induced stress is strongly related to material characteristics, proper 

analyses should be carried out if particular materials or treatments are considered 

As it is well known in literature [3, 6, 15, 17], one of the main advantage of the RCM respect with the 

HDM is its low sensitivity to the rosette eccentricity. In detail, in [15] the authors claimed that the use 

of modern devices equipped with automatic alignment system, allows the user to make negligible such 

an error. Moreover, in [7] Zuccarello has found that for eccentricity equals to 1 mm the maximum 

errors of σmax and σmin are 10% and 20% respectively, whereas in the more common case in which the 

maximum eccentricity is less than 0.4mm such errors are less than 1.5% and 3.0%. Also in Ref.[6, 8] 

by considering the particular case of a biaxial uniform RS distribution, the authors have found that for 

a coarse eccentricity error of 0.5 mm in both vertical and horizontal axis, the RS error falls in the 

range 2.0 – 0.4 % up to depths of 2 mm, whereas it falls in the range -0.5 ÷ -5.9% for depths in the 

range 2-4 mm. However, the same authors state that the use of an automatic device that is equipped 

with a proper microscope to center the cutter, allows the user to limit the eccentricity to values of 

about 0.1mm. 

In accordance with the ASTM E837-13a standard, using the HDM it is possible to obtain satisfactory 

evaluations of RS, if its maximum value is less than 80% the material yield stress. Taking into account 

that the RCM is characterized by lower stress concentration effects and therefore by lower plasticity 

effects at the groove bottom, then such a limitation can be extended to the RCM. In more detail, 

according the work of Petrucci and Zuccarello [18], in presence of biaxial RS distributions, the 

maximum error of the computed RS is negligible for actual RS up to 60% the material yield stress, 

whereas for RS up to 70%, 80%, 90% the maximum errors occurs at the first steps (up to 1 mm) and 

can be equal to about 10%, 20% and 33% respectively; furthermore, errors having similar modulus but 

negative sign, occur at depths of about 3-3.5 mm. 

Systematical analysis of the inclination of the core obtained by using an automatic equipment as that 

manufactured by SINT Technology [15], has shown that such an error is in general very low, in 

practice less than 1°. No study, covering the effect of the possible inclination of the core axis on 

computed RS, has been carried out until now. 

Considering the influence of the temperature, the experimental evidence shows that due to the milling 

process the temperature of the zone close to the strain gage rosette can increase up to about 5°C; such 

a value is also been confirmed by the manufacturer SINT Technology [15]. However, the thermal 

effects on the relaxed strain measurement are commonly negligible when self-compensated rosette is 

installed on a free component. 
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Since the numerical simulations used to compute the influence functions assume a plane bottom of the 

groove, the actual experimental measurements can be affected by significant errors if the actual cutter 

geometry leads to different shape of the notch bottom. Systematical analyses of the groove bottom 

profile given by the use of a standard cutter (see Fig. 1) shows that the bottom is inclined toward the 

outside of about 5° in order to improve the cutting condition. In principle such a geometry influences 

the actual stress relaxation and it should be considered for a very accurate RS evaluation. According to 

previous numerical studies, at the first milling steps such an error (5° inclination) can lead to RS errors 

up to 30%; the error is reduced to 2% at 5 mm depth. 

 

 

Figure1: Groove profile with inclined bottom, obtained by using a standard cutter. 

 

The measurement of the groove depth can be affected by significant errors due to possible zero depth 

offset (end mill that does not touch correctly the component surface). In general, due to the shape of 

the end mill and/or to the limited electric contact area [1], a systematic error of about 0.01 mm can 

occur also when the initial position of the end mill is relieved by monitoring the electric contact. 

Although such a result has been observed in the HDM, it can be extended to the RCM that use in 

practice the same device to monitor the electric contact between cutter and metallic surface of the 

examined component. 

 

 

4. CORRECTION OF THE MAIN ERRORS AFFECTING THE RS 
 

In the following, a procedure to correct the main errors affecting the RS analyzed by the RCM, is 

proposed. It considers the application of the RCM under the following general assumptions: 

 

1. Minimal dimension of the tested component bigger than: 30mm for thickness, 50mm for width 

and 50mm for length;  

2. Calculation of the RS distribution by using the Integral Method, as exposed on ASTM E837-13a; 

3. RS distribution through the core-depth evaluated by using 8 optimized steps, as suggested in [20]. 

 

In detail, assumption (1) is used to avoid significant boundary effects that influence the stress 

relaxation [2]; in this cases appropriate numerical simulationsare necessary to calculate the correct 

influence functions. Assumption (2) refers to a standard procedure widely used by the users, whereas 

assumption (3) leads to optimal condition that permits to minimize the influence of the main 

experimental errors. 

Considering the local thermal effects due to machining, it is possible to state that the heating of the 

core surface during the milling procedure leads to an apparent thermal strain, also when self-

compensated strain gages are used.  

For an accurate evaluation the residual thermal effect of the self-compensated rosette can be 

considered, by using the characteristic thermal curve provided by the manufacturer; as an example for 

the HBM RY51 the residual thermal effect can be obtained by computing the difference of the values 

acquired by the following polynomial at the final temperature Tf  and at the initial temperature Ti: 

 

𝑃(𝑇) = −12,48 + 1,51𝑇 − 5. 10−2𝑇2 + 2,29. 10−4𝑇3      (4) 
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Denoting with T(SC) such a contribution, i.e. T(SC)= P(Tf)-P(Ti), we have the following relation: 

 

T= 𝜀𝑇(𝑆𝐶) (5) 

 

Moreover, in the generic case in which a strain gage rosette self-compensated for a material having 

expansion coefficient equal to 𝛼𝑆𝑚  is installed on a generic component having expansion 

coefficient𝛼𝑆 , then the thermal strain due to the expansion coefficient mismatch is added to the mean 

strain and it follows:   

 

𝜀𝑇 = 𝜀𝑇(𝑆𝐶) +  𝛼𝑆 − 𝛼𝑆𝑚  𝛥𝑇                                                                                                             (6) 

 

As an example, installing a rosette self-compensated for steel (Sm=10.8 ppm) to a component made 

by a different alloy having s=13 ppm and considering, in accordance to the experimental evidence a 

maximum ∆𝑇 = 5°𝐶 (from 20 °C to 25 °C), then equation (5) and equation (6) provide: 

 

𝜀𝑇 = + 13− 10.8 · 5 + 𝜀𝑇(𝑆𝐶)=11 - 1.95 = 9,05 m/m (7) 

 

The strain values corrected from the effects of the local thermal variations are expressed from the 

measured values: 

 

𝜀𝑚𝑖 = 𝜀𝑚𝑖
𝑚𝑒𝑎𝑠 − 𝜀𝑇 = 𝜀𝑚𝑖

𝑚𝑒𝑎𝑠 − 9,05           (8) 

 

The computed values of the apparent thermal strain show that, as occur often in the strain 

measurement, the apparent thermal strain can become quite high; for this reason a good practice in the 

RS analysis by mechanical methods that use ER (HDM or RCM), is to wait a sufficient time after the 

incremental depth, to obtain the thermal stabilization of the measured relaxed strain. 

As above mentioned, if a modern device equipped by a proper optical centering system, is used, then 

the core-rosette eccentricity can be considered negligible and no correction has to be carried out.  

The strain correction related to the bottom inclination strongly depends on the cutter shape, therefore 

each cutter requires its own error determination. 

After the strain corrections, in accordance with the ASTM standard, the three components pi, qi and ti 

can be computed by combining the corrected relaxed strains 𝜀𝑚𝑖  as: 

 

𝑝𝑖 =
𝜀𝑐𝑖+𝜀𝑎𝑖

2
,           (9) 

 

𝑞𝑖 =
𝜀𝑐𝑖−𝜀𝑎𝑖

2
,           (10) 

 

𝑡𝑖 =
𝜀𝑐𝑖+𝜀𝑎𝑖−2𝜀𝑏𝑖

2
,          (11) 

 

where m=a, b, c (measuring grid of the rosette), i=1,2,…N (step number). 

The influence coefficients aij and bij (j is the layer number at i-th step) are obtained by numerical 

simulations carried out by considering an equi-biaxial (σis) and a shear (σiu) stress state respectively, by 

following simple formulas [21]: 

 

𝑎𝑖𝑗 =
𝜀𝑎𝑖𝑗

𝜎𝑖
           (12) 

 

𝑏𝑖𝑗 =
𝜀𝑎𝑖𝑗

𝜎𝑖
           (13) 

 

Taking into account the zero depth offset z0, then the measured depths 𝑧𝑖
𝑚𝑒𝑎𝑠  has to be corrected by 

the simple formula: 
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𝑧𝑖 = 𝑧𝑖
𝑚𝑒𝑎𝑠 − 𝑧0          (14) 

 

Moreover, considering the dependence on the material properties, equations (12) and (13) are 

transformed to: 

 

𝐴𝑖𝑗 =
𝐸

1+𝜇
. 𝑎𝑖𝑗            (15) 

 

𝐵𝑖𝑗 = 𝐸 · 𝑏𝑖𝑗            (16) 

 

In accordance to the ASTM standard, the hydrostatic (Pi) and shear (Qi, Ti) residual stress components 

at each step are computed by using the following relationships: 

 

𝑃𝑖 =
1

𝐴𝑖𝑖
 
𝐸.𝑝𝑖

1+𝜇
−  𝐴𝑖𝑗 .𝑃𝑗

𝑖−1
𝑗=1           (17) 

 

𝑄𝑖 =
1

𝐵𝑖𝑖
 𝐸. 𝑞𝑖 −  𝐵𝑖𝑗 .𝑄𝑗

𝑖−1
𝑗=1           (18) 

 

𝑇𝑖 =
1

𝐵𝑖𝑖
 𝐸. 𝑡𝑖 −  𝐵𝑖𝑗 .𝑇𝑗

𝑖−1
𝑗=1           (19) 

 

Finally, the principal residual stresses and the relative orientation β are computed as: 

 

𝜎1,2𝑖 = 𝑃𝑖 ± 𝑄𝑖
2 + 𝑇𝑖

2          (20) 

𝛽𝑖 =
1

2
arctan 

−𝑇𝑖

−𝑄𝑖
           (21) 

 

The principal residual stresses 𝜎1𝑖,2𝑖 are in general influenced by two error sources: the plasticity 

effects due to stress concentration at the bottom of the groove and the stresses σind induced by 

machining.  

It is to be noted that the induced stresses are equi-biaxial and do not influence β.Therefore, by 

assuming that the stresses induced by the machining do not vary with depth (common condition), the 

principal RSs can be corrected by using the simple formula: 

 

𝜎𝑐1,2𝑖 = 𝜎1,2𝑖 − 𝜎1,2𝑖𝑛𝑑          (22) 

 

Considering the influence of the possible plasticity at the notch bottom, due to the lack of a general 

relationship between actual RS level and relative error on the computed RS, then by extending the 

suggestion of the ASTM E837-13a standard, this work consider only RS evaluations with actual 

maximum RS level less than 80% the yield stress.   

Finally, because its small values the RS error due to the core axis inclination error can be neglected in 

the correction of the main systematical errors. 

 

 
5. RESIDUAL STRESS UNCERTAINTY EVALUATION 

 
For a correct and a complete residual stress uncertainty evaluation, the user must identify all the 

possible sources of uncertainty that can influence (directly or indirectly) the measurements. In general, 

the uncertainty source list cannot be identified comprehensively beforehand, as it is associated with 

the particular test procedure and apparatus used. This means that the values should be updated each 

time a particular test parameter changes (for example the amplifier, the cutter shape etc.). 

However, in general, the list of the typical sources of uncertainty includes the following parameters: 
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1. strain gage calibration factor K; 

2. rosette diameter D; 

3. accuracy u(W) of the strain measurement device; 

4. apparent thermal strain εT, due to the milling; 

5. core diameter D0; 

6. notch thickness s; 

7. milled depths hi; 

8. core-rosette eccentricitye; 

9. zero depth offset z0; 

10. core axis inclinationi: 

11. stress σind  induced by the milling; 

12. plasticity effect at the groove bottom; 

13. Young modulus Eof the tested component; 

14. Poisson ratio μof the tested component; 

15. surface curvature Rsof the tested component. 

 

In accordance with ISO/IEC GUIDE 98-3:2008 [14], by assuming that all the influence parameters are 

not mutually dependent, the uncertainty propagation law is given by the following general formula: 

 

𝑢𝑐
2 𝑦 =  𝑐𝑘

2 .𝑢2 𝑥𝑘 ,
𝑁
𝑘=1          (23) 

 

where y and xk(k =1,…N) are the computed parametersand the relative influence factors respectively; 

uc(y)and u(xk) are the corresponding uncertainties. The constants ck are the sensitivity coefficients. In 

the case in which the analytical relationship between y and xk(k=1,…N) is known, the sensitivity 

coefficient is given by following differential relationship: 

 

𝑐𝑘 =
𝜕𝑦

𝜕𝑥𝑘
           (24) 

 

In many cases the calculation required to obtain the sensitivity coefficients by partial differentiation 

can be a lengthy process, particularly when there are many contributions and uncertainty estimates are 

needed for particular ranges of values. Obviously, if the functional relationship for a particular 

measurement is not known, the sensitivity coefficients may be obtained experimentally. 

Firstly, it is necessary to compute the uncertainty 𝑢𝑐𝑖  𝜀𝑚𝑖
𝑚𝑒𝑎 𝑠  of the i-th measured strain.Taking into 

account the basic formula of the strain gauge technique, i.e.:   

 

𝜀𝑚𝑖
𝑚𝑒𝑎𝑠 =

4

𝑘
.
∆𝑉𝑖

𝑉
   (i=a,b,c)       (25) 

 

being Vi the voltage variation of the i-th (i=a,b,c) strain gauge bridge and V the supply voltage, it 

follows that by applying equation (23) and considering all the influence parameters on the measured 

strains, the following formula can be written: 

𝑢𝑐
2 𝜀𝑚𝑖

𝑚𝑒𝑎𝑠  = 4 ∗  
𝜀𝑚𝑖
𝑚𝑒𝑎𝑠

𝑘
 

2

.𝑢2 𝑘 +  
𝜀𝑚𝑖
𝑚𝑒𝑎𝑠

∆𝑉𝑖
𝑉

 

2

.𝑢2  
∆𝑉𝑖

𝑉
 + 𝑢2 𝑒        (i=a,b,c)   (26) 

 

In eq. (23)  u(e) the uncertainty of the rosette-core eccentricity.  

As an example, if a strain gage rosette type HBM  RY51S/350 (having k = 2.13 and Ro =350 Ω) is 

used and a uniform uncertainty distribution is considered, then according the producer it follows: 

 

u(k)= ±1%k/√3 = 0.0213/√3= 0,0123        (27) 

 

u(
∆𝑉𝑖

𝑉
)= ±1%

∆𝑉𝑖

𝑉
/√3 =±1% 350/√3= 2,021        (28) 
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Also, if an automatic strain reader with accuracy class 0.05 (type Quantum X of HBM) is used for 

strain data reading, then commonly it follows: 

 

u(W)=0.5 
𝜇𝑚

𝑚
            (29) 

 

In normal experimental condition, by using a modern device for the RCM (as that manufactured by 

SINT Technology [15)] the core-rosette eccentricity is less than 0.1mm and the uncertainty 

contribution u(e) can be neglected. 

From the uncertainty of the measured strains the uncertainty of the strain corrected from the error due 

to the local thermal effects is obtained by applying equation (23) to equation (8) and taking account 

the equation (7), i.e.: 

 

𝑢𝑐
2 𝜀𝑚𝑖  = 𝑢𝑐

2 𝜀𝑚𝑖
𝑚𝑒𝑎𝑠  + 𝑢𝑐

2 𝜀𝑇    (i=a,b,c)    (30) 

 

Considering that commonly temperature changes of about ΔT=5°C occurs in the experimental 

practice, it follows:  

 

𝑢𝑐
2 𝜀𝑚𝑖  = 𝑢𝑐

2 𝜀𝑚𝑖
𝑚𝑒𝑎𝑠  − 9,05      (i=a,b,c)      (31) 

 

After the uncertainty of the strains is estimated, the uncertainties uc(pi), uc(qi) and uc(ti) of the strain 

components can be computed from the uncertainty uci(εmi) of the corrected measured strains by 

applying equation (23) to equations (9-11). 

 

𝑢𝑐
2 𝑝𝑖 =

1

4
𝑢𝑐

2 𝜀𝑐𝑖 +
1

4
𝑢𝑐

2 𝜀𝑎𝑖           (32) 

 

𝑢𝑐
2 𝑞𝑖 =

1

4
𝑢𝑐

2 𝜀𝑐𝑖 +
1

4
𝑢𝑐

2 𝜀𝑎𝑖           (33) 

 

𝑢𝑐
2 𝑡𝑖 =

1

4
𝑢𝑐

2 𝜀𝑐𝑖 +
1

4
𝑢𝑐

2 𝜀𝑎𝑖 + 𝑢𝑐
2 𝜀𝑏𝑖         (34) 

 

To determine the uncertainty of the influence coefficients aij and bij( j =1,..i; i= 1,…N ) the following 

main influence parameters have to be considered:  

 

 Poisson’s ratio 

 groove depth measurement hi 

 component’s surface curvature radius RS 

 ratio Do /s between core diameter and groove thickness 

 zero depth offset zo 

 

By applying eq.(23) the uncertainty of each influence coefficient is given by the summation of the 

contribution due to each above mentioned influence parameter, i.e.: 

 

𝑢𝑐
2 𝑎𝑖𝑗  = 𝑢2 𝑎𝑖𝑗

𝜇
 + 𝑢2  𝑎𝑖𝑗

ℎ𝑖 + 𝑢2  𝑎𝑖𝑗
𝑅𝑆 + 𝑢2  𝑎𝑖𝑗

𝐷0/𝑠
 + 𝑢2  𝑎𝑖𝑗

𝑧0     (35) 

 

𝑢𝑐
2 𝑏𝑖𝑗  = 𝑢2 𝑏𝑖𝑗

𝜇
 + 𝑢2  𝑏𝑖𝑗

ℎ𝑖 + 𝑢2  𝑏𝑖𝑗
𝑅𝑆 + 𝑢2  𝑏𝑖𝑗

𝐷0/𝑠
 + 𝑢2  𝑏𝑖𝑗

𝑧0     (36) 

 

Since the analytical relationship between the influence coefficients and the relative main influence 

parameters is not knownand each influence coefficient is computed by numerical simulations for fixed 

values of the influence parameter, then each uncertainty contribution that appears into eq.(35) and (36) 

can be determined by proper numerical simulations carried out by varying each influence parameter in 

the range defined by its mean value and its typical uncertainty. As an example, if the RCM is used for 
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the RS analysis of components made by steel or aluminum, having Poisson ratio μ ≈ 0.3, then taking 

into account that the typical uncertainty of the material Poisson´s ratio is ±3%, the evaluation of the 

uncertainty contributions 𝑢 𝑎𝑖𝑗
𝜇
  and 𝑢 𝑏𝑖𝑗

𝜇
  can be carried out by computing the variations of aij and 

bij that occur when the Poisson’s ratio varies in the range 0.291-0.309. The uncertainty contributions  

𝑢 𝑎𝑖𝑗
𝜇
  and 𝑢 𝑏𝑖𝑗

𝜇
  so computed, are reported in Appendix 1. 

Using a similar approach, Appendix 2 shows the uncertainty contributions 𝑢  𝑎𝑖𝑗
ℎ𝑖  and 

𝑢  𝑏𝑖𝑗
ℎ𝑖  computed by considering a typical uncertainty of hi of about 0.01 mm (95% confidence level); 

the experimental evidence has shown that such an uncertainty value is commonly obtained by using 

proper automatic systems as that produced by SINT Technology [15], whereas higher uncertainty 

occurs if the groove depth is measured with common devices.  

Considering the influence of the radius of curvature (RS) of the component surface, the strain gage 

rosette manufacturer declares that the influence of the surface curvature is in general negligible for 

radius higher than  2-3 m. Based on the Civin research [6] for RS=1250 mm the maximum strain 

deviations is 4.6%. Therefore, accurate RS analysis on component with curved surface having RS ≤ 1 

m, requires proper numerical simulations to determine the correct influence coefficients. 

Also, the uncertainty contributions 𝑢  𝑎𝑖𝑗
𝐷0/𝑠

  and 𝑢  𝑏𝑖𝑗
𝐷0/𝑠

  of the non-dimensional geometrical 

parameter (Do /s) can be computed by considering that for the usual value Do = 14 mm  its typical 

deviation is about ±0.1 mm, whereas for the common value of the annular groove thickness s=2 mm 

its typical deviation is ±0.05 mm. Proper numerical simulation carried out by considering such 

deviations have permitted to compute the detected uncertainty contributions 𝑢  𝑎𝑖𝑗
𝐷0/𝑠

  and 

𝑢  𝑏𝑖𝑗
𝐷0/𝑠

  reported in Appendix 3. 

Finally, the uncertainty contributions  𝑢  𝑎𝑖𝑗
𝑧0  and 𝑢  𝑏𝑖𝑗

𝑧0  due to the uncertainty of the zero depth 

offset (z0) was obtained by considering the maximum error of 0.01 mm and have been reported in 

Appendix 4. 

The analysis of the maximum uncertainty contributions reported in Appendix 1, 2, 3 and 4 shows that 

the lower values corresponds to the Poisson’s ratio followed by the Do /s ratio, then by the groove 

depth hi and the  zero depth offset z0  that is therefore the parameter that exhibits the maximum 

influence on the influence coefficients aij and bij ( j =1,..i; i = 1,…N ). 

After the evaluation of the uncertainties u(aij) and u(bij) by using eq.(35) and (36), the uncertainties of 

the material dependent influence coefficients Aij and Bij ( j =1,..i; i = 1,…N ) given by eq.(15) and (16), 

can be obtained immediately by applying equation (23) to these last equations; it follows: 

 

uc
2 Aij =  

aij

1+μ
 

2
u2 E +  -

Eaij

 1+μ 2 
2

u2 μ +  
E

1+μ
 

2
u2 aij      (37) 

 

uc
2 Bij =bij

2
u

2
 E +E2u

2
 bij          (38) 

 

Like the Poisson’s ratio, the typical uncertainty of the Young modulus is about ±3%. 

Also, after the evaluation of the uncertainty of the influence coefficients by using eqs.(37) and (38), by 

applying equation (23) to equations (17-19) the uncertainties of the three stress components are given 

by using the following formulas: 

 

uc
2 Pi = 

1

Aii
2

. 
E.p

i

1+μ
− 𝐴𝑖𝑗 .𝑃𝑗

𝑖−1

𝑗=1

 

2

. uc
2 Aii +  

1

Aii

.
p

i

1+μ
 

2

.uc
2 E + 

1

Aii

.
E.p

i

1+2μ+μ2
 

2

uc
2 μ + 

 +  
1

Aii
.

E

1+μ
 

2

u
c

2

 p
i
 +  

Pj

Aii
 

2

.uc
2 Aij +  

Aij

Aii
 

2

.uc
2(Pj)

i-1

j=1

i-1

j=1      (39) 
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uc
2 Q

i
 =  

1

Bii
2 E.q

i
−  𝐵𝑖𝑗 .𝑄𝑗

𝑖−1
𝑗=1  

2

uc
2 Bii +  

qi

Bii
 

2

uc
2 E +  

Qj

Bii
 

2

uc
2 Bij 

i-1

j=1 +  
Bij

Bii
 

2

uc
2  Q

j
 

i-1

j=1 +

+  
E

Bii
 

2

u
c

2

 q
i
            (40) 

uc
2 Ti =  

1

Bii
2 E.ti −  𝐵𝑖𝑗 .𝑄𝑗

𝑖−1
𝑗=1  

2

.uc
2 Bii +  

ti

Bii
 

2

uc
2 E +  

Tj

Bii
 

2

uc
2 Bij 

i-1

j=1 +  
Bij

Bii
 

2

uc
2 Tj 

i-1

j=1 +

+  
E

Bii
 

2

u
c

2

 ti            (41) 

 

It is to be noted that although eqs.(39)-(41) are quite laborious, their solution requires only the results 

obtained by the previous formulas. 

Finally, by applying equation (23) to equation (20) the following formula for the uncertainty of the 

computed principal stresses is obtained: 

 

uc
2 σ1,2i =uc

2 Pi + 
Qi

 Qi
2
+Ti

2
 

2

uc
2 Q

i
 + 

Ti

 Qi
2
+Ti

2
 

2

uc
2 Ti      (42) 

 

Taking into account the correction of the calculated residual stresses from the stresses induced by the 

milling and the effects of core axis inclination, the final uncertainty of the residual stresses is obtained: 

 

uc
2 σc1,2i =uc

2 σ1,2i +uc
2 σ1,2ind +uc

2 σincl        (43) 

 

As above mentioned, the extended uncertainty U1,2i of the principal residual stresses can be estimated 

by considering a normal distribution corresponding to a coverage probability, p, of approximately 95% 

(k=2), so that the principal residual stresses at i-th step are given by : 

 

σr1,2i=σc1,2i±U1,2i=σc1,2i ± 2uc(σc1,2i)        (44) 

 

The uncertainty of the β angle is calculated by applying equation (23) to equation (21), i.e.: 

 

uc
2 β

i
 =  

1

2
.

Qi

Qi
2
+Ti

2 
2

uc
2 Ti +  

1

2
.

Ti

Qi
2
+Ti

2 
2

uc
2 Q

i
        (45) 

 

The corresponding extended uncertainty is calculatedby using the same approach, i.e.: 

 

β
ri

=β
i
±Uβi = β

i
±2uc(β

i
)         (46) 

 

 

6. CONCLUSIONS 
 

In the present work, by a systematic analysis of the main error sources, the procedure to correct the 

main errors affecting the RS computed by the RCM, as well as a procedure to evaluate the RS 

uncertainty due to the main influence parameters, are proposed.  

When the analytical relationship between the RS and the influence parameters was not known, the 

sensitivity coefficient involved in the calculation of the various uncertainty contributions have been 

determined by proper numerical simulations performed by varying the considered parameter in the 

corresponding range defined by it mean value and its uncertainty interval.  

Such proposed procedures allow the user to correct the main errors on the computed principal RS and 

their orientation, as well as to estimate their uncertainty by propagating the effects of the various 

influence parameters. 
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In order to highlight the actual values of the error and of the uncertainty associated with the main 

influence parameters, practical applications of the proposed procedures for various experimental 

conditions and RS distributions are in progress.  
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APPENDIX 1 

 
hi[mm] u(aij

μ
)[·10

-9
] 

i=1 0,6 1,68 
       

i=2 1,05 3,04 1,45 
      

i=3 1,45 4,03 2,25 1,29 
     

i=4 1,85 4,77 2,89 1,96 1,24 
    

i=5 2,3 5,47 3,44 2,51 1,88 1,34 
   

i=6 2,8 6,03 3,84 2,91 2,37 1,99 1,28 
  

i=7 3,5 6,52 4,19 3,24 2,75 2,52 2,01 1,50 
 

i=8 5 6,87 4,50 3,54 3,08 2,90 2,55 2,47 2,01 

  
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

 

 
hi[mm] u(bij

μ
) [·10

-9
] 

i=1 0,6 1,98 
       

i=2 1,05 2,81 1,52 
      

i=3 1,45 2,92 1,98 1,26 
     

i=4 1,85 2,56 1,98 1,55 1,10 
    

i=5 2,3 2,12 1,80 1,57 1,38 1,19 
   

i=6 2,8 2,76 1,31 1,30 1,29 1,36 1,12 
  

i=7 3,5 2,15 0,88 0,75 0,92 1,18 1,30 1,84 
 

i=8 5 2,51 0,94 1,17 0,26 0,87 0,55 1,93 2,81 

  
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

 

APPENDIX 2 

 
hi[mm] 𝑢 𝑎𝑖𝑗

ℎ𝑖 [·10
-9

] 

i=1 0,6 4,26 
       

i=2 1,05 7,56 5,67 
      

i=3 1,45 10,73 7,06 3,88 
     

i=4 1,85 13,07 8,77 6,52 3,62 
    

i=5 2,3 12,98 9,42 6,88 5,16 2,08 
   

i=6 2,8 12,35 9,22 6,98 4,75 2,57 0,31 
  

i=7 3,5 10,73 8,14 6,22 3,77 1,02 1,42 3,24 
 

i=8 5 9,34 7,18 5,29 3,11 1,08 1,24 5,61 9,97 

  
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

 

 
hi[mm] 𝑢 𝑏𝑖𝑗

ℎ𝑖 [·10
-9

] 

i=1 0,6 3,25 
       

i=2 1,05 7,07 5,57 
      

i=3 1,45 10,32 5,61 2,97 
     

i=4 1,85 14,99 8,57 5,83 2,81 
    

i=5 2,3 19,11 11,54 6,78 4,52 2,58 
   

i=6 2,8 18,37 11,38 8,23 5,24 2,03 0,18 
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i=7 3,5 19,05 12,20 9,05 5,47 1,80 0,92 2,86 
 

i=8 5 19,86 12,95 9,83 5,71 1,86 0,81 4,72 9,27 

  
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

APPENDIX 3 

 
hi[mm] 𝑢  𝑎

𝑖𝑗

𝐷𝑜/𝑠 [·10
-9

]   

i=1 0,6 3,74 
       

i=2 1,05 4,10 2,93 
      

i=3 1,45 4,67 2,63 3,43 
     

i=4 1,85 5,61 4,85 2,22 1,25 
    

i=5 2,3 6,12 3,59 2,86 1,76 2,02 
   

i=6 2,8 5,49 2,90 1,90 1,11 0,82 0,93 
  

i=7 3,5 5,23 3,06 1,88 1,12 0,78 1,22 2,12 
 

i=8 5 4,95 2,64 1,72 0,90 0,22 0,96 2,68 4,46 

  
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

 

 
hi[mm] 𝑢  𝑏

𝑖𝑗

𝐷𝑜/𝑠 [·10
-9

]   

i=1 0,6 3,16 
       

i=2 1,05 3,98 1,92 
      

i=3 1,45 5,26 2,77 2,29 
     

i=4 1,85 6,79 3,53 2,80 2,01 
    

i=5 2,3 8,82 4,69 3,27 2,37 1,82 
   

i=6 2,8 9,27 4,58 3,20 2,00 1,35 1,48 
  

i=7 3,5 8,96 5,10 3,08 2,33 1,83 0,75 2,10 
 

i=8 5 9,62 5,40 3,63 2,47 1,54 0,84 2,14 3,87 

  j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

APPENDIX 4 

 
hi[mm] 𝑢  𝑎𝑖𝑗

𝑧𝑜 [·10
-9

]   

i=1 0,6 22,98 
       

i=2 1,05 30,66 0,60 
      

i=3 1,45 37,54 7,04 4,60 
     

i=4 1,85 37,98 0,89 1,25 1,12 
    

i=5 2,3 41,42 1,46 1,73 1,86 1,22 
   

i=6 2,8 43,09 2,44 2,40 2,44 2,20 2,28 
  

i=7 3,5 43,46 4,40 4,49 4,48 5,19 5,19 5,32 
 

i=8 5 44,63 5,18 4,14 4,79 5,35 5,62 6,25 6,27 

  j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

 

 
hi[mm] 𝑢  𝑏𝑖𝑗

𝑧𝑜 [·10
-9

]   

i=1 0,6 14,47 
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i=2 1,05 21,93 0,71 
      

i=3 1,45 28,35 1,01 1,57 
     

i=4 1,85 34,78 1,61 0,47 0,52 
    

i=5 2,3 43,19 0,78 0,35 0,96 0,63 
   

i=6 2,8 48,54 1,87 1,40 1,77 2,21 1,59 
  

i=7 3,5 55,62 3,70 3,47 2,72 2,73 2,78 2,41 
 

i=8 5 65,86 6,49 4,81 5,01 4,85 5,29 6,26 6,77 

  j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 

 


