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Abstract—In this paper the response of a non linear half
oscillator driven by o-stable white noise in terms of probability
density function (PDF) is investigated. The evolution of the PDF
of such a system is ruled by the so called Einstein-Smoluchowsky
equation involving, in the diffusive term, the Riesz fractional
derivative. The solution is obtained by the use of complex
fractional moments of the PDF, calculated with the aid of Mellin
transform operator. It is shown that solution can be found for
various values of stability index o and for any nonlinear function
of the drift term in the stochastic differential equation.
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I. INTRODUCTION

The generalization of the Brownian motion B(z) is the a-
stable Lévy motion Ly () (0 < o0 <2) [1]. For o =2, Ly(t)
reverts to the Brownian motion B(t). Ly(f) and B(t) experience
some common features: i) Both have independent and orthog-
onal stationary increments with Ly (0) =0, B(0) = 0; ii) Both
have continuous trajectories nowhere differentiable on time.
The main difference are: i) B(z) is Gaussian while the Lévy
motion Ly () is not; ii) The mean square of Ly (¢) no longer
grows linearly in time as the Brownian motion. The smaller
a the greater the departure from Gaussianity is so generating
a large variety of superdiffusive motion.

The (formal) derivative of the Lévy motion gives the ¢-stable
white noise. For Langevin differential equations enforced by
normal white noise (formal derivative of the Brownian motion)
the probability density function is ruled by the well known
Fokker-Planck-Kolmogorov (FPK) equation [2]. If the input is
the o-stable white noise then the PDF of the response process
is ruled by the so called Einstein-Smoluchowsky (ES) equation
[3]. The aforementioned equations differ each another in the
diffusive term. In the former case the diffusive term is the
second derivative of the PDF of the response while in the
latter the diffusive term is the Riesz fractional derivative of
order o of the PDE. Since for oo = 2 the Riesz fractional
derivative coalesces with the second derivative, then it may
be concluded that the E-S equation is the generalization of the
FPK equation. The fractional derivative reflects the nonlocal
character in space of the diffusive term.

Various method for finding approximate solution of the FPK
equation have been proposed in literature including path in-
tegral solution [4]-[8], Wiener Path [9], stochastic averaging
method [10], [11],finite element method [12], [13]. Compara-
tively few papers have been devoted to the solution of the ES
equation see e.g. [3], [4], [14]-[21]. And in these papers the
PDF of the response is given in exact form only for steady
state solution and for particular classes of nonlinearities.

Recently the second author proposed an approximate method
for finding the solution of the FPK equation in terms of
Complex Fractional Moments (CFM) [22] that are moments

of the type E Qjﬂy_l}, vY€C. These complex quantities are

related to the Mellin transform of the PDF [23]-[25]. The
appealing in using such quantities instead integer or fractional
moments with real exponent relies in the following points:

i) moments of the type E [|X |Y_1} never diverge provided

the real parts of y belongs to the fundamental strip of the
Mellin transform even for a-stable processes; ii) both the PDF
and Characteristic function are fully restored in the respective
domains by inverse Mellin Transform theorem. Because of
these remarkable properties in this paper the solution of the ES
equation in terms of complex fractional moments is proposed.
The method is available for any nonlinear function of the drift
term in the stochastic differential equation as well as for non
stationary input-output response.

II. MELLIN TRANSFORM AND COMPLEX FRACTIONAL
MOMENTS

Let px(x,t) be the probability density function of the
random process X (¢). Let us now suppose that px(x,7) is a
symmetric distribution, that is px(x,#) = px(—x,1)Vt.

The Mellin transform of pyx (x,t) is:

M {px(x1)iy} = /0 px(Ox ldy, y=p+In ()

In the following we denote the Mellin Transform of px (x)
as M,(y— 1,t). The inverse Mellin transform returns py (x,)
in the form

px(x,1)

! prM Dx~7d 0 2
_Tm'/p p(y=1Dx77dy 5 x> ()

It is to be emphasized that the integration is performed
along to the imaginary axis while p remain fixed. The condi-
tion for the existence of Eqs (1) and (2) depends on the trend
of px(x,f) at x =0 and x = oo. This condition is guarrantee
if —p < p < —q where p and g are the order of zero at
x=0 and x = oo on the py(x,t). Such an example if px(x,t)
is an (-stable distribution, then since the decay of the PDF
is for x very large in the form ¥~ %*!(x > 0), the order of
zero at infinity is —g = o+ 1, in zero the PDF is in general
different from zero (order x) then for an a-stable distribution
the existence condition of Eqs (1) and (2) is 0 < p < o+ 1.


https://core.ac.uk/display/53295684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The admissible values for p, namely —p < p < —q is the so
called fundamental strip of the Mellin transform. Inspection
of Eqs (1) and (2) reveals that whatever the value of p is
chosen, provided it belongs to the fundamental strip, the value
of px(x,t) is fully restored in the whole range.
Discretization of Eq. (2) gives

ZM k—l)x Yk

k——m

px(x) = x> 0;

%e=p+ikAn (3)

where An is the discretization of the 1 axis and mAn is
a cut off value 1 = mAn chosen in such a way that terms of
higher order than mAn do not produce sensible variations on
Px (x )1 ) .
In the following we define CFM quantities of the type
E [|X|771]. By definition

/jcpx(x,t)|x|7_ldx:E [|X\y_1} 4)

and because of the definition in Eq. (1), in the case of

symmetric distribution, E [|X |771} is related to the Mellin

transform as

My(y—1)=3E []7"] ©

By inserting this relation into Eq. (3) we recognize the

px(x,t) is returned by the Complex Fractional Moments
(CFM) of the PDF.
Some very useful properties of the Mellin transform
may be easily demonstrated: i) The CFM are complex
functions and are holomorph into the fundamental strip;
iE [|X[P+M=1] = E[|X|P*M~!]" where the star means
complex conjugate; iii) Every distribution possess a finite
fundamental strip since py(x) is positive and its total area is
finite (unitary area); iv) Because of the property i) as 1 — oo,
E [|X|PTM~1] — 0; v) The result of Eq. (3) is independent of
the value of p selected, provided it belongs to the fundamental
strip.

III. EINSTEIN SMOLUCHOWSKY EQUATION

Let the nonlinear Langevin equation enforced by the «-
stable white noise W (¢) be given in the form

{ X = f(X,1)+Walt) (6a)
X(0) =X, (6b)

where f(X,?) is any nonlinear function of the response
process X(7) and Xp is a random variable with assigned
probability density function. For simplicity sake’s we assume
that f(X,t) = —f(—X,1), px(x,0) = px,(x) is a symmetric
PDF and W, formal derivative of the Lévy a-stable process
Ly (t), has a symmetric distribution with these assumptions

px(x,t) = px(—x,1)Vt. The more general case of non sym-
metric distribution may be treated in a similar way [25].

The It6 equation associated to Eq. (6a) may be written in the
form

dX(t) = f(X,t)dt +dLy(t) @)
where the characteristic function (CF) of dLy(¢) (for sym-
metric -stable process) is in the form

dar, (0) = exp(—dtc|6|%) (8)

where o is the scale factor and « is the stability index.
The equation ruling the evolution of the PDF of the response
process X (¢), namely the ES equation, is given in the form

dpx(x,t)  d

o = =5 ([ Dpx(x.0) + DY (px (x,1)) - )

where the symbol D%(-) is the Riesz fractional derivative
defined as

1
- [D*
ZCOS(Ta)[ ( ( ))+
DY (u(x,1)) = DY (u(;,;))l]; (10a)
—%%”[u(xat)]; a=1 (10b)

where D% and DY are the left and right hand side
Liouville-Weyl derivative given as

D ((xt))zr(nl_a)cz;/_xm(x_“gﬁwdg (11a)
= [o] +

o B 1 d\" [* u(é t)

D ((XI))il—‘(n—OC) <dx> /700(5 — ) 1d§1b)

where I'(+) is the Euler Gamma function and the symbol
[a] denotes the integer part of the real number . It follows
that for O < a <1 then n=1, while | < a <2 n=2. In Eq.
(10b) the symbol #Z[] is the Hilbert transform operator

()] = %‘@/:, “

X —

12)

and & stands for principal value.
It may be demonstrated that the remarkable property

FADY (u(x,1)),0} = —[0["

holds true, where % {u(x,7),0} is the Fourier transform
operator

F {u(x,t),0} (13)



FAu(x,t),0} = /oo e u(x,1)dx (14)

Because of the property expressed in Eq. (13), the spectral
counterpart of the Eq.(9), namely the equation ruling the
evolution of the characteristic function ¢y (0,¢) is given as

7‘9@‘8(:” ) I0E (X, 1) expl(i6)] —
fopd \9|a¢x(9,t) (15a)
¢X(9>0) = ¢Xo(9) (15b)

where ¢x,(0) is the Cf at r = 0.

If the nonlinear function f(x,#) belongs to the general class

ch [P Sgn(x) (16)
far

fl)

then Eq. (15a) is given in the form

a¢x(9 t

5 792 D’d)XGt) c%10|%ox(6,1) (17)

where Dﬁ’ (+) is the complementary Riesz fractional deriva-
tive deﬁned as

1
———— (D} (ox(6.1))
2sin(=7t)
D 6x(0,1) = D (ox(0.0))]; (189)
Bj#1,3,..
L
lﬁ]agﬁj ox(8,1); B;j=1,3,.. (18b)

The inverse Fourier transform of the complementary Riesz
fractional derivative is

71Dy ox (0.0} = —iSgn(x) /P px(x.1);
Bi#1,3,.. (19a)
F! iﬁfa—ﬁj(b (0,1);x p = —xPi ; (19b
20P x\U,1); px(xvt)’ (19b)
Bi=1,3,..

MP(Y]EI) —1,t), M,

IV. SOLUTION OF EINSTEIN SMOLUCHOWSKY EQUATION
IN TERMS OF CFM

In this section solution in terms of CFM for the ES
equation is pursued.

Let the Eq. (9) particularized for the nonlinearity expressed
in Eq. (16), that is

j% (|x\ﬁf' Sgn(x)px(xaf)) +

GanrZ (pX (xvt)) (20)

Ipx(x,t) &
ot _.Zc

j=1
The Mellin transform of this equation is

oM ( —1t i [xy 1+B,pX(x l‘)}:—

(1= 1) Y. My (y— 2+ Bjut)
=1
e ve(y)

WMP(Y* l—a,t) 21

where v,(y) =T'(y)cos(m/2y). The first term of right hand
side (rh.s.) of Eq. (21) is zero if p — 14 f; > 0, moreover if
lim, .. px (x,7) ~x~* then the second limitation is p — 148, —
u < 0. If these limitations are respected Eq. (21) becomes:

oM, (y—1, t)

ot Z ciM,

a Ve(y)
V-

(Y —2+Bj,t)—
M,(y—1-a) (22)

This equation may be particularized for different values of
Y, say Y% = p +ikAn (k= —m,..,0,..m) obtaining a set of 2m+
1 ordinary linear differential equations. At this point it is not
possible to solve such a set of differential equations because
the fractional moments are evaluated for different value of p.
This problem is analogue to that of the infinite hierarchy. To
solve this problem we observe that Eq. (3) can be written for
different values of p, provided it belongs to the fundamental
strip; so we can equate Eq. (3) particularized for two different
values of p, p1 = p and p» = p +Ap and we indicate with
(ylgz) —1,¢) the CFM evaluated in }/,Sj) =
pj+ikAn, with j=1,2:

Z M, 1,0)x 5% =
S=—m
An o o
22 (2 10 (23)
2 it

where b = 7 /An. By multiplying both side of this equation
for x~'/2 we can write:



12 Z Mp(’)/_\(l) _ l’t)efis%lnx _

S=—m

(Bp+1/2) Z MP(YIEZ

k=—m

S 1L)e ke x>0, (24)

It is to be remarked that Eq. (24) strictly holds for x > 0 be-
cause in zero singularities appears. Now we suppose M,,(y,@ —

1,¢) is known and we want to evaluate M,,(y,il) —1,1). Because
Eq. (3) is an approximation, we require that Eq. (24) holds true
in a weak sense in the interval x; > 0, x, > 0:

[ £ -

_APZM

k=—m

) —isFInx_
71 t) —tkglnx‘| «
[c.C] }dx — min(M, (1" —1,1))  (25)

where [C.C.] stands for complex conjugate. Now we make
a change of variables by putting

£ =lnx, dé_— £ =Inxj, j=1,2 (26)
In order to find Mp(y,gl) ,t) as a linear combination of
Mp(ys(l),t) we perform variations and we put x; = e ?, x, = ¢?

instead of x; = 0, x, = oo, that may not be enforced since
in O singularities appear. With these positions two goals are
achieved: i) since b = w/An, and An is of order 0.1+0.5,
the interval e=® +eb is very large, that is we require that
px(x,¢) will match the effective PDF in a wide range but
the singularities in O are excluded; ii) with this choice, after
substituting Egs. (26) in Eq. (25), the integral is in the range
—b+ b and before the variations is given as

[ o

e 5 Z MP(YIE

k=—m

) —isTInx_
i T
2) l’t)e’kbl“x‘| %

(c.C] }dx =min(M,(%" = 1,1)) (@27)

In the range ¢~? +e” we can take advantage of the orthogo-

nality condition of e”k £ in —b—+b so that after minimization
we obtain

2bM( —1t

ZM

k=—m

1,1)ars(Ap) (28)

where

b . T
ai(8p) = [ e 9Ee 08 qg
2bsin[m(k—s) —
w(k—s)—

ibAp]

ibAp 29

With the aid of Eq. (28) we can obtain Mp(ysl) —1,1) as

a linear combination of Mp(}/lgz) —1,¢) and solve differential
equations by using Mellin transform. With these results we
may solve also E-S equation. Eq.(22) require M, (% — 1,1),
Mpy(Y%—2+Bj,t) and My(% —1— o,t); we select a proper
initial value of p in order to fulfill the limitations p — 1+ f3; >
0, p—1+B;—u <0 and the general limitation p < 1+ ¢ and
we evaluate

t)as(Ap) (30a)

MP(%"»ﬁ]i N

=35, Mol

l—a,t)=

ZM

kffm

My (% — Dag(a)  (30b)

By inserting these equations in Eq. (22) particularized for
Y= "7, we get a set of 2m+ 1 complex ordinary differential
equations in the unknown M, (¥ — 1,7). To find the correct
solution of such as system it is necessary to impose that
the area under the PDF in the interval e ® = ¢? is 1/2. This
condition may be enforced very easily, taking into account Eq.
(3), as follows

b

e
—1 t)/ bx_y‘dx:% 3D

1
35, L, Ml

s=—m

From this equation we get

s#0; (32

=b— Z MP(YY

sS=—m

MP(YU_ lat)

By inserting this condition into Eq. (22) and inserting Eqgs.
(30) particularized for s = — —1,1,..,m we get a set of
2m+ 1 differential equations ruhng the evolution of the CFM.
After the solution of such a system the PDF at any instant
¢t can be reconstructed thanks to Eq. (3). In the next section
some applications are presented for various values of o and

V. NUMERICAL APPLICATION

In this section we show the solution of the ES equation
for linear (8 = 1) and non-linear (f = 0,0.3,0.5,1.5,3) half
oscillator forced by -stable white noise with various value of
stability index (o0 = 2,1). The case o =2 correspond to the
Fokker-Planck equation yet solved with the same method in
[22]. In all the examples reported the oscillator is quiescent for
t <0, so the PDF is a Dirac Delta and the CFMs are all zero; at
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t =0 we apply an a-stable white noise with scale factor 6 =1,
skewness 3 = 0, shift 4 = 0. The solution obtained with the
proposed method is contrasted with the PDF constructed by
digital simulations with 10% samples.

A oo=2

This value of o correspond to the case of the the Fokker-
Planck equation, in which the input reverts to the normal white
noise. In this case the fundamental strip is 0 < p < e and this
allow us to use Eq. (30a) for any value of 8 and so for any
value of Ap. This means that we can find solutions for any
nonlinear f(X,#) in Eq. (6a).

B. a=1

This case is taken as general case in the range 0 < o < 2;
the PDF of the input is the well known Cauchy distribution.
When stability index is lesser than 2 the fundamental strip
depend on the values of o and B, because of the decay of the
PDF for x — oco. In particular in [3] it has been demonstrated
that for o-stable input, the tails of the PDF decay as a power
law x7%, being u = a+ 1 for the linear half-oscillator (8 = 1)
and u = oo+ 3 for the quartic oscillator (8 = 3), so in both
cases u = a + 3. By substituting this equality in the condition
p—1+B—u<0 we obtain p < 1+, so we can say that
the fundamental strip for o-stable input is always 0+ 1+ «.
This is a limitation that actually can’t be eliminated, so we can
study systems where the parameters are such that always exist
all Mellin transform of Eq.(22). Because of this limitation in
Fig. 2 the maximum value of f is 1.5.

VI. CONCLUSION

In this paper the response in terms of PDF of a non-
linear system forced by an external ¢-stable white noise is
studied. The governing equations of such a system in terms of
PDF is the so called Einstein-Smoluchowsky equation obtained
with the aid of It6 calculus. The solution of these equation
is found by the Mellin transform operator that permit us to
transform the terms of the E-S equation in complex fractional
moments of the PDF; these moments are finite only if the
Mellin transform is performed with a value of p belonging to
the fundamental strip of the PDF. The key of the method is to
write the CFMs calculated for different value of p as a linear
combination of the CFMs of an arbitrary value of p; once
this aim is obtained the E-S equation is transformed into a set
of complex ordinary differential equations that can be easily
solved with a symbolic or numeric package. The numerical
applications show the accuracy of the prediction of the PDF
in any instant of the temporal range at hands. Lastly, it is
important to underline that this method can be easily extended
to systems forced by asymmetric o-stable white noise and to
more complex systems also involving fractional terms.
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