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Recent discoveries highlight the emerging role of estrogens in the initiation and progres-
sion of different malignancies through their interaction with stem cell (SC) compartment.
Estrogens play a relevant role especially for those tumors bearing a gender disparity in
incidence and aggressiveness, as occurs for most thyroid diseases. Although several exper-
imental lines suggest that estrogens promote thyroid cell proliferation and invasion, their
precise contribution in SC compartment still remains unclear. This review underlines the
interplay between hormones and thyroid function, which could help to complete the puzzle
of gender discrepancy in thyroid malignancies. Defining the association between estrogen
receptors’ status and signaling pathways by which estrogens exert their effects on thyroid
cells is a potential tool that provides important insights in pathogenetic mechanisms of
thyroid tumors.
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INTRODUCTION
The endocrine system consists of a network of glands secret-
ing hormones, which are chemical messengers that cooperate in
growth, development, metabolism, and reproductive functions.
The largest endocrine organ in the human body is the thy-
roid gland, whose function is the systemic metabolic regulation
through thyroid hormones (THs) produced by follicular cells, and
calcitonin produced by parafollicular cells. Different malignancy
histotypes can arise from these cells: papillary (PTC), follicu-
lar (FTC), and anaplastic thyroid carcinomas (ATC) originate
from follicular cells, while medullary thyroid carcinomas (MTC)
derive from parafollicular cells (1). Notably, more than 95% of
thyroid carcinomas (TCs) arise from follicular cells. These malig-
nancies are indolent tumors treated by surgical resection with
or without radioactive-iodine ablation since they maintain their
distinct potential to concentrate Iodine. The loss of typical thy-
roid cell characteristics and functions, including expression of
the thyroid-stimulating hormone (TSH) receptor (TSH-R), thy-
roglobulin (Tg), thyroid peroxidase (TPO), and sodium iodide
symporter (NIS), defines the hallmark of ATCs, which are lethal
malignancies with no effective therapy (1–3).

Besides genetic alterations in mitogen-activated protein kinase
(MAPK), PI-3 kinase (PI3K), and TSH signaling pathways, thy-
roid carcinogenesis is fostered by the microenvironment, growth
factors (GFs), and various hormones, including estrogens (4).
Hormones can set off a cascade of signaling pathways, enhanc-
ing or contrasting specific effects triggered by other factors. Based
on this scenario, the role of estrogens has been proposed in the
pathogenesis of thyroid proliferative and neoplastic disorders.
This hypothesis is supported by data regarding gender incidence,
which reported a frequency of thyroid nodules about three to

four times higher in women than in men with a peak rate occur-
ring earlier in women (5, 6). Furthermore, the clarification of the
estrogen-driven pathogenesis could be crucial in explaining why
PTC constitutes the seventh most common cancer in the female
gender (7, 8). An in vivo study reported that circulating estrogens
are directly responsible for the increased female susceptibility to
thyroid disease, through PI3K pathway activation and repressing
p27 expression. The authors also observed a significant estrogen
role in the transcriptional regulation of TPO, DUOX1, and NIS
genes (9). Although several studies have demonstrated a direct
action by estrogens on thyroid growth and function (7, 10–12),
the precise mechanism underlying the proliferative and neoplas-
tic disorders still remains undefined. In particular, it would be
interesting to explore the role of hormones in TC initiation.

The cellular origin of TCs has been explained by different
models (Figure 1). The multistep carcinogenesis model predicts
that TC originates from follicular cells as a consequence of mul-
tiple mutations accumulated throughout their life-span. These
events are characterized by a dedifferentiation process with a
marked epithelial-to-mesenchymal transition (EMT), in which
well-differentiated TC cells transform into a more undifferentiated
phenotype (1). The fetal cell carcinogenesis model hypothesizes
that TC cells would be generated by transforming three types of
fetal thyroid cells, stem cells (SCs), thyroblasts, and prothyrocytes,
which result in ATC, PTC, and FTC, respectively (13, 14). The
heterogeneity of tumor bulk had led to a cancer stem cells (CSCs)
model to propose TC as an SC disease. The growing body of exper-
imental evidence has revealed that an accumulation of genetic
abnormalities in tissue-resident SCs or in their more commit-
ted progenies, concomitant with the niche epigenetic alterations,
result in their malignant transformation (15, 16).
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Zane et al. Estrogens on thyroid stem cells

FIGURE 1 |The cellular origin of thyroid carcinomas is shown. According
to the multistep carcinogenesis model, TC originates from follicular cells as a
consequence of multiple mutations accumulated throughout their life-span.
Thyrocytes could give rise to PTC by RAS and BRAF mutations or RET/PTC
and NTRK1 rearrangements and to FTC by point mutations of the RAS gene
and PAX8/PPARγ rearrangement. ATC derive from PTC and FTC after
deregulation of the p53 and the Wnt/β-catenin pathway. In fetal cell
carcinogenesis model, three types of fetal thyroid cells were proposed to

generate different forms of thyroid cancer. Fetal thyroid stem cells,
characterized by expression of the oncofetal fibronectin (OF), generate ATC,
thyroblasts, which express OF and the differentiation marker Tg, are proposed
to be the cellular origin of PTC. The more differentiated prothyrocytes,
expressing Tg, give rise to FTC. The cancer stem cells model proposes TC as
an SC disease. The accumulation of mutations in differentiated thyrocytes
leads to their transformation. A subset of these cells may (in more aggressive
tumor types) dedifferentiate and assume CSC characteristics.

The“cell-of-origin”concept explains how a normal cell acquires
the first alteration able to trigger tumor initiation (tumor-
initiating cells, TICs) (17). Wnt pathway plays a crucial role in

SC/progenitor compartment maintenance, and has been described
in several tumors, including TC, resulting in nuclear β-catenin-
induced proliferation (18–20).
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In this review, the most current findings supporting the car-
cinogenesis effects of estrogens and THs will be addressed. A
special emphasis will be given to the role of exogenous and
endogenous GFs affecting thyroid proliferative pathways in SC
compartment.

ESTROGENS
As recently published by Morrison’s research group, estrogens are
involved in increasing hematopoietic SC self-renewal in female
subjects and more specifically during pregnancy (21). It is likely
that normal and tumor thyroid tissues, which express estro-
gen receptors (ER), could be subject to the same mechanism of
estrogen action (10, 22–24).

Involved in cellular processes such as growth, cell motility,
and apoptosis, in reproductive tissues and other organs, including
endocrine glands, estrogens are mainly produced by the adrenal
cortex and ovary, but also by the thyroid (25, 26). They are present
in women and men with a notable increase in women at reproduc-
tive age. The three principal estrogens, estrone (E1), estradiol (E2),
and estriol (E3), are processed in metabolites with different estro-
genic abilities, which create a different risk in developing cancer
(27–29).

Estradiol is the most potent estrogen since it has the high-
est affinity to its receptors. Estrogens perform their function by
binding to ER alpha and beta (ER-α, ER-β), and a transmem-
brane intracellular non-classical ER G-protein-coupled receptor
30 (GPR30) (Figure 2). ER-α and ER-β are soluble intracellular
nuclear receptors, belonging to a ligand-dependent nuclear recep-
tor superfamily of transcription factors (TFs) (25, 26). ER-α is
the key factor of E2-induced proliferation with an anti-apoptosis
effect. In females of reproductive age, ER-α levels are higher in PTC
compared to nodular goiter patients, showing a positive correla-
tion between ER-α and Ki-67 expression levels. In contrast, ER-β
is associated with apoptosis and growth inhibition, providing a
negative correlation with mutant P53 (30). PPARγ also interacts
with ER-α inhibiting each other, and with ER-β enhancing their
inhibitory effect on cell proliferation and migration (31). In light
of this, the ER-α/ER-β ratio could be helpful to elucidate the TC
pathophysiology (25, 32).

The interaction between estrogens and ERs signals through
different pathways:

• Genomic (or classical) estrogen-signaling: after accessing the
cell through passive diffusion, E2 binds to ER, which changes
its conformation and homo- or heterodimerizes (E2–ER). This
complex translocates into the nucleus, where it binds to the 15-
bp palindromic estrogen response element (ERE) located in the
regulatory regions of target genes. This interaction leads to a co-
activators recruitment, which in turn allows expression of genes
involved in proliferation (33, 34).

• Estrogen response element-independent genomic actions (TFs
cross-talk): ERE-lacking genes can be activated by modulating
other TFs through protein–protein interactions. This molecular
mechanism induces chromatin remodeling, histone unwinding,
and interaction with the basal transcription machinery complex
(35–37).

• Non-genomic (or membrane-initiated) estrogen-signaling: E2
activation of plasma membrane-associated ER and GPR30 pro-
motes the MAPK and PI3K signaling pathways and/or increases
the Ca2+ levels (10, 38–40). They can also activate G-proteins
resulting in cAMP production, similar to TSH signaling in thy-
rocytes, and assist the activation of metalloproteinases (MMPs)
and the GF pathway (5).

• Ligand-independent signaling: in absence of E2, GFs can stim-
ulate ERs directly or indirectly through MAPK and/or PI3K
pathways (41).

The cross-talk between genomic and non-genomic path-
ways, as well as the integrative signaling by E2 in different cell
compartments, leads to a synergy that provides plasticity in
cell response. Estrogens dispatch their proliferative role also by
increasing T3 levels and stimulating the iodine-uptake and TPO
activity (42).

Furlanetto et al. (43) reported that E2 increases prolifera-
tion of thyroid cells down-regulating NIS. These data underline
the pivotal role of estrogens in the SC compartment mainte-
nance. In normal and tumor thyroid cell lines, Rajoria et al.
documented that E2 is associated with increased proliferation,
adhesion, invasion, and migration via β-catenin (7) and MMP-9
modulation (44). Likewise, E-cadherin down-regulation and β-
catenin translocation sustain the metastatic activity of TC cells
(24). These results confirmed the findings by Kouzmenko et al.,
which reported the first evidence of cross-talk between estrogens
and Wnt pathways through functional interaction of β-catenin
with ER-α (45).

Xu et al. (8) analyzed whether differentiated and SC/progenitors
could be target of estrogen action in thyroid. SCs isolated from goi-
ter tissue enhanced their sphere-forming ability in presence of E2.
Moreover, thyroid-sphere cells showed ER-α mRNA levels eight
times higher than those of more differentiated thyrocytes. This
suggests the gender discrepancy in TC incidence and a difference
in terms of aggressiveness and survival.

THYROID HORMONES
Thyroid hormones control the secretion of thyrotropin-releasing
hormone (TRH) from the hypothalamus and TSH from the
anterior pituitary through negative feedback loops (1). Thyroid
homeostasis and function are regulated by a concert of signals
accumulated from TSH and GF pathways. TSH binds to TSH-
R and induces the coupling of different G-proteins, stimulating
adenylate cyclase (AC) and phospholipase C (PLC) (Figure 2).
This promotes iodide uptake and TG, TPO, and NIS expression,
producing thyroxine (T4) and triiodothyronine (T3) (19, 46). On
the contrary, intracellular Ca2+ and PLC regulate iodine release,
H2O2 production, and Tg iodination (47, 48). Although cAMP is
the main mediator of TSH stimulation in thyroid cell growth, TSH
via PI3K increases cyclin E levels leading to cell cycle progression
(49, 50). TSH-R is also associated to the MAPK pathway through
its desensitization and internalization apparatus (51).

Gain-of-function mutations in TSH-R or Gs genes result in
increased cAMP accumulation and TSH-independent prolifera-
tion, which account for hyperfunctioning nodules in patients with
multinodular goiters (52, 53). These alterations result insufficient
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Zane et al. Estrogens on thyroid stem cells

FIGURE 2 | Signaling pathways in follicular cells are shown. The main
regulators of thyroid proliferation and function act through TSH signaling and
GF pathway. THs control the secretion of TSH, which binds to TSH-R and
induces the coupling of G-proteins stimulating AC and PLC. TSH also acts via
PI3K pathway. GFs act via MAPK and PI3K pathways regulating the
expression of genes involved in survival, cell cycle progression, and
proliferation. Estrogens regulate proliferation, cell motility, differentiation, and
apoptosis through four different mechanisms: (1) genomic (or classical)
estrogen-signaling: E2–ER complex translocates into the nucleus, where it
binds to ERE-sequences; (2) ERE-independent genomic actions (TFs
cross-talk): genes lacking in ERE-sequences are activated by other TFs in the

nucleus through protein–protein interactions; (3) non-genomic (or
membrane-initiated) estrogen-signaling: E2 activation of plasma
membrane-associated ER and GPR30 trigger the activation of MAPK and PI3K
pathways and/or increases the Ca2+ levels; (4) ligand-independent signaling: in
absence of E2, GFs can stimulate ERs directly or indirectly through MAPK
and/or PI3K pathways. THs play a critical role in development and
homeostasis. Nuclear TRs activate gene expression by binding to RXR, which
in turn bind to TRE-sequences. Given that EREs share a similar nucleotide
sequence with TREs, ERs and TRs can interact and regulate several
transcriptional responses. The cross-talk between genomic and non-genomic
pathways and other integrative signaling lead to a synergic cell response.

for the malignant transformation of thyroid cells (54, 55). Hence,
it is likely that other factors intervene in the SC compartment,
which is assumed to be the target of neoplastic transformation.
Alterations of the Wnt pathway effectors are involved in cancer
initiation and progression (56). In particular, TSH-mediated Wnt-
1 over-expression and GSK-3β inhibition promote thyroid cell
proliferation (57, 58).

Thyroid hormones play a critical role in the tissue development
and homeostasis by direct transcriptional regulation or modula-
tion of different pathways (59). Although T4 is the predominant
hormone produced by the thyroid, T3 is the active form that
mediates gene regulation binding with a higher affinity to thy-
roid receptors (TRs) (60). Nuclear TRs activate gene expression by
binding with the retinoid X receptors (RXRs) to TH response ele-
ments (TRE), located on the promoters of target genes (Figure 2)
(61). Given that EREs share a similar nucleotide sequence with
TREs, ERs and TRs can interact and regulate several transcrip-
tional responses to environmental stimuli (5). Interestingly, ERE
can act as a peroxisome proliferator responsive elements (PPRE),
binding PPARγ/RXR. It can henceforth inhibit ER transactivation

through a competition for ERE binding (62). In line with this
cross-interaction, the proliferative effect of estrogens on human
NPA-87-1 PTC cell line is TSH-independent (63). Lima et al.
demonstrated a more direct proliferative effect since E2 admin-
istration to prepubertal and adult rats enhances thyroid weight
without significant changes in T3, T4, and TSH hematopoietic
levels (42).

Recent studies in human cancers and mouse models pro-
vide strong evidence that the loss of TRs function contributes
to cancer initiation and progression (64). While the TRα1 trigger
directly promotes transcription of CTNNB1 (65, 66), the effect
generated by the TRα2 stimulation in SC compartment is still
unknown. Cross-talk between THs-TRα1 and Wnt pathway has
been confirmed by the up-regulation of several SC markers (67).
Furthermore, it was reported that aberrant nuclear localization of
β-catenin-induced by CTNNB1 mutations contributes to the pro-
gression of ATCs (68). Data reported by Todaro et al. showed that
E-cadherin down-regulation together with β-catenin activation
confers an invasive capacity and higher metastatic rate to thyroid
CSCs (18).
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GROWTH FACTORS
In thyroid, GFs exert their proliferative effects by inducing the RTK
dimerization that activates the downstream PI3K pathway and the
MAPK cascade via G-proteins (Figure 2). Alterations in genes
involved in the MAPK pathway led to its constitutive activation,
which represents a typical feature of TC (1). In particular, muta-
tions in RET and NTRK and alterations in RAS and BRAF intracel-
lular signal-transducers are clearly implicated in PTC pathogenesis
(69). RAS point mutations and PAX8/PPARγ rearrangement have
been frequently implicated in FTC pathogenesis (70, 71). The inac-
tivation of RASAL1 (encoding a RAS GTPase-activating protein)
by hypermethylation and mutations provides a new genetic back-
ground for FTCs and ATCs (72). Besides nuclear β-catenin accu-
mulation and p53 inactivation, oncogenic activation of MAPK
and PI3K/Akt/Foxo3a are frequently found in ATCs (2, 73, 74).
The acquisition of a TERT promoter mutation was recently asso-
ciated with clinical–pathological aggressiveness in FTCs and BRAF
mutation-positive PTCs (72, 75).

The mesenchymal tissue is involved in thyroid development
being that it releases Pro-epidermal growth factor (EGF) and basic
fibroblast growth factor-2 (FGF-2), promoting cell proliferation
and repressing differentiation (76, 77). Estrogens play a pivotal
role in this context by inducing the production of EGF and other
TFs, such as TGF-α (5).

After EGF binding, RTKs of the ErbB family (EGFR/ErbB1,
ErbB2, ErbB3, and ErbB4) achieve activation through the arrange-
ment in homo- and/or heterodimeric complexes (78, 79). In thy-
roid, TSH increases the expression of EGFRs that in turn promote
the EGF mitogenic effect and contribute to gland homeostasis. The
combination of specific EGFRs regulates the stimulation inten-
sity, inducing transformation. Indeed, an increased expression of
EGFRs in TCs compared to normal tissue has been reported (80).
EGFR/ErbB1 over-expression and its constitutive phosphoryla-
tion have been observed on ATC samples and cell lines (81). Their
expression has been retrieved in 90% of the PTC samples exam-
ined by Song (82). In combination with the repression of VEGF,
EGF inhibitors could be a promising therapy for ATCs as demon-
strated by in vitro studies (83, 84). EGF is also supplemented in
the serum-free culture medium, which is used to isolate SCs and
CSCs in vitro (18, 85–90).

Similarly, the cell response to FGF is regulated by FGF RTKs
(FGFRs 1–4). FGF-2 exerts autocrine and paracrine stimulatory
effects on thyroid growth, since the basement membrane of thy-
rocytes is able to produce FGF itself. FGF is also used in vitro for
the maintenance of SC niche (18, 91); in particular, it could have
an inhibitory effect on thyroid function through cAMP inhibition
and TSH’s activity weakening (79). In TC, increased FGF-2 levels
and FGFR2 over-expression are critical in tumor progression and
neovascularization (92, 93). Therefore, the differential expression
in normal and malignant conditions could make this receptor a
potential diagnostic marker for TCs (94).

Growth factors also affect development and metabolic
processes through insulin-like growth factor (IGF). After bind-
ing of their ligands, IGF receptors (IGF-Rs) autophosphorylate
their intracellular domain and activate the MAPK and PI3K cas-
cade (95). Consistently, IGF enhances the TSH mitogenic effect
on follicular cells (96); on the other hand, it also cooperates with

FGF-2 in establishing and maintaining the SC niche in vitro (96).
Indeed, IGF pathway effectors are over-expressed in CSCs: IGFR2
is involved in an autocrine loop that sustains SC renewal, and IGF
increases the expression of Oct-4 and Nanog when added to the
culture medium (87, 97, 98).

ESTROGEN-GROWTH FACTORS INTERACTING PROTEINS
Recently, there has been a focus on importance of the ER-GFs
interacting proteins on cancer cell proliferation and invasivity.
An example is mediator of ERbB2-driven cell motility (MEMO),
which enhances ER-α extra-nuclear functions through the inter-
action with IGFR1 and ERbB2, activating MAPK and PI3K
signaling (99).

CONCLUDING REMARKS
Since the theory of fetal carcinogenesis has initially been pos-
tulated, thyroid CSCs have been studied for their potential role
as TICs. It has been hypothesized that various factors could be
involved in the malignant transformation, such as aberrant mole-
cular events converging to RTK, MAPK, and PI3K pathway activa-
tion. Besides the oncogenes contribution, it is likely that a network
of various hormones and GFs could maintain the SC niche and
enhance the proliferation of progenitors sustaining tumor bulk
growth. Indeed, recent studies demonstrate that sexual hormones
could exert a supportive role in the propagation of SCs and prog-
enitors, as suggested by the cross-talk between estrogen-signaling
and Wnt pathway. Furthermore, the latter pathway has also been
observed interacting with THs in SC compartment and so acceler-
ating tumorigenic processes. This mechanism could be benefited
by the interaction between different cascades, which enhances or
contrasts specific cellular response in tumor conditions. In conclu-
sion, an in-depth study on the concert between estrogens, THs, and
GFs could be helpful to elucidate hormones-driven thyroid car-
cinogenesis. Gaining more insight into this interaction could also
explain the gender imbalance in tumor incidence for the purpose
of identifying a more targeted approach in TC therapy.
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