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Abstract An estimation approach for the semi-paramet-

ric intensity function of a class of space-time point pro-

cesses is introduced. In particular we want to account for

the estimation of parametric and nonparametric compo-

nents simultaneously, applying a forward predictive like-

lihood to semi-parametric models. For each event, the

probability of being a background event or an offspring is

therefore estimated.
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1 Introduction

To describe and interpret the features of realizations of

space-time point processes (e.g. seismic data, fires data,

diseases data) a reliable estimation of the conditional

intensity function is necessary. In exploratory contexts or

to assess the adequacy of a specific parametric model,

some kind of nonparametric estimation procedure could be

useful, though in some fields (e.g. seismological one)

predictive properties of the estimated intensity function are

pursued.

In particular in such processes where the reproduction or

some epidemic activity can be modelled, prediction of the

basic reproductive rate is often complicated by the pre-

sence of triggered events, superimposed to the persistent

background component. For instance in the seismological

process, earthquake clusters, formed by the main event of

each sequence, its foreshocks and its aftershocks, may

complicate the statistical analysis of the background seis-

mic activity that might be related to changes in the tectonic

field. Since the persistent background activity prevails, in

large time scale, over the aftershock activity, location of

large earthquakes may be forecasted starting from the

analysis of the background seismicity, for which removal

of temporal cluster members may be a crucial issue.

Indeed if we want to predict large earthquakes in pre-

sence of clusters of aftershocks, earthquake clusters may

complicate the statistical analysis of the background seis-

mic activity. Because of the different seismogenic features

controlling the kind of seismic release of clustered and

background seismicity (Adelfio et al.2006), to describe the

seismicity of an area in space, time and magnitude

domains, it could be useful to study separately the features

of independent events and those of the strongly correlated

ones.

Zhuang et al. (2002) proposed a stochastic method

associating to each event a probability to be either a

background event or an offspring generated by other

events, based on the ETAS model (Epidemic Type After-

shocks-Sequences model; Ogata 1988) for clustering pat-

terns: a random assignment of events generates a thinned

catalog, where events with a higher probability of being

mainshocks are more likely included, and a inhomoge-

neous Poisson process is used to model their spatial

intensity. This procedure identifies the two complementary

subprocess of the seismic process: the background sub-

process and the cluster (or offspring) subprocess.

In previous papers (Adelfio 2010; Adelfio et al.2010) we

proposed a technique to find out the two main components

of seismicity, i.e. the background seismicity and the trig-

gered one.
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Adelfio et al. (2010) presented a seismic sequences

detection technique based on MLE of parameters, that

identifies the conditional intensity function of a model

describing the seismic activity as a clustering-process, like

ETAS model. In Adelfio (2010) nonparametric methods are

used to estimate the intensity function of a space-time point

process and clustering results are interpreted by a second-

order diagnostic approach (Adelfio and Schoenberg 2009;

Adelfio and Chiodi 2009). Console et al. (2010) proposed a

stochastic method associating to each event a probability to

be either a background event or an offspring generated by

other events; Marsan and Lenglin (2008) used the concept

of cascade triggering without using models; Diaz-Avalos

et al. (2013) used also a nonparametric approach to check

the separability of a point process.

A probabilistic clustering approach, providing an

uncertainty about an object’s class membership, can be

provided by latent clustering analysis (Fraley and Raftery

2002). This is a very flexible approach, in the sense that

both simple and complicated distributional forms can be

used for the observed variables within clusters, although

restrictions can be imposed on the parameters to obtain

more parsimony and formal tests can be used to check their

validity.

The basic latent class cluster model is given by:

PðyjhÞ ¼
XS

j¼1

pjPjðyjhjÞ

where Pð�Þ is obtained as a mixture of classes-specific

densities Pjð�Þ, given the clusters parameters hj, y is the

observed variables, S the number of clusters and pj the

prior probability of membership in cluster j.

In this paper, in an analogous way we want to classify

events according to their probability of being a background

or an offspring event, estimating the space-time intensity of

the generating point process of the different components by

mixing nonparametric and parametric approaches.

Therefore, we propose an estimation of the space-time

intensity of a branching-type point process that is usually

characterized by these different components, that accounts

simultaneously for the estimation of parametric and non-

parametric ones, applying a forward predictive likelihood

estimation approach to semi-parametric models (Chiodi

and Adelfio 2011).

In sect. 2 some formal definitions of point processes are

recalled. A new method for nonparametric estimation is

introduced in Sect. 3; the simultaneous approach for non-

parametric and parametric estimation is proposed in Sect. 4

with an application to the ETAS model for earthquake

description, while final remarks and future developments

are presented in Sect. 5.

2 Intensity function in point processes and branching-

type model

Point process is a random collection of points, each one

representing the time and space coordinates of a single

event.

Let Zd ¼ T � Sd�1 be a general d�dimensional closed

region, with T the time domain and Sd�1 a two or three

dimensional space. Any analytic space-time point process

is uniquely characterized by its associated conditional

intensity function (Daley and Vere-Jones 2003) defined as

the frequency with which events are expected to occur

around a particular location in time and space, conditional

on the prior historyHt of the point process up to time t, i.e.:

kðzÞ ¼ kðt; sjHtÞ ¼ lim
Dt;Ds!0

E Nð½t; tþ Dt� � ½s; sþ Ds�ÞjHt½ �
DtDs

ð1Þ

where Ht is the space-time occurrence history of the pro-

cess up to time t, Dt;Ds are time and space increments,

E Nð½t; tþ Dt� � ½s; sþ Ds�ÞjHt½ � is the history-dependent

expected number of events occurring in the volume

f½t; t þ DtÞ � ½s; sþ Ds�g. Generally, intensities kðzÞ
depend on some unknown parameters.

2.1 Branching point processes

In probability theory, a branching process is a Markov

process in which each individual in the n� th generation

produces some random number of individuals in the ðnþ
1Þ � th generation, according to a probability distribution

that does not vary from individual to individual. Branching

processes are used to model reproduction phenomena.

These models have been recently considered for the

description of different applicative fields: biology (Caron-

Lormier et al. 2006), demography (Jagers and Klebaner

2000; Johnson and Taylor 2008), epidemiology (Becker

1977; Balderama et al. 2012), wildfires distribution and

size (Schoenberg et al. 2003; Juan et al. 2012).

In general, the conditional intensity function of the

branching model is defined as the sum of a term describing

the large-time scale variation (spontaneous activity or

background) and one relative to the small-time scale var-

iation due to the interaction with the events in the past

(induced activity or offsprings):

khðt; sjHtÞ ¼ lf ðsÞ þ s/ðt; sÞ ð2Þ

with h ¼ ð/; lÞ0, the vector of parameters of the induced

intensity (/) together with the parameter of the background

general intensity (l), f ðsÞ the space density, and s/ðt; sÞ the

induced intensity, given by:
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s/ðt; sÞ ¼
X

tj\t

m/ðt � tj; s� sjÞ:

In such models, we have to simultaneously estimate the

different components of the intensity function (large-time

scale and small-time scale). If the large-time scale com-

ponent lf ðsÞ in (2) is known, the parameters / can be

usually estimated by Maximum Likelihood method. In

applications, the large-time scale component lf ðsÞ is

usually estimated trough non parametric techniques, like

kernel estimators.

2.2 Kernel estimator for intensity function

Given n observed events z1; z2. . .; zn in a d-dimensional

closed region, the kernel estimator of the unknown inten-

sity f (Silverman 1986; Wand and Jones 1994) in a generic

point z 2 R
d is:

f̂RðzÞ ¼
Xn

i¼1

Kðz� zi;RÞ ð3Þ

where Kð�; �Þ is a multivariate kernel function centered at

observed points and R is a matrix of smoothing constants.

A common choice for Kð�; �Þ is the normal multivariate

density; in this case, and if R is diagonal, the kernel

function is defined by the superposition of separable kernel

densities. To take into account highly variable patterns in a

space region, variable smoothing matrices Ri can be more

suitable (Terrell and Scott 1992).

In general, in kernel approaches, the smoothing

parameters are set by external choices, or by cross-vali-

dation techniques. Indeed, the usual maximization of the

likelihood with respect to the smoothing parameters, as

known, would produce bandwidths of length zero and

degenerate intensities only on the observed points. There-

fore, for nonparametric estimation we propose the use of an

estimation procedure based on the subsequent increments

of likelihood obtained adding an observation one at a time,

reported in the next section.

3 Forward predictive likelihood (FLP)

Suppose that in a space-time point process the intensity

function kð�Þ depends on a set of parameters w, such that

kðz;wÞ.
Let denote by ŵðHtkÞ � ŵðz1; z2; :::; zi; :::; zkÞ a generic

estimator of w, based on observations until tk.

Assume that a realization of the process is observed

in the space region Xs and the time interval ðT0; TmaxÞ.
The log-Likelihood for the point process, given the k

observed values zi and computed using the estimator

ŵðz1; z2; :::; zi; :::; zkÞ is:

log LðŵðHtkÞ; HtkÞ ¼
Xk

i¼1

log kðzi; ŵðHtkÞÞ

� þ
ZTmax

T0

Z

Xs

kðz; ŵðHtkÞÞ ds dt ð4Þ

As mentioned in Sect. 2.2, the ML estimation can not be directly

used in a semi-parametric context: in fact, for example, con-

sidering the intensity (2), which contains a component that is

usually estimated nonparametrically, the likelihood (4) would

be maximized putting all the mass on the observed points.

In this paper, we use the method proposed in Chiodi and

Adelfio (2011) that measures the ability of the observations and

estimation until tk to give information on the next observation.

Let ŵðHtkÞ be a vector of estimators, that could include

smoothing constants in a semi-parametric context, based on

the observed history up to tk: Let log LðŵðHtkÞ; Htkþ1
Þ be the

likelihood computed on the first k þ 1 observations, but

using the estimates based on first k, defined as:

log LðŵðHtkÞ; Htkþ1
Þ ¼

Xkþ1

i¼1

log kðzi; ŵðHtkÞÞ

� þ
Ztkþ1

T0

Z

Xs

kðz; ŵðHtkÞÞ ds dt ð5Þ

For example, in equation (5), kðzkþ1; ŵðHtkÞÞ could be the

intensity of the ðk þ 1Þth point estimated by a kernel

method using the centers given by the previous k points.

Then, we use the difference between (4) and (5) to

measure the predictive information of the first k observa-

tions on the k þ 1-th as:

dk;kþ1ðŵðHtkÞ; Htkþ1
Þ �
¼ log LðŵðHtkÞ; Htkþ1

Þ
� log LðŵðHtkÞ; HtkÞ

¼
Xkþ1

i¼1

log kðzi; ŵðHtkÞÞ

�
Ztkþ1

T0

Z

Xs

kðz; ŵðHtkÞÞdsdt

��
Xk

i¼1

log kðzi; ŵðHtkÞÞ

�
Ztk

T0

Z

Xs

kðz; ŵðHtkÞÞdsdt

¼
¼ log kðzkþ1; ŵðHtkÞÞ

�
Ztkþ1

tk

Z

Xs

kðz; ŵðHtkÞÞdsdt: ð6Þ
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This leads to a technique similar to cross-validation, but

applied only to the future observations: in fact, each contri-

bution dk;kþ1 is based only on the past observations t1; :::; tk.

Therefore, given n the number of observations, we

choose ewðHtkÞ which maximizes:

FLPk1;k2
ðŵÞ �

Xn�1

k¼k1

dk;kþ1; ð7Þ

where k1 is a fixed constant, for example k1 ¼ n
2

� �
.

The quantity in (7) can be used also to compare different

kinds of intensity estimates obtained by considering the

optimized values of the quantities FLPk1;k2
ðwÞ.

In this paper, we use the measure defined in (7) to estimate

the nonparametric component of models like (2). In previous

applications (Chiodi and Adelfio 2011), on the basis of the

measure in (7), we observed that the bandwidths estimated by

FLP approach produced better kernel estimates (in terms of

MISE) of space-time intensity functions than classical methods.

The following theorem proves that a martingale can be

obtained from the quantity in (6): this result can be useful

to study its theoretical asymptotic distributional properties.

Theorem 1 Let N be a point process on R2 � R, such that

z 2 R2 � R and kðz; wðHtmÞÞ its conditional intensity

function up to time tm. Let us define

dm;mþ1 ¼ log kðzmþ1; wðHtmÞÞ�

þ
Ztmþ1

tm

Z

XS

kðz; wðHtmÞÞdsdt

as a measure of the predictive information on the first m

observations on the ðmþ 1Þ�th and

Imþ1 ¼ exp �
Ztmþ1

tm

Z

XS

kðz; wðHtmÞÞdsdt

2

64

3

75

and imþ1¼logImþ1.Hence
exp½dm;mþ1�

Imþ1
�imþ1 isamartingaleprocess.

Proof

E
exp½dm;mþ1�

Imþ1

� imþ1

���Htm

� �

¼ E
kðzmþ1; wðHtmÞÞ

Imþ1

Imþ1 � imþ1

���Htm

� �

� E E Nðzmþ1; zmþ1 þ Dz
���Htmþ1

Þ
h i

� imþ1

���Htm

h i

¼ E E Nðzmþ1; zmþ1 þ DzjHtmÞ½ � � imþ1

���Htmþ1

h i

¼ E kðzm; wðHtmÞÞ þ imþ1ð Þ � imþ1

���Htmþ1

h i

¼ kðzm; wðHtmÞÞ ¼
exp½dm�1;m�

Im

� im

h

4 Alternating estimation of components

In order to estimate the different components of a space-

time branching model (2), we here propose a simultaneous

estimation of nonparametric and parametric components

of a branching-type model. In other words, we alternate

the standard parametric likelihood method, to estimate the

parameters of the offsprings component, with the FLP

approach, used just to compute the smoothing parameters

R in (3) of the background intensity nonparametric esti-

mation. Further, the proposed mixed procedure estimates

the probability of each event to belong to one of the

model components, given the class specific parameters,

according to a latent cluster model with two possible

groups.

Given a set of n events occurred in a fixed space-time

region, and set v ¼ 1, let f̂Rð0Þ ðx; yÞ be a starting estimation

of the background intensity, obtained by kernel estimators,

with default values for the bandwidth Rð0Þ. The v� th

iteration of the simultaneous estimation of the nonpara-

metric and parametric components proceeds as follows:

1. Get the ML estimator ĥðvÞ of the parameters of the

model h ¼ ð/; lÞ0, maximizing the whole likelihood

(4) and compute the values k
ĥðvÞ ðti; xi; yijHtiÞ ¼

l̂ðvÞ f̂Rðv�1Þ ðxi; yiÞ þ s
/̂ðvÞ ðti; xi; yiÞ, i ¼ 1; :::; n.

2. Estimate qðvÞi ¼
l̂ðvÞ f̂

Rðv�1Þ ðxi;yiÞ
k

ĥðvÞ ðti;xi;yijHti
Þ ; i ¼ 1; :::; n, for each

point of the data set, on the basis of the estimated

parameters. qðvÞi is used as a vector of weights for the

nonparametric estimation of the background intensity

and is an estimation of the probability to belong to the

background group.

3. Estimate an optimal smoothing parameter RðvÞ

of the kernel estimator, through the FLP approach,

that is maximizing (7) and holding fixed s
/̂ðvÞ ðti; xi; yiÞ;

i ¼ 1; :::; n.

4. Update the estimation of the background intensity

f̂RðvÞ ðxi; yiÞ, through weighted kernel estimator with

weights qðvÞi ; i ¼ 1; :::; n:

5. Update v and start a new iteration, until some

convergence rule is reached. Convergence is judged

comparing the values of model components in con-

secutive iterations, checking also the increase in the

overall likelihood function.

4.1 ETAS model a particular branching point process

A branching process for earthquake description, widely

used in seismological context, is the Epidemic Type

Aftershocks-Sequences (ETAS) model (Ogata 1988).
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The ETAS conditional intensity function can be written,

starting from model (2), as follows:

khðt; sjHtÞ ¼ lf ðsÞ þ
X

tj\t

m/ðt � tj; s� sjjmjÞ ð8Þ

with mj the magnitude of the j-th event and m/ðt � tj;

s� sjjmjÞ ¼ gðt � tjjmjÞ‘ðx� xj; y� yjjmjÞ. Therefore, in

the ETAS model, the background seismicity is assumed to

be stationary in time, while the occurrence rate of after-

shocks at time t, following the earthquake of time tj and

magnitude mj, is described by the following parametric

model:

gðt � tjjmjÞ ¼
j eða�cÞ ðmj�m0Þ

ðt � tj þ cÞp ; with t [ tj ð9Þ

where j is a normalizing constant, c and p characteristic

parameters of the seismic activity of the given region; p is

useful for characterizing the pattern of seismicity, indi-

cating the decay rate of aftershocks in time.

For the spatial distribution, conditioned to magnitude of

the generating event, the following distribution is often

used:

‘ðx� xj; y� yjjmjÞ ¼
ðx� xjÞ2 þ ðy� yjÞ2

ec ðmj�m0Þ
þ d

( )�q

ð10Þ

It relates the occurrence rate of aftershocks to the main-

shock magnitude mj, through the parameters a; c that

measure the influence on the relative weight of each

sequence; m0 is the completeness threshold of magnitude,

i.e. the lower bound for which earthquakes with higher

values of magnitude are surely recorded in the catalog, d

and q are two parameters related to the spatial influence of

the mainshock.

The simultaneous estimation of the background intensity

and the triggered intensity components of a Epidemic type

model is a crucial statistical issue.

Although parametric models are widely used, their

estimation has many disadvantages, often related to the

definition of a reliable mathematical model from the geo-

physical theory (Choi and Hall 2001) and to the sensitivity

of statistical estimates to the composition of the space-time

region under study (Choi and Hall 2001).

A computationally efficient procedure to maximize the

expected complete data log-likelihood function, based on

the expectation-maximization algorithm is introduced in

Veen and Schoenberg (2008).

While the first component f ð�Þ of models like (8) is

generally estimated by nonparametric techniques, h is

usually estimated by ML approach. In particular, in

kernel-type approaches either a fixed (Vere-Jones 1992) or

adaptive kernel smoothing method with Gaussian kernel

(Zhuang et al. 2002) can be used. However, while our

approach has the big advantage of being only semi-para-

metric, Zhuang et al. (2002) proposed a purely parametric

estimation method, also estimating the probability for each

event of being a background event (qi; i ¼ 1; :::; n) in order

to provide a random classification of events and obtain a

thinned catalog, that includes events with a bigger proba-

bility of being mainshock, which spatial intensity is

described by inhomogeneous Poisson process.

In our algorithm, according to Console et al. (2010), we

use qi as weights for the kernel estimation of the back-

ground seismicity to get a simultaneous estimate of the

intensity components of the ETAS model (8).

As an example of application, we apply the proposed

approach to the catalog of the Italian seismic events

recorded from 2005 to 2013, with three different thresholds

of magnitude (2, 2.2, 2.5) that identify 20894, 13748, 6886

events, respectively. The estimate of the triggered intensity

function and the background component for threshold 2

using the FLP approach are reported in Figs. 1 and 2. The

corresponding plots by using the ETAS estimates with

fixed bandwidth for the background component are repor-

ted in Figs. 3 and 4. The FLP estimates of the background

seismicity seem to be more realistic than the used fixed-

bandwidth-ETAS model, as a consequence of a reduced

smoothing effect, estimating an intensity function more

coherent with some known tectonic structures. The plots

corresponding to magnitude thresholds 2.2 and 2.5 are not

reported for brevity and since they do not suggest different

conclusions.
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Fig. 1 Estimated triggered intensity of the Italian seismicity

(2005–2013) with magnitude threshold 2 by FLP approach.
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It is interesting to note the correspondence between the

high peaks of the estimated background and triggered

intensity functions for Italy and some focal areas of the

Italian seismicity in the observed period, like L’Aquila and

Reggio Emilia, where two big sequences of events occur-

red in 2009 and 2012, respectively, and Mt Etna Volcano,

where a quite continuous activity is recorded.

The proposed approach seems to perform much better

(both in terms of AIC, estimates and diagnostic results)

than the usual fixed-bandwidth-ETAS estimates.

The comparison (based on the AIC values obtained at

each iteration of the algorithm) between the two methods to

estimate model (8) are reported in Figs. 5, 6 and 7, for each

of the used magnitude thresholds. These results easily

suggest the outperforming behavior of the FLP approach,

independently of the magnitude threshold.

5 Remarks and future developments

The proposed simultaneous estimation of nonparametric

and parametric components is a very flexible procedure,

that accounts for predictive properties of the estimated

intensity. Moreover, in a latent class model context, it

estimates, for each event, the probability of being a back-

ground event or a triggered one in a branching-type model.

An interesting point of the considered estimation

approach can be discussed analyzing the obtained results:

indeed, the estimated model seems to follow properly the

observed intensity of the observed area, characterized by

highly variable changes both in space and in time. In other

words, because of its flexibility, the estimation approach

seems to provide a good fitting to local space-time changes,

crucial to analyze possible correlation between the esti-

mated intensity function and particular distributions of

some structural features (i.e. geological structures) of the

studied region.

In terms of performance, the proposed method produces

AIC values considerably better than other approaches that

choice the smoothing parameters according to different

procedures.
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Fig. 2 Estimated background intensity of the Italian seismicity

(2005–2013) with magnitude threshold 2 by FLP approach.
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Fig. 3 Estimated triggered intensity of the Italian seismicity

(2005–2013) with magnitude threshold 2 by fixed-bandwidth

approach.
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Fig. 4 Estimated background intensity of the Italian seismicity

(2005–2013) with magnitude threshold 2 by fixed-bandwidth

approach.
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For future work, we are developing an R package that

provides tools for the comprehension and analysis of space-

time data. In particular the package will allow to estimate

both only time and space-time processes, making also

possible the estimation of subset of parameters, together

with computation of profile likelihood, diagnostics and

graphical tools.

Moreover, anisotropic kernel with variable smoothing

parameters will be introduced to take into account more

realistic situations, with very variable observed intensity in

space and time.

Acknowledgments We would like to thank the Editor and the two

referees for their fruitful and insightful comments. This paper has

been partially supported by the Grant of University of Palermo (Italy):

‘‘2012-ATE-0332-FFR 2012-2013-Metodi statistici per dati spazio-

temporali applicati all’analisi, monitoraggio e previsione ambientale’’

G. Lovison.

References

Adelfio G, Chiodi M, De Luca L, Luzio D, Vitale M (2006) Southern-

Tyrrhenian seismicity in space-time-magnitude domain. Ann

Geophys 49:1245–1257

Adelfio G, Chiodi M (2009) Second-order diagnostics for space-time

point processes with application to seismic events. Environmet-

rics 20:895–911

Adelfio G, Schoenberg FP (2009) Point process diagnostics based on

weighted second-order statistics and their asymptotic properties.

Ann Inst Stat Math 61:929–948

Adelfio G (2010) An analysis of earthquakes clustering based on a

second-order diagnostic approach. Data analysis and classifica-

tion. Springer, Berlin, pp 309–317

Adelfio G, Chiodi M, Luzio D (2010) An algorithm for earthquake

clustering based on maximum likelihood. Data analysis and

classification. Springer, Berlin, pp 25–32

Adelfio G, Chiodi M (2011) Kernel intensity for space-time point

processes with application to seismological problems. In: Fichet

S (ed) Classification and multivariate analysis for complex data

structures. Springer, Berlin, pp 401–408

1 2 3 4 534
40

00
34

60
00

34
80

00
35

00
00

35
20

00
35

40
00

Iteration

A
IC

Fig. 5 Comparison between the AIC of the model (8) estimated by

FLP (solid line) and fixed bandwidth (dotted line) for the Italian

seismicity (2005–2013) with magnitude threshold 2.0.

1 2 3 4 5

24
00

00
24

20
00

24
40

00
24

60
00

Iteration

A
IC

Fig. 6 Comparison between the AIC of the model (8) estimated by

FLP (solid line) and fixed bandwidth (dotted line) for the Italian

seismicity (2005-2013) with magnitude threshold 2.2.

1 2 3 4 513
10

00
13

20
00

13
30

00
13

40
00

13
50

00
13

60
00

Iteration

A
IC

Fig. 7 Comparison between the AIC of the model (8) estimated by

FLP (solid line) and fixed bandwidth (dotted line) for the Italian

seismicity (2005–2013) with magnitude threshold 2.5.

Stoch Environ Res Risk Assess

123



Balderama E, Schoenberg FP, Murray E, Rundel PW (2012)

Application of branching point process models to the study of

invasive red banana plants in Costa Rica. JASA

107(498):467–476

Becker N (1977) Estimation for discrete time branching processes

with application to epidemics. Biometrics 33(3):515–522

Caron-Lormier G, Masson JP, Menard N, Pierre JS (2006) A

branching process, its application in biology: influence of

demographic parameters on the social structure in mammal

groups. J Theo Biol 238:564–574

Chiodi M, Adelfio G (2011) Forward Likelihood-based predictive

approach for space-time processes. Environmetrics 22:749–757

Choi E, Hall P (1999) Nonparametric approach to analysis of space-

time data on earthquake occurrences. J Comput Graph Stat

8(4):733–748

Choi E, Hall P (2001) Nonparametric analysis of earthquake point-

process data. Lect Notes-Monograph Ser 36:324–344

Console R, Jackson DD, Kagan YY (2010) Using the ETAS model

for catalog declustering and seismic background assessment.

Pure Appl Geophys 167:819–830

Daley DJ, Vere-Jones D (2003) An introduction to the theory of point

processes. Springer, New York

Diaz-Avalos C, Juan P, Mateu J (2013) Similarity measures of

conditional intensity functions to test separability in multidi-

mensional point processes. Stoch Environ Res Risk Assess

27(5):1193–1205

Fraley C, Raftery AE (2002) Model-based clustering, discriminant

analysis and density estimation. J Am Stat Assoc 97:611–631

Gardner J, Knopoff L (1974) Is the sequence of earthquakes in

southern California, with aftershock removed, poissonian?

B Seimol Soc Am 64:1363–1367

Jagers P, Klebaner FC (2000) Population-size-dependent and age-

dependent branching processes. Stoch Process Appl 87:235–254

Johnson RA, Taylor JR (2008) Preservation of some life length

classes for age distributions associated with age-dependent

branching processes.Stat Probabil Lett 78:2981–2987

Juan P, Mateu J, Saez M (2012) Pinpointing spatio-temporal

interactions in wildfire patterns. Stoch Environ Res Risk Assess

26(8):1131–1150

Marsan D, Lenglin O (2008) Extending earthquakes’ reach through

cascading. Science 319:1076–1079

Ogata Y (1988) Statistical models for earthquake occurrences and

residual analysis for point processes. J Am Stat Association

83:9–27

Resenberg P (1985) Second-order moment of central california

seismicity, 1969–1982. J Geophys Res 90(B7):5479–5495

Schoenberg FP, Peng R, Woods J (2003) On the distribution of

wildfire sizes. Environmetrics 14:583–592

Silverman B (1986) Density estimation for statistics and data analysis.

Chapman and Hall, London

Terrell GR, Scott DW (1992) Variable Kernel density estimation. Ann

Statist 20(3):1236–1265

Veen A, Schoenberg FP (2008) Estimation of space-time branching

process models in seismology using an EM-type algorithm.

JASA 103(482):614–624

Vere-Jones D (1992) Statistical methods for the description and

display of earthquake catalogues. In: Walden A and Guttorp P

(eds) Statistics in the environmental and earth sciences, Edward

Arnold, London, pp. 220–236

Wand MP, Jones MC (1994) Multivariate plugin bandwidth selection.

Comput Stat 9:97–116

Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of

space-time earthquake occurrences. J Am Stat Assoc 97:369–379

Stoch Environ Res Risk Assess

123


	Alternated estimation in semi-parametric space-time branching-type point processes with application to seismic catalogs
	Abstract
	Introduction
	Intensity function in point processes and branching-type model
	Branching point processes
	Kernel estimator for intensity function

	Forward predictive likelihood (FLP)
	Alternating estimation of components
	ETAS model a particular branching point process

	Remarks and future developments
	Acknowledgments
	References


