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We study the problem of selection of regularization parameter in penalized Gaussian graphical models.
When the goal is to obtain a model with good predicting power, cross validation is the gold standard.
We present a new estimator of Kullback-Leibler loss in Gaussian Graphical model which provides
a computationally fast alternative to cross-validation. The estimator is obtained by approximating
leave-one-out-cross validation. Our approach is demonstrated on simulated data sets for various types
of graphs. The proposed formula exhibits superior performance, especially in the typical small sample
size scenario, compared to other available alternatives to cross validation, such as Akaike’s information
criterion and Generalized approximate cross validation. We also show that the estimator can be used
to improve the performance of the BIC when the sample size is small.

Keywords: Gaussian graphical model; Penalized estimation; Kullback-Leibler loss;
Cross-validation; Generalized approximate cross-validation; Information criteria .

AMS Subject Classification: F1.1; F4.3 (... for example; authors are encouraged to
provide two to six 2010 Mathematics Subject Classification codes)

1. Introduction

Let Y = (Y1, . . . , Yp) be a p-dimensional Gaussian random vector with zero mean and
positive definite covariance matrix Σ, i.e. Y ∼ Np(0,Σ). In many applications, like gene
network reconstruction, estimating the precision matrix, denoted by Ω = (ωij) = Σ−1 is
of main interest. The element ωij in Ω is proportional to the partial correlation between
the ith and jth components of Y conditional on all others. Consequently ωij = 0 if
and only if Yi and Yj are conditionally independent given the rest of the variables in Y .
This gives the appealing graphical interpretation of vector Y as a Gaussian graphical
model [1–4]. Vector Y can be represented by an undirected graph G = (V,E), where V
is the set of vertices corresponding to the p coordinates of the vector Y and the edges
E = (eij)1≤i<j≤p represent conditional dependency relationships between variables Yi
and Yj . The edge eij between Yi and Yj exists if and only if ωij 6= 0. Hence, for estimating
the graphical structure it is not only important to estimate the parameters but also to
identify the null entries in the precision matrix.
A popular method for precision matrix estimation is the penalized likelihood method
[5–8]. This method is based on the optimization of an objective function which is the
sum of the scaled likelihood and some penalty function of the precision matrix. Popular
penalties are LASSO, SCAD and adaptive LASSO [8, 9]. The selection of the tuning
parameter in this method is equivalent with the model selection of a particular graphical
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model. The methods that have been used in the literature for selecting the regularization
parameter include the Bayesian Information Criterion (BIC) [5, 10–13], the Extended
Bayesian Information Criterion (EBIC) [13, 14], Stability Approach to Regularization
Selection (StARS) [15], Cross-validation (CV) [8, 10, 16, 17], Generalized Approximate
Cross Validation (GACV) [12] and the Aikaike’s Information Criterion (AIC) [11, 12, 15].
If the aim is graph identification then the criteria BIC, EBIC and StARS are appropri-

ate. BIC is shown to be consistent for penalized graphical models with adaptive LASSO
and SCAD penalties for fixed p [12, 13]. Numerical results suggest that BIC is not consis-
tent with the LASSO penalty [13, 14]. When also p tends to infinity EBIC is shown to be
consistent for the graphical LASSO, though only for decomposable graphical models [14].
The disadvantage of EBIC is that it includes an additional parameter that needs to be
tuned. [13] fix this parameter to one and show that in this case EBIC is consistent with
the SCAD penalty. StARS has the property of partial sparsistency which means that
when the sample size goes to infinity all the true edges will be included in the selected
model [15].
On the other hand, using cross-validation (CV), generalized approximate cross-validation
(GACV) and AIC will result with a model with a good predicting power. Cross-validation
and AIC are both estimators of the Kullback-Leibler (KL) information [18], which under
some assumptions are asymptotically equivalent [19]. GACV is also an estimator of KL
since it is derived as an approximation to leave-one-out cross-validation (LOOCV) [12].
Advantage of AIC and GACV is that they are not as computationally expensive as CV.
In this paper, we propose an estimator of KL of the model defined by the estimated

precision matrix. The Kullback-Leibler information or divergence [20] is also known as
the entropy loss. The formula that we propose exhibits superior performance compared to
its competitors AIC and GACV. As it is the case with CV, using the proposed estimator
will result with the model that has good predictive power. For the graph identification
problem, we show how our estimator can be used to improve the performance of the BIC
when the sample size is small.
The rest of the paper is organized as follows. In section 2 we present an example

which clarifies the purpose of different selection methods. In Section 3 a closed-form
approximation of leave-one-out-cross validation is proposed and its derivation is given in
Section 4. Section 5 covers the details of the implementation of the method, while Section
6 includes a simulation study that shows the performance of the proposed estimator.
Finally, we discuss the usage of the obtained estimator to graph identification problem in
Section 7. We conclude with Section 8. Appendix contains proofs and auxiliary material.

2. Prediction power VS graph structure

Let Ω0 be a precision matrix that corresponds to the true non-complete graph G and
let Ωǫ be the matrix obtained by adding ǫ > 0 to every entry of matrix Ω. The matrix
Ωǫ is positive definite since it is a sum of one positive definite matrix and one positive
semi-definite matrix. Indeed, Ωǫ = Ω0 +xǫxǫ

⊤, where xǫ = (
√
ǫ, . . . ,

√
ǫ)⊤ is a vector of

dimension p. Hence, Ωǫ belongs to the class of precision matrices and it corresponds to
some graph Gǫ. The Kullback-Leibler divergence of Np(0,Ω

−1
ǫ ) from Np(0,Ω

−1
0 ), denoted

by KL(Ω0;Ωǫ), is equal to

KL(Ω0;Ωǫ) =
1

2
{trace(Ω−1

0 Ωǫ)− log |Ω−1
0 Ωǫ| − p}. (1)
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(see [21]). Since ǫ → 0 implies Ωǫ → Ω0, by continuity of log determinant and trace it
follows that

lim
ǫ↓0

KL(Ω0;Ωǫ) = 0.

However, for every 0 < ǫ < mini,j |ωij | the matrix Ωǫ is a matrix without zero entries
and consequently the graph Gǫ is the full graph. Thus, the conclusion is that even though
a matrix can be close to the precision matrix of the true distribution with respect to KL
loss, the corresponding graph can be completely different from the true one.
Since CV, AIC and GACV are estimators of KL they should be used for obtaining the

model with a good predictive power. For graph identification, BIC, EBIC and StARS are
more appropriate, because of their graph selection consistency properties. Consequently,
we treat these two problems separately. Next section we devote to a new estimator of
KL and in Section 7 we show how it can be used to improve the performance of E(BIC).

3. KLCV: An approximation of leave-one-out-cross validation

In this section we introduce a closed-form approximation of leave-one-out-cross valida-
tion (LOOCV) that we call Kullback-Leibler cross-validation (KLCV). The reason for
this terminology comes from the fact that cross-validating the log-likelihood loss pro-
vides an estimate to Kullback-Leibler divergence [20].
Suppose we have n multivariate observations of dimension p from distribution
Np(0,Ω

−1
0 ). Using the notation Sk = ykyk

⊤ for the empirical covariance matrix of a sin-
gle observation, we have that the empirical covariance matrix is given as S =

∑n
k=1 Sk/n.

The log-likelihood of the data is, up to an additive constant, l(Ω) = n{log |Ω| −
trace(ΩS)}/2. When n > p the precision matrix Ω = Σ−1 can be estimated by maxi-
mizing the scaled log-likelihood function

2

n
l(Ω) = log |Ω| − trace(ΩS),

over positive definite matrices Ω. The global maximizer is the maximum likelihood es-
timator (MLE) given by Ω̂ = S−1. When n ≤ p MLE does not exist. If n > p and the
true precision matrix is known to be sparse, the MLE has a non-desirable property: with
probability one all elements of the precision matrix are nonzero. An alternative approach
which yields a sparse estimator can be obtained by maximizing

Ω̂λ = argmaxΩ log |Ω| − trace(ΩS)−
p∑

i=1

p∑

j=1

pλij
(|ωij |), (2)

over positive definitive matrices Ω. Here, pλij
is a penalty function and ωij is the (i, j)

element of matrix Ω and λij > 0 is the corresponding regularization parameter.

Let the maximum penalized likelihood estimator (MPLE) Ω̂λ be defined by (2) and let

KL(Ω0; Ω̂λ) be the Kullback-Leibler divergence of the model Np(0, Ω̂
−1
λ ) from the true

distribution Np(0,Ω
−1
0 ). According to (1) we have that

KL(Ω0; Ω̂λ) = − 1

n
l(Ω̂λ) + bias,

where l(Ω) = n{log |Ω| − trace(ΩS)}/2 and bias = trace(Ω̂λ(Ω
−1
0 − S))/2. We propose

3
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an estimator of the Kullback-Leibler divergence of the model Np(0, Ω̂
−1
λ ) to the true

distribution

KLCV(λ) = − 1

n
l(Ω̂λ) + b̂iasKLCV, (3)

where

b̂iasKLCV = 1/n(n− 1)

n∑

k=1

vec{(Ω̂−1
λ − Sk) ◦ Iλ}⊤vec[Ω̂λ{(S− Sk) ◦ Iλ}Ω̂λ] (4)

and Iλ is the indicator matrix, whose entry is 1 if the corresponding entry in the
precision matrix Ω̂λ is nonzero and zero if the corresponding entry in the precision
matrix is zero. Here, ◦ is the Schur or Hadamard product of matrices and vec is the
vectorization operator which transforms a matrix into a column vector obtained by
stacking the columns of the matrix on top of one another.
In this paper we propose to select Ω̂λ∗ for that λ∗ that minimizes KLCV(λ) over λ > 0.
The resulting estimator will give a model with good predictive power. While for the
MLE we do not need any assumptions to derive the KLCV, for the MPLE the derivation
uses the assumption of the sparsistency of the estimator. An estimator is sparsistent
if all parameters in the true precision matrix that are zero are estimated as zero with
probability tending to one when sample size tends to infinity [9].

4. Derivation of the KLCV

4.1. Derivation for MLE

We follow the idea of [22], i.e. we introduce an approximation for LOOCV via several
first order Taylor expansions. [12] uses the idea to derive GACV for MPLE in GGM,
where in deriving the formula, the partial derivatives corresponding to the zero elements
of the precision matrix are ignored. Here, unlike in [12], we apply the idea only for MLE
estimator and therefore we avoid all technical difficulties that ignoring the derivatives
entails. In the next section we extend the derived formula for MLE to MPLE. Denote
the log-likelihood of observation yk with

lk(Ω) =
1

2
{log |Ω| − trace(ΩSk)}

and consider the following function of two variables

f(S,Ω) =
2

n
l(Ω) = log |Ω| − trace(ΩS).

With this notation we have the identity

n∑

k=1

f(Sk,Ω) = nf(S,Ω). (5)

Let Ω̂
(−k)

be the estimator of the precision matrix defined in (2) with λij = λ = 0 based
on the data excluding the kth data point. The leave-one-out cross validation score (see

4
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[18]) is defined by

LOOCV = − 1

n

n∑

k=1

lk(Ω̂
(−k)

) = − 1

2n

n∑

k=1

f(Sk, Ω̂
(−k)

)

= − 1

2n

n∑

k=1

{f(Sk, Ω̂
(−k)

)− f(Sk, Ω̂) + f(Sk, Ω̂)}

(5)
= −1

2
f(S, Ω̂)− 1

2n

n∑

k=1

{
f(Sk, Ω̂

(−k)
)− f(Sk, Ω̂)

}

≈ − 1

n
l(Ω̂)− 1

2n

n∑

k=1

df(Sk, Ω̂)

dΩ
vec(Ω̂

(−k) − Ω̂).

Using matrix differential calculus (see the Appendix) we have df(Sk, Ω̂)/dΩ =

{vec(Ω̂−1 − Sk)}⊤. The term vec(Ω̂
(−k) − Ω̂) is obtained by applying the Taylor expan-

sion of the function
{

df(S,Ω)
dΩ

}⊤

around (S, Ω̂) in the point (S(−k), Ω̂
(−k)

). We expand

the transposed term because we consider vectors as columns.

0p2 =

{
df(S(−k), Ω̂

(−k)
)

dΩ

}⊤

≈
{
df(S, Ω̂)

dΩ

}⊤

+
d2f(S, Ω̂)

dΩ2
vec(Ω̂

(−k)−Ω̂)+
d2f(S, Ω̂)

dΩdS
vec(S(−k)−S),

where 0p2 is the column vector of zeros of dimension p2. From here it follows that

vec(Ω̂
(−k) − Ω̂) ≈ −

{
d2f(S, Ω̂)

dΩ2

}−1
d2f(S, Ω̂)

dΩdS
vec(S(−k) − S).

We have df(S, Ω̂)/dΩ = {vec(Ω̂−1 − S)}⊤, so d2f(S, Ω̂)/dΩdS = −Ip2 ,

d2f(S, Ω̂)/dΩ2 = −Ω̂
−1 ⊗ Ω̂

−1
and consequently

vec(Ω̂
(−k) − Ω̂) ≈ −(Ω̂⊗ Ω̂)vec(S(−k) − S).

It follows that the approximation of LOOCV, denoted by KLCV, has the form

KLCV = − 1

n
l(Ω̂) +

1

2n

n∑

k=1

{vec(Ω̂−1 − Sk)}⊤(Ω̂⊗ Ω̂)vec(S(−k) − S).

After simplifying the term in the sum we finally obtain

KLCV = − 1

n
l(Ω̂) + 1/2n(n− 1)

n∑

k=1

Tk (6)

where

Tk = {vec(Ω̂−1 − Sk)}⊤(Ω̂⊗ Ω̂)vec(S− Sk).
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This formula is equivalent to that from (4) and we will show this in the end of the next
section. Also, this formula is equivalent to the one obtained in [12] who proposed it for
both, MLE and MPLE. We do not advocate using this formula for MPLE since it ignores
the sparsity assumption. For this reason, we treat the case of MPLE separately in the
next section. We also show that the obtained formula for the MPLE is an extension of
the formula for the MLE.

4.2. Extension to MPLE

Before we propose the formula for the MPLE we formulate two auxiliary results.

Lemma 4.1 Let A and Ω be a symmetric matrices of order p. The following identity
holds

(Ω⊗Ω)vec(A) = Mp(Ω⊗Ω)vec(A), (7)

where Mp = 1/2(Ip2 +Kp), and Ip2 and Kp are identity matrix and commutation matrix
of order p2 respectively.

Commutation matrix Kp is a square matrix of dimension p2 that has the property
KpvecA = (vecA)⊤ for any matrix A of dimension p.

Lemma 4.2 Let A be a symmetric matrix of order p and x,y any vectors of dimension
p. Then the value of the bilinear form

B(x,y) = x⊤Ay,

when ith row (column) of the matrix A is set to zero is the same as the value of B(x,y)
when ith entry of the vector x (y) is set to zero.

The proof of Lemma 4.1 is given in the Appendix, while Lemma 2 is obtained by
straightforward calculation. Aaccording to the Lemma 4.1

Tk = {vec(Ω̂−1 − Sk)}⊤Mp(Ω̂⊗ Ω̂)vec(S− Sk), (8)

and that 2Mp(Ω̂⊗ Ω̂) is an estimator of the asymptotic covariance matrix of Ω̂ [23].
To obtain the formula for the MPLE we assume standard conditions like in [9] that
guarantee sparsistent estimator. These conditions imply that λ → 0 when n → ∞, so
we use formula (6), derived for the MLE, as an approximation in the penalized case. By
sparsistency, with probability one the zero coefficients will be estimated as zero when n
tends to infinity. This means that asymptotically the covariances between zero elements
and nonzero elements are equal to zero. Thus, to obtain the term Tk for the MPLE we
do not only plug in the expression Ω̂λ in formula (8), but we also set the elements of the

matrix Mp(Ω̂λ⊗ Ω̂λ) that correspond to covariances between zero and nonzero elements
to zero. According to Lemma 4.2 this is equivalent to setting the corresponding entries

of vectors vec(Ω̂
−1
λ − Sk) and vec(S(−k) − S) to zero, i.e. we define

Tk(λ) = [vec{(Ω̂−1
λ − Sk) ◦ Iλ}]⊤Mp(Ω̂λ ⊗ Ω̂λ)vec{(S− Sk) ◦ Iλ},

where Iλ is the indicator matrix, whose entry is 1 if the corresponding entry in the
precision matrix Ω̂λ is nonzero and zero if the corresponding entry in the precision
matrix is zero. The obtained formula involves matrices of order p2, which entails high

6
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cost in terms of both, memory usage and floating-point operations. For this reason, we
rewrite the formula in a way that it is computationally feasible. Following [12] we apply
the Lemma 4.1 and the identity vec(ABC) = (C⊤ ⊗A)vecB and obtain

Tk(λ) = vec{(Ω̂−1
λ − Sk) ◦ Iλ}⊤vec[Ω̂λ{(S− Sk) ◦ Iλ}Ω̂λ]. (9)

To conclude this section, we show that the derived formula for MPLE is an extension
of the corresponding formula for MLE, meaning that applying the MPLE formula on the
MLE yields the same result like the corresponding MLE formula. To this aim, let Ω̂ be
maximum likelihood estimator of the precision matrix, which is the MPLE for λ = 0,
i.e. Ω̂ = Ω̂λ, for λ = 0. Since with probability one all the elements of Ω̂ are nonzero
it follows that Iλ is the matrix with all entries equal to one. This implies that in the

formula (9) we have (Ω̂
−1
λ − Sk) ◦ Iλ = Ω̂

−1
λ − Sk and (S − Sk) ◦ Iλ = S − Sk, which in

turn implies Tk(λ) = Tk.

5. Implementation

In this section we show how to implement formula (9) efficiently. Although the formula
(9) involves vectorization and transpose operators, they can be avoided in the imple-
mentation. Indeed, for any matrices X = (xij) and Y = (yij) it holds (vecX)⊤vecY =∑

i,j xijyij so it follows that (vecX)⊤vecY is just the sum of elements of the matrix

X ◦Y, i.e. (vecX)⊤vecY =
∑

i,j(X ◦Y)ij . Applying this to (9) we obtain

Tk(λ) =
∑

i,j

(
(Ω̂

−1
λ − Sk) ◦ Iλ ◦ [Ω̂λ{(S− Sk) ◦ Iλ}Ω̂λ]

)
ij
.

In statistical programming language R, expression
∑

i,j(X ◦Y)ij can be efficiently im-
plemented with sum(X*Y).

6. Simulation study

In this section we test the performance of the proposed formula in terms of Kullback-
Leibler loss. We do this in case of the most popular LASSO penalty for two sparse hub
graphs. The graphs have p = 40 nodes and 38 edges and p = 100 nodes and 95 edges.
Sparsity values of these graphs are 0.049 and 0.019 respectively. The graphs are shown
in Figure 1. We omit the results for other type of graphs and for the adaptive LASSO
and SCAD penalties for the same combinations of n and p. The method was tested for
a band graph, a random graph, a cluster graph and a scale-free graph. Our estimator
exhibits superior performance in all these cases.
We compare the following estimators: the KL oracle estimator, LOOCV, the proposed

KLCV estimator, and the AIC and GACV estimators. The KL oracle estimator is that
Ωλ in the LASSO solution path that minimizes the KL loss if we knew the true matrix
Ω. Under each model, we generated 100 simulated data sets with different combinations
of p and n. We focus on scenario in which n ≤ p which is more common in applications.
For the simulations we use the huge package in R [24]. The results are given in Tables 1
and 2. The KLCV method is close to the KL oracle score, even for very small n. Overall,
our method exhibits comparable performance to AIC and GACV in large sample size
scenarios, but it clearly outperforms both when the sample size is small.
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Hub graph with p=100 nodes and 95 edges
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Figure 1.: Hub graphs with p=40 and p = 100 nodes used in the simulation study.

7. Using KLCV for graph estimation

Information criteria, such as AIC, (E)BIC, for model selection in Gaussian graphical
model are based on penalizing the likelihood with a term that involves an estimator of
the degrees of freedom, which is defined as

df(λ) =
∑

1≤i<j≤p

I(ω̂ij,λ 6= 0), (10)

where (ω̂ij,λ)1≤i<j≤p are the estimated parameters [5]. As we pointed out in section
2, unlike the AIC, the (E)BIC has a graph selection consistency property. However,
in sparse data settings both the BIC and the EBIC can perform poorly. The reason
is the instability of the degrees of freedom defined in (10). As [25] points out, in the
high-dimensional case there is often considerable uncertainty in the number of non-zero
elements in the precision matrix. To overcome this uncertainty, the authors propose to
use the bootstrap method to determine the statistical accuracy and the importance of
each non-zero elements identified. One can then choose only the elements with high
probability of being non-zero in the precision matrix across the bootstrap samples. Here
we propose an alternative, faster approach.
Recall that AIC has the form

AIC(λ) = −2l(Ω̂λ) + 2df(λ),

where df(λ) is given in (10). AIC is an estimator of KL loss scaled by 2n. It follows that
the degrees of freedom in AIC is the estimator of the bias from the KL loss scaled by n/2.
Since in the proposed KL loss estimator we provide the estimator of the bias, we can use
this estimator scaled by n/2 as the degrees of freedom in the BIC. In other words, we
define the

BICKLCV(λ) = −2l(Ω̂λ) + log ndfKLCV(λ),

where df(λ) = n
2 b̂iasKLCV. We compare the BICKLCV to BIC and StARS in terms of F1

score defined as

F1 =
2TP

2TP + FN+ FP
,

where TP,TN,FP,FN are the numbers of true positives, true negatives, false positives
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p=40 KL ORACLE LOOCV KLCV AIC GACV
n=8

KL 3.68 3.86 3.71 6.46 26.80
(0.27) (0.35) (0.28) (2.12) (1.66)

time 1.15 67.54 1.89 0.01 1.84
(0.07) (1.66) (0.57) (0.03) (0.38)

n=12
KL 3.29 3.38 3.36 6.58 18.34

(0.26) (0.32) (0.28) (3.54) (1.61)
time 1.23 84.96 2.76 0.01 2.73

(0.10) (10.32) (0.41) (0.02) (0.49)
n=16

KL 2.93 3.00 3.01 6.62 13.07
(0.26) (0.29) (0.26) (3.07) (1.36)

time 1.14 100.04 3.60 0.01 3.66
(0.07) (26.31) (0.59) (0.02) (0.70)

n=20
KL 2.67 2.70 2.76 6.48 10.08

(0.23) (0.27) (0.25) (2.50) (1.20)
time 1.27 110.97 4.37 0.01 4.46

(0.09) (39.32) (0.34) (0.02) (0.93)
n=30

KL 2.18 2.22 2.27 4.59 5.81
(0.23) (0.2) (0.25) (1.11) (0.66)

time 1.25 172.29 6.36 0.01 6.19
(0.09) (14.76) (1.6) (0.02) (1.78)

n=40
KL 1.91 1.91 2.00 3.18 4.13

(0.19) (0.98) (0.21) (0.66) (0.43)
time 1.25 202.42 8.07 0.01 7.71

(0.07) (34.08) (2.83) (0.003) (2.76)
n=100

KL 1.00 1.04 1.04 1.17 1.32
(0.10) (0.11) (0.11) (0.16) (0.14)

time 1.37 370.6 17.16 0.01 16.15
(0.09) (126.13) (10.41) (0.004) (9.31)

Table 1.: Simulation results for hub graph with p = 40 nodes. Performance in terms of
Kullback-Leibler loss and computational speed given in seconds of different estimators
for different sample sizes n is showed. The results are based on 100 simulated data sets.
Standard errors are shown in brackets. The best result between KLCV, AIC and GACV
is boldfaced.

and false negatives. The F1 score measures the quality of a binary classifier by taking
into account both true positives and negatives [26, 27]. The larger the F1 score is, the
better the classifier is. The largest possible value of the F1 score is given by the F1 oracle
and is evaluated by using the true matrix Ω. Averaged results over 100 simulations are
given in Figure 2. The results suggest that BICKLCV can improve BIC for small sample
sizes and can be competitive with STARS.
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Figure 2.: Simulations results for hub graph with p = 100 nodes. Average performance
in terms of F1 score of different estimators for sample sizes n = 20, 30, 40, 50, 75, 100, 400
is showed. The results are based on 100 simulated data sets.
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p=100 KL ORACLE LOOCV KLCV AIC GACV
n=20

KL 8.06 8.09 8.60 12.24 28.59
(0.37) (0.34) (0.45) (0.28) (19.94)

time 2.07 204.04 18.35 0.04 25.37
(0.11) (26.73) (1.67) (0.08) (3.17)

n=30
KL 6.87 6.81 7.29 10.59 32.07

(0.34) (0.37) (0.39) (0.41) (2.77)
time 2.07 282.99 28.03 0.04 38.34

(0.10) (30.56) (2.65) (0.08) (4.06)
n=40

KL 5.92 5.93 6.34 9.15 22.48
(0.30) (0.32) (0.38) (0.59) (1.88)

time 2.06 364.07 36.97 0.03 50.29
(0.08) (6.98) (5.25) (0.05) (6.16)

n=50
KL 5.24 5.27 5.63 7.33 16.93

(0.27) (0.37) (0.33) (0.81) (1.40)
time 2.06 433.42 45.49 0.03 62.35

(0.10) (7.44) (9.12) (0.05) (11.41)
n=75

KL 4.08 4.11 4.36 4.76 9.80
(0.27) (0.26) (0.31) (0.71) (0.71)

time 2.05 382.69 65.04 0.03 86.17
(0.10) (44.75) (21.14) (0.03) (26.2)

n=100
KL 3.34 3.33 3.57 3.63 6.81

(0.19) (0.19) (0.23) (0.48) (0.52)
time 1.98 481.07 82.71 0.03 98.38

(0.09) (63.82) (34.09) (0.04) (49.48)
n=400

KL 1.13 1.15 1.20 1.17 1.24
(0.07) (0.06) (0.08) (0.08) (0.07)

time 2.09 2092.77 353.26 0.03 479.26
0.20 (57.03) (186.64) (0.04) (279.72)

Table 2.: Simulation results for hub graph with p = 100 nodes. Performance in terms of
Kullback-Leibler loss and computational speed given in seconds of different estimators
for different sample size n is showed. The results are based on 100 simulated data sets.
Standard errors are shown in brackets. The best result between KLCV, AIC and GACV
is boldfaced.

8. Conclusion

In this article, we have proposed an alternative to cross-validation in penalized Gaussian
graphical models. In simulation study we show that the estimator that we propose is the
best available non-computational method for selecting a predictively accurate model in
sparse data settings for sparse Gaussian graphical models. We also illustrated that our
estimator of KL loss can be useful to for the graph selection problem.
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Appendix A. Proof of Lemma 4.1

Commutation matrix Kp is a square matrix of dimension p2 that has the property
KpvecA = vec(A⊤). By substituting Mp = 1/2(Ip2 + Kp) in the equality (7) we ob-
tain that it is equivalent to

(Ω⊗Ω)vecA = Kp(Ω⊗Ω)vecA.

To show the above equality, we use identities vec(ABC) = (C⊤ ⊗A)vecB, KpvecA =
vec(A⊤) and that A and Ω are symmetric

KpΩ⊗ΩvecA = Kpvec(ΩAΩ) = vec{(ΩAΩ)⊤} = vec(ΩAΩ) = Ω⊗ΩvecA.

�

Appendix B. Calculations of the derivatives

In the literature there are several definitions of the derivative of a function of a matrix
variable. In this paper we use the definition of the derivative given in [28], which is the
only natural and viable generalization of the notion of a derivative of a vector function
to a derivative of a matrix function. Let F be a differentiable m× p real matrix function
of an n× q matrix of real variables X = (xij). The derivative (or Jacobian matrix) of F
at X is the mp× nq matrix

DF(X) =
∂vecF(X)

∂(vecX)⊤
,

where the derivative of vector valued function f = (f1, . . . , fm)⊤ of vector x =
(x1, . . . , xn)

⊤ is defined as the matrix (∂fi(x)/∂xj). We also use the following nota-
tion for the matrix derivatives of scalar function φ of two matrix arguments, which have
no common variables

dφ(X,Y)

dX
:= DXφ(X,Y) =

∂φ(X,Y)

∂(vecX)⊤
, (B1)

dφ(X,Y)

dXdY
:= DX {DYφ(X,Y)}⊤ , (B2)

where DX and DY stress that the derivatives are with respect to X and Y, respec-
tively. The transpose sign of a row vector DYφ(X,Y) in (B2) is necessary since, in this
framework, the calculus is developed for column vector valued functions.
Regarding the previous comment, in matrix calculus attention should be payed to the

dimension of the matrix. Taking the derivative of the matrix is not the same as taking
the derivative of the transpose matrix. Indeed, for the matrix X the derivative of the
transpose function F(X) = X⊤ is not an identity matrix, but it is given by DF(X) = Kp,
where Kp is the commutation matrix of order p2. For more on this subject see [28], on
which our exposition is based on and which also contains the following results that we
use.

Lemma B.1 Let X be a square matrix of order p, A be a constant matrix od order p
and Ip2 and Op2 the identity and the zero matrix of order p2, respectively. The following
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identities hold

D|X| = |X|{vec(X−1)⊤}⊤, (B3)

Dtrace(AX) = {vec(A⊤)}⊤, (B4)

Dvec(X) = Ip2 , (B5)

DX−1 = −(X⊤)−1 ⊗X−1, (B6)

DA = Op2 . (B7)

For the derivation of the KLCV we need to show the following equalities

df(S,Ω)

dΩ
= vec(Ω−1 − S)⊤, (B8)

d2f(S,Ω)

dΩdS
= −Ip2 , (B9)

d2f(S,Ω)

dΩ2
= −Ω−1 ⊗Ω−1. (B10)

First, we establish (B8) by using formulas for the derivatives of the determinant and the
trace (B3) and (B4), the chain rule and the fact that matrices Ω and Sk are symmetric.
Equality (B9) follows from (B8), (B5) and (B7). Finally, (B10) follows from (B8), (B6),
(B7) and the fact that Ω is symmetric.
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