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Abstract

Masonry material presents a mechanical response strongly dependent on the static and kinematic phenomena occurring in
the constituents and at their joints. At the mesoscopic level the interaction between the units is simulated by means of specific
mechanical devices such as the zero thickness interface model where the contact tractions and the displacement discontinuities are
the primary static and kinematic variables respectively.

In many cases the joint response depends also on internal stresses and strains within the interface layer adjacent to the joint
interfaces. The introduction of internal stresses and strains leads to the formulation of the interphase model, a sort of enhanced zero-
thickness interface. With the term interphase we shall mean a layer separated by two physical interfaces from the bulk material or
a multilayer structure with varying properties and several interfaces.

Adopting the interphase concept, different failure conditions can be introduced for the physical interfaces and for the joint
material. In the present work the interphase constitutive laws, taking into account the joint stiffness degradation and the onset of
irreversible displacements, are derived in a thermodynamically consistent manner assuming an appropriate form of the Helmholtz
free energy, function of the internal and contact joint strains and of other internal variables which regulate the evolution of the
non-linear phenomena.

The interphase model has been implemented in an open-source research-oriented finite element analysis program for 2D
applications.
c⃝ 2014 Published by Elsevier B.V.
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1. Introduction

Two earthquakes have recently stricken the Italian regions of Emilia (2012) and Abruzzo (2009) providing ruinous
effects on old masonry structures, most of them actually in use as churches, schools and institutional buildings.

It became evident that only a systematic study of the seismic vulnerability of the historical masonry structures can
lead to the safeguard of a large number of old buildings and monuments which represents a relevant social, economic
and cultural heritage.
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The evaluation of the seismic behavior of ancient masonry structures requires a specific procedure which
synthetically consists of two phases: the first one is the investigation phase where the structural engineer collects
the information about the original building and its subsequent evolution. All the data regarding the geometry of the
structural elements and the physical and mechanical properties of the construction materials are also required. In the
latter phase, on the base of the knowledge level reached in the previous phase, a more or less detailed mathematical
model is defined and the structural analysis is performed.

A crucial point of the study is the adoption of an appropriate constitutive model for the masonry material.
This choice has a strong influence on the data collecting phase and, of course, on the results of the structural
analysis. Two different approaches are reported in the literature for the mechanical modeling of masonry. The macro-
modeling approach intentionally makes no distinction between units and joints with the aim to formulate a fictitious
homogeneous and continuous material equivalent to the actual one which is discrete and composite. The alternative
meso-modeling approach analyzes the masonry material as a discontinuous assembly of blocks, connected each other
by mortar or dry joints at their actual position.

For the purpose of numerical modeling of heterogeneous material structures, the meso-modeling approach has
been implemented in the framework of the finite element method (FEM). The mechanical behavior of mortar joints is
simulated making use of zero thickness interface (ZTI) elements where the displacement discontinuities between the
top and bottom sides of the element represent the primary kinematic variables.

A wide literature is devoted to the development of advanced interface constitutive laws in order to describe the
damage evolution and the onset of irreversible strains and related coupled effects for different mechanical problems.
These constitutive laws are expressed in terms of contact tractions and displacement discontinuities and are often
formulated in a rigorous manner incorporating some concepts developed in damage mechanics, in the theory of
plasticity for non standard materials and in fracture mechanics.

Interface constitutive laws based on the thermodynamics of damaging materials have been formulated by
Corigliano and Allix [1] and implemented in order to simulate the mixed-mode decohesion process in composite
laminates. Anisotropy of damage is taken into account in two different ways. In the first way three damage variables
are assumed, two in the tangential directions and the remaining one in the normal direction. The elastic locus is
expressed as a function of damage energy release rates, thermodynamic forces associated to the damage variables,
and a variable damage threshold. The evolution equations of damage variables are of associative type. In the latter
way the anisotropic response is obtained making use of non associative flow rules for the single damage variable.

On the same line, Alfano and Crisfield [2] proposed a damage interface model with a single damage variable whose
evolution law does not fulfill a normality law. The convex elastic domain is defined as a function of the thermodynamic
forces associated to fracture modes I and II. In their work particular attention is paid to the numerical implementation
of the interface constitutive laws.

An interface model similar to the two above cited has been applied by William et al. [3] to the meso-modeling of
thermomechanical degradation of heterogeneous materials.

Stankowski et al. [4], Lofti and Shing [5] and Lourenco and Rots [6] have proposed other interface models,
formulated in a rigorous manner, which incorporate some concepts developed in the theory of plasticity for non-
standard materials and in fracture mechanics. All these models adopt Mohr–Coulomb type failure criteria and use
internal variables to describe the post-peak softening behavior. Lourenco and Rots [6] adopted a cap model to take
into account the joint compaction due to high compressive stresses.

A simple elastoplastic interface model has been proposed by Giambanco et al. [7]. It possesses general features
similar to the previous models, but with particular attention addressed to the cohesive-frictional joint transition, taking
into account the geometrical dilatancy which appears in the pure frictional stage related to the roughness of the
fracture-slip surface. A tribological law is adopted to describe the evolution of contact surface and of the related
variation of shear strength.

Time dependent interface laws have been developed for bonded joints in the framework of viscoplasticity
for generalized standard materials by Giambanco and Fileccia Scimemi [8]. These laws are formulated in a
thermodynamically consistent manner and take into account the rate dependency modifications of the fracture process
zone introducing a sort of non-local instantaneous dissipation.

Recently, some authors have been concentrated in the formulation of interface laws which take into account the
non linear effects of stiffness degradation, loss of adhesion and unilateral contact with related frictional phenomena.
The main idea, common to the models developed by Alfano e Sacco [9], Parrinello et al. [10], Spada et al. [11] and
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Sacco e Lebon [12], is that at the micro-mechanical level the contact area can be additively decomposed in a fully
damaged part and in a part with sound material. In cementitious joints this idea can be translated into the fact that
during the loading path a partial decohesion occurs due to the formation and nucleation of microcracks. The measure
of the projection of the damaged part on the interface plane is represented by the damage variable. The mechanical
behavior of the damaged part is governed by unilateral contact and friction. The undamaged part can be considered
fully elastic [9] and the onset inelastic strains can be taken into account making use of an appropriate elasto-plastic
model [11].

In many cases the joint response also depends on internal stresses and strains within the contact layer. A typical
example is the uniaxial compression of a masonry prism. If the specimen is assembled making use of bricks stronger
and stiffer than mortar, the bed joint has the tendency to expand laterally and a confinement action is provided by
bricks at the contact interfaces. The shear tractions at the interfaces result in an internal stress state which consists
of triaxial compression in the mortar and bilateral tension on the horizontal plane in the bricks. This state of stress
produces splitting vertical cracks in the bricks that lead to the failure of the masonry prism. On the other hand, if the
mortar is stiffer than bricks material, the joint provides the confinement action on the bricks and it is subjected to a
tensile stress state along the mean plane.

The ZTI concept applied to the reported example is not able to capture the illustrated response of the masonry
specimen and, in terms of contact tractions, provide compression in the normal direction and zero tangential tractions.

Therefore, the usual assumption adopted in ZTI elements, that the mechanical response of the joint is governed by
the contact tractions only, requires an enhancement by introducing the effects of internal stresses into the analysis.

The enhancement of the ZTI model is represented by the interphase model introduced by Giambanco and Mroz [13]
and implemented by Giambanco et al. [14] in the framework of finite elements. The interphase element is a reliable
contact finite element representing a thin layer joint separated by two interfaces from the adherents. The internal
stresses are incorporated and the initial contact stiffness is evaluated on the base of the elastic properties of the bulk
material.

The present paper deals with the nonlinear mesomodeling of masonry structures and presents the application of the
interphase concept to the simulation of the mechanical behavior of head and bed mortar joints.

The principal aim of the work is to show another peculiar feature of the interphase model. Differently to ZTI model
where the nonlinear phenomena in the thin layer and at the interfaces are both governed by the contact tractions and a
unique constitutive law must describe the overall response, the adoption of the interphase model and the consequent
distinction between contact tractions and internal stresses, allows to introduce different failure conditions for the
physical interfaces and for the bulk material.

In particular, in the paper the damage of the joint material is described separately from the loss of adhesion typically
occurring at the joint-adherent contact surface. Therefore, the joint stiffness degradation is related to the damage of
the joint material and the attainment of a specific yield condition at the physical interfaces is responsible for the onset
of irreversible displacement discontinuities.

The paper is structured as follows. In Section 2, for the sake of completeness, the interphase concept is illustrated
in terms of kinematic hypotheses and the indefinite equilibrium equations are derived with the classical principle of
virtual displacements. In Section 3 the elastoplastic damaging interphase constitutive equations are derived making use
of a thermodynamically consistent approach. The discrete form of the constitutive equations is formulated in Section 4
for the purpose of implementation in a step by step analysis. Some details on the numerical algorithms developed and
inserted in a scientific oriented finite element code are illustrated in Section 5. Finally numerical applications are
reported in Section 6 in order to validate the interphase nonlinear model and to test the effectiveness of the numerical
procedure.

2. General assumptions

Let us consider, in the Euclidean space ℜ3 referred to the orthonormal frame (O, i1, i2, i3), a structure formed by
two adherents Ω+,Ω− connected by a third material Ω j in contact with the two bodies by means of the two physical
interfaces Σ+ and Σ− respectively, as in Fig. 1.

It is assumed that the thickness h of the joint is small if compared with the characteristic dimensions of the bonded
assembly.
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Fig. 1. Mechanical scheme of a third body interposed between two adherents.

The boundary of the two adherents is divided into two parts Γ±u and Γ±t , where kinematic and loading conditions
are specified respectively.

The joint interacts with the two adherents through the following traction components:

t± = t±1 e1 + t±2 e2 + t±3 e3 (1)

which can be considered as external surface loads for the joint.
In Eq. (1) e1, e2 and e3 are the unit vectors of the local reference system, with e3 oriented along the normal to the

middle surface Σ and directed towards the adherent Ω+.
The joint can be regarded as an interphase model. It is assumed that the fibers inside the interphase and directed

along e3 are maintained rectilinear during the deformation process. In view of this hypothesis the interphase
displacement field u can be easily obtained from the displacements u+ and u− of the interfaces Σ+ and Σ−, thus

u(x1, x2, x3) =


1
2
+

x3

h


u+ (x1, x2)+


1
2
−

x3

h


u− (x1, x2) (2)

with x1, x2 and x3 the Cartesian coordinates in the orthonormal frame (O, e1, e2, e3).
Since the thickness of the joint is generally small if compared to the characteristic dimensions of the adherents, we

can assume the strain state ε uniform along the e3 direction and given by:

ε(x1, x2) =
1
h

 h/2

−h/2
∇

su (x1, x2, x3) dx3. (3)

Substituting the expression (2) in (3) we have:

ε(x1, x2) =
1

2h
([u]⊗ n+ n⊗ [u])+

1
2
∇

s 
u+ + u−


(4)

where [u] = u+ − u−, n ≡ e3 and ∇s is the symmetric gradient operator defined as ∇s
=

1
2


∇ + ∇

T

.

Let us note that in the interphase model the joint curvatures generated by the displacement field (2) and the related
flexural effect are neglected.

In order to derive the equilibrium equations of the interphase model, let us assign the virtual displacements δu+

and δu− to the interfaces Σ+ and Σ−. The principle of virtual displacements (PVD) asserts that the external work,
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produced by the contact tractions, equals the internal work developed in the thin joint. According to the hypothesis of
a constant strain state along the thickness direction, the conjugate stress state is considered uniform along the same
direction and the PVD can be written as:

Σ+
δu+ · t+dΣ +


Σ−

δu− · t−dΣ = h

Σ

δε : σ dΣ . (5)

Taking into account the kinematic relations (4) the virtual work equation (5) becomes
Σ+

δu+ · t+dΣ +

Σ−

δu− · t−dΣ =
1
2


Σ

(δ [u]⊗ n+ n⊗ δ [u]) : σ dΣ

+
h

2


Σ


∇

s 
δu+ + δu−


: σ dΣ . (6)

Let us apply the divergence theorem to the second term of the right-hand side in Eq. (6):
Σ


∇

s 
δu+ + δu−


: σ dΣ =


Γ

m · σ ·

δu+ + δu−


dΓ +−


Σ


δu+ + δu−


· div σ dΣ , (7)

where Γ represents the perimeter of the joint middle plane Σ and m is the normal to the perimeter specifying lateral
surface tractions. Substituting Eq. (7) in the equality (6) and assuming that Σ = Σ+ = Σ−, we derive the PVD
particularized for the interphase model, namely:

Σ
δu+ ·


t+ − σ · n+

h

2
divσ


dΣ +


Σ

δu− ·


t− + σ · n+
h

2
divσ


dΣ

=
h

2


Γ

m · σ ·

δu+ + δu−


dΓ . (8)

Since the previous equality holds for all virtual displacement fields, it generates the local equilibrium relations of the
interphase model:

t+ − σ · n+
h

2
divσ = 0, t− + σ · n+

h

2
divσ = 0 on Σ (9)

m · σ = 0 on Γ . (10)

The indefinite equations (9), making the positions t̄ = 1
2


t+ + t−


andt = 1

2


t+ − t−


can be rewritten in the

following form:

t̄+
h

2
divσ = 0 on Σ (11)

t = σ · n on Σ . (12)

Eqs. (11) and (12) can be regarded as internal and external equilibrium equations of the interphase and Eq. (10)
represents the equilibrium boundary conditions.

3. Interphase constitutive model

In the present section the thermodynamically consistent constitutive laws for the interphase are developed taking
into account the stiffness degradation and the onset of inelastic strains which occur along the loading process if certain
limit conditions are violated.

The basic kinematical hypothesis is the additive decomposition of the total strain in the internal (i) and contact (c)
parts and, for the contact strain only, a further decomposition in the elastic (e) and inelastic (p) parts:

ε = εi
+ εc (13)

εc
= εce

+ εcp (14)



G.F. Scimemi et al. / Comput. Methods Appl. Mech. Engrg. 279 (2014) 66–85 71

with

εi
= AεA (15)

being A = I− n⊗ n and I the unit second order tensor.
In order to comply with thermodynamic requirements, the interphase Helmholtz free energy is introduced in the

following form:

Ψ(εi, εc, εcp, ω) = Ψ i (εi, ω)+Ψ c(εc, εcp)+Ψ ic(εi, εc, εcp, ω); (16)

where Ψ i and Ψ c represent the free energies related to the internal and contact parts of the strain state respectively
and Ψ ic is the mixed term of the free energy which takes into account the co-presence of the contact and internal
strains.

The hypothesis assumed to develop the constitutive laws is that damage occurs in the bulk material, therefore the
damage tensor ω appears in the two terms of the total free energy which depend on the internal strains. In this way
the constitutive model takes into account the onset of microvoids and fractures along the thickness of the joint. On
the other hand, debonding of the joint from the adherents, sliding and fractures developing on surfaces parallel to
the middle plane of the interphase, are modeled using elastoplasticity. The inelastic contact strains εcp represent the
internal variables.

On the base of the previous considerations a single scalar damage variable ω governs the loss of stiffness of the
bulk material. The adopted expression of the free energy part related to the internal strains only is:

Ψ i
= Ψ ie

+Ψ id , (17)

where Ψ ie and Ψ id are the elastic and intrinsic parts of the internal free energy, having the following explicit
expressions

Ψ ie
=

1
2


λ


tr εi

2
+ 2µ εi

: εi


(1− ω)+
1
2
λ


−tr εi

2
, (18)

Ψ id
= −hd [ξd + ln (1− ξd)] (19)

with ⟨·⟩ representing the McAulay brackets.
The scalar damage variable appearing in Eq. (18) varies in the range 0 ≤ ω ≤ 1, with the inferior and superior

limits having the meaning of pristine and fully damaged bulk material, respectively. The Ψ id term is the potential
which governs the softening response associated to the damage onset and growth. It depends on the internal variable
ξd and on the material parameter hd .

Debonding and sliding deformation mechanisms at the physical interfaces are described making use of the
following additive decomposition of the contact free energy in the elastic (ce) and intrinsic (cp) parts

Ψ c
= Ψ ce

+Ψ cp, (20)

where the explicit expressions of the two parts are:

Ψ ce
=

1
2


λ tr2 

εc
− εcp

+ 2µ

εc
− εcp

:

εc
− εcp , (21)

Ψ cp
=

1
2

h pξ
2
p, (22)

being ξp the internal elastoplastic variable and h p a material parameter specifying isotropic hardening/softening
interface response.

Finally the explicit expression of the mixed term of the free energy is:

Ψ ic
= λ


(1− ω)


tr εi


−


−tr εi


tr


εc
− εcp . (23)
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3.1. State equations

In order to derive the interphase constitutive equations, the second principle of thermodynamics, including also the
balance equation (first principle) can be applied in the form of the Clausius–Duhem inequality. This inequality for an
isothermal purely mechanical evolutive process reads as

D = σ : ε̇ − Ψ̇ ≥ 0, (24)

where D is the interphase dissipation for unit surface or net entropy production.
The general rate form of the Helmholtz free energy (16) has the following expression:

Ψ̇ =


∂Ψ ie

∂εi +
∂Ψ ic

∂εi


: ε̇i
+


∂Ψ ce

∂εc +
∂Ψ ic

∂εc


: ε̇c
+


∂Ψ ce

∂εcp +
∂Ψ ic

∂εcp


: ε̇cp

+


∂Ψ ie

∂ω
+

∂Ψ ic

∂ω


ω̇ +

∂Ψ id

∂ξd ξ̇d
+

∂Ψ cp

∂ξ p ξ̇ p. (25)

Particularizing Eq. (24) for a purely elastic incremental deformation process,

ε̇cp
= 0, ω̇ = ξ̇d

= ξ̇ p
= 0


,

assuming a decomposition of the stress state similar to that used for the strain state

σ = σ i
+ σ c, being σ i

= AσA (26)

and considering the adopted expressions of the free energy parts (16)–(23), the elastic stress–strain equations can be
derived, thus

σ i
=

∂Ψ ie

∂εi +
∂Ψ ic

∂εi = λ{(1− ω)


tr εi

+ H


tr εi


tr


εc
− εcp

+

−


−tr εi


+ H


−tr εi


tr


εc
− εcp

}A+ 2µ (1− ω) εi , (27)

σ c
=

∂Ψ ce

∂εc +
∂Ψ ic

∂εc = λ

(1− ω)


tr εi


−


−tr εi


+ tr


εc
− εcp (I − A)+ 2µ


εc
− εcp , (28)

with H(·) the unit step function. The interphase state equations are completed by the definition of the static variables
χ p and χd conjugate to the internal variables ξ p and ξd respectively, and of the thermodynamic force ζ conjugate to
the damage variable ω:

χ p
:=

∂Ψ cp

∂ξ p = h pξ
p, (29)

χd
:=

∂Ψ id

∂ξd = hd
ξd

1− ξd , (30)

ζ := −


∂Ψ ie

∂ω
+

∂Ψ ic

∂ω


=

1
2


λ


tr εi

2
+ 2µ εi

: εi

+ λ


tr εi


tr


εc
− εcp . (31)

Making use of the elastic strain–stress equation and of the previous positions, the final expression of the
instantaneous dissipation is obtained:

D = σ c
: ε̇cp
− χ p ξ̇ p

+ ζ ω̇ − χd ξ̇d
≥ 0. (32)

It can be noticed that the proposed decomposition of the total strain in the internal and contact parts together with
the assumed form of the intrinsic free energies, from a theoretical point of view, leads us to state that the interphase
mechanisms inducing micro structural changes can be separately activated. In fact, the instantaneous dissipation
appears split in two parts, namely:

D = Dc
+ Di (33)
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with

Dc
= σ c

: ε̇cp
− χ p ξ̇ p

≥ 0 (34)

Di
= ζ ω̇ − χd ξ̇d

≥ 0 (35)

where Dc is the dissipation related to the opening and sliding phenomena at the physical interfaces and Di is the
dissipation associated to the damage in the bulk material.

3.2. Yield conditions and flow rules

In order to regulate the activation of each dissipative mechanism, two different yield functions are defined in the
space of the proper static variables, namely:

Φ p(σ c, χ p) ≤ 0, Φd(ζ, χd) ≤ 0 (36)

where Φ p is the classical plastic yield function specifying the elastic contact domain and Φd is the damage activation
function, both assumed convex.

The activation of each dissipation mechanism can be effectively described by a variational formulation which is
represented by the generalized principle of maximum intrinsic dissipation:

max
σ c,χ p,ζ,χd


σ c
: ε̇cp
− χ p ξ̇ p

+ ζ ω̇ − χd ξ̇d


(37)

subject to the constraints (36). The Kuhn–Tucker conditions of the maximum constrained problem provide the plastic
and damage evolution laws of the interphase:

ε̇cp
= Λ̇p ∂Φ p

∂σ c , ξ̇ p
= −Λ̇p ∂Φ p

∂χ p , (38)

ω̇ = Λ̇d ∂Φd

∂ζ
, ξ̇d = −Λ̇d ∂Φd

∂χd , (39)

Φ p(σ c, χ p) ≤ 0, Φd(ζ, χd) ≤ 0, (40)

Λ̇p
≥ 0, Λ̇d

≥ 0, (41)

Λ̇pΦ p(σ c, χ p) = 0, Λ̇dΦd(ζ, χd) = 0, (42)

being Λ̇p and Λ̇d the plastic and damage multipliers, respectively. In the present study the elasto-plastic convex domain
is defined by the intersection of the classical Mohr–Coulomb bilinear function with a tension cut-off:

Φ p1(σ c, χ p) =
τ c

+ σ c tan φ − c0(1− χ p), (43)

Φ p2(σ c, χ p) = σ c
− σ0(1− χ p), (44)

where τ c and σ c are the tangential stress vector and the normal stress component of the contact stresses, φ is the
friction angle, c0 and σ0 the cohesion and tensile strength of the virgin interfaces.

The two yield functions are depicted in Fig. 2. The following four zones can be distinguished:

I elastic zone, Φ p1 < 0 Φ p2 < 0;
II plastic activation in shear, Φ p1

= 0 Φ p2 < 0;
III plastic activation in tension, Φ p1 < 0 Φ p2

= 0;
IV plastic activation in tension and shear (corner), Φ p1

= 0 Φ p2
= 0.

The damage activation function is linear and the first activation occurs when the thermodynamic force reaches the
relative threshold value ζ0:

Φd(ζ, χd) = ζ − ζ0 − χd . (45)
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Fig. 2. Bilinear plastic limit condition represented in the plane stress space.

3.3. Joint dilatancy

Dilatancy is that property of a material by which it increases in volume when it is sheared. For this reason the effect
is sometime called shear thickening.

In masonry material dilatancy occurs in the bed joints when they are subjected to compression and shear loads
and, if the normal displacements are bounded, the overall effect is an increase of the normal load resulting in an
increased shear strength. Dilatancy has been observed experimentally by Atkinson et al. [15] who tested several
masonry specimens under constant normal load and cyclic shear displacement. When the peak nominal shear stress
is reached, the normal displacement increases with the shear displacement. During the unloading phase the joint
contraction is observed until the reverse sliding takes place with a new expansion of the joint. After some cycles
dilatancy is less pronounced. The mechanical interpretation of this phenomenon is that during the decohesion process
micro-voids and fractures appear making the sliding plane rough. Therefore, expansion and contraction of the joint is
the kinematical effect related to the sliding along asperities [7,10].

In the present work dilatancy is considered adopting for the irreversible contact strains a non-associated flow rule
related to the sliding limit condition.

Eqs. (38) are then replaced using the well-known generalized Koiter’s form [16]:

ε̇cp
= Λ̇p1 ∂G p

∂σ c + Λ̇p2 ∂Φ p2

∂σ c , ξ̇ p
= −Λ̇p1 ∂Φ p1

∂χ p − Λ̇p2 ∂Φ p2

∂χ p , (46)

where Λ̇p1, Λ̇p2 are the plastic multipliers which satisfy the following complementarity relations:

Φ p1
≤ 0, Φ p2

≤ 0, Λ̇p1
≥ 0, Λ̇p2

≥ 0, Φ p1Λ̇p1
+ Φ p2Λ̇p2

= 0, (47)

which describe all the loading/unloading conditions. The plastic potential related to the limit condition (43) is
expressed by the following function:

G p(σ c, χ p) =
τ c

+ σ c(1− χ p) tan δ, (48)

with δ ∈ [0, φ] dilatancy angle. From the above reported expression it is clear that δ is the initial dilatancy angle and
it decreases along the loss of cohesion process according to the experimental observations.
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4. Discrete interphase constitutive laws

In order to implement the non linear interphase model in a structural numerical code, the constitutive equations
have to be integrated for a given incremental strain history with assigned initial conditions. Let [0, T ] ⊂ ℜ be the time
interval of interest and assume that the state variables at time tn ∈ [0, T ] are known, that is

εn, ε
cp
n , ωn, ξ

p
n , ξd

n


given at assigned tn . (49)

We shall denote ∆ε the assigned increment of total strain produced in the time step (tn+1 − tn) with tn+1 ∈ [0, T ].
The central problem of the integration procedure is to update the field variables (49) to tn+1 in a manner consistent
with the interphase constitutive equations reported in the previous section.

Eqs. (38) and (39) define a non linear evolution problem with initial conditions (49) subjected to the unilateral
constraints (40)–(42). This continuum problem can be transformed into a discrete one by applying the implicit
backward-Euler difference scheme:

εn+1 = εn +∆ε, (50)

ε
cp
n+1 = ε

cp
n +∆Λp1 ∂G p

∂σ c


n+1
+∆Λp2 ∂Φ p2

∂σ c


n+1

, (51)

∆ξ p
= −∆Λp1 ∂Φ p1

∂χ p


n+1
−∆Λp2 ∂Φ p2

∂χ p


n+1

, (52)

∆ω = ∆Λd ∂Φd

∂ζ


n+1

, (53)

∆ξd
= −∆Λd ∂Φd

∂χd


n+1

. (54)

The discrete counterpart of loading/unloading conditions along the time step can be written as

Φ p1
n+1 = 0, Φ p2

n+1 = 0, ∆Λp1
≥ 0, ∆Λp2

≥ 0, Φ p1
n+1∆Λp1

+ Φ p2
n+1∆Λp2

= 0; (55)

Φd
n+1 = 0, ∆Λd

≥ 0, Φd
n+1∆Λd

= 0. (56)

The above discrete equations may be considered in the framework of a two-step algorithm which splits the previous
problem in an additive manner, in an elastic trial predictor stage and in a plastic-damage corrector stage. In the time
step (tn+1 − tn) the elastic predictor stage leads to the following results:

predictor→

ε
cptr ial

n+1 = ε
cp
n , ωtr ial

n+1 = ωn,

ξ
ptr ial

n+1 = ξ
p

n , ξd tr ial

n+1 = ξd
n .

(57)

The dependent variables assume the following values:

σ i tr ial

n+1 = λ{(1− ωn)


tr εi
n+1


+ H


tr εi

n+1


tr


εc

n+1 − ε
cp
n


−


−tr εi

n+1


+ H


−tr εi

n+1


tr


εc

n+1 − ε
cp
n


}A+ 2µ (1− ωn) εi

n+1, (58)

σ ctr ial

n+1 = λ

(1− ωn)


tr εi

n+1


−


−tr εi

n+1


+ tr


εc

n+1 − ε
cp
n


(I − A)+ 2µ


εc

n+1 − ε
cp
n


, (59)

χ
ptr ial

n+1 = h p ξ
p

n , (60)

χd tr ial

n+1 = hd
ξd

n

1− ξd
n

, (61)

ζ tr ial
=

1
2


λ


tr εi

n+1

2
+ 2µ εi

n+1 : ε
i
n+1


+ λ


tr εi

n+1


tr


εc

n+1 − ε
cp
n


. (62)
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The process is elastic and the correction procedure is not activated if the following inequalities are satisfied:

Φ p1tr ial

n+1


σ ctr ial

n+1 , χ
ptr ial

n+1


< 0, Φ p2tr ial

n+1


σ ctr ial

n+1 , χ
ptr ial

n+1


< 0,

Φd tr ial

n+1


ζ tr ial

n+1 , χd tr ial

n+1


< 0.

(63)

Otherwise the trial quantities are not feasible and the corrector stage is performed. In order to illustrate the corrector
stage let us consider the most complex case where none of the inequalities (63) is satisfied. We assume [17] that trial
values of the yield functions and of the damage activation function rule the loading/unloading conditions. Hence
plastic multipliers ∆Λp1,∆Λp2 and damage multiplier ∆Λd are assumed positive. Complementarity conditions (55),
(56) give:

Φ p1
n+1


σ c

n+1, χ
p
n+1


=

τ c
n+1

+ σ c
n+1 tan φ − c0


1− χ

p
n+1


= 0, (64)

Φ p2
n+1


σ c

n+1, χ
p
n+1


= σ c

n+1 − σ0

1− χ

p
n+1


= 0, (65)

Φd
n+1


ζn+1, χ

d
n+1


= ζn+1 − ζ0 − χd

n+1 = 0. (66)

Making use of Eqs. (49)–(54) and (58)–(62), and (64)–(66) at the end of the corrector stage are written as

Φ p1
n+1(∆Λp1,∆Λp2,∆Λd) = Φ p1tr ial

n+1 −

µ τ ctr ial

n+1

|τ ctr ial

n+1 |
∆Λp1

+
−


(λ+ 2µ) β + λ∆Λd

⟨tr εi
n+1⟩


tan φ + c0∆χ p

= 0, (67)

Φ p2
n+1(∆Λp1,∆Λp2,∆Λd) = Φ p2tr ial

n+1 − (λ+ 2µ) β +−λ∆Λd
⟨tr εi

n+1⟩ + σ0∆χ p
= 0, (68)

Φd
n+1(∆Λp1,∆Λp2,∆Λd) = Φd tr ial

n+1 − λtr εi
n+1β −∆χd

= 0, (69)

where

β =

1− χ

p
n


tan φ∆Λp1
+ c0h p tan φ(∆Λp1)2

+ σ0h p tan φ∆Λp1∆Λp2
+∆Λp2

;

∆χ p
= −h p


c0∆Λp1

+ σ0∆Λp2

; ∆χd

= hd
∆Λd

1− ξd
n

 
1− ξd

n −∆Λd
 .

Eqs. (67)–(69) represent a system of three non linear equations in the three unknowns ∆Λp1,∆Λp2 and ∆Λd

which is solved by a local Newton–Raphson numerical procedure. The same strategy is applied for other cases of
yield surfaces activation. After the corrector stage the initial hypotheses are checked and if are not confirmed the
procedure is restarted with the new set of active surfaces.

5. Fem analysis and numerical algorithms

In order to test the effectiveness of the proposed non linear interphase laws for the solution of boundary value
problems regarding masonry structures, made up of blocks connected each other by mortar joints, the finite element
method has been chosen to obtain the discretized version of the equilibrium equations. Space discretization has been
achieved employing two-dimensional 4-nodes isoparametric elements simulating the blocks and 4-nodes interphase
elements for the mortar joints.

In two-dimensional models of masonry structures the plane stress or plain strain assumption is adopted depending
on the geometry of the structural element. A specific study on the range of validity of the two different assumptions
has been developed by Anthoine [18]. The principal conclusion is that in the linear range both provide satisfactory
results while in the non linear range the plane stress assumption may lead to inaccurate results.

In this case the plane stress assumption is adopted because the implementation in the finite element code is finalized
to the study of masonry walls where the thickness is quite small if compared to the other dimensions. In the following
examples the plane stress condition is also used to develop numerical simulations on masonry specimens under the
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assumption that the non linearities are concentrated at the joint level and the block material is indefinitely elastic. In
view of this last assumption inaccurate results related to the plane stress condition can be considered of the same order
of the numerical approximations.

The interphase element implementation has been developed according to the procedure presented in [14] and it has
been incorporated in a widely used scientific oriented finite element code (FEAP). In the cited paper the numerical
performance of the interphase element is investigated in detail. It has been observed that, if the conventional Gauss
quadrature is adopted for the numerical integrations and the interphase stiffness is higher than that one of the adherents,
the element shows an unacceptable oscillatory profile of the tangential tractions. The numerical defect, justified by
the shear locking of the element, can be avoided using classical numerical strategies as the Enhanced Assumed Strain
(EAS) and Selective Reduced Integration (SRI).

In the present work the SRI strategy has been preferred because it does not need the introduction of additional
variables and the modification of the stiffness matrix, important requirement for non-linear applications. Therefore,
after an appropriate additive decomposition of the stiffness matrix, two different integration formulae have been used:
one with a single Gauss point for the part of the stiffness matrix related to the shear energy and one with two Gauss
points for the remaining part.

The non linear discrete interphase laws have then been implemented at the sampling point of the finite element
where in the time step (tn+1 − tn) the increment of the total strain ∆εn+1 is provided.

In the elastic predictor stage the trial values of internal and contact stresses, of the thermodynamic force and of the
other static variables are evaluated making use of Eqs. (58)–(62). The damage and plastic limit conditions are checked
and if any is violated the corrector stage is performed. In the case of multi-limit conditions the violation of a constraint
does not insure that the constraint is active, therefore in the corrector stage the trial set of active constraints is checked
after the correction. The elastic predictor stage and corrector stage pseudo-codes are illustrated in Algorithms 1 and
2, respectively.

Algorithm 1 Predictor algorithm

1: procedure PREDICTOR(εn+1, ε
cp
n , ωn, ξ

p
n , ξd

n )

2: Φ p1tr ial

n+1 ← Φ p1(εn+1, ε
cp
n , ωn, ξ

p
n , ξd

n )

3: Φ p2tr ial

n+1 ← Φ p2(εn+1, ε
cp
n , ωn, ξ

p
n , ξd

n )

4: Φd tr ial

n+1 ← Φd(εn+1, ε
cp
n , ωn, ξ

p
n , ξd

n )

5: if Φ p1tr ial

n+1 < 0 and Φ p1tr ial

n+1 < 0 and Φd tr ial

n+1 < 0 then
(.)n+1 ← (.)tr ial

n+1
return ◃ No Corrector Stage

6: else
Corrector(εn+1, ε

cp
n , ωn, ξ

p
n , ξd

n )
return ◃ Corrector Stage

7: end if
8: end procedure

6. Numerical examples

The finite element code, implemented with the plastic damaging interphase model presented, has been applied to
two numerical examples in order to test the numerical procedures and to show the capabilities of the model to simulate
experimental evidences that in some cases cannot be reproduced by the classical ZTI model.

Numerical calculations have been carried out on two case-studies regarding masonry material specimens. The finite
element models are two-dimensional in plane stress condition.

Example 1 consists of a masonry specimen subjected to a uniform uniaxial compression load. The aim of this
analysis is to demonstrate the relevant role played by internal stresses in the initiation and evolution of damage within
the mortar joints.

Example 2 regards the reproduction of the experimental results obtained by a diagonal compression test performed
on a masonry specimen at the DICAM laboratory of material and structures. In this case the material property of the
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Algorithm 2 Corrector algorithm

1: procedure CORRECTOR(εn+1, ε
cp
n , ωn, ξ

p
n , ξd

n )
2: ◃ Check active surfaces
3: if Φ p1tr ial

n+1 > 0 then
4: isActiveF1=true
5: end if
6: if Φ p2tr ial

n+1 > 0 then
7: isActiveF2=true
8: end if
9: if Φd tr ial

n+1 > 0 then
10: isActiveF3=true
11: end if
12: ◃ Assemble solving system
13: if isActiveF1 then
14: use Eq. (67)
15: end if
16: if isActiveF2 then
17: use Eq. (68)
18: end if
19: if isActiveF3 then
20: use Eq. (69)
21: end if
22:

23: compute ∆λp1,∆λp2,∆λd
◃ Solve assembled system

24:

25: (.)n+1 ← (.)tr ial
n+1 +∆(.)(∆λp1,∆λp2,∆λd) ◃ Update quantities

26:

27: ◃ Check initial hypotheses
28: if Φ p1

n+1 > 0 Or Φ p2
n+1 > 0 Or Φd

n+1 > 0 then
29: consistency condition violated
30: goto 13
31: end if
32: end procedure

blocks and of the mortar are known because evaluated in separate tests and the interface properties are calibrated in
order to fit the overall observed response of the material.

Displacement-driven analyses have been performed in order to capture the post-peak behavior.

6.1. Example 1

A masonry specimen constituted by a brick–mortar–brick sequence is uniformly compressed and the initiation and
evolution of damage is studied for the case of mortar joint stiffer than bricks. In this condition, the bricks tend to
expand more than the mortar in the horizontal direction because of the Poisson effect, but due to the higher stiffness,
the mortar opposes to this deformation. The bricks are, therefore, subjected to compression stresses while the mortar
to tension along the horizontal axis.

The geometry of the specimen, loads and displacement boundary conditions are illustrated in Fig. 3. The model
depth is posed equal to 120 mm.

The basic load q = 2 [kN/mm] is monotonically increased with the load multiplayer α. The elastic parameters
adopted for the brick and mortar materials and plastic and damage parameters of the interphase used are reported in
Tables 1 and 2, respectively.

The difference between the elastic moduli is exasperated to test the numerical performance of the interphase
element in the non linear range and to show more clearly the damage of the joint.
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Fig. 3. Example 1, masonry specimen subjected to uniaxial compression test.

Table 1
Example 1, Elastic parameters.

Bricks Mortar joints

E [MPa] 500 15,000
ν 0.3 0.2

Table 2
Example 1, Interphase plastic and damage parameters.

σ0 [MPa] c0 [MPa] φ [◦] δ [◦] h p ζ0 hd

1.0 4.5 30 20 1.0 0.001 0.0025

The numerical experiment is carried out making use of a finite element model with a refined mesh constituted by
20× 80 two-dimensional continuum elements for each brick and 80 interphase elements simulating the mortar joint.

In Fig. 4 the numerical results are illustrated in terms of internal stress σx and normal and tangential contact
tractions σz, τ .

In particular in Fig. 4(a), the distribution of the interphase stresses is reported for an elastic load step. According
to the theoretical treatment of the problem, the mortar joint is uniformly compressed in the vertical direction and is
subjected to a tensile internal stress with a parabolic type profile starting from the zero value at the border and attaining
the maximum value in the middle. The profile of the tangential stress is anti-symmetric with a zero value in the middle
and at the borders.

The first fracture appears in the middle of the interphase due to the damage of the bulk material for a load multiplier
α = 0.22. From the observation of the internal stress profile it is clear that the fracture is formed along the thickness
of the joint, subdividing the interphase into two equal parts. A marked modification of the tangential traction τ

distribution and a localized disturb in the normal traction profile can be also noticed.
For a value of α = 0.35, other two fractures appear in the two parts of the joint saving the symmetry of the problem.

The stress profiles are reported in the same Fig. 4(c). Increasing the compression load, Fig. 4(d), it can be observed a
sort of periodic onset of other fractures and asymptotically the interphase degenerates into the ZTI.
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Fig. 4. Example 1, internal and contact stresses in the joint for different values of load multiplier: α = 0.21 (a), 0.22 (b), 0.35, 0.50 (d).
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Fig. 5. Example 1, load–displacement diagrams.

The overall response of the masonry specimen is represented in the load–displacement diagrams of Fig. 5. As
expected, the masonry specimen in the direction orthogonal to the joint does not show the effects of damage initiation
and evolution. On the other hand, the fractures formation is evident when the load multiplier is plotted against the
horizontal displacement of the joint border since the diagram has a saw-tooth shape. In particular, the first fracture
appearing in the middle of the joint determines a quite evident reduction of the overall stiffness.

6.2. Example 2

The diagonal compression test performed on masonry specimens is used to determine the tensile strength of the
composite material. A square masonry panel is subjected to a compressive load directed along one diagonal of the
panel and the collapse mechanism generally observed is characterized by a crack starting from the center of the
specimen and passing through mortar joints. The standard interpretation of the test is that a diagonal crack appears
when the tensile principal stress in the material, assumed homogeneous, attains its maximum value.

In this numerical example a diagonal compression test developed at the DICAM laboratory is simulated. The
masonry specimen is made up of four courses of sandstone blocks assembled with calcium-cement mortar, Fig. 6. The
specimen has a squared shape with a length of 67 cm for each side. The single block is 33 cm wide, 16 cm high and
19.5 cm thick. The mortar layer has a thickness of 1 cm.

During the compression tests the load P has been monotonically increased up to the limit load value corresponding
to the collapse of the panel. The relative displacements along the y direction between the points A, B and along the x
direction between the points C, D have been registered in both sides of the specimen.
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Fig. 6. Example 2, masonry specimen subjected to diagonal compression test.

Fig. 7. Example 2, experimental and numerical load–displacement diagrams.

Table 3
Example 2, Elastic parameters.

Bricks Mortar joints

E [MPa] 11,142 37,000
ν 0.25 0.14

The experimental points are plotted in Fig. 7 in terms of applied load P and relative displacements δh = uCx−u Dx
and δv = u By − u Ay . The limit load, assumed equal to the peak value, is 148,07 kN corresponding to the vertical and
horizontal relative displacements δh = 0.07 mm and δv = 0.40 mm, respectively. From the crack path experimentally
obtained and depicted in Fig. 8, it appears that the fracture prevalently follows the mortar joints and passes through
the first block of the second course.

Assuming the masonry material isotropic and making use of the elastic solution provided by Frocht [19], the
diagonal tensile strength of the masonry material results fdt = Pu/2A = 0.57 MPa where A is the area of the panel
cross section.

The virtual diagonal compression test is performed by a finite element model where the blocks are considered linear
elastic and modeled making use of two-dimensional continuum elements (4-noded) and the mortar joints are simulated
by elastoplastic-damaging interphase elements (4-noded). The single block is discretized by 4 × 8 two-dimensional
elements and the single mortar joint by 8 interphase elements.

The elastic properties of block and mortar materials are reported in Table 3. The inelastic parameters of the
interphase are reported in Table 4.
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Fig. 8. Example 2, experimental and numerical, collapse mechanism.

Table 4
Example 2, Interphase plastic and damage parameters.

σ0 [MPa] c0 [MPa] φ [◦] δ [◦] h p ζ0 hd

1.0 5.0 35 20 0.04 0.00001 0.001

The numerical results in terms of applied load and relative displacements are illustrated in the diagram of Fig. 7
together with the experimental points. In Fig. 8 the numerical and collapse mechanisms are illustrated. In the numerical
model, the main fracture is forced to follow a zig–zag pattern since the masonry blocks are indefinitely elastic and
this fact leads to some discrepancy between the numerical and experimental results. Overall, the virtual test well
reproduces the experimental one.
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7. Conclusions

The mesomodeling of masonry structures is treated in the present paper making use of the interphase concept to
simulate the mechanical behavior of mortar joints. The interphase model represents the enhancement of the zero-
thickness interface and is particularly useful for those cases where the joint internal stresses and strains play a crucial
role in the response of the composite material.

It has been shown a peculiar feature of the interphase model. Differently to the ZTI model, where the non linear
phenomena in the thin layer and at the interfaces are both governed by the contact tractions and a unique constitutive
law must describe the overall response, the distinction of contact tractions and internal stresses allows to introduce
different failure conditions for the physical interfaces and for the bulk material. In the present work it has been assumed
that the joint stiffness degradation is related to the damage of the bulk material and that the onset of irreversible
displacements coincides with the attainment of a specific yield condition at the physical interfaces.

On the base of the previous assumptions, the non linear interphase model has been formulated straightforwardly
from an appropriate definition of the Helmholtz free energy where contact and internal strains represent the
kinematical variables and where internal variables are introduced in order to regulate the evolution of stiffness
degradation and of irreversible displacements.

The non linear interphase constitutive laws have been rewritten in discrete form suitable to be implemented in a
standard finite element code. The principal aspects of the algorithm implementation are illustrated in detail and the
effectiveness of the numerical procedure has been validated with two examples.

The numerical results show that the interphase model is capable to simulate the non linear deformation phenomena
at the joints and the failure modes of the masonry material observed in the experimental tests, which cannot be
predicted with the standard zero thickness interface models. Furthermore, the numerical values match quite well with
the experimental measurements.
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