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In this paper the authors show that fractional-order force-flux relations are obtained con-
sidering the flux of a viscous fluid across an elastic porous media. Indeed the one-dimen-
sional fluid mass transport in an unbounded porous media with power-law variation of
geometrical and physical properties yields a fractional-order relation among the ingoing
flux and the applied pressure to the control section. As a power-law decay of the physical
properties from the control section is considered, then the flux is related to a Caputo frac-
tional derivative of the pressure of order 0 6 b � 1. If, instead, the physical properties of the
media show a power-law increase from the control section, then flux is related to a frac-
tional-order integral of order 0 6 b � 1. These two different behaviors may be related to
different states of the mass flow across the porous media.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion in biophysics and medical sciences is a crucial mechanism of transport of chemical species and masses across
biological structures and ultrastructures including cell membranes, epithelial tissues, and perfused organs parenchima. The
basic relations ruling the transport of chemical species by diffusion is the so-called Fick equation that relates, linearly, the
flux of chemical species moving in a fluid media to the concentration gradient in the direction of transport.

A similar phenomena is encountered in the mass transport of fluid particles across a porous media. In this regard the flux
of fluid mass is related, linearly, to the gradient of hydraulic load along the flux, neglecting the contribution of the kinetic
energy due to the small speed of the particle flow. The transport equation, formally analogous to the Fick relation is the
so-called Darcy equation so that transport of chemical species and fluid transport across a porous media are both dubbed
as diffusive problems.

The linear diffusive equations, either in the form of Fick or of Darcy, has shown, however, several discrepancies with
observed experimental data [1–3]. Indeed the time evolution of the concentration and velocity profile predicted by Fick
or Darcy is described by exponential-type solution and, several deviations from experimental results have been found in
aly. Tel.:
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scientific literature regarding fluid flows in biological tissues [4,5] usually referred to long-tails of the diffusion pro-
cesses as well as through biological membranes [6,7]. The difference among Fick prediction and experimental results
have been captured, recently, considering particle transport at nanometric scale by means of molecular dynamics
simulations [8–11].

In such cases the deviations have been modeled introducing an acceleration contribute to the transport equation in the
form of a time-derivative of the flux vector [12] yielding an hyperbolic partial differential equation for the pressure field
(Brinkman correction). As an alternative, some corrections to the classical Darcy and/or Fick equations have been proposed
in scientific literature, resorting to non-linear, Forchheimer-type, corrective terms of the state variables of the problem lead-
ing to non-linear space–time PDE [12].

The choice of the state variables in the transport equation is related to the state of the matter either in solid, liquid or gas
phase. However, biological soft matter, at cellular and/or tissue resolution is far from the distinction in one of the three fun-
damental state of the matter and intermediate behavior is to be expected as shown by the deviations of experiments from
theoretical predictions ([13–15]). The main question about the physical model of the phenomenological Forchheimer or
Brinkman-type correction is still an open problem and no studies in scientific literature have been provided.

Recent approaches involving the use of Continuous Time Random Walk (CTRW) models to describe the random path of
contaminant flux plumes in heterogeneous porous media have shown that the statistical moments of the concentration
decays in time with power-laws exponent different from b ¼ 1

2 that is expected for Brownian path of the contaminant
(see e.g. papers by [16–18] and references cited therein). The approach followed in these studies relies on the consideration
that the presence of a probability density function (pdf) of the mechanical features of the porous media, that is the presence
of a stochastic porous solid, involves a material heterogeneity at any length scale that affects, significatively, the effective
transport parameter across the porous solid.

A different approach to handle deviations from the classical diffusion has been framed, since the end of the last century, in
the context of anomalous diffusions in terms of power-laws with real exponents. In this latter case a recently proposed ana-
lytic description of transport across a porous media has involved, after some experimental set-up [19], the use of fractional-
order integrals and derivatives [20]. The main reason to use extended, real-order, operators in Fick/Darcy transport equation,
beside the integer-order counterpart, relies in the memory effect induced by the interactions of fluid particles with pores of
the considered media. In this setting the transport equations has been modified introducing convolution integrals of time
with power-law kernels.

The main feature of these studies involves the replacement of classical integer-order differentials with their modern

counterpart known as fractional-order derivatives, namely df tð Þ
dt !

d bð Þf
dt bð Þ with b a real-order number as reported in ([21–24])

but no physical/mechanical model has ever been provided to justify such an assumption.
In this study the authors aim to provide a mechanical justification for the presence of anomalous diffusion in porous

media as recently provided in scientific literature for the hereditary behavior of the matter [25,26] as well as in bone tissues
viscoelasticity [27]. It will be shown that fractional-order operators arise in terms of a macroscopic transport equation as an
1D mass transport in a porous media with power-law variations of permeability and porosity is considered. The obtained
force-flux relations will involve fractional operators with order �1 6 b � 1 as it will be shown in the course of the paper.
The proposed model may be considered as the macroscopic equivalent of the random models based on the CTRW assuming
that the measure of the fluid particle motion is represented by the overall fluid mass instead than the pdf of the concentra-
tion of the moving molecules. In this regard the derivation of the anomalous transport parameters involved in the fractional-
order generalization of the Darcy equation by means of the microscopic probabilistic features of the underlying random
process is underway and it will be reported elsewhere.

2. Remarks on fractional-order differential calculus

Fractional calculus may be considered the extension of the ordinary differential calculus to non-integer powers of deri-
vation orders (e.g. see [21,22]). In this section we address some basic notions about this mathematical tool.

The Euler-Gamma function CðzÞmay be considered as the generalization of the factorial function since, as z assumes inte-
ger values as Cðzþ 1Þ ¼ z! and it is defined as the result of the integral as follows:
CðzÞ ¼
Z 1

0
e�xxz�1dx: ð1Þ
The Riemann–Liouville fractional integrals and derivatives with 0 < b < 1 of functions defined on the entire real axis have
the following forms:
Ibþf
� �

tð Þ ¼ 1
CðbÞ

Z t

�1

f ðsÞ
ðt � sÞ1�b

ds; ð2aÞ

Db
þf

� �
tð Þ ¼ 1

Cð1� bÞ
d
dt

Z t

�1

f ðsÞ
ðt � sÞb

ds: ð2bÞ
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The Riemann–Liouville fractional integrals and derivatives with 0 < b < 1 of functions defined over intervals of the real axis,
namely f ðtÞ such that t 2 ½a; b� � R, have the following forms:
Ibaf
� �

tð Þ ¼ 1
CðbÞ

Z t

a

f ðsÞ
ðt � sÞ1�b

ds; ð3aÞ

Db
af

� �
tð Þ ¼ f ðaÞ

Cð1� bÞðt � aÞb
þ 1

Cð1� bÞ

Z t

a

f 0ðsÞ
ðt � sÞb

ds: ð3bÞ
Beside Riemann–Liouville fractional operators defined above, another class of fractional derivative that is often used in the
context of fractional viscoelasticity is represented by Caputo fractional derivatives defined as:
CDb
aþ f

� �
tð Þ :¼ Im�b

aþ Dm
aþ f

� �
ðtÞ m� 1 < b < m ð4Þ
and whenever 0 < b < 1 it reads as follows:
CDb
aþ f

� �
tð Þ ¼ 1

Cð1� bÞ

Z t

a

f 0ðsÞ
ðt � sÞb

ds: ð5Þ
A closer observation of Eq. (4) and Eq. (5) shows that Caputo fractional derivative coincides with the integral part of the
Riemann–Liouville fractional derivative in bounded domain. We conclude that Caputo fractional operators, coincide with
Riemann–Liouville fractional derivatives in Eq. (2) as f ðaÞ ¼ 0, that is for vanishing boundary conditions. Additionally, the
definition in Eq. (6) implies that the function f ðtÞ has to be absolutely integrable of order m (e.g. in (5) the order is
m ¼ 1). Whenever f ðaÞ ¼ 0 Caputo and Riemann–Liouville fractional derivatives coalesce.

Similar considerations hold true also for Caputo and Riemann–Liouville fractional derivatives defined on the entire real
axis. Caputo fractional derivatives may be considered as the interpolation among the well-known, integer-order derivatives,
operating over functions f ð�Þ that belong to the class of Lebesgue integrable functions (f ð�Þ 2 L1) as a consequence, they are
very useful in the mathematical description of complex system evolution.

It is worth introducing integral transforms for fractional operators. Similarly to classical calculus, the Laplace integral
transform Lð�Þ is defined in the following forms:
L Db
0þ f

� �
tð Þ

h i
¼ sbL½f ðtÞ� ¼ sb~f ðsÞ; ð6aÞ

L Ib0þ f
� �

tð Þ
h i

¼ s�bL½f ðtÞ� ¼ s�b~f ðsÞ: ð6bÞ
In the same way, the Fourier integral transform Fð�Þ assumes the following forms:
F Db
þf

� �
tð Þ

h i
¼ ð�ixÞbF½f ðtÞ� ¼ ð�ixÞb f̂ ðxÞ; ð7aÞ

F Ibþf
� �

tð Þ
h i

¼ ð�ixÞ�bF½f ðtÞ� ¼ ð�ixÞ�b f̂ ðxÞ: ð7bÞ
We recall that the Laplace and Fourier integral transforms are defined as follows:
L½f ðtÞ� ¼
Z 1

0
f ðtÞe�stdt; ð8aÞ

F½f ðtÞ� ¼
Z þ1

�1
f ðtÞe�ixtdt: ð8bÞ
These mathematical tools may be very useful to solve systems of fractional differential equations, which appear more and
more frequently in various research areas and engineering applications [22]. An example of the application of Laplace trans-
form to the solution of fractional-order differential equations is provided as we consider the following differential equation
of order b ¼ 1=2:
D
1
2
0f

� �
tð Þ þ af ðtÞ ¼ 0 ð9Þ
with the following initial condition
C ¼ D�
1
2

0 f
� �

tð Þ
h i

t¼0
; ð10Þ
that occurs very often in electrical engineering contexts. The use of the Laplace integral transform allows for writing the
solution in the s-mapped domain as follows:
~f ðsÞ ¼ C
s1=2 þ a

: ð11Þ
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Whenever the time domain is restored, the solution has the following form:
Fig
f ðtÞ ¼ Ct�
1
2E1

2;
1
2
�a

ffiffi
t
p� �

; ð12Þ
where Ea;bðzÞ is the Mittag–Leffler function, defined as follows:
Ea;bðzÞ ¼
X1
k¼0

zk

Cðakþ bÞ a > 0; b > 0: ð13Þ
In the textbook of Podlubny [22] (p. 21) an expression for the Laplace transform can be found in the following form
L t
k�1

2 EðkÞ1
2;

1
2

a�
ffiffi
t
p� �h i

¼ k!ffiffi
s
p
� a

� �kþ1 ; ð14Þ
where the notation 	½ �k denotes the kth-derivative. We recognize that in Eq. (11) k ¼ 0, henceforth the time domain solution
reads has the form reported in Eq. (12) (see e.g. [21,22] for details on fractional-order calculus).

3. Anomalous fluid diffusion in porous media

The use of fractional-order calculus to model diffusion in porous media may be traced back to studies published by the
end of the last century [19]. In these studies the force-flux relation provided by Darcy linear relation was modified to include
changes in physical properties of the porous media during the flow. Indeed, the well-known diffusion problem in porous
media is ruled by the equations (see e.g. Fig. 1(a) and (b) for 1D diffusion):
q x; tð Þ ¼ �q0kðxÞrp x; tð Þ;
@q x; tð Þ
@t

¼ @q x; tð Þ
@p

@p x; tð Þ
@t

¼ q0

KðxÞ
@p x; tð Þ
@t

;

@q x; tð Þ
@t

þr 	 q x; tð Þ ¼ 0;

8>>>>><
>>>>>:

ð15Þ
where r 	½ � ¼ @½	�
@x1

i1 þ
@½	�
@x2

i2 þ
@½	�
@x3

i3 denotes the Laplacian operator, q x; tð Þ ¼ q1ðxÞ q2ðxÞ q3ðxÞ½ �T is the vector of mass flux

across a generic cross-section with q½ � ¼ FT

L3 ; kðxÞ is the Darcy conductivity coefficient with k½ � ¼ L4

FT
depending of the material

permeability and of the viscosity of the embedded fluid, ½q x; tð Þ� ¼ FT2

L4 is the fluid mass density in the control volume consid-

ered, ½q0� ¼
FT2

L4 is the fluid mass density in the reference configuration, KðxÞ with K½ � ¼ F
L2 is the bulk modulus of the porous

material and ½p x; tð Þ� ¼ F

L2 is the pressure field.

The anomalous force-flux relation in advection/diffusion has been obtained in terms of a modified transport equation as:
f 1ðtÞ 
 q x; tð Þ ¼ f 2ðtÞ 
 rp x; tð Þ; ð16Þ
where the symbol 
 indicates convolution products among the functions f 1ðtÞ, and f 2ðtÞ which is defined, for functions f ðtÞ
and gðtÞ, as:
f ðtÞ 
 qðtÞ ¼
Z t

0
f ðt � sÞgðsÞds: ð17Þ
. 1. 1D fluid transport in porous media: (a) the physical model of anomalous diffusion; (b) the mass balance equation in the elementary cell.
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As we assume that functions f 1ðtÞ and f 2ðtÞ are fluid and solid dependent differential operators provided in the form:
f 1ðtÞ ¼ cdðtÞ þ e t�n1

Cð1� n1Þ
@

@t
	½ �; ð18aÞ

f 2ðtÞ ¼ cdðtÞ þ dt�n2

Cð1� n2Þ
@

@t
	½ �; ð18bÞ
where dðtÞ is the Dirac-delta function, the real-order exponents 0 < n1 < 1;0 < n2 < 1 as well as c; e; c and d are model
parameters. The substitution of Eq. (16) with the transport fluid-pressure relation in Eq. (15) has been dubbed memory for-
malism (see e.g. paper [20]). The introduction of the memory formalism contributions to the Darcy diffusion equation is used
to capture changes in the chemical/physical properties of the pores as well as of the interactions among pore channels and
fluid particles of the porous media during the transport process.

As we replace the expressions for functions f 1ðtÞ and f 2ðtÞ in the convolution products in Eq. (16) the transport equation is
expressed as:
ðcþ eDn1 Þq ¼ �ðc þ dDn2 Þrp; ð19Þ
where Dn1
0þ ½	�

� �
tð Þ and Dn2

0þ ½	�
� �

tð Þ are Caputo fractional derivatives. In this letter case the governing equation may be
obtained introducing divergence operator of Eq. (19) as:
ðcþ eDn1 Þrq ¼ �ðc þ dDn2 Þr2p; ð20Þ
while the continuity equation, in term of pressure-flux variables reads:
1
K
@p x; tð Þ
@t

þrq x; tð Þ ¼ 0; ð21Þ
yielding the field equation in the form:
½cþ e Dn1
0þ ½	�

� �
tð Þ� @p

@t
¼ K½c þ d Dn2

0þ ½	�
� �

tð Þ�r2p: ð22Þ
Eq. (21) is the generalized, long memory pressure field equation that has been used in a slightly more general form to fit
experimental data from different experimental set up showing an excellent agreement with measured temporal evolution
of the flux [20].

Summing up, as we introduce the memory formalism, an alternative force-flux relation is introduced to account for the
changes in the physical properties of the porous heterogeneous material. The changes may involve variation of the perme-
ability of the media with time as well as microscopic changes of the fluid viscosity during the interactions with the solid
particles of the porous material. In this setting the memory formalism has proved to be an efficient tool to predict the devi-
ations of the measured outgoing flux from the exponential-type decay obtained with the use of Darcy transport relations in
terms of the diffusion problem. However the presence of a convolution relation in the memory formulation of the Darcy
equation has not been justified neither mechanically and geometrically.

This is analogous to the use of fractional-order calculus to other fields of mechanics [28–31] and thermodynamics [32,33].
In this regard, in the latter scientific literature appropriate representation of fractional-order operators have been introduced
in the field of solid and material mechanics [34–38] as well as in thermodynamical setting (see papers by [39–41]).

In the next section the authors will show that the presence of fractional-order operators in the force flux relations cor-
respond to a macroscopic relation of advection in a porous media with spatially-varying physical properties in presence
of a one-dimensional mass transport.
4. A mechanical picture of the anomalous transport equations

In the previous section we reported the main assumptions of the anomalous transport obtained by means of the gener-
alization of the Darcy relation. The need for an alternative formulation of the Darcy transport relies on the consideration that
any variation of the pressure gradient rp x; tð Þ is instantaneously transferred in the flux q x; tð Þ, and consequently, instanta-
neous change in the outgoing flux is evidenced in the pressure gradientrp x; tð Þ. This consideration holds true, only, for mod-
erate time-changes in the flux and/or in driving pressure gradients, but, as well as, the macroscopic flux is the result of a
smaller scale flux in a porous media, the instantaneous dependence of the flux by the driving pressure gradient is no more
acceptable. In this regards appropriate changes in the transport equations introducing acceleration terms and proper relax-
ation times of the flux field have been proposed in the literature (see e.g. [9]). The generalization of these relations by means
of fractional-order calculus represents, indeed, an attempt to capture intermediate effects that are neither diffusive-and con-
vective-types. The mechanics beyond fractional generalization, is, however still uncovered and, in this paper, we provide a
first attempt to the topic. In this regard we consider an 1D fluid motion in a porous media under different conditions: (i) The
case of uniform physical properties of the fluid and solid phase and; (ii) The case of a spatially varying properties, either of
solid and fluid phase in terms of material compressibility and fluid conductivity.
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The formulation will be discussed, without loss of generality for a 1D fluid velocity field in a saturated porous media as it
will be reported in the next section.

4.1. Uniform fluid diffusion in homogeneous porous media

Let us consider a 1D fluid motion across an uniform porous media in the horizontal direction. Let us assume, moreover,
that the incoming flux at the origin of the coordinate axis qxð0; tÞ ¼ q0ðtÞ is measured, that is the cross-section at x ¼ 0 is the
control section (see Fig. 1(a)). Let us assume, moreover, that the pressure field, measured at x!1, is vanishing so that the
asymptotic boundary condition reads:
lim
x!1

pðx; tÞ ¼ 0 8t: ð23Þ
In this context the pressure field,obtained by combination of the Eqs. (10) is provided as:
C
@p x; tð Þ
@t

¼ k
@2p x; tð Þ
@x2 ; ð24Þ
where C ¼ 1
K is the bulk compliance of the saturated porous media and the associated boundary condition (for x! 0) read:
lim
x!0

pðx; tÞ ¼ p0 tð Þ; ð25Þ
where p0 tð Þ is the applied pressure at the control section.
The evaluation of the pressure field in the porous media domain is obtained with Laplace transforms as:
Csbpðx; sÞ ¼ k
d2bpðx; sÞ

dx2 : ð26Þ
Solution of Eq. (26) may be obtained as a linear combination of exponential functions as:
bp x; sð Þ ¼ Ae�
ffiffiffi
C
ks
p

x þ Be
ffiffiffi
C
ks
p

x: ð27Þ
Position of the boundary condition in Eq. (23) and (25) yields B ¼ 0 A ¼ bp0 sð Þ in this regard the pressure field bpðx; sÞ in the
porous domain is obtained in the functional class of the spatial exponential decay as:
bp x; sð Þ ¼ bp0 sð Þe�
ffiffiffi
C
ks
p

x; ð28Þ
that may be reported to a relation among the ingoing flux q0 tð Þ across the control section and the applied pressure p0 tð Þ as:
bq0ðsÞ ¼ �q0k
@p
@x

� �
x¼0
¼ q0

ffiffiffiffiffiffi
Ck
p bp0 sð Þs1

2: ð29Þ
Introducing inverse Laplace transform a fractional-order derivative with Caputo fractional operator among the ingoing mea-
sured flux and the applied pressure is obtained as:
q0 tð Þ ¼ q0

ffiffiffiffiffiffi
Ck
p

CD
1
2
0þp0

� �
tð Þ ¼ R1=2 CD

1
2
0þp0

� �
tð Þ; ð30Þ
where ½R1=2� ¼ T3=2=L is the anomalous mass diffusivity. Introducing the inverse Laplace transform a fractional-order relation
among the obtained pressure and the applied ingoing flux is obtained as:
p0 tð Þ ¼ 1
q0

ffiffiffiffiffiffi
Ck
p I

1
2
0þq0

� �
tð Þ ¼ 1

R1=2
I

1
2
0þq0

� �
tð Þ; ð31Þ
that corresponds to a long-memory relation among flux q0 tð Þ and the measured pressure p0 tð Þ. In passing we observe that the
inverse relation in Eq. (31) is obtained under the assumption of vanishing initial flux q0ð0Þ ¼ 0 and p0ð0Þ ¼ 0. In this regard the
fractional-order generalization of Darcy equation may involve either the Riemann–Liouville or the Caputo fractional derivative.

The observation of Eq. (31) shows that as for as we control the pressure at x ¼ 0, the ingoing flux dependents an the his-
tories of the pressure field with a fractional derivative order b ¼ 1=2. On the other hand, if we control the flux across the
cross section at x ¼ 0 the measured pressure depends on the flux histories with a fractional-order integral of order b ¼ 1=2.

The generalization of the force-flux relations in Eqs. (30) and (31) is provided in the next section for values of the differ-
entiation order b 2 R yielding, on physical basis, appropriate bounds to the differentiation order. Indeed it may be observed
that the relation among the flux velocity field and the gradient of pressure may be written as:
@ð0Þq x; tð Þ
@tð0Þ

¼ �q0k
@ð0Þ

@tð0Þ
@p
@x

x; tð Þ; ð32Þ
where we denoted
@ð0Þf x; tð Þ
@tð0Þ

¼ f x; tð Þ. The transport relation in the form in Eq. (32) yields to conclude that the 0th-order time

derivative of the flux is related to the 0th-order time derivative of the pressure gradient. However the relation obtained in
Eqs. (30) and (31) yields that, as the fluid transport occurs in a proper media, then the flux is related to the fractional-order
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derivative of order b ¼ 1
2 of the pressure applied in the control section. Appropriate generalization of the differentiation order

must account for two main physical behavior: (i) A purely inertial fluid yielding a relation involving first order time deriv-
ative of the flux and the pressure and (ii) A purely elastic fluid yielding a relation among the pressure and the first-order
integral of the velocity field. Bounds of the fractional differentiation order b 2 �1;1½ � satisfies those requirements yielding
appropriate bounds on the decaying coefficient a as reported in the following section.

4.2. One-dimensional fluid diffusion in non-homogeneous porous media

In this section the authors will introduce the generalized version of the force-flux relation proposed in Eqs. (30) and (31)
for b ¼ 1=2 to arbitrary values of fractional differentiation order b. To this aim let us consider that the flux qðx; tÞ occurs in an

heterogeneous porous media with compressibility coefficient CðxÞ ¼ 1
KðxÞ and diffusion coefficient kðxÞ. in this setting the

governing equations of the problem reads:
q x; tð Þ ¼ �q0k xð Þ @p x; tð Þ
@x

;

@pðx; tÞ
@t

¼ KðxÞ
q0

@q x; tð Þ
@t

¼ 1
q0CðxÞ

@q x; tð Þ
@t

;

@q x; tð Þ
@t

þ @q x; tð Þ
@x

¼ 0;

8>>>>>><
>>>>>>:

ð33aÞ
that after proper substitution yields the field equation for the pressure field in the porous domain as:
CðxÞ @p x; tð Þ
@t

¼ @

@x
kðxÞ @p x; tð Þ

@x

	 

; ð34Þ
that is a partial differential equation for the pressure field p x; tð Þ with variable coefficients CðxÞ and kðxÞ. Let us assume that
the variation of the diffusive and mechanical properties of the two phases variate with the power law from the origin of the
coordinate system as:
C xð Þ ¼ Cax�a

Cð3� aÞ ; ð35aÞ

k xð Þ ¼ kax�a

Cð3þ aÞ ; ð35bÞ
where ka½ � ¼ FTð Þ�1L4þa and Ca½ � ¼ F�1L2þa are, respectively, the anomalous diffusivity, the compressibility modulus of the
saturated porous material and a is a real exponent that must belong to a specific subset of the real axis as it will be reported
in the following discussion.

In this regard, the pressure field may be obtained introducing Laplace transform of Eq. (34), and referring to a pressure
gradient for unitarly length as bp x; sð Þ ¼ L p x; sð Þ½ � in Eq. (35), an ordinary differential equation in Laplace domain is obtained in
the form:
d
dx

k xð Þdp̂ x; sð Þ
dx

	 

¼ sC xð Þp̂ x; sð Þ; ð36Þ
that may be cast, after some straightforward manipulation as:
d2p̂ s; xð Þ
dx2 þ k0 xð Þ

k xð Þ
dp̂ s; xð Þ

dx
� C xð Þ

k xð Þ sp̂ s; xð Þ ¼ 0: ð37Þ
Substitution for the diffusivity coefficient k xð Þ and the compressibility C xð Þ the corresponding power-laws reported in Eqs.
(34 a,b) the differential equation ruling the pressure field reads:
d2p̂ x; sð Þ
dx2 � a

x
dp̂ x; sð Þ

dx
� dasp̂ x; sð Þ ¼ 0 ð38Þ
with da ¼ CaCð3þ aÞ=kaCð3� aÞ is a characteristic time rate of change of the flux across the porous media. The governing
equation of the pressure field may be reverted into a Bessel equation of the second kind introducing an auxiliary function:
p x; sð Þ related to the unknown function p̂ x; sð Þ by means of the non-linear mapping p̂ x; sð Þ ¼ xap x; sð Þ so that first and
second-order derivatives involved in Eq. (38) read:
dp̂ x; sð Þ
dx

¼ axa�1p x; sð Þ þ xa dp x; sð Þ
dx

; ð39aÞ

d2p̂ x; sð Þ
dx2 ¼ d

dx
axa�1p x; sð Þ þ xa dp x; sð Þ

dx

	 

¼ a a� 1ð Þxa�2p x; sð Þ þ 2axa�1 dp x; sð Þ

dx
þ xa d2p x; sð Þ

dx2 ð39bÞ
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and substitutions into Eq. (38) yields a modified Bessel equation for function p x; sð Þ as:
x2 d2p x; sð Þ
dx2 þ ax

dp x; sð Þ
dx

� x2dasþ a
� �

p x; sð Þ ¼ 0: ð40Þ
Eq. (40) may be solved in terms of the first and the second modified Bessel functions denoted, respectively Yb x
ffiffiffiffiffiffiffi
das
p� �

and
Kb x

ffiffiffiffiffiffiffi
das
p� �

defined as:
Yb xð Þ ¼
X1

k¼0

x=2ð Þbþ2k

k!Cðkþ bþ 1Þ ; ð41aÞ

Kb xð Þ ¼ p
2sin 2pbð Þ Y�b xð Þ � Yb xð Þ

� �
; ð41bÞ
yielding a solution of the modified Bessel function in the form:
p̂ x; sð Þ ¼ xb B1Yb x
ffiffiffiffiffiffiffi
das

p� �
þ B2Kb x

ffiffiffiffiffiffiffi
das

p� �� �
; ð42Þ
where we introduced the a-dependent relaxation time and the index b that are defined, respectively, as:
b ¼ ð1þ aÞ
2

: ð43Þ
Integration constants B1 and B2 in Eq. (38) are defined as we impose the relevant boundary conditions that are defined in
Laplace domain as:
lim
x!

p̂ x; sð Þ ¼ bp0 sð Þ; ð44aÞ

lim
x!1

p̂ x; sð Þ ¼ 0; ð44bÞ
yielding the integration constants:
B1 ¼ 0; B2 ¼
p̂0 sð Þ

C bð Þ2b�1 dasð Þb=2
: ð45Þ
The pressure field of the fluid phase reads:
p̂ x; sð Þ ¼
bp0 sð Þ

C bð Þ2b�1 dað Þb=2x1�bKb x
ffiffiffiffiffiffiffi
das

p� �
: ð46Þ
The force-flux relation at x ¼ 0 is then provided at the limit
lim
x!0
� q0k xð Þ @p̂ x; sð Þ

@x
¼ q̂0 sð Þ; ð47Þ
yielding the flux in the control section bq0 sð Þ as function of the applied pressure bp0 sð Þ
q0 tð Þ ¼ Rb CDb
0þp0

� �
tð Þ; ð48Þ
where we denoted q0kb dað Þb ¼ Rb the apparent anomalous resistivity of the porous media to the mass flow and the coeffi-
cient kb reads:
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0.0
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Fig. 2. Time evolution of non-dimensional flow across control section for different values of differentiation order: visco-inertial fluids.
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Fig. 3. Time evolution of non-dimensional flow across control section for different values of differentiation order: visco-Elastic fluid.
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kb ¼
kaC 1� bð Þ

C 2 1� bð Þð ÞC bð Þ21�2b
: ð49Þ
It follows that, the mechanical picture of a viscous flow in a porous media with non-homogeneous mechanical features
varying with power-laws correspond, exactly, to a force-flux relation in terms of Caputo’ fractional derivatives and integrals.
(see Fig. 2)

The mechanical model introduced in Fig. 3 corresponds, to values of the fractional differentiation order b 2 �1;1½ �
yielding a decaying exponent of diffusivity and the compressibility coefficient a 2 �3;1½ � (see Eq. (43)).

Boundaries of exponent a have been introduced for two mechanical reasons: (i) values of a > 1 cannot be accepted since,
in this case b > 1 that is the value corresponding to a time integration of order one of the flux across the control section, that
represents a displacement from a physical perspective; (ii) Values of the exponent a < �3 cannot be accepted since they cor-
responds to b 6 �1 that is the value corresponding to force-flux relations involving order of time differentiation of the veloc-
ity field higher than that corresponding to inertial forces and, therefore, not acceptable in a physical framework. We
conclude that, as we consider two different variation ranges of the differentiation order b as 0 6 b � 1 and �1 6 b � 0 we
are dealing with two different macroscopic behaviors. In the former case, we are dealing with a fluid with a constitutive
equation interpolating among a purely viscous and a purely elastic behavior and, therefore we may define it as a ViscoElastic
(VE) fluid. In the latter case, instead, we are considering a fluid with an intermediate behavior among a pure inertial and pure
viscous case, and, therefore, we define it as a ViscoInertial (VI) fluid.

The derivations of the fractional-order generalization of Darcy diffusion equations presented up to this point involves
mass transport across an unbounded porous media. However, real-type transport phenomena occur, usually, in bounded
models so that, as general comment a fractional generalization of the transport equation is obtained. In this case it may
be expected that the outgoing flux �q0 tð Þ follows with a good approximation a power-law / tb up to a cut-off time �t. For
t P �t the outgoing flux �q0 tð Þ reaches a stationary value depending upon the physical and geometrical properties of the por-
ous media as well as on the rheological properties of the circulating fluid. Such a behavior have already been observed for the
rheological models of power-law memory functions involved in fractional-order hereditariness (see [22,25–27]).
5. Conclusions

In this paper the authors discuss the origin of anomalous fluid diffusion across a porous media. In this regard it has been
observed that the presence of an 1D mass transport in a unbounded porous media and subjected to an uniform pressure in
the control section yields a relation among the applied pressure field and the ingoing flux in terms of a fractional-order deriv-
ative of order 1=2. As the physical and geometrical coefficients of the porous solid vary with power law, a generalized rela-
tion among flux and pressure in terms of fractional-order integrals and derivatives is obtained. This result represent a first
step toward the use of fractional-order calculus for the mechanical description of anomalous diffusion in biological environ-
ment. Indeed, it is well-known that diffusion across cell membrane, as well as across perfused tissues as liver, rines as well as
pancreatic tissue deviates from predictions of Darcy/Fick relations and more realistic relations have been reported in terms
of extension of classical transport relations involving non-linear terms. In this paper those deviations have been predicted in
terms of the fractional-order calculus introducing a fluid-mechanics description of the generalized Darcy diffusion equation.
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