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Abstract: This paper presents the sensitivity and uncertainty analysis of a mathematical model for 
Greenhouse gas (GHG) and energy consumption assessment from wastewater treatment plants 
(WWTPs). The model is able to simultaneously describe the main biological and physical-chemical 
processes in a WWTP. Specifically, the mathematical model includes the main processes of the water 
and sludge lines influencing the methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) 
emissions. Further, the process energy demand and the energy recovery are also taken into account. 
The main objective of this paper is to analyze the key factors and sources of uncertainty influencing 
GHG emissions from WWTP at a plant-wide scale. The results show that influent fractionation has an 
important role on direct and indirect GHGs production and emission. Moreover, model factors related 
to the aerobic biomass growth show a relevant influence on GHGs in terms of power requirements. 
Thus, a good WWTP design and management aimed at limiting the GHG emission should carefully 
take into account the aeration system model to reduce GHG emission associated with electrical power 
demand. Also, the N2O emission associated with the effluent has the highest relative uncertainty 
bandwidth (1.7), suggesting one more need for a mechanistic model for N2O production in biological 
treatment. 
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1. INTRODUCTION 
 
The interest for greenhouse gas (GHG) emissions from wastewater treatment plants (WWTPs) has 
considerably increased in the recent past (Monteith et al, 2005; Kampschreur et al., 2009; Flores-
Alsina et al., 2011; Corominas et al., 2012; Law et al., 2012). WWTPs involve three different sources 
of GHGs emission: direct, indirect internal and indirect external (GRP, 2008). These three sources 
belong to the scopes established by the World Resources Institute (WRI) and the World Business 
Council for Sustainable Development (WBCSD) in the GHG Protocol Standard to classify emissions 
(scope 1, scope 2, and scope 3). The three scopes provide a comprehensive framework to account, 
manage and reduce direct and indirect emissions. Direct emissions of WWTPs are mainly related to 
the biological processes (emission of carbon dioxide-CO2 from biomass respiration; biogas fugitive 
emissions from digesters and gas lines); indirect internal emissions are associated with the 
consumption of purchased or acquired electric or thermal energy; finally indirect external emissions 
are related to all that sources not directly controlled inside the WWTP (e.g., sludge disposal, 
production of chemicals that are used in the plant). The main GHG emitted from a WWTP are CO2, 
methane (CH4) and nitrous oxide (N2O). The fraction of short-lived carbon in the wastewater is not of 
concern for CO2 emission, while attention must be given to long-lived carbon and the other GHGs 
(Law et al, 2013). Among the GHGs emitted from WWTPs, N2O merits to be investigated and reduced 
due to its high global warming potential (GWP) that is about 298 times bigger than for CO2 (IPCC, 
2006). Therefore, even low amounts of N2O emission are undesired and raise concern. Regardless of 
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the carbon origin, a quantification of GHGs is necessary to improve our understanding of carbon flows 
within treatment and the sustainability of WWTPs. Furthermore, the estimation of GHGs should be 
considered during the design, operation and optimisation of WWTPs (Flores-Alsina et al., 2011). With 
this regard several attempts to better understand the GHG production processes (Joss et al., 2009; 
Foley et al., 2010; Daelman et al., 2012), to quantify and measure GHG emissions (GWRC, 2011) and 
to predict and control their production (Corominas et al., 2012; Flores-Alsina et al., 2011; Ni et al., 
2013a-b) have been performed over the years. Literature shows that knowledge on the dynamics and 
magnitude of N2O formation/emissions is still poor and that further investigations have to be performed 
(Kampschreur et al., 2009). With regards to the GHG quantification and measuring techniques, 
literature shows a wide range of measured GHG emissions (mainly N2O) (GWRC, 2011; Daelman et 
al., 2012). This wide range reveals the need for improving our understanding of process dynamics as 
well as the measurement techniques and tools for GHG quantification. Plant-wide mathematical 
models can help in understanding the effect of operational parameters on GHG emission and can be 
used to develop strategies aimed at reducing GHG emissions and improving environmental protection. 
In fact,  mathematical models allow to identify the key processes and the operational conditions that 
merit to be further investigated or modified in order to reduce GHG emissions. Different types of 
mathematical models (i.e., empirical, mechanistic, or simple comprehensive process models) are 
available for estimating GHG emissions (e.g., Monteith et al., 2005; Hiatt and Grady, 2008; Rosso and 
Stenstrom, 2008; Foley et al, 2010; Gori et al., 2010; Flores-Alsina et al., 2011; Gori et al., 2011; Ni et 
al., 2011). All these models have provided a valuable contribution to better understand how to reduce 
the GHG emissions from WWTPs. Further, as recently discussed by Flores-Alsina et al. (2013), a 
plant-wide modelling approach that includes GHG emissions as state variables enhances the overall 
sustainability view of the plant control/operational strategies. Indeed, by using a plant-wide approach 
modeller can include all the possible sources of GHG emissions (scopes 1-3) and discriminate the 
GHG contribution of each individual unit process. However, despite the useful insights derived by 
mathematical models of GHG emissions from WWTPs, the results are likely to be subjected to a high 
degree of uncertainty (Sweetapple et al., 2013). The GHG model predictions are strictly influenced by 
several factors: the knowledge of the modelled processes; the quality of the measured data used for 
calibrating the model parameters; the model structure. Thus, the uncertainty assessment in GHG 
emissions modelling can be useful in order to improve the model prediction. In this context both 
sensitivity and uncertainty analyses can be useful tools for identifying the key sources that control 
model outputs (Tang et al., 2007). Despite their potential, few uncertainty and sensitivity analyses to 
estimate carbon and energy footprint of WWTPs have been presented in literature. 
In this study the key sources of uncertainty in GHG emission and energy requirement modelling have 
been identified. A plant-wide model for carbon and energy footprint of WWTPs previously developed 
has been used and the Extended-FAST method has been employed for the sensitivity analysis.  
 
2. MATERIALS AND METHODS 
 
2.1 Plant and mathematical model description 
 
The model used for the analysis employed in this study was developed for modelling carbon and 
energy footprint of a conventional activated sludge WWTP based on a modified Ludzak-Ettinger 
process for denitrification, with primary sedimentation, anaerobic stabilization of the sludge and energy 
recovery from biogas. The total CO2,eq emission (kgCO2eq/d) is calculated as the sum of: direct CO2 
emission from biological processes (mCO2,ASP + mCO2,AD); direct CO2 emission from biogas combustion 
(mCH4,comb); indirect CO2 emission from off-site power generation (mCO2eq,PG); CO2,eq offset from biogas 
energy recovery (mCO2eq,offset); CO2,eq emission due to CH4 fugitive emission (mCO2eq,fugitive):  
 

fugitive,COoffset,eqCOPG,eqCOcombCH,COAD,COASPCOeqCO mmmmmmm
, 22242222

+−+++=  [1] 
 
For the energy demand (eD) the model estimates the contributions from primary sedimentation (eD,PS), 
activated sludge process aeration (eD,ASP), secondary sedimentation (eD,SS), anaerobic digestion 
(eD,AD), and other equipment (eD,O): 
 

O,DAD,DSS,DASP,DPS,DD eeeeee ++++=   [2] 
while for the energy recovery (eR) is calculated from the biogas production mBG (kg/d) times the 
efficiency of the energy unit recovery ηER (-) and the caloric value of the biogas hBG (kJ/kgBG):  
 

BGBGERR mhe η=  [3] 
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For a detailed description of the model and case study refer to literature (Gori et al., 2011; 2013). 
 
 
2.2 Sensitivity analysis method 
 
Sensitivity analysis has been performed by using the Extended-FAST method. This method was 
proposed by Saltelli et al. (1999). Compared to the classical FAST method, Extended-FAST uses a 
new expression to deduce the optimal sampling curve in order to obtain a more flexible sampling 
scheme.  This method belongs to the global sensitivity analysis methods and is based on the variance 
decomposition theorem. The Extended-FAST method provides two sensitivity indices for each i-th 
model factor: the first-order effect index (Si) and the total-effect index (STi). Si quantifies the 
contribution of the i-th model factor to the variance of the model output [Var(Y)] without considering the 
interaction among the model factors; it is expressed as: 
 

( )( )
( )YVar

xYEVar
S ixxi

i
i−=  [4] 

where E is the expectancy operator and Var is the variance. The subscripts indicate that the operation 
is either applied ‘‘over the i-th factor’’ Xi, or ‘‘over all model factors except the i-th model factor’’ X-i 
(Saltelli et al., 2004). 
STi is expressed as: 
 

( )( )
( )YVar

xYEVar
S ixx

iT

ii −−−= 1  [5] 

The difference between STi and Si represents the interaction among the model factors. The Extended-
FAST method requires nxNR simulations, where n is the number of factors and NR is the number of 
runs per model factor (NR = 500 – 1000 according to Saltelli et al., 2005). 
 
 
2.3 Uncertainty analysis 
 
The uncertainty analysis has been performed by running Monte Carlo simulations; results of the 
uncertainty analysis for each variable have been interpreted by analysing the cumulative distribution 
function (CDF). Moreover, the comparison of the uncertainty analysis results among the model outputs 
taken into account has been performed by comparing the value of the relative uncertainty bandwidth. 
This latter has been computed by dividing the width between the 5th and 95th percentiles to the 50th 
percentile. 
 
 
2.4 Simulation conditions and numerical settings  
 
Sensitivity analysis has been performed by considering 26 model factors (influent fractionation 
parameters, kinetic parameters, conversion factors, CH4 specific energy and emission factors) and 10 
model outputs. For a detailed description of the symbol and variation range of each factor the reader is 
referred to Gori et al. (2011) and Mannina et al. (2011). Due to the lack of knowledge about the 
distribution of the model factors, a uniform prior distribution was considered for each factor. The 
widest variation range found in literature has been used for each model factor. The Extended-FAST 
method was applied using the sensitivity package developed by Pujol (2007) in the R environment (R 
Development Core Team, 2007). To classify important, non-influential and interacting factors, the 
thresholds of the sensitivity measures were selected. Factors with Si value greater than 0.02, at least 
for one model output, were classified as important. Interacting model factors were selected using the 
normalised index value (SNi), which corresponds to the ratio between the interaction of the i-th model 
factor related to one model output and the maximum value among the interactions for that model 
output (Cosenza et al., 2013). Factors with SNi greater than 0.5 for at least one model output were 
considered to be interacting. Model factors with SNi and Si values lower than 0.5 and 0.02, 
respectively, were considered to be non-influential. The uncertainty analysis was performed by all the 
model factors. The same number of simulations used during the Extended-FAST application has been 
used to perform the uncertainty analysis. 
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3. RESULTS AND DISCUSSION 
 
3.1 Sensitivity analysis  
 
The Extended-FAST method has been applied by running 26,000 model simulations and generating a 
model factor matrix with NR=1000. The sum of Si explains more than 90% of the total variance for all 
model outputs except for the power requirements. These results indicate that the model is linear and 
additive. This statement is also confirmed by the value of the sum of STi, which is always close to 1 
except for the power requirements. Indeed, results related to the power requirements show that for 
this model output quite a high degree of interaction among factors takes place (sum of STi = 4.761). 
Results show that except for power requirements and ηCODPS, all important model factors are 
interacting with each other. Hence, the high degree of linearity flattens the selection of interacting 
factors for the great part of the model outputs analysed.  
For sake of conciseness only the results related to CO2_resp, CH4_comb, CH4_dewatering and power 
requirements (shown in Fig. 1) will be discussed in details. By analysing Fig. 1 one may observe that 
four factors have significant impact for CO2_resp (Fig. 1a). Specifically kd, nbsCODIN, pbCODIN and 
npbCODIN have an Si value higher than 0.02 for CO2_resp. Among these four factors, three (nbsCODIN, 
pbCODIN and npbCODIN) are related to the influent wastewater fractionation and one (kd) is related to 
the heterotrophic biomass kinetics. The effect of influent fractionation is certainly the most interesting 
from a process’ point of view. In fact, the influent fractionation factors influence the bCOD availability 
to biomass growth and consequently the CO2_resp value. For example, the higher the nbsCODIN fraction 
and the lower the availability of substrate to be degraded during the biomass metabolism. Hence, 
CO2_resp is reduced as a result of the conservative nature of nbsCODIN. Factor kd represents the 
specific decay rate of heterotrophic biomass and significantly influence CO2_resp because regulates the 
endogenous decay of heterotrophic biomass.  For CH4_comb (Fig. 1b), results show that kd, pCOD/VSS, 
pbCODIN, npbCODIN, pbCODPI and npbCODPI appear to have a significant impact on the basis of Si 
(all of these, except npbCODPI, are also interacting). 
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Fig. 1. Sensitivity (Si) and interaction (STi - Si) of all factors for CO2_resp (a), CH4_comb (b), CH4_dewatering (c) 

and Power requirements (d). 
 

Among these factors the most relevant for process diagnostics are pCOD/VSS, pbCODIN and 
npbCODIN. The fraction of pbCOD or npbCOD strongly influence the amount of CH4 produced during 
anaerobic digestion due to the different nature of the bCOD removed in the primary settler. In fact, 
higher particulate in the influent wastewater entails higher bCOD removal in the primary settler, whose 
sludge is typically higher in COD per unit VSS mass removed than secondary sludge (Gori et al., 
2011). This circumstance leads to an increase of the CH4 production in the anaerobic tank and 
consequently of the equivalent CO2 emitted during the combustion of CH4 (Gori et al, 2013).  Two 
factors have significant impact on CH4_dewatering  (Fig. 1c), namely Q_dewa and EFCH4. Indeed, these 
factors represent, respectively, the percentage of flow (respect to the influent wastewater flow) that 
reaches to the dewatering section and the emission factor of CH4 from the dewatering.  
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For the power requirements model output, five factors resulted to be important in terms of Si: kd, YH, 
nbsCODIN, pbCODIN and npbCODIN. Among these factors the first two are directly related to the 
kinetics of the heterotrophic biomass growth. Thus, since the WWTP energy demand is mainly due to 
the activated sludge processes (Rosso and Stenstrom, 2005; WEF, 2009), the influence of kd and YH 
on the power requirements model output is associated with their influence on regulating the 
heterotrophic active biomass in the aerobic tank and consequently on the aeration energy 
requirements. A comment can be made on the relationship between temperature, biokinetics, and 
carbon footprint: as global temperature rise, the wastewater temperature rises, hence the value of kd. 
Since kd has a non-linear response with temperature increase (it increases by nearly an order of 
magnitude between 10 and 30 oC), and since in the same temperature range the bacterial efficiency in 
removing bCOD from the influent changes by a small adjustment, the consequence is that increasing 
temperatures should result in CO2 emission from endogenous respiration (driven by kd) that are higher 
in proportion than the CO2 emission from aerobic respiration, in essence a positive feedback 
mechanism for CO2 emission. The influence of nbsCODIN, pbCODIN and npbCODIN is mainly due to 
the ability of these factors to regulate the availability of soluble COD required for the biological 
processes. For example, as the fraction of sCOD decreases the oxygen required for the aerobic 
processes decreases thus influencing the power requirements of the aeration process and of the 
entire WWTP. High interaction among factors has been found for the power requirements model 
output. The high interaction is mainly due to the complexity of the model in terms of power 
requirements. The total power requirements are computed by summing the single processes’ power 
requirements. It is important to underline that among the interacting factors, the factors having the 
highest contribution to the total model variance are kN and kdN. These two model factors are related to 
the kinetics of the autotrophic biomass. In fact, autotrophic biomass growth influences the aeration 
requirement inside the aerobic tank. 
 
 
3.2 Uncertainty analysis  
 
The uncertainty analysis was performed by considering all the 26 model factors. This analysis was 
applied by running the same number of simulations used for the Extended-FAST application. In Fig. 2, 
the cumulative distribution functions (CDFs) for CO2_resp, CH4_comb, CH4_dewatering and power 
requirements are shown with the indication of the 5th and 95th percentiles. From a visual inspection of 
Fig. 2 one may observe that the width of the uncertainty bands, which is the difference between 95th 
and 5th percentiles, changes with the model output. This is mainly due to the fact that some of the 
model outputs entail a different level of complexity in terms of involved phenomena. Specifically, the 
uncertainty bands width of CO2_resp (793 kg CO2 m

-3) and CH4_comb (597 kg CO2eq m
-3 ) are higher than 

CH4_dewatering (5 kg CO2eq m
-3) and power requirements (229 kg CO2eq m

-3). However, the width of the 
uncertainty band can be influenced by the order of magnitude of the considered model output.  
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Figure 2. CDF of CO2_resp (a), CH4_comb (b), CH4_dewatering (c) and Power requirements (d). 
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Thus, in order to provide a quantitative assessment of the model uncertainty and to make comparable 
the results among the model outputs, the relative uncertainty band width for each model output has 
been computed. 
In Fig. 3 the relative uncertainty band widths for each model output are reported. By analysing Fig. 3 
one may observe that the highest uncertainty is related to the N2O emission due to the treated effluent 
(the relative uncertainty bandwidth is equal to 1.63).This fact may be due to the value of the EFN2O 
used to quantify N2Oeffluent. This latter EF is based on the IPCC (2006) recommendation. However, as 
reported in literature, the EFs suggested by IPCC are highly uncertain due to the wide range of 
measured values used for EF definition. Within this context, the N2O emission quantification could be 
improved by including the processes occurring in the receiving water body. In fact, if bCOD or 
nutrients are not removed inside a process they undergo inexorable (albeit slow) biodegradation in the 
receiving environment, which is the carbon footprint of no treatment (Rosso and Stenstrom, 2008). 
From Fig. 3 one can also observe that a high and comparable uncertainty degree was found for 
CO2_comb, CH4_comb, CH4_fugitive and Energy recovery (the relative uncertainty bandwidth is around 1.2 for 
the four model outputs). 
The high uncertainty for these latter model outputs can be attributed to the complexity of the 
processes and consequently of the algorithms that describe their dynamics. These algorithms involve 
several model factors such as the influent COD fractionation, pCOD/VSS and the COD fractionation 
factors related to the primary effluent. Future studies, based on measured data, should be performed 
in order to clearly split the role of the uncertainty of each factor involved in the CO2_comb, CH4_comb, 
CH4_fugitive and Energy recovery model outputs.  
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Figure 3. Relative uncertainty bandwidth for each model output. 

 
 
4. CONCLUSIONS  
 
The key findings of this study are summarised as follows:  
 
� The sensitivity analysis reveals that model factors related to the influent wastewater and primary 

effluent COD fractionation exhibit a significant impact on all the analysed model outputs.  
� The role of factor pCOD/VSS was found to be relevant especially in terms of interaction with the 

other factors; pCOD/VSS influences both the biomass activity inside the activated sludge system 
than the CH4 production (and consequently CH4_comb) during the anaerobic digestion. 

� The uncertainty analysis reveals that N2Oeffluent has the highest uncertainty in terms of relative 
uncertainty band (1.63) thus suggesting the need for improving the EF used for the N2O_effluent 

quantification. 
� Results of the uncertainty analysis show that the uncertainty of model prediction increases after 

fixing non-influential factors. These results could be due to the default value of the non-influential 
factors. A calibration of the non-influential factors could be also be required in order to reduce 
uncertainty. 
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Overall, this study allowed gaining insights about the key model factors influencing the direct and 
indirect GHG emissions, on a plant-wide scale. In the future, efforts should be made in setting up an 
accurate data base to use for model calibration to reduce model uncertainty. 
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