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Abstract We present two methodologies to deal with high-dimensional data with
mixed variables, the strongly decomposable graphical model and the regression-type
graphical model. The first model is used to infer conditional independence graphs.
The latter model is applied to compute the relative importance or contribution of
each predictor to the response variables. Recently, penalized likelihood approaches
have also been proposed to estimate graph structures. In a simulation study, we
compare the performance of the strongly decomposable graphical model and the
graphical lasso in terms of graph recovering. Five different graph structures are used
to simulate the data: the banded graph, the cluster graph, the random graph, the
hub graph and the scale-free graph. We assume the graphs are sparse. Our finding,
in the simulation study, is that the strongly decomposable graphical model shows,
generally, comparable or better performance both in low and high-dimensional case.
Finally, we show an application on mixed data.

1 Introduction

Graphical models are useful to infer conditional independence relationships be-
tween random variables. The conditional independence relationships can be visu-
alized as a network with a graph. Graphs are objects with two components: nodes
and links. Nodes are in one-to-one correspondence with random variables and links
represent relations between genes. If a link between two genes is absent this means
that these two genes are conditional independent given the rest. Pairwise, local and
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global Markovian properties are the connections between graph theory and statisti-
cal modeling [1, 2, 3].

Applications of graphical models include among others the study of gene regu-
latory networks where expression levels of large number of genes are collected, si-
multaneously [4]. A microarray is a collection of microscopic DNA spots attached
to a solid surface. Understanding how genes work together as a network could i)
hold the potential for new treatments and preventive measures in disease, ii) add a
new level of complexity to scientists’ knowledge of how DNA works to integrate
and regulate cell functionality. Many of the works on trying of inferring gene regu-
latory networks have focus on penalized Gaussian graphical models. The idea is to
penalize the maximum likelihood function, for example with the `1-norm, to pro-
duce sparse solutions. The main assumption of these models is that the networks
are sparse, which means many of the variables are conditionally independent from
the others. In this setting, Meinshausen and Bühlmann [5] proposed to select edges
for each node in the graph by regressing the variable on all the other variables us-
ing `1 penalized regression. Penalized maximum likelihood approaches using the
`1 penalty have been considered in [6, 7] where different algorithms for estimating
sparse networks have been proposed. The most known algorithm to estimate sparse
graphs is probably the graphical lasso (glasso) proposed by Friedman et al. [8].
These models cannot deal with high-dimensional data with mixed variables. How-
ever, the need of statistical tools to analyze and extract information from such data
has become crucial. For example, the most recent task in DREAM8 challenge [9] is
related to predict the response of Rheumatoid Arthritis patients to anti-TNF therapy
based on genetics and clinical data.

In their seminal paper Lauritzen and Wermuth [10] introduced the problem
of dealing with mixed variables. Recently, Hoff [11] proposed a semiparametric
Bayesian copula graphical model to deal with mixed data (binary, ordinal and con-
tinuous). The semiparametric Bayesian copula graphical model uses the assumption
of Gaussianity on the multivariate latent variables which are in one-to-one corre-
spondance with the observed variables. Conditional dependence, regression coeffi-
cients and credible intervals can be obtained from the analysis. Moreover, copula
Gaussian graphical models allow to impute missing data. However, the Bayesian
copula approach is infeasible for higher-dimensional problems due to its computa-
tional complexity and problem of convergence to the proposal distribution.

In this paper, we present two classes of graphical models, namely strongly
decomposable graphical models [12] and regression-type graphical models [13],
which are classes of models that can be used for analyzing high-dimensional data
with mixed variables. Assuming that the conditional distribution of a variable A
given the rest depends on any realization of the remaining variables only through
the conditional mean function, the regression models are useful to find the matrix
weights which can be further employed to recover the network. The aim here are
i) to give some insight on the use of decomposable models for recovering graph
structure; ii) to connect this model with the use of regression-type graphical lasso;
iii) to provide a simulation study to compare graphical lasso, which is a penalized
approach, to strongly decomposable graphical models.
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The rest of this paper is organized as follows. In Section 2, we briefly recall
the methodologies used to infer decomposable graphical models and regression-
type graphs for mixed data. In Section 3 we show a simulation study in which we
compare several type of graphs. In Section 4, we show an application of the method-
ology to a real dataset which contains mixed variables that are the expression level
of genes collected in a microarray experiment and some clinical information of the
patients.

2 Methodology

A graph is a couple G = (V,E) where V is a finite set of nodes and E ⊂ V ×V is a
subset of ordered couples of V . Nodes are in one-to-one correspondence with ran-
dom variables. Links represent interactions between the nodes. In this paper, we are
interested in links which represent conditional independence between two random
variables given the rest. Suppose we have d discrete and q continuous nodes and
write the sets of nodes as ∆ and Γ , where V = {∆ ∪Γ }. Let the corresponding ran-
dom variables be (X,Y), where X = (X1, . . . ,Xd) and Y = (Y1, . . . ,Yq), and a typical
observation be (x,y). Here, x is a d-tuple containing the values of the discrete vari-
ables, and y is a real vector of length q. We will denote with P(z) a joint probability
distribution for the random variables (X,Y).

2.1 Decomposable graphical models for high-dimensional data

Finding a conditional independence graph from data is a task that requires the ap-
proximation of the joint probability distribution P(z). A product approximation of
P(z) is defined to be a product of several of its component distributions of lower
order. We consider the class of second-order distribution approximation, i.e.:

Pa(z) =
p

∏
i=1

P(zi,z j(i)), 0≤ j(i)≤ p

where ( j1, . . . , jp) is an unknown permutation of integers (1,2, . . . , p), where p =
d +q.

For discrete random variables, Chow and Liu [14] proved that the problem of
finding the goodness of approximation between P(x) and Pa(x) considering the min-
imization of the closeness measure

I(P,Pa) = ∑
x

P(x)log
P(x)
Pa(x)

,

where ∑x P(x) is the sum over all levels of the discrete variables, is equivalent to
maximizing the total branch weight ∑

p
i=1 I(xi,x j(i)), where
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I(xi,x j(i)) = ∑
xi,x j(i)

P(xi,x j(i))log

(
P(xi,x j(i))

P(xi)P(x j(i))

)
. (1)

Calculating the total branch weight for each of the pp−2 trees would be compu-
tationally too expensive even for moderate p. Fortunately, several algorithms can be
used to solve the problem of finding dependence tree of maximum weight, such as
Kruskal’s algorithm, Dijkstra’s algorithm, Prim’s algorithm. These algorithms start
from a square weighted matrix p by p, where a weight for a couple of variables
(Xi,X j) is given by the mutual information I(xi,x j). So, the problem is reduced to
calculating p(p−1)/2 weights. Consider, now a real application where probability
distributions are not given explicitly. Let x1,x2, . . . ,xN be N independent samples
of a finite discrete variable x. Then, the mutual information can be estimated as
follows:

Î(xi,x j) = ∑
u,v

fuv(i, j)log
fuv(i, j)
fu(i) fv( j)

,

where fuv(i, j) =
nuv(i, j)

∑uv nuv(i, j)
, and nuv(i, j) is the number of samples such that their ith

and jth components assume the values of u and v, respectively. It can be shown that
with this estimator we also maximize the likelihood for a dependence tree.

This procedure can be extended to data with both discrete and continuos random
variables [12]. The distributional assumption is that random variables Z are condi-
tionally Gaussian distributed, i.e. the distribution of Y given X = x is multivariate
normal N(µi,Σi) so that both the conditional mean and covariance may depend
on i. We refer to the homogenous or heterogenous case if Σ does or does not de-
pend on i, respectively. More details on this conditional Gaussian distribution can
be found in [10]. To apply the Kruskal’s algorithm, in the mixed case, we need to
find an estimator of the mutual information I(xu,yv) between each couple of vari-
ables. For a couple of variables (Xu,Yv) we can write the sample cell counts, means,
and variances as {ni, ȳv,s

(v)
i }i=1,...|Xu|. An estimator of the mutual information, in the

homogenous case, is

Î(xu,yv) =
N
2

log
( s0

s

)
,

where s0 = ∑
N
k=1(y

(k)
v − ȳv)

2/N and s = ∑
|Xu|
i=1 nisi/N. There are kxu,yv = |Xu|−1 de-

gree of freedom. In the heterogeneous case, an estimator of the mutual information
is

Î(xu,yv) =
N
2

log(s0)−
1
2 ∑

i=1,...,|Xs|
nilog(si)

with kxu,yv = 2(|Xu|−1) degrees of freedom.
Note that the algorithm will always stop when it has added the maximum number

of edges, i.e. p−1 for an undirected tree. Edwards et al. [12] suggested to use either
ÎAIC = Î(xi,x j)−2kxi,x j or ÎBIC = Î(xi,x j)− log(n)kxi,x j , where kxi,x j are the degrees
of freedom, to avoid inclusion of links not supported by the data.
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The class of tree graphical models can be too restrictive for real data prob-
lem. However, we can start from the best spanning tree and determine the best
strongly decomposable graphical model. A strongly decomposable graphical model
is a graphical model whose graph neither contains cycles of length more than three
nor forbidden path. A path exists between nodes A and B if one can reach A from B
in a finite number of steps. A forbidden path is a path between two not adjacent dis-
crete nodes which passes through continuous nodes. The distributional assumption
is that the random variables are conditional Gaussian distributed. This procedure
would be NP-hard without the following result.

If M0 ⊂ M1 are decomposable models differing by one edge e = (vi,v j) only,
then e is contained in one clique C of M1 only, and the likelihood ratio test for M0
versus M1 can be performed as a test of vi ⊥ v j|C\{vi,v j}. These computations only
involve the variables in C. It follows that for likelihood-based scores such as AIC
or BIC, score differences can be calculated locally which is far more efficient then
fitting both M0 and M1. This leads to considerable efficiency gains.

To summarize, strongly decomposable model is an important class of model that
can be used to analyze mixed data. This class restricts the class of possible interac-
tion models which would be to huge to be explored. Moreover, we have the impor-
tant results that for strongly decomposable graphical models closed-form estimator
exists.

2.2 Regression-type graphical models

Recently, Edwards et al. [13] proposed to estimate stable graphical models with
random forest in combination with stability selection using regression models. Their
main idea is motivated by the following theorem.

Assume that, for all j = 1, . . . , p the conditional distribution of Z j given {Zh;h 6=
j} is depending on any realization {zh;h 6= j} only through the conditional mean
function:

µ j({zh;h 6= j}) = E[Z j|zh;h 6= j].

Assume the conditional mean exists, then

Z j ⊥ Zi|{Zh;h 6= j, i}

if and only if
µ j({zh;h 6= j}) = µ j({zh;h 6= j, i})

does not depend on zi for all {zh;h 6= j}. Suppose the network is composed by
variables some of which are predictors and some of which are response variables.
We use this theorem to determine the weight importance of each predictor on the
response variable. To establish the importance of each predictor regression coeffi-
cients need to be comparable, i.e. standardized regression coefficients need to be
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used. These coefficients can also be interpreted as elasticity. i.e. how much we can
change the regressor, by attempting to exogenously change one of the predictor.

2.3 Simple Example

In this section, we show a simple example on simulated mixed data. The aim is to
recover the graph in Figure 1 with a decomposable graphical model and to evalu-
ate the relative importance of each predictor to the regressors with regression-type
graphical models. In particular, in Figure 1 we represents five variables with some
of them that are regressor variables. These variables are those one having at least an
incoming link. Table 1 shows distributions, models and conditional means of each
variable. Regression coefficients are given in Table 2.

Distribution Model Conditional mean

Gaussian Y1 ∼ N(µ1,σ
2 = 1) µ1 = ∑

5
j=1 β j1y j

Gaussian Y2 ∼ N(µ2,σ
2 = 1) µ2 = ∑

5
j=1 β j2y j

Binomial Y3 ∼ Binom(1,π3) π3 =
exp(∑5

j=1 β j3y j)

1+exp(∑5
j=1 β j3y j)

Binomial Y4 ∼ Binom(1,π4) π4 =
exp(∑5

j=1 β j4y j)

1+exp(∑5
j=1 β j4y j)

Gaussian Y5 ∼ N(µ5,σ
2 = 1) µ5 = 0

Table 1 Model assumption for random variables represented in the DAG in Figure 1. There are
three continuos Gaussian random variables and two binomial random variables. Regression coef-
ficients are given in Table 2.

To generate N = 100 independent samples with structure given in Figure 1 and
conditional mean and distribution given in Table 1, we consider the following pro-
cedure:

• Generate Y5 from a normal with mean zero and variance one. Then, calculate π4
and π3 and generate Y4 and Y3.

• Calculate µ2 and generate Y2. Then, calculate µ1 and generate Y1.
• Repeat the process 100 times.

Table 3 shows the relative importance according to AIC ranking (AIC-ranking
column) and the score calculated according to standard regression coefficients (SC
column). There are 10 possible links for an undirected graphical model. According
to AIC ranking, the first link to be drawn in the tree is the link between variables Y3
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y1

y2

y3

y4

y5

Fig. 1 Directed graph.

Y1

Y2

Y3

Y4
Y5

Fig. 2 Recovered graph.

and Y5. The selected strongly decomposable graphical model is shown in Figure 2.
It seems that ranking the links according to regression coefficients can give a more
information on the relative importance of each link. In fact, from column SC in
Table 3 we can see that regression-type graphical model would order the coefficients
almost in the same order as the original coefficients.

β 1 2 3 4 5
1 0 0 0 0 0
2 0.01 0 0 0 0
3 0.31 0.45 0 0 0
4 0 0 0.98 0 0
5 0 0 0.69 0.72 0

Table 2 Regression coefficients

Vi Vj AIC-ranking SC
1 3 5 192.36 0.31
2 4 5 148.53 0.24
3 3 4 144.53 1.17
4 2 3 58.82 0.16
5 1 3 34.34 0.18
6 2 5 33.52 0.06
7 2 4 30.07 0.086
8 1 2 15.68 0.094
9 1 5 5.55 0.015

10 1 4 -1.60 0.07

Table 3 Graph edge ordering and standardized regression coef-
ficients

3 Simulation Study

We perform a simulation study to compare the performance of graphical lasso to
decomposable graphical models, in terms of recovering of the graph. The support
recovery of the graph is evaluated by the following scores:

PPR =
T P

T P+FP
, Sensitivity =

T P
T P+FN

,
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and

MCC =
(T P×T N)− (FN×FP)√

(T P×T N)(FN×FP)
,

where TP are the true positive, FP are the false positive, TN are the true negative
and FN are the false negative. The larger the score value, the better the classification
performance.

The ”best” graph structures are estimated in terms of AIC (minForest-aic) and
BIC (minForest-bic) for the decomposable graphical models. Whereas, for the
graphical lasso we select the graph according to stability selection procedure [15].

We consider five models as follows:

• Model 1. A banded graph with bandwidth equal to 1.
• Model 2. A cluster graph where the number of cluster is about p/20 if p > 40

and 2 if p ≤ 40. For cluster graph, the value 3/d is the probability that a pair of
nodes has an edge in each cluster.

• Model 3. An hub graph where the number of hubs is about p/20 if p > 40 and 2
if p≤ 40.

• Model 4. A random graph where the probability that an edge is present between
two nodes is 3/p.

• Model 5. A scale-free graph where an edge is present with probability 0.9.

We use the function huge.generator of the R package huge to generate these
graphical structures [16]. We keep the structure of the graph fixed and simulate n =
100 independence samples from a multivariate distribution with µ = 0 and Σ = K−1

where zero elements in K are absent links. For each model, we generate a sample of
size n = 100 from a multivariate normal distribution We consider different values of
p = (10,30,50,100,150) and 100 replicates. We report the results for the support
recovery of the precision matrix together with an example of the graph structures of
each of the five models in Appendix.

The main conclusion which can be drawn from the results reported in the ta-
bles is that the strongly decomposable graphical model show, generally, compa-
rable or better performance both in lower and high-dimensional case. We would
expect minForest-bic have better results than minForest-aic but this doesn’t appear
in our simulation study. The glasso-stars performs worse than minForest-aic and
minForest-bic for banded graphs and hub graphs. This could be due to the particular
structure of the graph and it should not be linked with the selection method. In other
words, it seems to be a limitation of the glasso.

4 Analysis of breast cancer data

In this section we analyze a breast cancer dataset. The data come from a study per-
formed on 62 biopsies of breast cancer patients over 59 genes. These genes were
identified using comparative genomic hybridization. Continuous measures of ex-
pression levels of those 59 genes were collected. In order to link gene amplifica-
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tion/deletion information to the aggressiveness of the tumors in this experiment,
clinical information is available about each patient: age at diagnosis (AGE), follow-
up time (Surv.Time), whether or not the patient died of breast cancer (C.Death), the
grade of the tumor (C.Grade), the size of the tumor (Size.Lesion), and the Notting-
ham Prognostic Index (NPI). C.Death is a dichotomous variable, C.Grade is ordinal
with three categories and NPI is a continuous index used to determine prognosis fol-
lowing surgery for breast cancer. NPI values are calculated using three pathological
criteria: the size of the lesion; the number of involved lymph nodes; and the grade
of the tumor. The complete dataset results in 62 units and 65 variables.

Our aim is to find a network which may underline some important relationships
between the 65 variables. These variables comprise both gene expression levels and
clinical variables. We use the package gRapHD [17] to analyse the breast cancer
data. Firstly, the forest that minimizes the BIC is found by applying the function
minForest. This result in a quite simple graph with at last 64 links. A more com-
plex model can be found by applying the function stepw. This function performs
a forward search strategy through strongly decomposable models starting from a
given decomposable graphical model. At each step, the edge giving the greatest re-
duction in BIC is added. The process ends when no further improvement is possible.

Figure 3 shows the graph for the homogeneous strongly decomposable graph-
ical model applied to the breast cancer data with starting point a minimum BIC
forest with a link between C.Grade and C.Death. Black nodes indicate discrete vari-
ables while grey nodes represent continuous variables. The graph in Figure 3 indi-
cates that Gene 4 is the connection between Surv.Time, C.Death, C.Grade, NPI and
Size.Lesion and the gene expression levels. Gene 4 separates two blocks of genes
the one represented in the top part of Figure 3 and the one represented in the bottom
part of the same figure. The other most connected genes are Gene 12 and Gene 49
with 8 and 9 nodes, respectively. C.grade and Size.Lesion are linked to NPI as we
expected and there is a short path between NPI and Survival time.

5 Discussion

In this paper, we have explored a class of graphical models, the strongly decompos-
able graphical models, which can be used to infer networks for high-dimensional
mixed data. Results from the simulation study shows comparable or better perfor-
mance in terms of graphs recovering with respect to graphical lasso. There are some
limitations. The first one is due to the assumption of decomposable models, namely
neither cycle of length more than 3 nor forbidden path can be estimated. The second
one is due to the distributional assumption. In fact, the conditional Gaussian distri-
bution cannot take into account dependence of a continuos variable to a discrete one.
So, careful attention should be paid during the analysis of real data. In the real data
analysis, in which mixed data are present, we have shown that a relation between
gene expression levels and clinical conditions of the patients seems to be present.
We have not dealt with parameter estimation which is indeed another challenge task
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Fig. 3 Graph obtained by applying the homogeneous strongly decomposable graphical model to
breast cancer data with starting point a minimum BIC forest with a link between C.Grade and
C.Death. Black dot nodes indicate discrete variables while circle grey nodes represent continuous
variables.

for high-dimensional data. To conclude, the main advantages of using strongly de-
composable graphical models we have illustrated in this paper are: i) their feasibility
for high-dimensional setting; ii) the facility to communicate the results by showing
the graph; iii) the possibility to catch patters in terms of clustering, hubs, impor-
tant variables from the conditional independent graph. Moreover, regression-type
graphical models can give some insight on the ordering of importance for some of
the regressors.
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Appendix

Fig. 4 Model structures from which we generate data. These graphs are described as models in
this section and are named banded graph, cluster hub, random and scale free. All the graphs are
sparse.
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Table 4 Model 1 - Banded Graph

glasso-stars minForest-aic minForest-bic

p PPV

10 88.88 (23.81) 98.38 (4.14 ) 96.18 (5.77)

30 67.55 ( 5.31) 96.72 (3.27 ) 94.06 (4.35)

50 56.04 ( 3.86) 95.69 (2.71 ) 93.16 (3.47)

100 40.99 ( 1.92) 94.23 (1.92 ) 91.35 (2.52)

150 32.23 ( 1.25) 93.42 (1.86 ) 90.53 (2.22)

Sensitivity

10 60.56 (35.57) 98.67 (3.63 ) 99.00 (3.20)

30 99.31 ( 1.70) 97.03 (3.02 ) 97.24 (2.90)

50 99.49 ( 1.10) 95.84 (2.61 ) 96.00 (2.44)

100 99.55 ( 0.62) 94.40 (1.86 ) 94.63 (1.79)

150 99.56 ( 0.50) 93.57 (1.84 ) 93.83 (1.70)

MCC

10 66.87 (27.41) 98.14 (4.77 ) 96.91 (5.02)

30 80.38 ( 3.63) 96.65 (3.32 ) 95.30 (3.58)

50 73.38 ( 2.84) 95.58 (2.76 ) 94.33 (2.86)

100 62.91 ( 1.55) 94.20 (1.92 ) 92.82 (2.05)

150 55.82 ( 1.12) 93.41 (1.87 ) 92.06 (1.88)
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Table 5 Model 2 - Cluster

glasso-stars minForest-aic minForest-bic

p PPV

10 90.50 (29.04) 90.98 ( 3.64 ) 96.73 ( 4.57)

30 74.29 ( 5.11) 79.99 ( 5.98 ) 77.77 ( 5.64)

50 67.43 ( 3.68) 82.37 ( 4.26 ) 78.55 ( 4.47)

100 52.52 ( 2.20) 73.99 ( 3.94 ) 71.14 ( 3.73)

150 43.84 ( 1.51) 74.20 ( 2.89 ) 71.60 ( 2.95)

Sensitivity

10 10.75 ( 6.90) 56.25 (12.48 ) 93.00 (12.23)

30 36.73 ( 5.72) 27.24 ( 2.35 ) 32.92 ( 3.72)

50 54.39 ( 4.02) 31.27 ( 1.73 ) 35.45 ( 2.52)

100 50.04 ( 2.31) 25.57 ( 1.38 ) 28.85 ( 1.63)

150 52.63 ( 1.98) 26.56 ( 1.12 ) 29.36 ( 1.40)

MCC

10 23.11 (10.26) 57.90 (11.32 ) 91.23 (12.05)

30 44.68 ( 4.55) 40.46 ( 4.19 ) 43.78 ( 4.53)

50 56.35 ( 3.13) 47.71 ( 2.86 ) 49.41 ( 3.00)

100 48.30 ( 1.96) 41.71 ( 2.41 ) 43.35 ( 2.28)

150 45.79 ( 1.48) 43.25 ( 1.83 ) 44.61 ( 1.89)
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Table 6 Model 3 - Hub

glasso-stars minForest-aic minForest-bic

p PPV

10 89.54 (16.62) 88.14 (3.84 ) 89.08 (8.42)

30 65.20 ( 6.42) 84.73 (5.74 ) 75.94 (6.05)

50 51.22 ( 3.92) 79.59 (4.61 ) 71.52 (4.78)

100 35.98 ( 2.18) 75.73 (4.36 ) 66.75 (3.56)

150 28.38 ( 1.29) 73.95 (3.42 ) 65.48 (2.87)

Sensitivity

10 74.12 (31.99) 98.88 (3.60 ) 99.25 (2.98)

30 90.50 ( 6.28) 88.57 (5.81 ) 90.61 (5.46)

50 91.00 ( 4.51) 83.64 (4.90 ) 85.77 (4.78)

100 92.56 ( 3.20) 79.60 (4.70 ) 82.34 (4.61)

150 92.75 ( 2.53) 78.09 (3.65 ) 80.29 (3.90)

MCC

10 75.89 (22.22) 91.84 (4.31 ) 92.53 (6.18)

30 74.85 ( 5.05) 85.68 (6.13 ) 81.63 (5.46)

50 66.66 ( 3.56) 80.84 (4.92 ) 77.36 (4.55)

100 56.53 ( 1.97) 77.19 (4.61 ) 73.57 (3.88)

150 50.36 ( 1.56) 75.67 (3.57 ) 72.11 (3.20)
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Table 7 Model 4 - Random

glasso-stars minForest-aic minForest-bic

p PPV

10 92.40 (22.25) 95.61 (7.02 ) 90.15 (8.96)

30 68.28 ( 5.92) 77.75 (5.37 ) 79.31 (6.02)

50 62.82 ( 3.90) 81.79 (4.41 ) 79.96 (5.06)

100 48.74 ( 2.66) 74.87 (3.84 ) 71.91 (4.05)

150 36.80 ( 1.71) 62.68 (3.80 ) 60.62 (3.82)

Sensitivity

10 21.19 (10.09) 54.25 (4.34 ) 57.31 (5.69)

30 83.94 ( 5.82) 69.09 (5.26 ) 72.00 (6.35)

50 80.86 ( 4.76) 61.88 (3.31 ) 62.88 (3.41)

100 73.56 ( 3.68) 46.54 (2.33 ) 47.39 (2.44)

150 65.00 ( 3.17) 38.41 (2.32 ) 39.19 (2.28)

MCC

10 35.57 (11.24) 63.06 (7.41 ) 61.32 (6.98)

30 73.40 ( 4.74) 71.24 (5.64 ) 73.61 (5.74)

50 69.43 ( 3.73) 69.78 (4.00 ) 69.48 (4.16)

100 58.25 ( 2.71) 58.00 (3.06 ) 57.29 (3.11)

150 47.43 ( 2.09) 48.21 (3.02 ) 47.84 (2.98)
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Table 8 Model 5 - Scale free

glasso-stars minForest-aic minForest-bic

p PPV

10 92.46( 23.94) 95.51 (6.41 ) 88.63 (9.22)

30 68.44( 7.04) 72.87 (8.67 ) 62.23 (6.45)

50 48.81( 4.95) 54.98 (7.87 ) 47.40 (4.47)

100 27.23( 2.55) 33.57 (5.44 ) 30.78 (3.49)

150 17.75( 1.78) 23.86 (4.06 ) 22.97 (3.12)

Sensitivity

10 41.00( 24.96) 95.89 (6.25 ) 96.56 (5.63)

30 68.93( 9.54) 73.97 (8.84 ) 76.83 (9.18)

50 61.47( 7.60) 55.67 (8.14 ) 58.88 (8.98)

100 51.39( 6.03) 33.93 (5.65 ) 37.40 (6.51)

150 45.70( 5.99) 24.06 (4.11 ) 27.48 (5.00)

MCC

10 55.44( 22.77) 94.61 (7.79 ) 90.39 (8.27)

30 66.28( 7.36) 71.50 (9.36 ) 66.65 (7.61)

50 52.59( 5.66) 53.45 (8.33 ) 50.59 (6.40)

100 35.67( 3.78) 32.39 (5.65 ) 32.43 (4.83)

150 26.98( 3.24) 22.93 (4.14 ) 24.01 (4.00)


