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Abstract The finite dimensional simple superalgebras play an important role in the theory
of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T»-
ideal of graded identities of any such algebra by considering the growth of the corresponding
supervariety. We consider the 7>-ideal I'ys41,1.4+1 generated by the graded Capelli polyno-
mials Cappy41[Y, X] and Capr+1[Z, X] alternanting on M + 1 even variables and L + 1
odd variables, respectively. We prove that the graded codimensions of a simple finite dimen-
sional superalgebra are asymptotically equal to the graded codimensions of the 7,-ideal
I'p+1,0+1, for some fixed natural numbers M and L. In particular

szup(rk2+12+1,2kz+1) = C}qup(Mk,l(F))
and
P (Copy o4 = ' (My(F @ tF)).

These results extend to finite dimensional superalgebras a theorem of Giambruno and
Zaicev [6] giving in the ordinary case the asymptotic equality

en'? (Thagr ) = ' (M (F))

between the codimensions of the Capelli polynomials and the codimensions of the matrix
algebra My (F).
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F. Benanti

1 Introduction

Let F be a field of characteristic zero, X = {xi, x2,...} a countable set and F(X) =
F(x1, x2, ...) the free associative algebra on X over F. Recall that an algebra A is a superal-
gebra (or Z-graded algebra) with grading (A®, AD)if A = A@ @ AD, where A®, AD
are subspaces of A satisfying:

AO A0 L ADAD c 4O 4ng 4O 4D 4 4D 4O = 4D

If we write X = Y U Z as the disjoint union of two countable sets, then F(X) = F(Y U Z)
has a natural structure of free superalgebra if we require that the variables from Y have
degree zero and the variables from Z have degree one.

Recall that an element f(y1,...,Yu,21,-..,2m) of F(Y U Z) is a graded identity
or superidentity for A if f(ai,...,an,b1,...,by) = 0, for all a,...,a, € A© and
bi,..., by € AV The set 1d**P(A) of all graded identities of A is a T»-ideal of F (Y U Z)
i.e., an ideal invariant under all endomorphisms of F (Y U Z) preserving the grading. More-
over, every T>-ideal I" of F (Y U Z) is the ideal of graded identities of some superalgebra
A=AQ@AD T = 1dr(A).

For I' = 1d**P(A) a T»-ideal of F(Y U Z), we denote by supvar(I") or supvar(A) the
supervariety of superalgebras having the elements of I" as graded identities.

As it was shown by Kemer (see [8, 9]), superalgebras and their graded identities play
a basic role in the study of the structure of varieties of associative algebras over a field
of characteristic zero. More precisely, Kemer showed that any variety is generated by the
Grassmann envelope of a suitable finite dimensional superalgebra (see also Theorem 3.7.8
[7D).

Recall that, if F is an algebraically closed field of characteristic zero, then a simple finite
dimensional superalgebra over F' is isomorphic to one of the following algebras (see [9],
[71):

1. My (F) with trivial grading (M (F), 0);

2. My (F) with grading (< F(;l F(;z) , (F021 F(;2 >), where Fi1, Fi2, F>1, Fpp are k x
k,k x 1,1 x kand ! x [ matrices respectively, k > 1 and/ > 1;

3. M(F @ tF) with grading (M (F), tMs(F)), where 2 =1.

Thus an important problem in the theory of Pl-algebras is to describe the 7»-ideals
of graded identities of these simple finite dimensional superalgebra, [d*“?(My(F)),
1d°"P (M 1 (F)), 1d*"*P (Ms(F ® tF)).

In case charF'=0, it is well known that /d*"P (A) is completely determined by its multi-
linear polynomials and an approach to the description of the graded identities of A is based
on the study of the graded codimension sequence of this superalgebra.

If V;"P denotes the space of multilinear polynomials of degree n in the variables
Y1, 21, ---» Yn, Zn (1.€., y; Or z; appears in each monomial at degree 1), then the sequence of
spaces {V,,"P N 1d*"P (A)}n>1 determines 1d*"P(A) and

vsup
sup ST n
SR G )

is called the n-th graded codimension of A.

The asymptotic behaviour of the graded codimensions plays an important role in the
PI-theory of graded algebras. It was shown in [4] that the sequence ()P (A)}n>1 is
exponentially bounded if and only if A satisfies an ordinary polynomial identity.
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Asymptotics for Graded Capelli Polynomials

In [2] it was proved that if A is a finitely generated superalgebra satisfying a polynomial

identity, then lim /c,"" (A) exists and is a non negative integer. It is called superexponent
n—oo
(or Z,-exponent) of A and it is denoted by

supexp(A) = nlirrolo \"/ o' (A).

Now, if f € F(Y U Z) we denote by (f)r, the T>-ideal generated by f. Also for a set of
polynomials V C F(Y U Z) we write (V) 7, to indicate the T>-ideal generated by V.

In PI-theory a prominent role is played by the Capelli polynomial. If S, is the symmetric
group on {1, ..., m}, the polynomial

Capu[T, X] = Cap(t1, ..., tys X1, - ooy Xp—1) =

= Z (8gno)te () X1le2) * * * to(m—1)Xm—1Lo (m)
geSy
is the m-th graded Capelli polynomial in the homogeneous variables fq,..., 1,
(x1,...,x,—1 are arbitrary variables). In particular Cap,,[Y, X] and Cap,,[Z, X] denote
the m-th graded Capelli polynomial in the alternanting variables of homogeneous degree
Zero yi, ..., ym and of homogeneous degree one zy, . .., Z, respectively.

Let Ca p% denote the set of 271 polynomials obtained from Cap,,[Y, X] by deleting
any subset of variables x; (by evalauting the variables x; to 1 in all possible way). Similarly,
we define by Ca pl the set of 2"~ polynomials obtained from Cap,,[Z, X] by deleting
any subset of variables x;.

If L and M are two natural numbers, we denote the 7»-ideal generated by the polynomials
Capg,lﬂ, Cap}‘Jrl by I'my1,0+41 = (Capg,IH, C“Piﬂﬁz- We also write u;/ﬁ:l,LH =
supvar(I'pr41,2+1)- In [1] it was shown that

(M + L) — 10 < supexp@Uyh, ;1) < (M + L).

The following relations between the superexponent of the graded Capelli polynomials and
the superexponent of the simple finite dimensional superalgebras are well known (see [1, 2,
1))

supexpUyy | ) = k* = supexp(M(F))

supexp@Uys 1o yyir) = (k+ D7 = supexp(Mii(F))

supexpU’ y=2s2 = supexp(Ms(F @ tF)).

s24+1,s2+1
In this paper we try to find a close relation among the asymptotics of Uk2 Ptk @ and
M ;(F) and the asymptotics of Z/{””]2 and My (F @ tF). Recall that two sequences a,, by,

n=1,2,..., are asymptotically equal ap =~ by, if

This paper was inspired by the ordinary case (see [6]) where Giambruno and Zaicev
proved that

cn' (Tiagy 1) 2= 6" (M (F)).
Here we show that
Ci2ipygoggr = 1d°P (M (F) @ D)
and
Loy 24 =1d"P(My(F @tF) ® D)
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F. Benanti

where D’ and D are finite dimensional superalgebra with supexp(D’) < (k + 1? and
supexp(D) < 2s%. 1t follows that asymptotically

en'" (Cragppyropen) = cn'’ (My 1 (F))

and
en'? (Tapy 241) = ' (My(F @ 1 F)).

2 Preliminaries

In [6, Definition 1] the notion of reduced superalgebra was introduced: let A = A1 @ --- @
A, + J be a finite dimensional superalgebra where A, ..., A, are simple superalgebras
and J = J(A) is the Jacobson radical of A, A is called reduced if A{JAyJ ---JA, #
0. Giambruno and Zaicev (see [6]) showed, also, that these superalgebras can be used as
building blocks of any proper variety. Here, in the next theorem, we obtain an analogous
result for supervarieties generated by a finitely generated superalgebra. We first prove a
lemma that will be used throughout the paper.

Lemma 1 Let A and B be PI-superalgebras. Then

'’ (A), " (B) < )" (A @ B) < 6" (A) + " (B).
Proof The proof of this result is the same of the proof of the [6, Lemma 1]. O

Corollary 2 If A and B are finitely generated superalgebras, then

supexp(A @ B) = max{supexp(A), supexp(B)}.

Theorem 3 Let A be a finitely generated superalgebra satisfying an ordinary polynomial
identity. Then there exists a finite number of reduced superalgebras By, . .., B; and a finite
dimensional superalgebra D such that

supvar(A) = supvar(B, @ --- @ B, ® D)

with supexp(A) = supexp(By) = - -- = supexp(B;) and supexp(D) < supexp(A).

Proof The proof follows closely the proof given in [6, Theorem 1]. Let A be a finitely gen-
erated superalgebra satisfying an ordinary polynomial identity. By a theorem of Kemer (see
[9, Theorem 2.2]), there exists a finite dimensional superalgebra B such that Id**’(A) =
1d°"P (B). Therefore throughout we may assume that A = A© @ AM is a finite dimen-
sional superalgebra over F satisfying an ordinary polynomial identity and charF = 0.
Also, by [9, pag. 21] we may assume that A = A; @ --- ® Ay + J, where Ay, ..., A
are simple superalgebras and J = J(A) is the Jacobson radical of A. It is well known that
J =JO @ JD is a homogeneous ideal. Let supexp(A) = d. Then, as it was showen in
[2], there exist distinct simple superalgebras A, ... A}, such that

AjJ--JA;, #0 and dimp(A; ®---®A;) =d.

Let I'y, ..., I'; be all possible subset of {1, ..., s} such that, if I'; = {ji,..., ji}, then
dimp(Aj, @ ---® Aj,) =dand As(j)J --- JAs(j) # O for some permutation o € S.
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Asymptotics for Graded Capelli Polynomials

Hence we put B; = Aj; @ --- ® Aj, + J forany I';, j = 1,...,¢. It follows, by the
characterization of the superexponent, that
supexp(B1) = --- = supexp(B;) =d = supexp(A).

Let D = Dy ® --- ® Dp, where Dy, ..., D, are all subsuperalgebras of A of the type
Ai] G---PA +J,withl <ij < -+ <i <3 anddimF(A,-l G---PA) <d
Then, by Corollary 2, we have supexp(D) < supexp(A). Now, we want to prove that
supvar(B1 @ --- @ B; & D) = supvar(A). The inclusion

supvar(By1 @ --- ® B; & D) C supvar(A)

follows from D, B; € supvar(A),Vi =1,...,t.Now,let f = f(¥1,.--s Yn,21>---»>2m)
be a multilinear polynomial such that f & Id*“P(A). We shall prove that f & Id*“P(B; &

---® B; ® D). There existay, ..., a, € Aand by, ..., b, € A! such that
f(ai,...,an, by, ..., by) #0.
From the linearity of f we can putay,...,a, € A(I)U ---UAEUJ0 and by,...,b, €

A} U---UA! U J!. Since A;jAj =0fori # j, from the property of d we have
ai,...,ay,b1,....,bpy € A;; ®---DA; +J

forsome Aj,, ..., Aj suchthatdimp(Aj ®---®Aj) <d . Thus f is not an identity for
one of the algebras By, ..., By, D. Hence f & I1d*"?(B; & --- ® B; ® D). In conclusion

supvar(A) € supvar(B1 @ ---® B; & D)

and the proof is complete. O

Corollary 4 Let A be a finitely generated superalgebra satisfying an ordinary polynomial
identity. Then there exists a finite number of reduced superalgebras By, ..., B; such that

P (A) =" (B1@--- @ B)

Proof By Theorem 3 there is a finite number of reduced superalgebras By, ..., B; such that
supvar(A) = supvar(B; ® --- @® B; @ D)

with supexp(A) = supexp(B1) = --- = supexp(B;) and supexp(D) < supexp(A).
Then, by Lemma 1

"B ®--®B) <" (BI®---®B®D) <, (B1®---®B) + 6" (D).
Recalling that supexp(D) < supexp(B1) = supexp(B1 & - - - & B;) we have that
(A =" (B1@ - ® By)
and the proof of the corollary is complete. O
3 Asymptotics for M;ZLZH 241 and M ;(F)

3.1 Evaluating polynomials

Throughout this section we assume that A = My ;(F)+J, where J = J(A) is the Jacobson
radical of the finite dimensional superalgebra A. Notice that My ; (F) contains the unit and
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F. Benanti

it belongs to the even part in the grading. It is also known that J is homogeneous under the
grading of A [9]. We start with the following key lemmas.

Lemma 5 [3, Lemma 1] The Jacobson radical J can be decomposed into the direct sum of
Sfour My ;(F)-bimodules

J =Joo® Jo1 @ Jio ® J11

where, for p,q € {0, 1}, J,q is a left faithful module or a 0-left module according to p =
1, or p = 0, respectively. Similarly, J,q is a right faithful module or a 0-right module
according to g = 1 or g = 0, respectively. Moreover, for p, q,i,l € {0, 1}, JpgJdqt € Jpis
JpgJit = 0 for q # i and there exists a finite dimensional nilpotent superalgebra N such
that J11 = My (F) ®F N (isomorphism of My ;(F)-bimodules and of superalgebras).

Lemma 6 Let M = k> + 1% and L = 2kl withk,l € N, k > [ > 0. Then the superalgebra
My 1 (F) does not satisfy the graded Capelli polynomials Capy[Y, X1 and Capr[Z, X].

Proof In order to prove that Capy[Y, X] does not vanish on My ;(F) we need to find
a non-zero valuation. Let e(l), o eg,l be a basis of My ;(F )(0) consisting of matrix units,
e)efeijll<i<k 1<j<klUlejlk+1<i<k+Ilk+1<j<k+I}. Thenwe
evaluate

0 0.
agCapy(ey, ..., ey at,...,ay—1)ay =e1,;1 #0,

where ap = ey,1, ay = exy1.1,for y1, ..., yy we substituted all the 6'2 ordered according to
the left lexicographic order of the indices and for all x;’s we made the unique substitution of
elements of My ;(F) making y1x1y2x2 - - - ym—1Xm—1ym the only monomial with non-zero
evaluation, i.e. a; = e11,a2 =€y 1, ,AM—1 = €k+|—1,k+l-

Now, we want to show that Cap[Z, X] does not vanish in My ;(F). Let ei, . elL be a
basis of Mk,z(F)(l) consisting of matrix units from the odd part of My ;(F), e,ll efejll =<
i<k k+1=<j<k+l}Ulejlk+1=<i<k+1 1= j <k} Then we evaluate

boCapp ey, ... e ;b ....bL_1)bL = el i1 #0,

where by = e1,1, by, = ek k+i, for z1, ..., zr, we substituted all the "’;1; ordered according to
the left lexicographic order of the indices and for all x;’s we made the unique substitution
of elements of M ;(F) making z1x1z2x2 - - - 2. —1X1—12L the only monomial with non-zero
evaluation. O

Lemma 7 Let M = k*> +1%2 and L = 2kl withk,l € N,k > 1 > 0. If Tyyy1.041 C
1d*"P (A), then Jio = Jo1 = (0).

Proof By Lemma 6, M ;(F) does not satisfy the graded Capelli polynomial Capy[Y, X].

Then, there exist elements afo), R a}(‘(,;) € Mk,z(F)(O) and by, ...,by—1 € My (F) such
that
0 0
CaPM(al( ), .. .,aj(l,,); bi,....by-1) = e1 k41,

where the e; ;’s are the usual matrix units. We write Jip = Jl(g) @ Jl%) and Jo; = J(;(l)) ® Jéll).

Now, we consider d©@ e Jl(g). Since I'pr41,04+1 € 1d*"P (A) we have

0 0
0= CaPM+1(a; U a,(w), dO by, .. byt errrprr) = e pd®.
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Asymptotics for Graded Capelli Polynomials

Hence el,k+ld(o) =0 and, so, d© = 0, for all d© ¢ J1(8)' Thus Jl(g) = (0). Analogously
IO = (0.

Now, by a similar proof, we want to show that J 1%) = (0) and Jéll) = (0). By Lemma 6,
the graded Capelli polynomial Cap;[Z, X] does not vanish in My ;(F). Thus we can choose
a suitable substitution ail), e a(Ll) IS Mk,l(F)(l) and ¢y, ...,c—1 € My (F) such that

1 1
CapL(af ), az); Cl,...,CL—1) =e€1.

Now, we compute
1 1
CaPL+l(a§ ). .,a(L),d(l); Ctyeoser—t,eny) = e d?,

where d\V ¢ Jl(é). Since I'pr41,0+1 € 1d*"P(A) we have ellzd(l) = 0. Thus d = 0, for
alld® e Jl%) and then Jl%) = (0). Analogously J(ﬂ) = (0) and the lemma is proved. [

Lemma8 Let M = k>+1% and L = 2kl withk,l € N, k > | > 0. Let J11 = My ;(F)®FN,
where N = NO & ND a5 in Lemma 5. IfTrrq1.L41 € 1d*"P(A), then N is commutative.

Proof Let e(l), el eg,, be an ordered basis of My ;(F )(0) consisting of matrix units, 62 €

leijll <i <k 1=<j=<klU{ejlk+1=<i=<k+1lk+1=<j=<k+I}suchthat

e(l) =e1,1 and letag, ay, ..., ay € My (F) be such that

aoe?al --~aM_1eg,1aM =e,1
and
aoeg(l)al . -aM_leg(M)aM =0
for any 0 € Sy, 0 # 1. Consider d](O)’aéO) e NO and set 121(0) = el,ldl(o) and 5?2(0) =
el,ldéo). Notice that a_ll(o), a_éo) e AO_ Now, recalling that N commutes with My ;(F), we
compute
10} =0
Capu2@d?. &), ..., &8,d % ao, ..., an) =
=0 =0) 30 (0 5(0) 5(0
A% 1d —dVe; 1 — e11dVd +
2(0) 30 <(0) 5000 3(0) (0
' dVer s +er1dyd” — dPder ) =
Z0) (0 0) (0
[dé ),dl( ey = [dé ), dl( e
Since Capy+1[Y; X1 C 1d™?(A) we have [d\”, d\"'] = 0. Thus d\"d” = a{”a?, for
alld”, d® e NO.

Now, let ei, A elL be an ordered basis of My ;(F )y consisting of matrix units from
the odd part of My ;(F), e} € fe;j|1 <i <k k+1<j<k+1U{ejlk+1<i=<
k+1,1 < j <k} suchthat e} = ey k+1. We consider by, ..., by, € My (F) such that

b()e%bl . 'bL_le}‘bL =e1,1
and
boet )b+ br_1e},br =0
forallz € Sy, v # 1. Letd\", d{" € NO. Wesetd(” = e 1d\", d" = e 1d}" € AD.
As above we compute
(1 (1
Capria(@d”.e}.....e}.d" by, ... br) =

(1 (1 (1 (1 1 1
dVei1d" —dVe; 1dV = 1d", d e ;.
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Since Capy11[Z; X1 € 15 (A) we get that d\Vd{" = a{Va", for all a(", a{" € N,

Next we show that N© commutes with ND. Take e?, A 634 an ordered basis of
Mk,l(F)(O) consisting of matrix units such that e(l) =ejandletay,...,ay € My (F) be
such that

a1day - --ayely = ey py1
and
aleg(l)az . -aMeg(M) =0
for any p € Sy, p # 1. Notice that ap = ey,;1. Let d{o) e NO and dél) e N, We set

Jfo) = ezy]dfo) and a) = e],]dél). Notice that cffo) € AO_ Then, since Capy+1lY; X] C
1d"P(A), we obtained

S0 0 0. -
0=CapM+1(df),e],...,eM,al,az,as,...,aM)=

0 1
[df ), dz( ez,
Thus dfo)dél) = dél)dl(o), for all dfo) e NO, dél) e N and we are done. O
3.2 The main result for My ;(F)

In this section we prove our main result about the Tp-ideal I'y2 2. 54 generated
by the graded Capelli polynomials Cap2, 2, [Y, X], Capog41[Z, X] and the T»-ideal
1d*"P (My 1 (F)).

Theorem 9 Let M = k> +1?> and L = 2ki with k,1 € N, k > [ > 0. Then
Uﬁill_’_l = supvar(Cpy1.0+1) = supvar(My(F) & D), where D' is a finite
dimensional superalgebra such that supexp(D’) < M + L. In particular

A" (Cpgr,L41) = n T (M (F)).
Proof 1In [1] we proved that
supexp(blﬁill_i_l) =M+ L.

Moreover, by [7, Lemma 11.4.1] and [7, Theorem 11.4.3], there exists a finitely gener-
ated superalgebra satisfying an ordinary polynomial identity A such that Ujﬁli 141 =
supvar(A). Thus, by Theorem 3, there exists a finite number of superalgebras
Bi, ..., B, D such that

UIS\;_T_LLH = supvar(A) = supvar(B; ®--- ® By ® D) )]

where Bi, ..., By are reduced, D is finite dimensional with supexp(B;) = --- =
supexp(Bs) = supexp(UﬁiLLH) = M + L and supexp(D) < supexp(Ui,}lf_l’LH) =
M + L. By a theorem of Kemer (see [9, Theorem 2.2]), if A is a finitely generated superalge-
bra, then there exists a finite dimensional superalgebra C such that 7d**P (A) = Id**P(C).
Therefore throughout we may assume that A = A©@ @ A( is a finite dimensional superal-
gebra over F satisfying an ordinary polynomial identity and charF = 0. Next, we analyze
the structure of a finite dimensional reduced superalgebra R which satisfies I'jys41,1+1-
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Asymptotics for Graded Capelli Polynomials

Let R be a finite dimensional reduced superalgebra such that supexp(R) = M + L =
supexp(b{fv';_’:l’u_l) and I'py41,241 € 1d°*P(R). We can write R = Ry & --- @ R, + J,
where R; are simple subsuperalgebras of R and J = J(R) is the Jacobson radical of R.

Recall that a simple finite dimensional superalgebra R; over F is isomorphic to one of
the following algebras (see [9]):

1. My, (F), with trivial grading (Mg, (F), 0);
My, (F @ tF), where t* = 1, with grading (M, (F), t My, (F));
3. My, (F) with grading Fu 0 , 0 Fi , where Fy1, Fip, F21, Fry are
o 0 Fxn F 0O
ki X ki, ki x 1;,l; x k; and [; x [; matrices respectively, k; > 0 and /; > 0.

Let #; be the number of superalgebras R; of the first type, let #, be the number of super-
algebras R; of the second type and finally let #3 be the number of R; of the third type, with
h+n+n=gq.

Since R is reduced, RyJ --- J Ry # 0. Then, by [7, Lemma 8.1.4], there exists a minimal
superalgebra R contained in R with semisimple part R; @ --- & R,. Hence R contains a
superalgebra isomorphic to the upper block triangular matrix algebra

ﬁl k
0
0 ...0Ry

where R; is one of the following: My (F), Mg, (F ®tF), My, ;,(F) and
(k + l)2 =M + L = supexp(R) =dimpR| +---+dimpR,

=df -+ dE 2T 2R R 1D Ky )R

If 7y > 1, by [1, Lemma 1], R does not satisfy the polynomials Capdo+t2+13+;l [Y; X] and
Capgiy gy 11547 1Z; X1, where d/ = dimp(Ry @ -+ & ROV, d® + d' = dimp(R; &
DRy = supexp(R) = M + L and 1, + 7 = t; — 1. But R satisfies Capy+11Y; X1
and Capy1[Z; X]. Thus d® + 1, + 13 + 7, < M and alsod' + t, + 13 +7; < L. Hence
d° +d" +264+2634+7 +7 < M+ L. Then, sinced’ +d' = M+ L, M +L <
d®+d" + 2420+ +1 < M+ Lithusd® +d' + 20+ 25+ 71 +1 = M+ L,
then, since d® +d! = M+ L, 21 +2t3 +714+7 = 0. Since 1, 13, tl and 7] are nonnegative
integers, we have tp = 13 = 1] = 71=0.Thensy —1 =7 +7 =0andsot = 1.
In conclusion, if #; > 1,thent; = 1, = 0 and 3 = 0. In this case R ~ My (F)+J.
Hence supexp(R) = d?. Since supexp(R) = M + L = (k + )2, we have thatd; = k +I.
Then R satisfies Capy11Y; X] and Capr4+1[Z; X] and R does not satisfy CapyolY; X]
where d° = dimp(R| ® --- & Rq)o = diz. It is impossible since M 4+ 1 = K+124+1<
k2412 42kl = (k+1)? =
If 1 = 0, then, also by [1, Lemma 1], R does not satisfy CapdonH},l[Y; X] and
Capd1+t2+t3_1[Z; X]. But R satisfies Capy+11Y; X] and Capr4+1[Z; X]. Then A+ +
3—1<Mandd' + 5+t —1< L. Thusd® +d' + 2 + 213 —2 < M + L. Since
d°+d' =M+ L,wehave M + L +2(tp +t3—1) < M+ L. Thenty + 3 — 1 < 0. So
ty + t3 < 1. Since t, and t3 are non negative integers we have only two possibilities #p = 0
andt3 = lorty = landt3 = 0.If , = 1 and 13 = 0, then R ~ M,,(F @ tF) + J. Thus
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(k+0?=M+ L = supexp(R) = 2sl.2. It is impossible. Let z, = 0 and #t3 = 1. Then we
have k; = k,[; = [ and

R~ My (F)+J.
From Lemmas 5, 7, 8 we have
R = My (F) + J11) @ Joo = (My i (F) ® N*) @ Joo.

where N* is the algebra obtained from N by adjoining a unit element. Since N* is com-
mutative, it follows that My ;(F) + Ji1 and My (F) satisfy the same identities. Thus
supvar(R) = supvar(My (F) @& Joo) with Joo a finite dimensional nilpotent algebra.
Hence, recalling the decomposition given in (1), we get

Uy o1 = supvar (Cyri1 L41) = supvar(My 1 (F) & D),
where D’ is a finite dimensional superalgebra with supexp(D’) < M + L. Then, from
Corollary 4 we have
en'” (Cyer,e1) = " (M (F))

and the theorem is proved. O

4 Asymptotics for Llssz" Is' ,and M (F @ tF)
4.1 Evaluating polynomials

Throughout this section we assume that A = M (F @ tF) + J, where J = J(A) is
the Jacobson radical of the finite dimensional superalgebra A. We start with the following
lemma which establishes a result similar to Lemma 5 (see [3, Lemma 6]).

Lemma 10 The Jacobson radical J can be decomposed into the direct sum of four Ms(F &
t F)-bimodules

J = Joo® Jo1 @ Jio ® Ji1

where, for p,q € {0,1}, Jp, is a left faithful module or a 0-left module according as
p =1, or p =0, respectively. Similarly, J,q is a right faithful module or a 0-right module
according as q = 1 or q = 0, respectively. Moreover, for p,q,i,l € {0,1}, JpgJy C
Jpti, IpgJit = 0 for q # i and there exists a finite dimensional nilpotent superalgebra
N such that J11 = My(F @ tF) ®f N (isomorphism of Mg(F @ t F)-bimodules and of
superalgebras).

Lemma 11 Ler M = L = s with s € N. Then the superalgebra My(F & tF) does not
satisfy the graded Capelli polynomials Capy Y, X] and Cap[Z, X].

Proof As in Lemma 6, let e?, e eOM be a basis of M, (F & tF)© consisting of matrix
units. Then

apCapm(e®, ..., e a1, ..., apy—1)ay = e #0,
where ap = e1,1, ay = es.1, for y1, ..., yy we substituted all the e2 ordered according to

the left lexicographic order of the indices and for all x;’s we made the unique substitution
of elements of M (F & tF)(O) making y;x;y2x2 - - - yy—1Xyp—1yum the only monomial with
non-zero evaluation.
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Now, let e}, ol ei be a basis of M (F @ ¢ F)D consisting of matrix units from the odd
part of M;(F @ t F). Then we evaluate

boCapr(ei.....ep;br,....bp_)by =t e1 1 #0,

where by = e1,1, by, = ey,1, for 71, ..., zp we substituted all the e}, ordered according to
the left lexicographic order of the indices and for all x;’s we made the unique substitution
of elements of My (F @ tF)© making z;x1z2x2 - - -z —1xX1—12L the only monomial with
non-zero evaluation. O

Lemma 12 Let M = L = s> withs € N. If Ty 1,241 C 1d*“P(A), then Jig = Jo1 = (0).

Proof By Lemma 11, we have that Capy/[Y; X] is not an identity for M(F @&t F). Hence,
as in Lemma 7, there exist elements afo), ol a;,ol) e My(F & tF)(O) and by,...,by_1 €

M (F&tF)9 C M (F &tF) (see the proof of the Lemma 11) such that

0 0
CaPM(ag )s cee aI(W); by, ...,by-1) = es;.

We write Jig = Jl(g) (&) Jl((l)) and Jo; = Jé?) [4>) J(gll ) Letd©® e J](g). Now, we compute

0 0
0= Cal’M+l(a§ L a,(u), d; by, . by, erripr) = e55d Q.

Since I'pp41,041 S 1d*MP(A), we have es,sd(o) = 0. In particular d©® =0, for all d© ¢
JO Thus J) = (0). Similarly J.? = (0).

Now, we want to prove that Jl%) = (0) and JO(P = (0). By Lemma 11, M,(F @ tF)
(1) (1)

does not satisfy Capr[Z; X], then we can take an opportune substitution a; ', ..., a;
eM(F@tF)Dandey,...,co_1 € M{(F ®1tF)© C M(F @ tF) (see the proof of the
Lemma 11) such that
1 1
CapL(af ), cey ai); Cly..-yCL—1) = tLe“.
By the hypothesis we obtain
1 1
Capri1@’,...,a",dWV5er, .. eroi,e) = thedV.

where d(V € Jl%). Thus tLeMd(l) = 0and dV = 0 for all 4V € Jl((l)). In conclusion
Jl((l)) = (0). Similarly J(;f) = 0 and the lemma is proved. O

Lemma 13 Let M = L = s2 withs € N. Let Ji1 = My(F ® tF) ® N, where N =
NO @ ND a5 in Lemma 10. IfTps1.04+1 C 1d*"P (A), then N is commutative.

Proof As in Lemma 8, we consider an ordered basis of M;(F @ tF )(0) consisting of all
matrix units e(l), e, eUM such that e(l) = ¢j,1 and also we take agp, aj,...,ay € My(F &
tFYO C M (F @ tF) such that

0 0
apejay---ay—1eyay = ey

and

0 0
A0, (1ya1 * - - AM—1€5(paM = 0

for all 0 € Sy, 0 # 1. Now, as in Lemma 8, we consider d{o), d2(0) e NO and we take
dl(o) = el,ldl(o), d;o) = elyldéo). Notice that d](O), déo) e A, Since N commutes with
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M(F@®tF)and 'y 41,041 € 1d°#P(A), we have

~(O (V)
0= CapM+2(df ),e?,...,E?w,dé )iao, ..., ay) =

(0 (0 (0 (0 ~5(0) F(0
dl( )6‘1,1d2( ) _ dz( )61,1d1( ) _ 61,1d]( )dé )+

5(0) 50 5(0) 50 0) (0
dVde; | +e11dVd” —dVdVe, , =
~(0) 7O 0 0
[dé ),dl( MNer 1 = [dé ), dl( Mer 1.

Hence [dy”,d”] = 0, forall ", &} € N©.
Now, we take dl(l), dz(l) e N and we put Jfo) = telyldfl), JZ(O) = telyldél). Notice that

d 1(0) s 572(0) € A© Then, as above, we have

~0 ~0
0= CapM+2(d1( ),e?,...,eg,,,dé );ao,...,aM) =
~0) (0 1 1 1 1
[y, d\"ery = *[d3, d{"er1 = [d5”, d{"].
In conclusion [dél), dfl)] =0, for all dl(l), dz(l) e N,

Finally, we consider dfo) e NO and dz(l) e ND_ Hence we take 07{0) = 61,1dfo) and
%0) = tel,ldél). Also in this case 5{0), 32(0) € AO Then

~0 ~0
0= CapM+2(d{ ),e?,...,eg,,,dé );ao,...,aM) =

[y, d"er1 = tldy" d\Ver1.
Hence [dz(l), d{o)] = 0 for all dfo) e NO and dz(l) e N The lemma is proved. O

4.2 The main result for My (F & tF)

In this section we shall prove that the codimensions of Iz ;> are asymptotically equal to the
codimensions of the superalgebra M(F & tF),s € N

Theorem 14 Let M = L = 5% with s € N. Then L{;ﬁ_l 41 = supvar(Uyyi,41) =
supvar(Mg(F @ tF) @ D'), where D is a finite dimensional superalgebra such that
supexp(D) < M + L. In particular

" (Cyrs1,041) = cn'’ (My(F © tF)).

Proof The first part of the proof follows step by step that of Theorem 9 and we
obtain a finite dimensional reduced superalgebra R with supexp(R) = M + L =
supexpUy Y, ;) and Tagyy 1 S 1d™P(R). We can write R = Ry @ - @ Ry + J,
where R; are simple subsuperalgebras of R and J = J(R) is the Jacobson radical of R.
Let #; be the number of superalgebras R; isomorphic to My, (F), t; the number of super-
algebras R; isomorphic to M, (F @ tF) and finally let #3 be the number of R; isomorphic
to My, ;;(F), with t; + #, 4+ 13 = g. Hence, as in Theorem 9, R contains a superalgebra R
isomorphic to the following upper block triangular matrix algebra

ﬁl *
0
0...0R,
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where R; is one of the following: My (F), M, (F ®tF), My, ;,(F) and
supexp(R) = di++--+d; +2s7+- - +2sp + (ki +ID)*+- -+ (kyy+11y)* = 25> = M+L.

If 7; > 1, then as in Theorem 9 we obtain #{ = 1. Hence R = My (F) + J, 252 =
M + L = supexp(R) = di2 and we have a contradiction. Now, let #{ = 0. Then by
[1, Lemma 1], R does not satisfy Capgois,41,11Y; X1 and Capyiyy, 1, 1[Z; X]. But R
satisfies Capy+1[Y; X]and Capyr1[Z; X]. Then d°+n+3—1 < Mandd'+m+r3—1 <
L. As in the proof of Theorem 9 we obtain #, + #3 < 1. Also in this case we have only
two possibilities p = l and 3 = Qor#t3 = 0and#, = 1. Letrp = 0 and 13 = 1. Then
R~ My, 1, (F)+J and 252 = supexp(R) = (k; +1;)%, a contraddiction. Finally, let, = 1
andf3 = 0. Thens; = s and R ~ M,(F @ tF) + J. As in Theorem 9, by Lemmas 10, 12,
13 we obtain

R= (M(F@®tF)+Ji1) @ Joo = (My(F ®tF) ® N*) @ Joo.

where N¥ is the algebra obtained from N by adjoining a unit element. Since N* is com-
mutative, it follows that R + Ji; and R satisfy the same identities. Thus supvar(R) =
supvar (Mg (F @t F) @ Joo) with Joo a finite dimensional nilpotent algebra. As in Theorem
9 we get

Upgt 1 11 = supvar(Tyi1 L41) = supvar (My(F & tF) & D),

where D is a finite dimensional superalgebra with supexp(D) < M + L. From Corollary
4 we have

en'” (Cygr,e1) = " (Ms(F @ tF))
and the theorem is proved.
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