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Abstract The finite dimensional simple superalgebras play an important role in the theory
of PI-algebras in characteristic zero. The main goal of this paper is to characterize the T2-
ideal of graded identities of any such algebra by considering the growth of the corresponding
supervariety. We consider the T2-ideal �M+1,L+1 generated by the graded Capelli polyno-
mials CapM+1[Y, X] and CapL+1[Z, X] alternanting on M + 1 even variables and L + 1
odd variables, respectively. We prove that the graded codimensions of a simple finite dimen-
sional superalgebra are asymptotically equal to the graded codimensions of the T2-ideal
�M+1,L+1, for some fixed natural numbers M and L. In particular

c
sup
n (�k2+l2+1,2kl+1) � c

sup
n (Mk,l(F ))

and

c
sup
n (�s2+1,s2+1) � c

sup
n (Ms(F ⊕ tF )).

These results extend to finite dimensional superalgebras a theorem of Giambruno and
Zaicev [6] giving in the ordinary case the asymptotic equality

c
sup
n (�k2+1,1) � c

sup
n (Mk(F ))

between the codimensions of the Capelli polynomials and the codimensions of the matrix
algebra Mk(F).

Keywords Superalgebras · Polynomial identities · Codimensions · Growth

Mathematics Subject Classifications (2010) 16R10 · 16P90 · 16W55

Presented by Susan Montgomery.

F. Benanti (�)
Dipartimento di Matematica ed Informatica, Università di Palermo, via Archirafi, 34
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1 Introduction

Let F be a field of characteristic zero, X = {x1, x2, . . .} a countable set and F 〈X〉 =
F 〈x1, x2, . . .〉 the free associative algebra on X over F . Recall that an algebra A is a superal-
gebra (or Z2-graded algebra) with grading (A(0), A(1)) if A = A(0)⊕A(1), where A(0), A(1)

are subspaces of A satisfying:

A(0)A(0) + A(1)A(1) ⊆ A(0) and A(0)A(1) + A(1)A(0) ⊆ A(1).

If we write X = Y ∪ Z as the disjoint union of two countable sets, then F 〈X〉 = F 〈Y ∪ Z〉
has a natural structure of free superalgebra if we require that the variables from Y have
degree zero and the variables from Z have degree one.

Recall that an element f (y1, . . . , yn, z1, . . . , zm) of F 〈Y ∪ Z〉 is a graded identity
or superidentity for A if f (a1, . . . , an, b1, . . . , bm) = 0, for all a1, . . . , an ∈ A(0) and
b1, . . . , bm ∈ A(1). The set Idsup(A) of all graded identities of A is a T2-ideal of F 〈Y ∪Z〉
i.e., an ideal invariant under all endomorphisms of F 〈Y ∪Z〉 preserving the grading. More-
over, every T2-ideal � of F 〈Y ∪ Z〉 is the ideal of graded identities of some superalgebra
A = A(0) ⊕ A(1), � = Idsup(A).

For � = Idsup(A) a T2-ideal of F 〈Y ∪ Z〉, we denote by supvar(�) or supvar(A) the
supervariety of superalgebras having the elements of � as graded identities.

As it was shown by Kemer (see [8, 9]), superalgebras and their graded identities play
a basic role in the study of the structure of varieties of associative algebras over a field
of characteristic zero. More precisely, Kemer showed that any variety is generated by the
Grassmann envelope of a suitable finite dimensional superalgebra (see also Theorem 3.7.8
[7]).

Recall that, if F is an algebraically closed field of characteristic zero, then a simple finite
dimensional superalgebra over F is isomorphic to one of the following algebras (see [9],
[7]):

1. Mk(F) with trivial grading (Mk(F ), 0);

2. Mk,l(F ) with grading

((
F11 0
0 F22

)
,

(
0 F12

F21 0

))
, where F11, F12, F21, F22 are k ×

k, k × l, l × k and l × l matrices respectively, k ≥ 1 and l ≥ 1;
3. Ms(F ⊕ tF ) with grading (Ms(F ), tMs(F )), where t2 = 1.

Thus an important problem in the theory of PI-algebras is to describe the T2-ideals
of graded identities of these simple finite dimensional superalgebra, Idsup(Mk(F )),
Idsup(Mk,l(F )), Idsup(Ms(F ⊕ tF )).

In case charF=0, it is well known that Idsup(A) is completely determined by its multi-
linear polynomials and an approach to the description of the graded identities of A is based
on the study of the graded codimension sequence of this superalgebra.

If V
sup
n denotes the space of multilinear polynomials of degree n in the variables

y1, z1, . . . , yn, zn (i.e., yi or zi appears in each monomial at degree 1), then the sequence of
spaces {V sup

n ∩ Idsup(A)}n≥1 determines Idsup(A) and

c
sup
n (A) = dimF

(
V

sup
n

V
sup
n ∩ Idsup(A)

)

is called the n-th graded codimension of A.
The asymptotic behaviour of the graded codimensions plays an important role in the

PI-theory of graded algebras. It was shown in [4] that the sequence {csup
n (A)}n≥1 is

exponentially bounded if and only if A satisfies an ordinary polynomial identity.
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In [2] it was proved that if A is a finitely generated superalgebra satisfying a polynomial

identity, then lim
n→∞

n

√
c
sup
n (A) exists and is a non negative integer. It is called superexponent

(or Z2-exponent) of A and it is denoted by

supexp(A) = lim
n→∞

n

√
c
sup
n (A).

Now, if f ∈ F 〈Y ∪Z〉 we denote by 〈f 〉T2 the T2-ideal generated by f . Also for a set of
polynomials V ⊂ F 〈Y ∪ Z〉 we write 〈V 〉T2 to indicate the T2-ideal generated by V .

In PI-theory a prominent role is played by the Capelli polynomial. If Sm is the symmetric
group on {1, . . . , m}, the polynomial

Capm[T , X] = Capm(t1, . . . , tm; x1, . . . , xm−1) =
=

∑
σ∈Sm

(sgnσ)tσ(1)x1tσ (2) · · · tσ (m−1)xm−1tσ (m)

is the m-th graded Capelli polynomial in the homogeneous variables t1, . . . , tm
(x1, . . . , xm−1 are arbitrary variables). In particular Capm[Y,X] and Capm[Z, X] denote
the m-th graded Capelli polynomial in the alternanting variables of homogeneous degree
zero y1, . . . , ym and of homogeneous degree one z1, . . . , zm, respectively.

Let Cap0
m denote the set of 2m−1 polynomials obtained from Capm[Y,X] by deleting

any subset of variables xi (by evalauting the variables xi to 1 in all possible way). Similarly,
we define by Cap1

m the set of 2m−1 polynomials obtained from Capm[Z, X] by deleting
any subset of variables xi .

If L and M are two natural numbers, we denote the T2-ideal generated by the polynomials
Cap0

M+1, Cap1
L+1 by �M+1,L+1 = 〈Cap0

M+1, Cap1
L+1〉T2 . We also write U sup

M+1,L+1 =
supvar(�M+1,L+1). In [1] it was shown that

(M + L) − 10 ≤ supexp(U sup
M+1,L+1) ≤ (M + L).

The following relations between the superexponent of the graded Capelli polynomials and
the superexponent of the simple finite dimensional superalgebras are well known (see [1, 2,
5])

supexp(U sup
k2+1,1

) = k2 = supexp(Mk(F ))

supexp(U sup
k2+l2+1,2kl+1

) = (k + l)2 = supexp(Mk,l(F ))

supexp(U sup
s2+1,s2+1

) = 2s2 = supexp(Ms(F ⊕ tF )).

In this paper we try to find a close relation among the asymptotics of U sup

k2+l2+1,2kl+1
and

Mk,l(F ) and the asymptotics of U sup

s2,s2 and Ms(F ⊕ tF ). Recall that two sequences an, bn,
n = 1, 2, . . ., are asymptotically equal, an � bn, if

lim
n→+∞

an

bn

= 1.

This paper was inspired by the ordinary case (see [6]) where Giambruno and Zaicev
proved that

c
sup
n (�k2+1,1) � c

sup
n (Mk(F )).

Here we show that
�k2+l2+1,2kl+1 = Idsup(Mk,l(F ) ⊕ D′)

and
�s2+1,s2+1 = Idsup(Ms(F ⊕ tF ) ⊕ D)
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where D′ and D are finite dimensional superalgebra with supexp(D′) < (k + l)2 and
supexp(D) < 2s2. It follows that asymptotically

c
sup
n (�k2+l2+1,2kl+1) � c

sup
n (Mk,l(F ))

and

c
sup
n (�s2+1,s2+1) � c

sup
n (Ms(F ⊕ tF )).

2 Preliminaries

In [6, Definition 1] the notion of reduced superalgebra was introduced: let A = A1 ⊕ · · · ⊕
Ar + J be a finite dimensional superalgebra where A1, . . . , Ar are simple superalgebras
and J = J (A) is the Jacobson radical of A, A is called reduced if A1JA2J · · · JAr �=
0. Giambruno and Zaicev (see [6]) showed, also, that these superalgebras can be used as
building blocks of any proper variety. Here, in the next theorem, we obtain an analogous
result for supervarieties generated by a finitely generated superalgebra. We first prove a
lemma that will be used throughout the paper.

Lemma 1 Let A and B be PI-superalgebras. Then

c
sup
n (A), c

sup
n (B) ≤ c

sup
n (A ⊕ B) ≤ c

sup
n (A) + c

sup
n (B).

Proof The proof of this result is the same of the proof of the [6, Lemma 1].

Corollary 2 If A and B are finitely generated superalgebras, then

supexp(A ⊕ B) = max{supexp(A), supexp(B)}.

Theorem 3 Let A be a finitely generated superalgebra satisfying an ordinary polynomial
identity. Then there exists a finite number of reduced superalgebras B1, . . . , Bt and a finite
dimensional superalgebra D such that

supvar(A) = supvar(B1 ⊕ · · · ⊕ Bt ⊕ D)

with supexp(A) = supexp(B1) = · · · = supexp(Bt ) and supexp(D) < supexp(A).

Proof The proof follows closely the proof given in [6, Theorem 1]. Let A be a finitely gen-
erated superalgebra satisfying an ordinary polynomial identity. By a theorem of Kemer (see
[9, Theorem 2.2]), there exists a finite dimensional superalgebra B such that Idsup(A) =
Idsup(B). Therefore throughout we may assume that A = A(0) ⊕ A(1) is a finite dimen-
sional superalgebra over F satisfying an ordinary polynomial identity and charF = 0.
Also, by [9, pag. 21] we may assume that A = A1 ⊕ · · · ⊕ As + J , where A1, . . . , As

are simple superalgebras and J = J (A) is the Jacobson radical of A. It is well known that
J = J (0) ⊕ J (1) is a homogeneous ideal. Let supexp(A) = d . Then, as it was showen in
[2], there exist distinct simple superalgebras Aj1 , . . . Ajk

such that

Aj1J · · · JAjk
�= 0 and dimF (Aj1 ⊕ · · · ⊕ Ajk

) = d.

Let �1, . . . , �t be all possible subset of {1, . . . , s} such that, if �j = {j1, . . . , jk}, then
dimF (Aj1 ⊕ · · · ⊕ Ajk

) = d and Aσ(j1)J · · · JAσ(jk) �= 0 for some permutation σ ∈ Sk .
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Hence we put Bj = Aj1 ⊕ · · · ⊕ Ajk
+ J for any �j , j = 1, . . . , t . It follows, by the

characterization of the superexponent, that

supexp(B1) = · · · = supexp(Bt ) = d = supexp(A).

Let D = D1 ⊕ · · · ⊕ Dp , where D1, . . . , Dp are all subsuperalgebras of A of the type
Ai1 ⊕ · · · ⊕ Air + J , with 1 ≤ i1 < · · · < ir ≤ s and dimF (Ai1 ⊕ · · · ⊕ Air ) < d.
Then, by Corollary 2, we have supexp(D) < supexp(A). Now, we want to prove that
supvar(B1 ⊕ · · · ⊕ Bt ⊕ D) = supvar(A). The inclusion

supvar(B1 ⊕ · · · ⊕ Bt ⊕ D) ⊆ supvar(A)

follows from D, Bi ∈ supvar(A), ∀i = 1, . . . , t . Now, let f = f (y1, . . . , yn, z1, . . . , zm)

be a multilinear polynomial such that f �∈ Idsup(A). We shall prove that f �∈ Idsup(B1 ⊕
· · · ⊕ Bt ⊕ D). There exist a1, . . . , an ∈ A0 and b1, . . . , bm ∈ A1 such that

f (a1, . . . , an, b1, . . . , bm) �= 0.

From the linearity of f we can put a1, . . . , an ∈ A0
1 ∪ · · · ∪ A0

s ∪ J 0 and b1, . . . , bn ∈
A1

1 ∪ · · · ∪ A1
s ∪ J 1. Since AiAj = 0 for i �= j , from the property of d we have

a1, . . . , an, b1, . . . , bm ∈ Aj1 ⊕ · · · ⊕ Ajk
+ J

for some Aj1 , . . . , Ajk
such that dimF (Aj1 ⊕ · · · ⊕Ajk

) ≤ d . Thus f is not an identity for
one of the algebras B1, . . . , Bt ,D. Hence f �∈ Idsup(B1 ⊕ · · · ⊕ Bt ⊕ D). In conclusion

supvar(A) ⊆ supvar(B1 ⊕ · · · ⊕ Bt ⊕ D)

and the proof is complete.

Corollary 4 Let A be a finitely generated superalgebra satisfying an ordinary polynomial
identity. Then there exists a finite number of reduced superalgebras B1, . . . , Bt such that

c
sup
n (A) � c

sup
n (B1 ⊕ · · · ⊕ Bt)

Proof By Theorem 3 there is a finite number of reduced superalgebras B1, . . . , Bt such that

supvar(A) = supvar(B1 ⊕ · · · ⊕ Bt ⊕ D)

with supexp(A) = supexp(B1) = · · · = supexp(Bt ) and supexp(D) < supexp(A).
Then, by Lemma 1

c
sup
n (B1 ⊕ · · · ⊕ Bt) ≤ c

sup
n (B1 ⊕ · · · ⊕ Bt ⊕ D) ≤ c

sup
n (B1 ⊕ · · · ⊕ Bt) + c

sup
n (D).

Recalling that supexp(D) < supexp(B1) = supexp(B1 ⊕ · · · ⊕ Bt) we have that

c
sup
n (A) � c

sup
n (B1 ⊕ · · · ⊕ Bt)

and the proof of the corollary is complete.

3 Asymptotics for U sup

k2+l2+1,2kl+1
and Mk,l(F )

3.1 Evaluating polynomials

Throughout this section we assume that A = Mk,l(F )+J , where J = J (A) is the Jacobson
radical of the finite dimensional superalgebra A. Notice that Mk,l(F ) contains the unit and
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it belongs to the even part in the grading. It is also known that J is homogeneous under the
grading of A [9]. We start with the following key lemmas.

Lemma 5 [3, Lemma 1] The Jacobson radical J can be decomposed into the direct sum of
four Mk,l(F )-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where, for p, q ∈ {0, 1}, Jpq is a left faithful module or a 0-left module according to p =
1, or p = 0, respectively. Similarly, Jpq is a right faithful module or a 0-right module
according to q = 1 or q = 0, respectively. Moreover, for p, q, i, l ∈ {0, 1}, JpqJql ⊆ Jpl ,
JpqJil = 0 for q �= i and there exists a finite dimensional nilpotent superalgebra N such
that J11 ∼= Mk,l(F ) ⊗F N (isomorphism of Mk,l(F )-bimodules and of superalgebras).

Lemma 6 Let M = k2 + l2 and L = 2kl with k, l ∈ N, k > l > 0. Then the superalgebra
Mk,l(F ) does not satisfy the graded Capelli polynomials CapM [Y, X] and CapL[Z, X].

Proof In order to prove that CapM [Y,X] does not vanish on Mk,l(F ) we need to find
a non-zero valuation. Let e0

1, . . . , e
0
M be a basis of Mk,l(F )(0) consisting of matrix units,

e0
h ∈ {ei,j | 1 ≤ i ≤ k, 1 ≤ j ≤ k} ∪ {ei,j | k + 1 ≤ i ≤ k + l, k + 1 ≤ j ≤ k + l}. Then we

evaluate

a0CapM(e0
1, . . . , e

0
M ; a1, . . . , aM−1)aM = e1,1 �= 0,

where a0 = e1,1, aM = ek+l,1, for y1, . . . , yM we substituted all the e0
h ordered according to

the left lexicographic order of the indices and for all xi’s we made the unique substitution of
elements of Mk,l(F ) making y1x1y2x2 · · · yM−1xM−1yM the only monomial with non-zero
evaluation, i.e. a1 = e1,1, a2 = e2,1, · · · , aM−1 = ek+l−1,k+l .

Now, we want to show that CapL[Z, X] does not vanish in Mk,l(F ). Let e1
1, . . . , e

1
L be a

basis of Mk,l(F )(1) consisting of matrix units from the odd part of Mk,l(F ), e1
h ∈ {ei,j | 1 ≤

i ≤ k, k + 1 ≤ j ≤ k + l} ∪ {ei,j | k + 1 ≤ i ≤ k + l, 1 ≤ j ≤ k}. Then we evaluate

b0CapL(e1
1, . . . , e

1
L; b1, . . . , bL−1)bL = e1,k+l �= 0,

where b0 = e1,1, bL = ek,k+l , for z1, . . . , zL we substituted all the e1
h ordered according to

the left lexicographic order of the indices and for all xi’s we made the unique substitution
of elements of Mk,l(F ) making z1x1z2x2 · · · zL−1xL−1zL the only monomial with non-zero
evaluation.

Lemma 7 Let M = k2 + l2 and L = 2kl with k, l ∈ N, k > l > 0. If �M+1,L+1 ⊆
Idsup(A), then J10 = J01 = (0).

Proof By Lemma 6, Mk,l(F ) does not satisfy the graded Capelli polynomial CapM [Y,X].
Then, there exist elements a

(0)
1 , . . . , a

(0)
M ∈ Mk,l(F )(0) and b1, . . . , bM−1 ∈ Mk,l(F ) such

that

CapM(a
(0)
1 , . . . , a

(0)
M ; b1, . . . , bM−1) = e1,k+l ,

where the ei,j ’s are the usual matrix units. We write J10 = J
(0)
10 ⊕J

(1)
10 and J01 = J

(0)
01 ⊕J

(1)
01 .

Now, we consider d(0) ∈ J
(0)
10 . Since �M+1,L+1 ⊆ Idsup(A) we have

0 = CapM+1(a
(0)
1 , . . . , a

(0)
M , d(0); b1, . . . , bM−1, ek+l,k+l ) = e1,k+ld

(0).



Asymptotics for Graded Capelli Polynomials

Hence e1,k+ld
(0) = 0 and, so, d(0) = 0, for all d(0) ∈ J

(0)
10 . Thus J

(0)
10 = (0). Analogously

J
(0)
01 = (0).

Now, by a similar proof, we want to show that J
(1)
10 = (0) and J

(1)
01 = (0). By Lemma 6,

the graded Capelli polynomial CapL[Z, X] does not vanish in Mk,l(F ). Thus we can choose
a suitable substitution a

(1)
1 , . . . , a

(1)
L ∈ Mk,l(F )(1) and c1, . . . , cL−1 ∈ Mk,l(F ) such that

CapL(a
(1)
1 , . . . , a

(1)
L ; c1, . . . , cL−1) = e1,l .

Now, we compute

CapL+1(a
(1)
1 , . . . , a

(1)
L , d(1); c1, . . . , cL−1, el,l) = e1,ld

(1),

where d(1) ∈ J
(1)
10 . Since �M+1,L+1 ⊆ Idsup(A) we have e1,ld

(1) = 0. Thus d(1) = 0, for

all d(1) ∈ J
(1)
10 and then J

(1)
10 = (0). Analogously J

(1)
01 = (0) and the lemma is proved.

Lemma 8 Let M = k2+l2 and L = 2kl with k, l ∈ N, k > l > 0. Let J11 ∼= Mk,l(F )⊗F N ,
where N = N(0) ⊕N(1), as in Lemma 5. If �M+1,L+1 ⊆ Idsup(A), then N is commutative.

Proof Let e0
1, . . . , e

0
M be an ordered basis of Mk,l(F )(0) consisting of matrix units, e0

h ∈
{ei,j | 1 ≤ i ≤ k, 1 ≤ j ≤ k} ∪ {ei,j | k + 1 ≤ i ≤ k + l, k + 1 ≤ j ≤ k + l} such that
e0

1 = e1,1 and let a0, a1, . . . , aM ∈ Mk,l(F ) be such that

a0e
0
1a1 · · · aM−1e

0
MaM = e1,1

and
a0e

0
σ(1)a1 · · · aM−1e

0
σ(M)aM = 0

for any σ ∈ SM , σ �= 1. Consider d
(0)
1 , d

(0)
2 ∈ N(0) and set d̄

(0)
1 = e1,1d

(0)
1 and d̄

(0)
2 =

e1,1d
(0)
2 . Notice that d̄

(0)
1 , d̄

(0)
2 ∈ A(0). Now, recalling that N commutes with Mk,l(F ), we

compute
CapM+2(d̄

(0)
1 , e0

1, . . . , e
0
M, d̄

(0)
2 ; a0, . . . , aM) =

d̄
(0)
1 e1,1d̄

(0)
2 − d̄

(0)
2 e1,1d̄

(0)
1 − e1,1d̄

(0)
1 d̄

(0)
2 +

d̄
(0)
2 d̄

(0)
1 e1,1 + e1,1d̄

(0)
2 d̄

(0)
1 − d̄

(0)
1 d̄

(0)
2 e1,1 =

[d̄(0)
2 , d̄

(0)
1 ]e1,1 = [d(0)

2 , d
(0)
1 ]e1,1.

Since CapM+1[Y ;X] ⊆ Idsup(A) we have [d(0)
1 , d

(0)
2 ] = 0. Thus d

(0)
1 d

(0)
2 = d

(0)
2 d

(0)
1 , for

all d
(0)
1 , d

(0)
2 ∈ N(0).

Now, let e1
1, . . . , e

1
L be an ordered basis of Mk,l(F )(1) consisting of matrix units from

the odd part of Mk,l(F ), e1
h ∈ {ei,j | 1 ≤ i ≤ k, k + 1 ≤ j ≤ k + l} ∪ {ei,j | k + 1 ≤ i ≤

k + l, 1 ≤ j ≤ k} such that e1
1 = e1,k+1. We consider b0, . . . , bL ∈ Mk,l(F ) such that

b0e
1
1b1 · · · bL−1e

1
LbL = e1,1

and
b0e

1
τ(1)b1 · · · bL−1e

1
τ(L)bL = 0

for all τ ∈ SL, τ �= 1. Let d
(1)
1 , d

(1)
2 ∈ N(1). We set d̄

(1)
1 = e1,1d

(1)
1 , d̄

(1)
2 = e1,1d

(1)
2 ∈ A(1).

As above we compute

CapL+2(d̄
(1)
1 , e1

1, . . . , e
1
L, d̄

(1)
2 ; b0, . . . , bL) =

d̄
(1)
1 e1,1d̄

(1)
2 − d̄

(1)
2 e1,1d̄

(1)
1 = [d(1)

1 , d
(1)
2 ]e1,1.
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Since CapL+1[Z;X] ⊆ Idsup(A) we get that d
(1)
1 d

(1)
2 = d

(1)
2 d

(1)
1 , for all d

(1)
1 , d

(1)
2 ∈ N(1).

Next we show that N(0) commutes with N(1). Take e0
1, . . . , e

0
M an ordered basis of

Mk,l(F )(0) consisting of matrix units such that e0
1 = e1,1 and let a1, . . . , aM ∈ Mk,l(F ) be

such that

a1e
0
1a2 · · · aMe0

M = e1,k+1

and

a1e
0
ρ(1)a2 · · · aMe0

ρ(M) = 0

for any ρ ∈ SM , ρ �= 1. Notice that a2 = e1,1. Let d
(0)
1 ∈ N(0) and d

(1)
2 ∈ N(1). We set

d̄
(0)
1 = e2,1d

(0)
1 and ā2 = e1,1d

(1)
2 . Notice that d̄

(0)
1 ∈ A(0). Then, since CapM+1[Y ;X] ⊆

Idsup(A), we obtained

0 = CapM+1(d̄
(0)
1 , e0

1, . . . , e
0
M ; a1, ā2, a3, . . . , aM) =

[d(0)
1 , d

(1)
2 ]e2,k+l .

Thus d
(0)
1 d

(1)
2 = d

(1)
2 d

(0)
1 , for all d

(0)
1 ∈ N(0), d

(1)
2 ∈ N(1) and we are done.

3.2 The main result for Mk,l(F )

In this section we prove our main result about the T2-ideal �k2+l2+1,2kl+1 generated
by the graded Capelli polynomials Capk2+l2+1[Y, X], Cap2kl+1[Z,X] and the T2-ideal
Idsup(Mk,l(F )).

Theorem 9 Let M = k2 + l2 and L = 2kl with k, l ∈ N, k > l > 0. Then
U sup

M+1,L+1 = supvar(�M+1,L+1) = supvar(Mk,l(F ) ⊕ D), where D′ is a finite
dimensional superalgebra such that supexp(D′) < M + L. In particular

c
sup
n (�M+1,L+1) � c

sup
n (Mk,l(F )).

Proof In [1] we proved that

supexp(U sup

M+1,L+1) = M + L.

Moreover, by [7, Lemma 11.4.1] and [7, Theorem 11.4.3], there exists a finitely gener-
ated superalgebra satisfying an ordinary polynomial identity A such that U sup

M+1,L+1 =
supvar(A). Thus, by Theorem 3, there exists a finite number of superalgebras
B1, . . . , Bs,D such that

U sup

M+1,L+1 = supvar(A) = supvar(B1 ⊕ · · · ⊕ Bs ⊕ D) (1)

where B1, . . . , Bs are reduced, D is finite dimensional with supexp(B1) = · · · =
supexp(Bs) = supexp(U sup

M+1,L+1) = M + L and supexp(D) < supexp(U sup

M+1,L+1) =
M+L. By a theorem of Kemer (see [9, Theorem 2.2]), if A is a finitely generated superalge-
bra, then there exists a finite dimensional superalgebra C such that Idsup(A) = Idsup(C).
Therefore throughout we may assume that A = A(0) ⊕A(1) is a finite dimensional superal-
gebra over F satisfying an ordinary polynomial identity and charF = 0. Next, we analyze
the structure of a finite dimensional reduced superalgebra R which satisfies �M+1,L+1.
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Let R be a finite dimensional reduced superalgebra such that supexp(R) = M + L =
supexp(U sup

M+1,L+1) and �M+1,L+1 ⊆ Idsup(R). We can write R = R1 ⊕ · · · ⊕ Rq + J ,
where Ri are simple subsuperalgebras of R and J = J (R) is the Jacobson radical of R.

Recall that a simple finite dimensional superalgebra Ri over F is isomorphic to one of
the following algebras (see [9]):

1. Mdi
(F ), with trivial grading (Mdi

(F ), 0);
2. Msi (F ⊕ tF ), where t2 = 1, with grading (Msi (F ), tMsi (F ));

3. Mki,li (F ) with grading

((
F11 0
0 F22

)
,

(
0 F12

F21 0

))
, where F11, F12, F21, F22 are

ki × ki , ki × li , li × ki and li × li matrices respectively, ki > 0 and li > 0.

Let t1 be the number of superalgebras Ri of the first type, let t2 be the number of super-
algebras Ri of the second type and finally let t3 be the number of Ri of the third type, with
t1 + t2 + t3 = q.

Since R is reduced, R1J · · · JRq �= 0. Then, by [7, Lemma 8.1.4], there exists a minimal
superalgebra R contained in R with semisimple part R1 ⊕ · · · ⊕ Rq . Hence R contains a
superalgebra isomorphic to the upper block triangular matrix algebra

⎛
⎜⎜⎜⎜⎝

R1 ∗
0

. . .

...

0 . . . 0 Rq

⎞
⎟⎟⎟⎟⎠ ,

where Ri is one of the following: Mdi
(F ), Msi (F ⊕ tF ), Mki,li (F ) and

(k + l)2 = M + L = supexp(R) = dimF R1 + · · · + dimF Rq =
= d2

1 + · · · + d2
t1
+ 2s2

1 + · · · + 2s2
t2
+ (k1 + l1)

2 + · · · + (kt3 + lt3)
2.

If t1 ≥ 1, by [1, Lemma 1], R does not satisfy the polynomials Capd0+t2+t3+t1
[Y ;X] and

Capd1+t2+t3+̃t1
[Z;X], where dj = dimF (R1 ⊕ · · · ⊕ Rq)(j), d0 + d1 = dimF (R1 ⊕

· · · ⊕ Rq) = supexp(R) = M + L and t1 + t̃1 = t1 − 1. But R satisfies CapM+1[Y ;X]
and CapL+1[Z;X]. Thus d0 + t2 + t3 + t1 ≤ M and also d1 + t2 + t3 + t̃1 ≤ L. Hence
d0 + d1 + 2t2 + 2t3 + t1 + t̃1 ≤ M + L. Then, since d0 + d1 = M + L, M + L ≤
d0 + d1 + 2t2 + 2t3 + t1 + t̃1 ≤ M + L, thus d0 + d1 + 2t2 + 2t3 + t1 + t̃1 = M + L,
then, since d0 +d1 = M +L, 2t2 +2t3 + t1 + t̃1 = 0. Since t2, t3, t1 and t̃1 are nonnegative
integers, we have t2 = t3 = t1 = t̃1 = 0. Then t1 − 1 = t1 + t̃1 = 0 and so t1 = 1.
In conclusion, if t1 ≥ 1, then t1 = 1, t2 = 0 and t3 = 0. In this case R � Mdi

(F ) + J .
Hence supexp(R) = d2

i . Since supexp(R) = M + L = (k + l)2, we have that di = k + l.
Then R satisfies CapM+1[Y ;X] and CapL+1[Z;X] and R does not satisfy Capd0 [Y ;X]
where d0 = dimF (R1 ⊕ · · · ⊕ Rq)0 = d2

i . It is impossible since M + 1 = k2 + l2 + 1 <

k2 + l2 + 2kl = (k + l)2 = d2
i .

If t1 = 0, then, also by [1, Lemma 1], R does not satisfy Capd0+t2+t3−1[Y ;X] and

Capd1+t2+t3−1[Z;X]. But R satisfies CapM+1[Y ;X] and CapL+1[Z;X]. Then d0 + t2 +
t3 − 1 ≤ M and d1 + t2 + t3 − 1 ≤ L. Thus d0 + d1 + 2t2 + 2t3 − 2 ≤ M + L. Since
d0 + d1 = M + L, we have M + L + 2(t2 + t3 − 1) ≤ M + L. Then t2 + t3 − 1 ≤ 0. So
t2 + t3 ≤ 1. Since t2 and t3 are non negative integers we have only two possibilities t2 = 0
and t3 = 1 or t2 = 1 and t3 = 0. If t2 = 1 and t3 = 0, then R � Msi (F ⊕ tF ) + J . Thus
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(k + l)2 = M + L = supexp(R) = 2s2
i . It is impossible. Let t2 = 0 and t3 = 1. Then we

have ki = k, li = l and

R � Mk,l(F ) + J.

From Lemmas 5, 7, 8 we have

R ∼= (Mk,l(F ) + J11) ⊕ J00 ∼= (Mk,l(F ) ⊗ N�) ⊕ J00.

where N� is the algebra obtained from N by adjoining a unit element. Since N� is com-
mutative, it follows that Mk,l(F ) + J11 and Mk,l(F ) satisfy the same identities. Thus
supvar(R) = supvar(Mk,l(F ) ⊕ J00) with J00 a finite dimensional nilpotent algebra.
Hence, recalling the decomposition given in (1), we get

U sup

M+1,L+1 = supvar(�M+1,L+1) = supvar(Mk,l(F ) ⊕ D′),

where D′ is a finite dimensional superalgebra with supexp(D′) < M + L. Then, from
Corollary 4 we have

c
sup
n (�M+1,L+1) � c

sup
n (Mk,l(F ))

and the theorem is proved.

4 Asymptotics for U sup

s2,s2 and Ms(F ⊕ tF )

4.1 Evaluating polynomials

Throughout this section we assume that A = Ms(F ⊕ tF ) + J , where J = J (A) is
the Jacobson radical of the finite dimensional superalgebra A. We start with the following
lemma which establishes a result similar to Lemma 5 (see [3, Lemma 6]).

Lemma 10 The Jacobson radical J can be decomposed into the direct sum of four Ms(F ⊕
tF )-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11

where, for p, q ∈ {0, 1}, Jpq is a left faithful module or a 0-left module according as
p = 1, or p = 0, respectively. Similarly, Jpq is a right faithful module or a 0-right module
according as q = 1 or q = 0, respectively. Moreover, for p, q, i, l ∈ {0, 1}, JpqJql ⊆
Jpl , JpqJil = 0 for q �= i and there exists a finite dimensional nilpotent superalgebra
N such that J11 ∼= Ms(F ⊕ tF ) ⊗F N (isomorphism of Ms(F ⊕ tF )-bimodules and of
superalgebras).

Lemma 11 Let M = L = s2 with s ∈ N. Then the superalgebra Ms(F ⊕ tF ) does not
satisfy the graded Capelli polynomials CapM [Y,X] and CapL[Z,X].

Proof As in Lemma 6, let e0
1, . . . , e

0
M be a basis of Ms(F ⊕ tF )(0) consisting of matrix

units. Then

a0CapM(e0
1, . . . , e

0
M ; a1, . . . , aM−1)aM = e1,1 �= 0,

where a0 = e1,1, aM = es,1, for y1, . . . , yM we substituted all the e0
h ordered according to

the left lexicographic order of the indices and for all xi’s we made the unique substitution
of elements of Ms(F ⊕ tF )(0) making y1x1y2x2 · · · yM−1xM−1yM the only monomial with
non-zero evaluation.
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Now, let e1
1, . . . , e

1
L be a basis of Ms(F ⊕ tF )(1) consisting of matrix units from the odd

part of Ms(F ⊕ tF ). Then we evaluate

b0CapL(e1
1, . . . , e

1
L; b1, . . . , bL−1)bL = tLe1,1 �= 0,

where b0 = e1,1, bL = es,1, for z1, . . . , zL we substituted all the e1
h ordered according to

the left lexicographic order of the indices and for all xi’s we made the unique substitution
of elements of Ms(F ⊕ tF )(0) making z1x1z2x2 · · · zL−1xL−1zL the only monomial with
non-zero evaluation.

Lemma 12 Let M = L = s2 with s ∈ N. If �M+1,L+1 ⊆ Idsup(A), then J10 = J01 = (0).

Proof By Lemma 11, we have that CapM [Y ;X] is not an identity for Ms(F ⊕ tF ). Hence,
as in Lemma 7, there exist elements a

(0)
1 , . . . , a

(0)
M ∈ Ms(F ⊕ tF )(0) and b1, . . . , bM−1 ∈

Ms(F ⊕ tF )(0) ⊆ Ms(F ⊕ tF ) (see the proof of the Lemma 11) such that

CapM(a
(0)
1 , . . . , a

(0)
M ; b1, . . . , bM−1) = es,s .

We write J10 = J
(0)
10 ⊕ J

(1)
10 and J01 = J

(0)
01 ⊕ J

(1)
01 . Let d(0) ∈ J

(0)
10 . Now, we compute

0 = CapM+1(a
(0)
1 , . . . , a

(0)
M , d(0); b1, . . . , bM−1, ek+l,k+l ) = es,sd

(0).

Since �M+1,L+1 ⊆ Idsup(A), we have es,sd
(0) = 0. In particular d(0) = 0, for all d(0) ∈

J
(0)
10 . Thus J

(0)
10 = (0). Similarly J

(0)
01 = (0).

Now, we want to prove that J
(1)
10 = (0) and J

(1)
01 = (0). By Lemma 11, Ms(F ⊕ tF )

does not satisfy CapL[Z;X], then we can take an opportune substitution a
(1)
1 , . . . , a

(1)
L

∈ Ms(F ⊕ tF )(1) and c1, . . . , cL−1 ∈ Ms(F ⊕ tF )(0) ⊆ Ms(F ⊕ tF ) (see the proof of the
Lemma 11) such that

CapL(a
(1)
1 , . . . , a

(1)
L ; c1, . . . , cL−1) = tLes,s .

By the hypothesis we obtain

CapL+1(a
(1)
1 , . . . , a

(1)
L , d(1); c1, . . . , cL−1, es,s) = tLes,sd

(1).

where d(1) ∈ J
(1)
10 . Thus tLes,sd

(1) = 0 and d(1) = 0 for all d(1) ∈ J
(1)
10 . In conclusion

J
(1)
10 = (0). Similarly J

(1)
01 = 0 and the lemma is proved.

Lemma 13 Let M = L = s2 with s ∈ N. Let J11 ∼= Ms(F ⊕ tF ) ⊗ N , where N =
N(0) ⊕ N(1), as in Lemma 10. If �M+1,L+1 ⊆ Idsup(A), then N is commutative.

Proof As in Lemma 8, we consider an ordered basis of Ms(F ⊕ tF )(0) consisting of all
matrix units e0

1, . . . , e
0
M such that e0

1 = e1,1 and also we take a0, a1, . . . , aM ∈ Ms(F ⊕
tF )(0) ⊆ Ms(F ⊕ tF ) such that

a0e
0
1a1 · · · aM−1e

0
MaM = e1,1

and

a0e
0
σ(1)a1 · · · aM−1e

0
σ(M)aM = 0

for all σ ∈ SM , σ �= 1. Now, as in Lemma 8, we consider d
(0)
1 , d

(0)
2 ∈ N(0) and we take

d̃
(0)
1 = e1,1d

(0)
1 , d̃

(0)
2 = e1,1d

(0)
2 . Notice that d̃

(0)
1 , d̃

(0)
2 ∈ A(0). Since N commutes with
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Ms(F ⊕ tF ) and �M+1,L+1 ⊆ Idsup(A), we have

0 = CapM+2(d̃
(0)
1 , e0

1, . . . , e
0
M, d̃

(0)
2 ; a0, . . . , aM) =

d̃
(0)
1 e1,1d̃

(0)
2 − d̃

(0)
2 e1,1d̃

(0)
1 − e1,1d̃

(0)
1 d̃

(0)
2 +

d̃
(0)
2 d̃

(0)
1 e1,1 + e1,1d̃

(0)
2 d̃

(0)
1 − d̃

(0)
1 d̃

(0)
2 e1,1 =

[d̃(0)
2 , d̃

(0)
1 ]e1,1 = [d(0)

2 , d
(0)
1 ]e1,1.

Hence [d(0)
2 , d

(0)
1 ] = 0, for all d

(0)
1 , d

(0)
2 ∈ N(0).

Now, we take d
(1)
1 , d

(1)
2 ∈ N(1) and we put d̃

(0)
1 = te1,1d

(1)
1 , d̃

(0)
2 = te1,1d

(1)
2 . Notice that

d̃
(0)
1 , d̃

(0)
2 ∈ A(0). Then, as above, we have

0 = CapM+2(d̃
(0)
1 , e0

1, . . . , e
0
M, d̃

(0)
2 ; a0, . . . , aM) =

[d̃(0)
2 , d̃

(0)
1 ]e1,1 = t2[d(1)

2 , d
(1)
1 ]e1,1 = [d(1)

2 , d
(1)
1 ].

In conclusion [d(1)
2 , d

(1)
1 ] = 0, for all d

(1)
1 , d

(1)
2 ∈ N(1).

Finally, we consider d
(0)
1 ∈ N(0) and d

(1)
2 ∈ N(1). Hence we take d̃

(0)
1 = e1,1d

(0)
1 and

d̃
(0)
2 = te1,1d

(1)
2 . Also in this case d̃

(0)
1 , d̃

(0)
2 ∈ A(0). Then

0 = CapM+2(d̃
(0)
1 , e0

1, . . . , e
0
M, d̃

(0)
2 ; a0, . . . , aM) =

[d̃(0)
2 , d̃

(0)
1 ]e1,1 = t[d(1)

2 , d
(0)
1 ]e1,1.

Hence [d(1)
2 , d

(0)
1 ] = 0 for all d

(0)
1 ∈ N(0) and d

(1)
2 ∈ N(1). The lemma is proved.

4.2 The main result for Ms(F ⊕ tF )

In this section we shall prove that the codimensions of �s2,s2 are asymptotically equal to the
codimensions of the superalgebra Ms(F ⊕ tF ), s ∈ N

Theorem 14 Let M = L = s2 with s ∈ N. Then U sup

M+1,L+1 = supvar(�M+1,L+1) =
supvar(Ms(F ⊕ tF ) ⊕ D′), where D is a finite dimensional superalgebra such that
supexp(D) < M + L. In particular

c
sup
n (�M+1,L+1) � c

sup
n (Ms(F ⊕ tF )).

Proof The first part of the proof follows step by step that of Theorem 9 and we
obtain a finite dimensional reduced superalgebra R with supexp(R) = M + L =
supexp(U sup

M+1,L+1) and �M+1,L+1 ⊆ Idsup(R). We can write R = R1 ⊕ · · · ⊕ Rq + J ,
where Ri are simple subsuperalgebras of R and J = J (R) is the Jacobson radical of R.
Let t1 be the number of superalgebras Ri isomorphic to Mdi

(F ), t2 the number of super-
algebras Ri isomorphic to Msi (F ⊕ tF ) and finally let t3 be the number of Ri isomorphic
to Mki,li (F ), with t1 + t2 + t3 = q. Hence, as in Theorem 9, R contains a superalgebra R

isomorphic to the following upper block triangular matrix algebra⎛
⎜⎜⎜⎜⎝

R1 ∗
0

. . .

...

0 . . . 0 Rq

⎞
⎟⎟⎟⎟⎠ ,
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where Ri is one of the following: Mdi
(F ), Msi (F ⊕ tF ), Mki,li (F ) and

supexp(R) = d2
1 +· · ·+d2

t1
+2s2

1 +· · ·+2s2
t2
+(k1+l1)

2+· · ·+(kt3 +lt3)
2 = 2s2 = M+L.

If t1 ≥ 1, then as in Theorem 9 we obtain t1 = 1. Hence R = Mdi
(F ) + J , 2s2 =

M + L = supexp(R) = d2
i and we have a contradiction. Now, let t1 = 0. Then by

[1, Lemma 1], R does not satisfy Capd0+t2+t3−1[Y ;X] and Capd1+t2+t3−1[Z;X]. But R

satisfies CapM+1[Y ;X] and CapL+1[Z;X]. Then d0+t2+t3−1 ≤ M and d1+t2+t3−1 ≤
L. As in the proof of Theorem 9 we obtain t2 + t3 ≤ 1. Also in this case we have only
two possibilities t2 = 1 and t3 = 0 or t3 = 0 and t2 = 1. Let t2 = 0 and t3 = 1. Then
R � Mki,li (F )+ J and 2s2 = supexp(R) = (ki + li )

2, a contraddiction. Finally, let t2 = 1
and t3 = 0. Then si = s and R � Ms(F ⊕ tF ) + J . As in Theorem 9, by Lemmas 10, 12,
13 we obtain

R ∼= (Ms(F ⊕ tF ) + J11) ⊕ J00 ∼= (Ms(F ⊕ tF ) ⊗ N�) ⊕ J00.

where N� is the algebra obtained from N by adjoining a unit element. Since N� is com-
mutative, it follows that R + J11 and R satisfy the same identities. Thus supvar(R) =
supvar(Ms(F ⊕ tF )⊕J00) with J00 a finite dimensional nilpotent algebra. As in Theorem
9 we get

U sup

M+1,L+1 = supvar(�M+1,L+1) = supvar(Ms(F ⊕ tF ) ⊕ D),

where D is a finite dimensional superalgebra with supexp(D) < M + L. From Corollary
4 we have

c
sup
n (�M+1,L+1) � c

sup
n (Ms(F ⊕ tF ))

and the theorem is proved.
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