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Abstract. Model averaging has become a popular method of estimation, following increasing
evidence that model selection and estimation should be treated as one joint procedure. Weighted-
average least squares (WALS) is a recent model-average approach, which takes an intermediate
position between frequentist and Bayesian methods, allows a credible treatment of ignorance, and is
extremely fast to compute. We review the theory of WALS and discuss extensions and applications.
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1. Introduction

Our story begins with the t-ratio. Let us consider the model

y j = β0 + β1x1, j + β2x2, j + ε j ( j = 1, . . . , n)

We obtain estimators β̂0, β̂1, and β̂2, and their estimated variances σ̂ 2
0 , σ̂ 2

1 and σ̂ 2
2 . Next, we consider

the t-ratio t2 = β̂2/σ̂2. This t-ratio can be viewed in two ways. We could be interested in testing the
hypothesis that β2 = 0. In that case t2 can be fruitfully employed, because under certain assumptions
(such as normality) the t-ratio follows a Student distribution under the null hypothesis and if we fix the
significance level of the test (say at 5%) then we can reject or not reject the hypothesis.

But the t-ratio is also commonly employed in a different way. Suppose we are primarily interested in
the value of β1. Then t2 is often used as a diagnostic, rather than as a test statistic, in order to decide
whether we wish to keep x2 in the model or not. In this situation the 5% level is also typically used,
although we could equally well argue in favor of the 95% or the 50% level or any other percentage. The
two situations are different because in the first case we are interested in β2 while in the second case we
are interested in β1. In the first case we ask: Is it true that β2 = 0? In the second case: Does inclusion of
x2 improve the estimator of β1? Two different questions requiring two different approaches.
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2 MAGNUS AND DE LUCA

Let us consider the second situation, where t2 is used as a diagnostic, in more detail. We have three
estimators of β1, namely the estimator from the unrestricted model, β̂1u ; the estimator from the restricted
model (where β2 = 0), β̂1r ; and the estimator after the preliminary test,

b1 = wβ̂1u + (1 − w)β̂1r , w =
{

1 if |t2| > c,
0 if |t2| ≤ c,

for some c > 0, such as c = 1.96 corresponding to the 5% level. This is the pretest estimator. The
pretest estimator is “kinked,” which has both theoretical and practical consequences (Judge and Bock,
1978; Giles and Giles, 1993). A theoretical drawback is that the estimator is inadmissible, because any
estimator which is not differentiable (worse still, discontinuous) is inadmissible (Magnus, 1999). A related
practical problem—familiar to all empirical economists—is the property that for t2 = 1.95 we choose
one estimator and for t2 = 1.97 another, while in fact there is little difference between 1.95 and 1.97.
These considerations lead us to reconsider the estimator b1 = wβ̂1u + (1 − w)β̂1r by allowing w to be a
smoothly increasing function of |t2|. This is model averaging in its simplest form, and we see that it is
just the continuous counterpart to pretesting.

To bring out the difference between pretesting and model averaging, suppose a king has 12 advisors.
He wishes to forecast next year’s inflation and calls each of the advisors in for consultation. He knows his
advisors and obviously has more faith in some than in others. All 12 deliver their forecast, and the king is
left with 12 numbers. How to choose from these 12 numbers? Let us consider two possibilities (there are
more). The king could argue: which advisor do I trust most, whom do I believe is most competent? Then
I take his or her advice. The king could also argue: all advisors have something useful to say, although
not in the same degree. Some are cleverer and more informed than others and their forecast should get a
higher weight. Which way of thinking is better? Intuitively most people prefer the second method (model
averaging), where all pieces of advice are taken into account. In standard econometrics, however, it is the
first method (pretesting) which dominates.

In practice, econometricians use not one or two, but many models. If we use diagnostic tests to search
for the best-fitting model, then we need to take into account not only the uncertainty of the estimates in
the selected model, but also the fact that we have used the data to select a model. In other words, model
selection and estimation should be seen as a combined effort, not as two separate efforts, and failure to
do so may lead to misleadingly precise estimates.

In pretesting one typically reports the properties of the estimator as if estimation had not been preceded
by model selection. Standard statistical theory is therefore not directly applicable, since the properties of
pretest estimators depend not only on the stochastic nature of the selected model, but also on the way the
model has been selected. Problems associated with inference after model selection have been investigated
in Magnus (1999, 2002), Danilov and Magnus (2004a, b), Leeb and Pötscher (2003, 2005, 2006, 2008),
and others. All these studies conclude that ignoring the uncertainty associated with the model selection
step can lead to seriously misleading inference. Another major drawback of ignoring the noise produced
by model selection is that small perturbations of the data may result in very different models being selected
(Yang, 2001).

In model averaging one does not select a single model out of the available set of models—in fact,
the question “which is the correct model” is not answered, because model selection is thought of as an
intermediate step, not a goal in itself. Each model contributes information on the parameters of interest,
and all these pieces of information are combined into an unconditional estimate using a weighted average
of the conditional estimates across all possible models. The theory of model averaging thus incorporates
the uncertainty arising from estimation and model selection jointly. (Model averaging is not the only
method which combines estimation uncertainty and model selection uncertainty—penalized regression
is also widely used (see the discussion in Kumar and Magnus (2013, p. 221))).

One can estimate the parameters from either a frequentist or a Bayesian perspective. Also, one can
choose the weights from a frequentist or a Bayesian perspective. This gives rise to four different types
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WEIGHTED-AVERAGE LEAST SQUARES 3

of model averaging. The method presented here, called weighted-average least squares (WALS), is a
Bayesian combination of frequentist estimators, and it has advantages over other model-average methods
that will be discussed later.

The theory and application of WALS was developed in a large number of papers. In many of these
papers we did not immediately find the shortest proofs (this is true in particular for the equivalence
theorem) or the most suitable prior (Laplace, Weibull), there are some ambiguities and misunderstandings
that need to be put right (for example about the semiorthogonal transformation, originally introduced
as an assumption—which it is not), and the notation is not consistent across papers. In this review, we
attempt to present one consistent theory of WALS. This review paper is, however, rather more than a
summary of past results. For example, much attention is given to the underlying assumptions and where
and why precisely they are needed, and a new improved prior is introduced for the weight function.

The paper is organized as follows. In Sections 2 and 3, we present the framework and the constrained
least-squares estimators. WALS and the equivalence theorem are introduced in Section 4. After an
interlude on the question whether weights should necessarily lie between zero and one (Section 5), we
discuss preliminary scaling, the semiorthogonal transformation, and its consequences (Sections 6 and 7).
Then we turn to the weights by providing a frequentist weight function in Section 8 and a Bayesian
weight function in Section 9. We prefer the latter because it allows us to obtain an admissible estimator
which also has a credible interpretation in terms of ignorance. The analysis so far has assumed that the
error variance in the regression model is known. This is clearly unrealistic and Section 10 discusses how
to deal with this additional problem. Section 11 puts it all together and provides a 7-step outline of the
procedure.

Next we discuss extensions (Section 12), some of which have already been analyzed in the WALS
literature, while some are suggestions for future research. We also highlight some empirical applications
of the WALS method. In Section 13, we compare WALS with other model-average estimators and in
Section 14 we discuss user-friendly software for WALS, both in MATLAB and Stata.

2. Framework and Preliminaries

Our data are assumed to be generated by the linear process

y = X1β1 + X2β2 + ε, (1)

where y (n × 1) is the vector of observations on the outcome of interest, X1 (n × k1) and X2 (n × k2)
are matrices of nonrandom regressors, ε is a random vector of unobservable disturbances, and β1 and
β2 are unknown nonrandom parameter vectors. We assume that k1 ≥ 1, k2 ≥ 1, k = k1 + k2 ≤ n − 1,
that X = (X1 : X2) has full column-rank k, and that the disturbances ε1, ε2, . . . , εn are independent and
identically distributed (i.i.d.) and normal, so that ε ∼ N(0, σ 2 In).

This is the classical setup of the linear model (including fixed regressors and normality), except that we
distinguish between two types of regressors: X1 and X2. The reason for distinguishing between X1 and
X2 is that X1 contains explanatory variables which we want to be present in each model on theoretical or
other grounds (irrespective of the observed t-values of the β1-parameters), while X2 contains additional
explanatory variables of which we are less certain. This setup is more general than the conventional
case where typically all regressors are auxiliary except the constant term. The new setup thus allows
the investigator to keep a regressor in the model even when diagnostic tests suggest to remove it. The
columns of X1 are called “focus” regressors and the columns of X2 “auxiliary” regressors. Similarly, the
components of β1 are called “focus” parameters, and the components of β2 “auxiliary” parameters.

In the context of estimation (we shall also consider prediction), our interest is in the estimation of β1,
and the only role for X2 is to “improve” the estimator of β1. However, if the investigator is interested
in both β1 and β2, then the analysis and the model-average properties do not change. This is the key
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4 MAGNUS AND DE LUCA

message of Proposition 4.2 (the equivalence theorem), and we shall expand on this surprising result in
Section 4.

The data-generation process (DGP) described in (1) is of course not known to the investigator, and
hence the model or models used by him or her will in general deviate from it. We shall only consider
models that are smaller than (or equal to) the DGP, so that the model space M consists of all submodels
Mi of (1) that contain all focus regressors and some of the auxiliary regressors. In practice, the DGP and
the largest model will not coincide. There may be a set of regressors, say X3, such that the DGP is given by

y = X1β1 + X2β2 + X3β3 + ε,

where X1 is always in the model, X2 may or may not be in the model and X3 is never in the model. This
is more general and more realistic than (1). The regressors in X3 may not be known to us, or we may
know them in theory but lack the data, or we may know them in theory and have the relevant data but
believe a priori that the associated β3-parameter is so “small” that the increase in misspecification bias is
outweighed by the decrease in estimated standard errors. In the first two cases we cannot include X3 in the
DGP, but in the third case we can and we should so that X3 would belong to the DGP but not to the model
space. In what follows we shall not follow this route and make the simplifying assumption that (1) is the
DGP, so that the largest model and the DGP coincide. Model uncertainty is thus restricted to a well-defined
class of models which is known in advance, the so-called M-closed perspective (Hoeting et al., 1999).

When k2 = 1 (one auxiliary regressor), we have two models: the unrestricted and the restricted (where
β2 = 0). When k2 = 2 (two auxiliary regressors), there are four possible models: the unrestricted model,
two partially restricted models (one of the two components of β2 is zero) and the fully restricted model
(both components of β2 are zero). In general, there are 2k2 models to consider. The i th model Mi is
characterized by a k2 × ri selection matrix Si with rank 0 ≤ ri ≤ k2, so that S′

i = (Iri : 0) or a column-
permutation thereof. In other words, Mi is defined as the linear model (1) under the restriction S′

iβ2 = 0.
The number ri denotes the number of excluded auxiliary variables and the matrix Si specifies which ri vari-
ables are excluded. For given ri , there are (k2

ri
) different possible choices for the selection matrix Si , in total

k2∑
ri =0

(
k2

ri

)
= 2k2 .

It will be useful to define

M1 = In − X1(X ′
1 X1)−1 X ′

1, Q = (X ′
1 X1)−1 X ′

1 X2(X ′
2 M1 X2)−1/2. (2)

Our first interest is in the constrained least-squares (LS) estimators of β1 and β2 in model Mi . As a
preliminary to the general results presented in Section 3, we first consider the two extremes: the (fully)
restricted model and the unrestricted model. In the restricted model (where β2 = 0) we find

β̂1r = (X ′
1 X1)−1 X ′

1 y, (3)

while in the unrestricted model we have

β̂1u = β̂1r − (X ′
1 X1)−1 X ′

1 X2β̂2u, β̂2u = (X ′
2 M1 X2)−1 X ′

2 M1 y. (4)

The subscripts “u” and “r” denote “unrestricted” and “restricted” (with β2 = 0), respectively. It is easy
to see that β̂1r and β̂1u are always correlated, and that β̂1u and β̂2u are only uncorrelated when X ′

1 X2 = 0.
In contrast, β̂1r and β̂2u are always uncorrelated.

Proposition 2.1. The two least-squares estimators β̂1r and β̂2u are independent.
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Proof. Since M1 X1 = 0 we have cov(X ′
1 y, X ′

2 M1 y) = σ 2 X ′
1 M1 X2 = 0, and the result follows. �

This simple fact will play an important role in the sequel. We introduce

θ̂ = (X ′
2 M1 X2)−1/2 X ′

2 M1 y, θ = (X ′
2 M1 X2)1/2β2, (5)

and note that θ̂ ∼ N(θ, σ 2 Ik2 ), so that the components of θ̂ are independent. The estimators in (4) now
simplify to

β̂1u = β̂1r − Qθ̂ , β̂2u = (X ′
2 M1 X2)−1/2θ̂ , (6)

and Proposition 2.1 tells us that β̂1r and θ̂ are independent. These two vectors are independent because
of the normality of y and the fact that X ′

1 y and X ′
2 M1 y are uncorrelated. In fact, even if the observations

y1, . . . , yn are not normal and the data-generating process is unknown, β̂1r and θ̂ will still be uncorrelated,
as long as y1, y2, . . . , yn are uncorrelated with constant variance (Leeb and Pötscher, 2003, lemma A.1).

3. Constrained Least Squares

Let us now consider the general case, that is, the constrained LS estimation of β1 and β2 in model Mi

under the constraint S′
iβ2 = 0.

Proposition 3.1. The LS estimators of β1 and β2 in model Mi are given by

β̂1(i) = β̂1r − QWi θ̂ , β̂2(i) = (X ′
2 M1 X2)−1/2Wi θ̂ , (7)

where Q is given in (2), Wi = Ik2 − Pi , and

Pi = (X ′
2 M1 X2)−1/2Si

(
S′

i (X ′
2 M1 X2)−1Si

)−1
S′

i (X ′
2 M1 X2)−1/2 (8)

is a symmetric idempotent k2 × k2 matrix of rank ri .

Proof. This follows from Lemma A1 in Danilov and Magnus (2004a). �
In the special case where ri = k2, we have Pi = Ik2 and Wi = 0: the restricted case. In the other extreme

where ri = 0, we have Pi = 0 and Wi = Ik2 : the unrestricted case. The subscript i always refers to the i th
model (i = 1, . . . , 2k2 ). We write (i) instead of i when the object is a random variable or a random vector.

We saw in (6) that the unrestricted estimator β̂1u is a linear function of β̂1r and θ̂ . Proposition 3.1 shows
that this remains true, more generally, for each β̂1(i). The estimator β̂2(i) is a linear function of θ̂ only and
hence independent of β̂1r .

The distribution of the two estimators and the vector of residuals are given in the next two propositions.

Proposition 3.2. The distribution of β̂1(i) in model Mi is given by

β̂1(i) ∼ N
(
β1 + Q Piθ, σ 2

(
(X ′

1 X1)−1 + QWi Q′)) ,

the distribution of β̂2(i) by

β̂2(i) ∼ N
(
(X ′

2 M1 X2)−1/2Wiθ, σ 2
(
(X ′

2 M1 X2)−1/2Wi (X ′
2 M1 X2)−1/2

))
,

and the covariance of β̂1(i) and β̂2(i) is

cov(β̂1(i), β̂2(i)) = −σ 2 QWi (X ′
2 M1 X2)−1/2.

Proof. This follows from Proposition 3.1 and the fact that

β̂1r ∼ N(β1 + Qθ, σ 2(X ′
1 X1)−1), θ̂ ∼ N(θ, σ 2 Ik2 ),

and β̂1r and θ̂ are independent. �
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6 MAGNUS AND DE LUCA

Proposition 3.3. The residual vector in model Mi is

e(i) = y − X1β̂1(i) − X2β̂2(i) = Di y,

where

Di = M1 − M1 X2(X ′
2 M1 X2)−1/2Wi (X ′

2 M1 X2)−1/2 X ′
2 M1

is a symmetric idempotent matrix of rank n − k + ri , and the distribution of s2
(i) = e′

(i)e(i)/(n − k + ri ) is
given by

(n − k + ri )s2
(i)

σ 2
∼ χ2

(
n − k + ri ,

θ ′ Piθ

σ 2

)
.

Proof. This also follows from Proposition 3.1. �

We note that in each model Mi the residual vector e(i) is a linear function of er = M1 y, the residual
vector in the restricted model. This is because e(i) = Di y = Di M1 y. All residuals (irrespective from
which model) are therefore independent of β̂1r , the restricted estimator of β1.

Finally, we present the covariances between the estimators from two competing models Mi and M j .

Proposition 3.4. The estimators from models Mi and M j are correlated with each other according
to

cov(β̂1(i), β̂1( j)) = σ 2
(
(X ′

1 X1)−1 + QWi W j Q′) ,

cov(β̂2(i), β̂2( j)) = σ 2(X ′
2 M1 X2)−1/2Wi W j (X ′

2 M1 X2)−1/2,

cov(β̂1(i), β̂2( j)) = −σ 2 QWi W j (X ′
2 M1 X2)−1/2.

Proof. Again, this follows from Proposition 3.1. �

As a consequence of Proposition 3.4 and assuming that X ′
1 X2 �= 0, we see that β̂2( j) will be correlated

with both β̂1(i) and β̂2(i), unless Wi W j = 0.

4. WALS and the Equivalence Theorem

In the previous section, we derived the LS estimators for β1 and β2 in model Mi , where β2 is restricted
by S′

iβ2 = 0. Since there are 2k2 models, there are also 2k2 different sets of estimators β̂1(i) and β̂2(i). The
WALS estimators of β1 and β2 are, as the name suggests, weighted averages of the estimators of β1 and
β2 over all models.

Definition 4.1. The WALS estimators of β1 and β2 are

b1 =
2k2∑
i=1

λ(i)β̂1(i), b2 =
2k2∑
i=1

λ(i)β̂2(i),

where the sum is taken over all 2k2 different models Mi obtained by setting a subset of the β2’s equal to
zero.

The key question, of course, is how to define the model weights λ(i). (Here and in what follows we
refer to the λ(i) as “model” weights to distinguish them from the “WALS” weights wh to be defined later.)
We shall impose the following restrictions.
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Assumption 4.1. The model weights λ(i) satisfy the following three regularity conditions:

(R1) 0 ≤ λ(i) ≤ 1;
(R2)

∑
i λ(i) = 1; and

(R3) λ(i) = λ(i)(M1 y).

The first two conditions simply state that the λ(i) are weights. Condition (R3), however, requires
some justification. If σ 2 is known, then most or all pretest procedures will use statistics (such as t- and
F-statistics) which depend on β̂2u (that is, on X ′

2 M1 y) only. If σ 2 is not known and is estimated by s2
u (the

estimator of σ 2 in the unrestricted model), then all t- and F-statistics will depend on (β̂2u, s2
u ). Now, since

s2
u is a function of M1 y, the pretest procedures will use statistics that depend on M1 y only. Finally, if σ 2 is

not known and estimated by s2
(i) (the estimator of σ 2 in model Mi ), then it is no longer true that all t- and

F-statistics depend only on (β̂2u, s2
u ). However, they still depend only on M1 y, because Propositions 3.1

and 3.3 imply that both β̂2(i) and the residuals e(i) from model Mi are linear functions of M1 y.
If we think of the model weights λ(i) as a measure of ‘importance’ of model Mi based on some

diagnostic (say a t-statistic), then condition (R3) is satisfied. The regularity conditions on λ(i) thus appear
to be reasonable and mild. They allow not only all standard pretest procedures, but also inequality-
constrained least squares. Thus, Proposition 4.2 below explains the “surprising symmetry” found by
Thomson and Schmidt (1982, p. 176).

Proposition 4.1. Under regularity condition (R2), the WALS estimators take the form

b1 = β̂1r − QW θ̂ , b2 = (X ′
2 M1 X2)−1/2W θ̂ , (9)

where W = ∑
i λ(i)Wi is a symmetric random matrix (because the λ(i) are random) even though the Wi

are nonrandom.

Proof. This follows by summing the expressions for β̂1(i) and β̂2(i) in (7) over all i = 1, . . . , 2k2 .
Condition (R2) ensures that

∑
i λ(i)β̂1r = β̂1r . �

We note that only condition (R2) is needed to obtain the WALS estimators. We also note that the
dependence of the WALS estimators b1 and b2 on i is completely captured by the symmetric k2 × k2

matrix W , which contains k2(k2 + 1)/2 essential elements, rather less than the 2k2 different λ(i)’s. As
a consequence, in order to obtain the WALS estimates, we don’t need to determine all the λ(i)’s—it
is sufficient to determine W . If W were diagonal, this would reduce our task even further, and this is
precisely the purpose of the transformation introduced in Section 6.

Let us rewrite (9) as

b1 − β1 = (X ′
1 X1)−1(X ′

1ε) − Q(W θ̂ − θ ),

b2 − β2 = (X ′
2 M1 X2)−1/2(W θ̂ − θ ). (10)

Suppose now that, in addition to (R2), regularity condition (R3) also holds, so that the λ(i) depend only
on M1 y. Then W will also depend only on M1 y. Since θ̂ depends only on M1 y as well, condition
(R3) guarantees that W θ̂ depends only on M1 y and is therefore independent of X ′

1ε. Based on these
considerations, we prove the following key result.

Proposition 4.2. (EQUIVALENCE THEOREM) If regularity conditions (R2) and (R3) on λ(i) are
satisfied, then
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8 MAGNUS AND DE LUCA

E(b1) = β1 − QE(W θ̂ − θ ), var (b1) = σ 2(X ′
1 X1)−1 + Qvar (W θ̂ )Q′,

and hence

M SE(b1) = σ 2(X ′
1 X1)−1 + QM SE(W θ̂ )Q′.

Proof. This follows from the expressions in (10). Alternatively we have, since β̂1r and M1 y are
independent,

E(β̂1r | M1 y) = E(β̂1r ), var (β̂1r | M1 y) = var (β̂1r ),

so that

E(b1 | M1 y) = E(β̂1r | M1 y) − QE(W θ̂ | M1 y)

= E(β̂1r ) − QW θ̂ = β1 − Q(W θ̂ − θ )

and

var (b1 | M1 y) = var (β̂1r | M1 y) = var (β̂1r ) = σ 2(X ′ X )−1.

The unconditional mean and variance of b1 and hence its mean squared error (MSE) follow. �

We shall assess the relative performance of estimators by comparing MSEs, that is, by assuming
squared error loss. The properties of the complicated WALS estimator b1 of β1 thus depend critically
on the properties of the less complicated estimator W θ̂ of θ . In particular, M SE(b1) is small whenever
M SE(W θ̂ ) is small. Notice that neither the bias, nor the variance or the mean squared error of b1 depend
on β1. They do, however, depend on β2 or, more accurately, on θ .

We can also interpret Proposition 4.2 in terms of β1 and β2. It follows from (10) that M SE(b1, b2) can
be written in the same form as M SE(b1), namely as A + B M SE(W θ̂ )B ′ for some positive semidefinite
matrix A and some matrix B, and hence the question how “good” b1 and b2 are as estimators of β1 and β2

depends completely on the question how ‘good’ W θ̂ is as an estimator of θ . This point is also emphasized
by Clarke (2008).

Proposition 4.2 provides a nontrivial generalization of Theorem 2 in Magnus and Durbin (1999), using
a simpler proof than in Magnus and Durbin (1999) and Danilov and Magnus (2004a). Extensions to cover,
respectively, the cases of large-sample nonnormal errors and uncertainty about linear restrictions of the
parameters β1 and β2 are provided in Zou et al. (2007) and Clarke (2008).

5. Interlude: Should Weights Lie between Zero and One?

Our results so far have not used condition (R1), requiring that the λ(i) lie between zero and one. Although
we shall make this assumption later, this condition is not as obvious as it may appear at first. Following
Magnus and Vasnev (2008), suppose we have two unbiased estimators of an unknown parameter μ:

μ̂1 = μ + ε1, μ̂2 = μ + ε2,

where (ε1, ε2) follows a bivariate normal distribution with mean zero and known variance

var

(
ε1

ε2

)
=

(
σ 2

1 σ12

σ12 σ 2
2

)
.
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WEIGHTED-AVERAGE LEAST SQUARES 9

If ε1 and ε2 are uncorrelated (σ12 = 0) and the two variances are equal, then we estimate μ by the unbiased
minimum-variance estimator μ̂ = (μ̂1 + μ̂2)/2. If ε1 and ε2 are uncorrelated and the two variances are
not equal, then the unbiased minimum-variance estimator of μ is

μ̂ = λμ̂1 + (1 − λ)μ̂2, λ = σ 2
2

σ 2
1 + σ 2

2

,

which is a weighted average of μ̂1 and μ̂2, where the weight λ lies between zero and one.
Next consider the case where ε1 and ε2 are correlated. Then we also obtain μ̂ = λμ̂1 + (1 − λ)μ̂2, but

now with

λ = σ 2
2 − σ12

σ 2
1 + σ 2

2 − 2σ12
.

We see that λ does not necessarily lie between zero and one. In particular, λ < 0 if and only if σ12 > σ 2
2 ,

and λ > 1 if and only if σ12 > σ 2
1 .

At first glance this may seem puzzling and unsatisfactory. At second glance, however, it becomes clear
that this is the correct solution, and that we should not force our estimator to lie in-between the two
underlying estimators.

To gain further insight let us consider two cases. First, the situation where the correlation is one
(σ12 = σ1σ2) and σ1 �= σ2. Then we have μ̂1 = μ + σ1ε

∗ and μ̂2 = μ + σ2ε
∗, where the common noise

ε∗ satisfies ε∗ ∼ N(0, 1). In this case, μ̂ must lie outside the interval (μ̂1, μ̂2). We simply solve the two
equations in two unknowns (μ and ε∗) and find μ̂ = λμ̂1 + (1 − λ)μ̂2 with

λ = σ2

σ2 − σ1
,

The “weight” λ in this case is either larger than one (if σ1 < σ2) or smaller than zero (if σ1 > σ2).
Second, the situation where

μ̂1 ∼ N(μ, σ 2
1 ), μ̂2 = μ̂1 + ε2

where ε2 has mean zero and is distributed independently of μ̂1. In this case cov(μ̂1, μ̂2) = σ 2
1 and μ̂ = μ̂1.

The estimator μ̂1 is a sufficient statistic for μ and the information contained in μ̂2 is superfluous.
We conclude that – in the presence of correlation—“weights” may lie outside the (0, 1) interval. This

result is not new, but it is little known because it is somewhat disturbing. Suppose the same king as in
the Introduction now has two advisors, and that he consults both of them about next year’s inflation.
One predicts 2%, the other 4%. The first prediction has variance 1, the second has variance 4. If the two
advisors were uncorrelated (they do not know each other and they base their forecasts on different data
sets), then the king would weigh the two estimates, giving a higher weight to the first advisor because she
is more accurate (has a lower variance). The answer then is 2.5%, which is in-between 2% and 4%, but
closer to two than to four, as expected. But it is more likely that the advisors are correlated, that they do
talk together, and that they use the same or similar data sets. If their correlation is 3/4 (which is not that
high), then

λ = σ 2
2 − σ12

σ 2
1 + σ 2

2 − 2σ12
= 4 − 1.5

1 + 4 − 2 × 1.5
= 1.25,

and the king should therefore estimate next year’s inflation by 1.25 × 2% − 0.25 × 4% = 1.5%, which
lies outside the range indicated by the two advisors (2% and 4%). Now the king has a problem. He has a
prediction which makes mathematical and statistical sense, but if he goes outside the range indicated by
his advisors he will surely be heavily criticized. In practice, therefore, policy recommendations typically
obey the boundaries specified by the advisors, and weights lie between zero and one. In accordance with
all moving average techniques, we too submit to this practice.
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6. A Semiorthogonal Transformation

The WALS procedure relies on a preliminary orthogonal transformation of the auxiliary regressors which
greatly reduces the computational burden of the model-average estimator and has other advantages as
well which will be discussed later.

We first scale the focus regressors X1 by defining

Z1 = X1�1, γ1 = �−1
1 β1, (11)

where �1 is a diagonal k1 × k1 matrix with positive diagonal elements such that the diagonal elements of
Z ′

1 Z1 are all one. Notice that Z1γ1 = X1β1 and that

In − Z1(Z ′
1 Z1)−1 Z ′

1 = In − X1�1(�1 X ′
1 X1�1)−1�1 X ′

1 = M1.

Hence, scaling X1 is completely harmless, and β1 can always be recovered from γ1 by β1 = �1γ1.
We next scale the auxiliary regressors X2 by introducing a diagonal k2 × k2 matrix �2 with positive

diagonal elements such that all diagonal elements of �2 X ′
2 M1 X2�2 are one. As a result, the original

regressors X1 and X2 are scaled such that all diagonal elements of

(X1�1)′(X1�1) and (X2�2)′M1(X2�2)

equal one. These scaling procedures were first proposed in De Luca and Magnus (2011) and stabilize
both matrices so that inversion and eigenvalue routines become numerically more accurate.

For the auxiliary regressors we not only scale but also transform. Since the matrix �2 X ′
2 M1 X2�2 is

positive definite, its eigenvalues are all positive and its eigenvectors are linearly independent. Defining
the orthogonal k2 × k2 matrix T (whose columns are the eigenvectors) and the diagonal k2 × k2 matrix

 (containing the eigenvalues on the diagonal), we have

T ′�2 X ′
2 M1 X2�2T = 
.

We then define

Z2 = X2�2T 
−1/2, γ2 = 
1/2T ′�−1
2 β2, (12)

so that Z2γ2 = X2β2 and

Z ′
2 M1 Z2 = 
−1/2T ′�2 X ′

2 M1 X2�2T 
−1/2 = Ik2 .

The effect of the scaling in X1 is only for numerical stability; it has no effect on the WALS estimates.
But the scaling in X2 has two effects: numerical stability and scale-independence. This is because of the
semiorthogonalization. Without preliminary scaling the WALS estimates would depend on the scaling
of the auxiliary variables (unless k2 = 1), because the orthogonal matrix T and the diagonal matrix 


depend on the scaling in a nontrivial (nonlinear) fashion. This dependence vanishes after preliminary
scaling, which is obviously important in the interpretation of the WALS estimates. As with β1, we can
recover β2 by β2 = �2T 
−1/2γ2.

Since X1β1 = Z1γ1 and X2β2 = Z2γ2, the DGP given in (1) can also be written as

y = Z1γ1 + Z2γ2 + ε. (13)

The important difference between (1) and (13) is that X ′
2 M1 X2 is positive definite but without any known

structure, while Z ′
2 M1 Z2 is constructed in such a way that it equals the identity matrix Ik2 .
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7. Consequences of the Transformation

The fact that the matrix M1 Z2 is semiorthogonal so that Z ′
2 M1 Z2 = Ik2 leads to important simplifications,

which we list explicitly below. The matrices M1 and Q become

M1 = In − Z1(Z ′
1 Z1)−1 Z ′

1, Q = (Z ′
1 Z1)−1 Z ′

1 Z2,

and the LS estimators of γ1 and γ2 under the constraint S′
iγ2 = 0 are now given by

γ̂1(i) = γ̂1r − QWi γ̂2u, γ̂2(i) = Wi γ̂2u, (14)

where

γ̂1r = (Z ′
1 Z1)−1 Z ′

1 y, γ̂2u = Z ′
2 M1 y. (15)

The idempotent matrix Pi reduces to

Pi = Si (S′
i Si )

−1S′
i = Si S′

i ,

because S′
i is a selection matrix of the form (Iri : 0) or a column-permutation thereof, so that S′

i Si = Iri .
Hence, Pi is a diagonal matrix with ri ones and k2 − ri zeros on the diagonal, and

Wi = Ik2 − Si S′
i

is a diagonal matrix with k2 − ri ones and ri zeros on the diagonal.
The diagonality of Wi implies that the hth diagonal element of Wi is 0 if γ2,h (the hth component of

γ2) is constrained to be zero, and 1 otherwise. All models that include the hth column of Z2 as a regressor
will therefore have the same estimator of γ2,h , irrespective which other γ2’s are estimated, namely the hth
component of γ̂2u . Moreover,

γ̂2u ∼ N(γ2, σ
2 Ik2 ),

so that the k2 components of γ̂2u are independent.
The joint distribution of γ̂1(i) and γ̂2(i) is given by(

γ̂1(i)

γ̂2(i)

)
∼ N

((
γ1 + QSi S′

iγ2

Wiγ2

)
, σ 2

(
(Z ′

1 Z1)−1 + QWi Q′ −QWi

−Wi Q′ Wi

))
,

and the residual vector is e(i) = y − Z1γ̂1(i) − Z2γ̂2(i) = Di y, where

Di = M1 − M1 Z2Wi Z ′
2 M1

is a symmetric idempotent matrix of rank n − k + ri . The distribution of

s2
(i) = e′

(i)e(i)

n − k + ri
= y′M1

(
In − Z2Wi Z ′

2

)
M1 y

n − k + ri
(16)

is therefore given by

(n − k + ri ) s2
(i)

σ 2
∼ χ2

(
n − k + ri ,

γ ′
2Si S′

iγ2

σ 2

)
,

The WALS estimators of γ1 and γ2 are

c1 =
2k2∑
i=1

λ(i)γ̂1(i) = γ̂1r − QW γ̂2u, c2 =
2k2∑
i=1

λ(i)γ̂2(i) = W γ̂2u, (17)
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12 MAGNUS AND DE LUCA

where

W =
2k2∑
i=1

λ(i)Wi ,

and the equivalence theorem implies that

M SE(c1) = σ 2(Z ′
1 Z1)−1 + QM SE(W γ̂2u)Q′, (18)

where W is a k2 × k2 diagonal random matrix (random, because the λ(i) are random). Although the model
space contains 2k2 models, the computational burden of WALS is of the order k2, because we need only
consider the diagonal elements w1, . . . , wk2 of W , which are linear combinations of the model weights
λ(i). We do not need to know these linear combinations explicitly, only the resulting WALS weights wh

(h = 1, . . . , k2).
It follows from the equivalence theorem (18) that the WALS estimator c1 will be a “good” estimator of

γ1 (in the mean squared error sense) if and only if W γ̂2u is a “good” estimator of γ2. Now, W is diagonal
and the elements of γ̂2u are independent with γ̂2u,h ∼ N(γ2,h, σ

2). We want the diagonal elements wh

of W to lie between zero and one, so that the components of W γ̂2u are shrinkage estimators. It is only
at this stage that we require condition (R1) of Assumption 4.1, and in fact the condition is stronger
than necessary. Some of the λ(i) may fall outside the (0, 1) interval as long as the k2 required linear
combinations (that is, the diagonal elements of

∑
i λ(i)Wi ) are all inside the (0, 1) interval. Thus, under

semiorthogonalization and the full force of Assumption 4.1, it suffices to find the diagonal elements of
W such that the shrinkage estimator W γ̂2u is an “optimal” estimator of γ2. Once we have found these
elements, the same estimator will provide the optimal WALS estimator c1 of γ1 using (17).

Suppose that σ 2 is known (we discuss the unknown σ 2 case later). Then the relevant pretest procedures,
and hence the λ(i), depend only on Z ′

2 M1 y as argued under Assumption 4.1. In that case we may strengthen
condition (R3) that the λ(i) depend only on M1 y to the condition that they depend only on Z ′

2 M1 y, that
is, on γ̂2u . This is formalized in the following assumption.

Assumption 7.1. The WALS weights wh satisfy wh = wh(γ̂2u,h) for h = 1, . . . , k2.

Not only does this seem reasonable, but is also has great practical advantages. In particular, since the
{γ̂2u,h} are independent, so are the {wh γ̂2u,h}. Our k2-dimensional problem thus reduces to k2 (identical)
one-dimensional problems: only using the information that γ̂2u,h ∼ N(γ2,h, σ

2) and assuming that σ 2 is
known, find the best estimator of γ2,h .

8. Estimating the Mean of a Univariate Normal Distribution from One Observation

Thus, motivated we address the seemingly trivial problem of estimating one parameter, say γ , given one
observation, say x , generated by the normal N(γ, σ 2) distribution. Since we assume that the variance σ 2

is known, at least for the moment, there is no loss in generality by setting it equal to one.
We write our estimator as m(x) = w(x)x . The most obvious estimator of γ is m(x) = x where w(x) ≡ 1.

This estimator is unbiased, admissible, and minimax and its risk (which equals the mean squared error
under squared error loss) is constant:

risk = E(x − γ )2 = 1.

We call this the “usual” estimator. Another estimator is m(x) = 0 with w(x) ≡ 0. We call this the “silly”
estimator. Its risk is

risk = E(0 − γ )2 = γ 2.
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If |γ | < 1 then the silly estimator has smaller risk, if |γ | > 1 then the usual estimator has smaller risk,
and if |γ | = 1 then the two estimators have the same risk.

The equivalence theorem (Proposition 4.2) implies that associated with any estimator of γ in the above
N(γ, 1) problem there exists a unique estimator of β1 in the regression problem defined in Section 2.
For example, the unrestricted estimator β̂1u corresponds to the usual estimator m(x) = x of γ and the
restricted estimator β̂1r corresponds to the silly estimator m(x) = 0. Now, the usual estimator may make
a lot of sense in the N(γ, 1) context, but the unrestricted estimator β̂1u makes less sense in the regression
context, because it implies choosing β̂1u whatever the values of the diagnostics associated with the
auxiliary variables. The equivalence theorem thus shows that we have to reconsider the usefulness of the
usual estimator also in the N(γ, 1) context, and try and find an alternative to it.

There is no need for w to be constant. We can think of our estimator as a weighted average between
the usual and the silly estimator, because

m(x) = w(x)x = w(x)x + (1 − w(x))0.

The larger is |x | the larger should be w, so that more weight will be put on the usual estimator relative to
the silly estimator. In fact, we impose the following regularity conditions on w.

Assumption 8.1. The weight w is a real-valued function defined on R and satisfies:

A. 0 ≤ w(x) ≤ 1;
B. w(−x) = w(x);
C. w is nondecreasing on [0,∞);
D. w is continuous except possibly on a set of measure zero.

Given these regularity conditions we obtain a lower bound for the risk.

Proposition 8.1. If x ∼ N(γ, 1) and the weight w satisfies Assumption 8.1, then the risk E(w(x)x − γ )2

has lower bound γ 2/(1 + γ 2).

Proof. This is proved in Magnus (2002, Theorem A.7). �
In search of a suitable w-function, we notice that any w satisfying Assumption 8.1 for which w(0) = 0

and w(∞) = 1 can be viewed as a distribution function on [0,∞). Let us therefore consider a flexible
three-parameter class of distribution functions, namely the reflected Burr class (Burr, 1942):

w(x) = 1 − (1 + (|x |/c)α)−δ (c > 0, α > 0, δ > 0), (19)

defined for −∞ < x < ∞. Given the reflected Burr class we minimize maximum regret, where regret is
defined as

regret(γ ; c, α, δ) = risk(γ ; c, α, δ) − infc,δ,α risk(γ ; c, α, δ)

= risk(γ ; c, α, δ) − γ 2

1+γ 2 .

Extensive optimization searches reveal that the minimax regret estimator is obtained along the path
αδ = 1 when α → ∞. This gives

w(x) =
{

0 if |x | ≤ c
1 − c/|x | if |x | > c,

and hence

m(x) = w(x)x =
⎧⎨
⎩

x + c if x < −c
0 if − c ≤ x ≤ c
x − c if x > c.

(20)
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14 MAGNUS AND DE LUCA

This is the Burr estimator. The minimax regret solution is obtained for c = 0.545 with maximum regret
equal to 0.3850. It seems therefore that we have solved the problem of finding the diagonal elements of
W such that the shrinkage estimator W γ̂2u is an “optimal” estimator of γ2.

9. Enter Bayes: Neutrality and Robustness

We could stop here in our search for the “optimal” estimator of γ in the N(γ, 1) problem. The Burr
estimator, however, is not completely satisfactory. For example, it is “kinked,” hence not differentiable
and therefore inadmissible. Let us follow a different path, now along Bayesian lines. Our analysis so far
has been strictly frequentist, but this section introduces a Bayesian element. The final product will thus
contain both Bayesian and frequentist elements. The Bayesian solution will be close to the frequentist
Burr solution, but it will be admissible and be based on a proper treatment of ignorance.

We start with the data,

x |γ ∼ N(γ, 1),

which we combine with information from a prior π (γ ). This gives a posterior density p(γ |x) of the form

p(γ |x) = φ(x − γ )π(γ )∫ ∞
−∞ φ(x − γ )π(γ ) dγ

,

where φ denotes the standard-normal density. The mean and variance of γ in the posterior distribution
are denoted as m(x) and v(x), respectively.

If the prior is normal, then so is the posterior. In particular, if the prior distribution of γ is N(0, τ 2),
then the mean and variance of γ in the posterior distribution are m(x) = wx and v(x) = w, where
w = τ 2/(τ 2 + 1) is a constant. The normal prior, although convenient, is often considered inappropriate
because the discrepancy between m(x) and x does not vanish when x becomes large, but rather increases
linearly without bound. In other words, the normal prior is not discounted when confronted with an
observation with which it drastically disagrees. The normal prior is therefore not “robust” for the normal
location problem.

We impose the following restrictions on the prior density.

Assumption 9.1. The prior π is

1. symmetric around zero: π(−γ ) = π (γ ) for all γ > 0;
2. positive and nonincreasing on (0,∞);
3. differentiable, except possibly at 0; and
4. ω(γ ) = −π ′(γ )/π (γ ) has a limit (possibly ∞) as γ → ∞.

Assumptions (B1)–(B3) characterize the prior, allowing a nondifferentiable peak at zero. Assumption
(B4) is a technical condition required in the proof of Proposition 9.1.

Robustness is formally defined as follows.

Definition 9.1. A prior π (γ ) is said to be robust if the mean m(x) in the posterior distribution based
on this prior satisfies x − m(x) → 0 as x → ∞.

To find out whether or not a prior is robust is not trivial, but the following proposition makes it easy.

Proposition 9.1. Under Assumption 9.1, a prior π is robust if and only if ω(γ ) → 0 as γ → ∞.

Proof. This is the main result of Kumar and Magnus (2013), and appears there as Theorem 1. �
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For example, if the prior π follows a Student(k) distribution, then

ωk(γ ) = −d log π(γ )

dγ
= (k + 1)γ

γ 2 + k
.

We have limγ→∞ ωk(γ ) = 0, but limγ→∞ limk→∞ ωk(γ ) = ∞, because the sequence of functions {ωk}
(k = 1, 2, . . .) is not uniformly convergent. This explains why the normal prior is not robust, while the
Student prior is.

Let us consider a flexible three-parameter class of priors, namely the reflected generalized gamma
distribution with density

π (γ ) = qcδ

2�(δ)
|γ |−αe−c|γ |q , (21)

where −∞ < γ < ∞, c > 0, q > 0, 0 ≤ α < 1 and δ = (1 − α)/q . Special cases of (21) include the
normal (α = 0, q = 2 and c = (2σ 2)−1), the Laplace (α = 0 and q = 1), the reflected Weibull (q =
1 − α), and the Subbotin (α = 0) distributions, among others. The ω-function takes the form

ω(γ ) = −d log π (γ )

dγ
= −α

γ
− cqγ q−1,

and hence robustness occurs if and only if 0 < q < 1. We therefore restrict the parameter space to

c > 0, 0 < q < 1, 0 ≤ α < 1. (22)

In order to restrict the parameter space further we introduce the concept of neutrality.

Definition 9.2. A prior π (γ ) is said to be neutral if the prior median of γ is zero and the prior median
of |γ | is one.

The concept of neutrality attempts to capture the vague notion of ignorance in an explicit and applicable
form. A prior is neutral when we are ignorant about the fact whether γ is positive or negative, and also
about the fact whether |γ | is larger or smaller than one. In other words, we require

Pr(γ ≤ −1) = Pr(−1 < γ ≤ 0) = Pr(0 < γ ≤ 1) = Pr(γ > 1) = 1/4.

The condition Pr(|γ | < 1) = Pr(|γ | > 1) = 1/2 corresponds precisely to ignorance about whether the
usual or the silly estimator is better (has lower risk), and thus also ignorance about whether or not it is
advisable to include the associated additional regressor.

For the reflected generalized gamma distribution defined in (21), neutrality occurs if and only if∫ 1

0
γ −αe−cγ q

dγ = �(δ)

2qcδ

If we define the (lower) incomplete gamma function as

�(s, z) = 1

�(s)

∫ z

0
t s−1e−t dt

and notice that ∫ 1

0
γ −αe−cγ q

dγ = 1

qcδ

∫ c

0
tδ−1e−t dt = �(δ, c)�(δ)

qcδ
,

then an equivalent representation of the neutrality condition is

�(δ, c) = 1/2. (23)
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Table 1. Minimax Regret Solutions for the Reflected Generalized Gamma, Reflected Weibull, Subbotin, and
Laplace Priors

Prior α q δ c γ Regret

Gamma 0.2076 1 0.7924 0.4942 3.4410 0.4399
Weibull 0.1124 0.8876 1 0.6931 3.5620 0.4546
Subbotin 0 0.7995 1.2508 0.9377 3.6912 0.4697
Laplace 0 1 1 0.6931 4.9320 0.5127

In the case of the normal distribution we have δ = 1/2 and c = (2σ 2)−1, so that (23) holds for σ 2 = 2.1981.
In the case of the Laplace and reflected Weibull distributions we have δ = 1, and hence the neutrality
condition becomes ∫ c

0
e−t dt = 1/2,

which leads to c = log 2. More generally, the neutrality condition places a restriction on our class of
priors by reducing the number of free parameters by one.

The minimax regret for our class of neutral and robust priors can then be written as

inf
c,q,α

sup
γ

regret(γ ; c, q, α)

subject to �(δ, c) = 1/2,

with the prior parameters satisfying the inequalities in (22).
Our minimax regret results are presented in Table 1. The Laplace prior is a special case of both the

reflected Weibull and the Subbotin priors and is obtained by setting q = 1. It is neutral but not robust, and
is included here as a benchmark. The reflected Weibull and Subbotin priors outperform the Laplace prior
not only because they are robust while the Laplace prior is not but also because they have lower minimax
regret. The reflected generalized gamma prior has a minimax solution on the boundary (q = 1) and this
solution is not robust.

In Figure 1 we present the deviations x − m(x) for the four minimax regret solutions. For the Laplace
prior the deviation converges to log 2 = 0.6931 and for the reflected generalized gamma it converges to
1/2. Neither converges to zero in accordance to Proposition 9.1. For the reflected Weibull and Subbotin
priors we see that x − m(x) does converge to zero, confirming their robustness, also in accordance to
Proposition 9.1.

The risk profiles of the reflected Weibull, Subbotin, and Burr estimators are presented in Figure 2
together with the minimum risk γ 2/(1 + γ 2). The figure shows that the reflected Weibull and Subbotin
estimators behave very similarly. Within the family of reflected generalized gamma distributions, as given
in (21), the optimal neutral prior is obtained when q = 1, which is on the boundary and therefore not
robust, because robustness requires that 0 < q < 1. The optimal neutral and robust prior will therefore
be obtained for q very close but not equal to one. Such a prior will then be robust but convergence of
x − m(x) to zero will be slow. This implies that we should choose q close but not too close to one.

Each of the three estimators in Figure 2 has its advantages and disadvantages. The Subbotin prior
(q = 0.80) is “more robust” (x − m(x) converges faster to zero) than the reflected Weibull (q = 0.89),
but the reflected Weibull has lower minimax regret. The Burr estimator derived in the previous section
has lower regret (0.3850) than any of the Bayesian estimators in the current section. However, it is
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Figure 1. Deviations x − m(x) for the Minimax Regret Solutions of the Reflected Generalized Gamma,
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inadmissible and does not have an interpretation in terms of ignorance. In our view the reflected Weibull
prior,

π (γ ) = qc

2
|γ |−(1−q)e−c|γ |q (c = log 2, q = 0.8876), (24)

offers the best compromise and we present it as our preferred prior. When we define

A j (x) =
∫ ∞

−∞
(x − γ ) jφ(x − γ )π(γ ) dγ ( j = 0, 1, 2), (25)

then the mean and variance in the posterior distribution are given by

m(x) = − A1(x)

A0(x)
+ x, v(x) = A2(x)

A0(x)
−

(
A1(x)

A0(x)

)2

. (26)

10. The Effect of Estimating σ 2

So far we have assumed that the disturbance term in our linear model (1) is normally distributed with
mean zero and variance σ 2 In , and that σ 2 is known. In fact, σ 2 is not known and we have to estimate it.
The problem can be phrased in terms of the simple model of Section 8 and especially Section 9. There we
considered the estimation of γ when we have one observation x from the univariate N(γ, σ 2) distribution,
assuming that σ 2 is known.

Suppose now that σ 2 is not known, but that we have an estimator s2 of σ 2 which is distributed
independently of x , such that νs2/σ 2 follows a χ2(ν)-distribution. This captures the essence of our
problem. In Section 9 we obtained a weight function w such that m(x) = w(x)x is an “optimal” estimator
of γ , based on the reflected Weibull prior (24). This weight function was derived under the assumption
that σ 2 is known. If σ 2 is not known we can ask two questions. First, how can we generalize the prior
π(γ ) to a prior π (γ, σ 2), thus obtaining a different posterior distribution than before, implying a different
mean (and variance) in this distribution, and hence a different estimator of γ and a different risk profile?
Second, if we use the same estimator as before (thus based on the known σ 2 situation), then what is
the difference in risk when we replace σ 2 by s2 and take the additional randomness of s2 properly into
account?

Both questions were analyzed in Danilov (2005), see also Yüksell et al. (2010), but in the context of
the Laplace prior rather than the reflected Weibull. We conclude from Danilov’s analysis that there is
rapid convergence of the risk profiles to the known σ 2 case (where ν = ∞) as we let ν approach ∞. For
ν > 20 the risk profiles practically coincide and even for small ν the difference is negligible.

We repeat one aspect of Danilov’s analysis for the generalized Weibull. In Figure 3, we plot two risk
functions. The first is the same risk function as the generalized Weibull in Figure 2, while the second uses
the same formula but replaces σ 2 by s2, thus allowing for the additional randomness caused by estimating
σ 2. The risk now depends on the degrees of freedom ν and we choose a small value of ν (ν = 5, as in
Danilov (2005, figure 4)) in order to give randomness every chance to reveal itself. The figure shows that,
even with such a small value of ν, the difference between the known and unknown σ 2 case is remarkably
small, in fact negligible in practice. This result is not trivial or obvious. For example, when we draw the
risk profiles of the pretest estimator, as in Danilov (2005, figure 3), we find large dependence on ν.

This concludes our discussion of the known versus unknown σ 2 case. The more general situation where
the variance of the disturbances is not given by σ 2 In but by σ 2�, where � depends on some unknown
parameters, is more complex and we shall discuss it when we discuss nonspherical disturbances in Section
12.1.
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Figure 3. Risk of the Reflected Weibull Estimator: Known versus Unknown σ 2.

11. Putting It All Together

We summarize the WALS procedure in seven steps, as follows.
Step 1 (focus versus auxiliary). In the unrestricted model y = Xβ + ε, determine which are the k1

focus regressors (X1) and which are the k2 auxiliary regressors (X2). This leads to (1):

y = X1β1 + X2β2 + ε.

Step 2 (scaling). Define the diagonal k1 × k1 matrix �1 whose j th diagonal element is given by

(�1) j j = 1√
(X ′

1 X1) j j

.

Compute M1 = In − X1(X ′
1 X1)−1 X ′

1 and define the diagonal k2 × k2 matrix �2 whose hth diagonal
element is given by

(�2)hh = 1√
(X ′

2 M1 X2)hh

.

As a result, all diagonal elements of

(X1�1)′(X1�1) and (X2�2)′M1(X2�2)

are equal to one.
Step 3 (semiorthogonalization). Define

Z1 = X1�1, γ1 = �−1
1 β1,
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as in (11), so that Z1γ1 = X1β1. Next compute the orthogonal k2 × k2 matrix T and the diagonal k2 × k2

matrix 
 such that

T ′�2 X ′
2 M1 X2�2T = 
,

and define

Z2 = X2�2T 
−1/2, γ2 = 
1/2T ′�−1
2 β2,

as in (12), so that Z2γ2 = X2β2 and Z ′
2 M1 Z2 = Ik2 .

Step 4 (estimate γ2 and σ 2 in the unrestricted model). Since X1β1 = Z1γ1 and X2β2 = Z2γ2, the DGP
can also be written as

y = Z1γ1 + Z2γ2 + ε,

as in (13). In this (unrestricted) model, compute the estimate of γ2 as

γ̂2u = Z ′
2 M1 y,

as in (15), and the estimate of σ 2 as

s2
u = y′M1(In − Z2 Z ′

2)M1 y

n − k
,

as in (16) with ri = 0 and Wi = Ik2 . Set up the inputs for the Bayesian step by computing the vector of
t-ratios

x = γ̂2u

su
=

√
n − k Z ′

2 M1 y√
y′M1(Ik2 − Z2 Z ′

2)M1 y
.

Step 5 (compute the mean and variance in posterior distribution). Let φ denote the standard-normal
density and define the reflected Weibull prior,

π(γ ) = qc

2
|γ |−(1−q)e−c|γ |q (c = log 2, q = 0.8876),

as in (24). For each of the k2 components xh of x compute

A j (xh) =
∫ ∞

−∞
(xh − γ ) jφ(xh − γ )π(γ ) dγ ( j = 0, 1, 2),

as in (25), and then the mean and variance in the posterior distribution:

mh = m(xh) = − A1(xh)

A0(xh)
+ xh, vh = v(xh) = A2(xh)

A0(xh)
−

(
A1(xh)

A0(xh)

)2

,

as in (26). Compute m = (m1, . . . , mk2 )′ and V = diag(v1, . . . , vk2 ).
Step 6 (WALS estimates). Compute the WALS estimates of γ1 and γ2 as

c1 = (Z ′
1 Z1)−1 Z ′

1(y − Z2c2), c2 = sum.

The WALS estimates of the original parameters β1 and β2 are then given by

b1 = �1c1, b2 = �2T 
−1/2c2.

Step 7 (WALS precisions). Letting Q = (Z ′
1 Z1)−1 Z ′

1 Z2, compute the variances of c1 and c2 as

var (c1) = s2
u (Z ′

1 Z1)−1 + Qvar (c2)Q′, var (c2) = s2
u V,
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and the covariance as cov(c1, c2) = −Qvar (c2). The variances of b1 and b2 can then be computed as

var (b1) = �1var (c1)�1, var (b2) = �2T 
−1/2var (c2)
−1/2T ′�2

and the covariance as cov(b1, b2) = �1cov(c1, c2)
−1/2T ′�2.

12. Extensions and Applications

The WALS procedure developed so far is designed for the estimation of linear regression models with i.i.d.
disturbances, enabling the investigator to allow for both model uncertainty and estimation uncertainty
in one joint procedure. Recent contributions have allowed extensions of this method, and in Section
12.1 we present the key ideas of four of these extensions. In Section 12.2, we discuss possible future
extensions, and in Section 12.3 some applications. An important conclusion from the extensions is that the
k2-dimensional reduction, which occurs in the simple linear setting, continues to hold in most extensions
by a method of transformation or linearization.

12.1 Current Eextensions

(a) Nonspherical disturbances. One constraint in the setup of WALS is that the disturbances are
assumed to be independent and identically distributed with mean zero and variance σ 2. A more
general setup would assume

ε ∼ N(0, σ 2�(θ )),

where �(θ ) is a positive definite n × n matrix whose elements are functions of an m-dimensional
unknown parameter vector θ = (θ1, . . . , θm) under the normalizing constraint tr (�(θ )) = n. This
idea was developed in Magnus et al. (2011), mimicking the case where only σ 2 needs to be
estimated.
If � were known we would transform model (1) to

�−1/2 y = �−1/2 X1β1 + �−1/2 X2β2 + �−1/2ε

and apply WALS to the transformed variables. Since � is not known, we estimate its parameters
from the unrestricted model. This leads to the maximum likelihood (ML) estimator θ̂ of θ , through
which we also obtain an estimator �̂ = �(θ̂ ). We then act as if �̂ is in fact the true rather than the
estimated value of �, that is, we ignore the randomness in the estimation of the θ parameters.
The procedure can be justified by the analysis and results in Section 10, although there is one
possibly important difference between estimating only σ 2 and estimating both σ 2 and θ . If var(ε) =
σ 2 In then the estimators of β1 and β2 do not depend on σ 2, but if var (ε) = σ 2� then the estimators
of β1 and β2 do depend on �. The influence of the neglected randomness is therefore more complex,
and so far it has not yet been explored.

(b) Hierarchical WALS. In practice the investigator has to decide not only which variables to include
in the model, but also how to measure them. For example, one may wish to include “education” or
“inflation” in the model, but then one has to decide as well how education and inflation are to be
measured. This gives rise to two sources of model uncertainty: uncertainty about “groups” (such
as eduction or inflation) and uncertainty about “variables” (different measurements of the group
concept). This situation was recently analyzed by Magnus and Wang (2014) and is of interest, not
only for its own sake, but also as an example where the number of regressors could exceed the
number of observations, while estimation is still possible.
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(c) WALS estimation of generalized linear models. A natural extension to the WALS methodology
is to move away from the linearity assumption. Attempts to extend WALS to the wider class of
generalized linear models (GLMs) were undertaken by Heumann and Grenke (2010) and De Luca
et al. (2013). This class of models includes a variety of nonlinear models typically employed for
discrete or categorical outcomes, such as logit, probit, and Poisson regression models.
In these models the dependence of the outcome on the regressors is modeled through a continuously
differentiable and invertible function h(·), sometimes called the inverse link, such that E(y|X ) =
h(X1β1 + X2β2). Because of model uncertainty about the k2 columns of X2, we consider 2k2

possible models where the i th model Mi is again defined by a constraint of the form S′
iβ2 = 0.

De Luca et al. (2013) show that, if we choose the unrestricted ML estimator (β̂1u, β̂2u) as the initial
value, then a first-order approximation to the ML estimator of β1 and β2 under model Mi can
be obtained. Moreover, after preliminary transformations of the outcome and the regressors, this
(one-step) ML estimator closely resembles the constrained LS estimator of β1 and β2 discussed in
Section 3.

(d) WALS prediction. Prediction model averaging with WALS is based on the linear DGP(
y
y f

)
=

(
X1 X2

X1 f X2 f

) (
β1

β2

)
+

(
ε

ε f

)
, (27)

where y and y f are vectors of observations on the outcome, X1 and X1 f are matrices of observations
on the focus regressors, X2 and X2 f are matrices of observations on the auxiliary regressors, β1 and
β2 are vectors of focus and auxiliary parameters, and ε and ε f are random vectors of unobservable
disturbances. Observations are allowed to be correlated and we assume that(

ε

ε f

)
∼ N

((
0
0

)
,

(
� C ′

f
C f � f

))
, (28)

where the variance of (ε, ε f ) is a positive definite matrix whose component blocks �, C f , and � f

are functions of a finite-dimensional unknown parameter vector θ .
After estimating β1 and β2 from the sample (y, X1, X2), we wish to predict the n f (possibly
future) values of y f associated with the values of the regressors X1 f and X2 f . Because of model
uncertainty, each of the k2 columns of X2 and X2 f can either be included or not included in the
model and this gives rise to 2k2 possible models. Unlike traditional prediction methods, model-
average prediction procedures give predictors of y f that take explicit account of both model and
error uncertainty. The additional theory required for WALS prediction was recently developed in
Magnus et al. (2014).

12.2 Possible Future Extensions

In addition to the four extensions discussed in the previous subsection, there are many other possible
extensions of WALS, and much work is still required to fill these gaps. Below we list five extensions that
seem most important to us, but it is easy to think of more extensions, for example panel data, big data
(k  n), or semi- or nonparametric settings.

(a) Endogeneity. The standard setup requires that the regressors are (weakly) exogenous. If we allow
endogenous regressors then we need a WALS version of instrumental variables or two-stage least
squares.

(b) Role of normality. The normality assumption plays an important role in the development of WALS,
which goes beyond the specification of the first two moments. At several points in the development
we need the fact that if two random variables are uncorrelated, then functions of these random
variables are also uncorrelated. This is generally not true, but under normality it is. An extension
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to nonnormal errors is therefore far from trivial. Zou et al. (2007) provide an extension of the
equivalence theorem for large-sample nonnormal errors and De Luca et al. (2013) generalize
WALS to GLMs where the density of y is assumed to belong to the linear exponential family of
density functions. While these extensions are useful, they do not yet provide a full generalization
to nonnormality.

(c) Multivariate models. Extensions from univariate to multivariate models should be feasible within
the WALS framework, but so far this has not been investigated. These extensions would open the
way to a larger variety of models, such as seemingly unrelated regression equations (SURE), and
ordered, multinomial, and conditional logit and probit models.

(d) Excluding subsets of parameters. In the standard WALS setup we allow all 2k2 models to play
a part, where the i th model is identified by a linear restriction of the form S′

iβ2 = 0. It can
happen that if one model is excluded then another model is automatically excluded as well or
if one auxiliary regressor appears then this excludes a subset of other auxiliary regressors. The
hierarchical procedure in Section 12.1 is an example of the latter situation. A general theory of
subset selection allowing for linkage between restrictions would be of great practical importance.

(e) Nonnested models. Our models are all nested within one (the largest) model, which is also the
DGP. A general theory of model selection should allow for the fact that models may not be nested.

12.3 Applications

Model averaging techniques are typically applied to growth empirics, where the large number of growth
determinants and the limited number of observations available at the national level expose the regressions
to a high degree of model uncertainty. The standard WALS procedure, introduced by Magnus et al. (2010),
also contains an application to growth empirics. The WALS estimates obtained in Magnus et al. (2010)
are compared to traditional pretest estimates, Bayesian model-average (BMA) estimates, and Bayesian
averaging of classical estimates, using the data set analyzed by Sala-i-Martin et al. (2004).

The hierarchical WALS estimator discussed in Section 12.1 was applied to growth empirics by Magnus
and Wang (2014) in order to take explicit account of the uncertainty due to the choice of the growth
determinants (that is, concepts or groups of variables such as education) and the choice of the explanatory
variables that can be employed as alternative proxy measures of the same growth determinant (that is,
precisely defined variables such as enrollment rate, school years, and share of public education spending).
Poghosyan and Magnus (2012) applied WALS to estimate and forecast factor-based dynamic models
of real GDP growth and inflation in the Armenian economy. Additional comparisons between WALS,
standard BMA, and a modified version of the Mallows model-average (MMA) estimator of Hansen (2007)
are provided by Amini and Parmeter (2012) using data from three earlier studies on growth empirics.
Similar comparisons between WALS and other frequentist-based model-average estimators can be found
in Liu (2014).

The WALS procedure has also been successfully applied in other fields, outside growth empirics.
Among these, Wan and Zhang (2009) applied WALS to study the effect of recreation and tourism
development on a range of socioeconomic indicators in rural U.S. counties. Liski et al. (2010) used
WALS to investigate medical care costs of hip fracture treatments in hospital districts of Finland. Magnus
et al. (2011) provided an application of WALS in the context of a hedonic housing price model with
heteroskedastic disturbances using data from the Hong Kong real estate market; Seya and Tsutsumi
(2012) extended this analysis to WALS estimation of a hedonic land price model with spatially dependent
data from the Tokyo metropolitan area; and Seya et al. (2014) provided Monte Carlo simulations on the
combined use of WALS and principal components to jointly address problems of model uncertainty and
multicollinearity in spatial lag-error models.
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Dardanoni et al. (2011, 2012) exploited WALS for handling the bias-precision trade-off that arises in
the estimation of linear regression models with missing covariate values replaced by imputations. Osterloh
(2012) applied WALS to assess the robustness of political environment as determinant of the economic
performance in OECD countries. Finally, Cook et al. (2013) used WALS to study the determinants of
various capital structure measures in US corporations between 1980 and 2007. In contrast to the growth
empirics literature, where the number of regressors is large, some of the above studies show that WALS
can be used as a general method of estimation, also when the number of regressors is small.

13. WALS Compared to other Model-Average Estimators

The method of WALS surveyed in this paper is one of several methods of model averaging (more
accurately, estimator averaging). In this section we provide a brief overview of this rapidly expanding
literature, emphasizing the advantages and weaknesses of WALS relative to these alternative model-
average procedures.

13.1 Bayesian Model Averaging

BMA estimators compute weighted averages of the conditional estimates over all possible models using
posterior model probabilities as weights in order to reflect the confidence in each model based on prior
beliefs and the observed data. By Bayes theorem, the posterior probability of model Mi is obtained as

λ(i) = p(Mi | y) = p(Mi ) p(y |Mi )∑
i p(Mi ) p(y |Mi )

(i = 1, . . . , 2k2 ), (29)

where p(Mi ) is the prior probability that Mi is the true model,

p(y |Mi ) =
∫

p(y | θi ,Mi ) p(θi |Mi ) dθi (30)

is the marginal likelihood of model Mi , θi the vector of its parameters, p(y | θi ,Mi ) its likelihood, and
p(θi |Mi ) the prior density of θi under model Mi . Thus, contrary to WALS which uses priors only on
the vector of t-ratios x = γ̂2u/s2

u , BMA estimators require two types of priors: on the model space and on
the parameters of each model.

As discussed in the reviews by Hoeting et al. (1999), Clyde and George (2004), and Moral-Benito
(2013), the choice of uninformative priors is one of the most challenging aspects of BMA. For the prior
on the model space, the bulk of the BMA literature uses a uniform prior which assigns equal probability
to each model. Although this is a reasonable choice when there is little prior information about the
relative plausibility of the models considered, the uniform prior has been criticized because of the implicit
assumption that the probability that one regressor appears in the model is independent of the inclusion of
others, whereas, in fact, regressors are typically correlated; see, for example, Durlauf et al. (2008). For
the prior on the parameter space, the major problem is that improper priors on all parameters would result
in ill-defined Bayes factors. A widely used strategy to deal with this issue consists of using a hierarchical
prior structure that involves improper priors on the parameters that are common to all models and proper
priors on the remaining parameters. For the latter, most BMA estimators rely on Zellner’s (1986) g-prior,
which is a normal prior with mean zero and variance

var (β2 |Mi ) = σ 2

g
Si (S′

i X ′
2 M1 X2Si )

−1S′
i , (31)

where g > 0 is a scalar hyperparameter that reflects how much importance is given to prior beliefs. This
prior structure is attractive since it only requires the elicitation of the scalar parameter g and, in linear
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regression setups, leads to closed-form expressions of the posterior model probabilities. For the choice of
the hyperparameter g, various options are available including the unit information prior g = 1/n (Kass
and Wasserman, 1995), the risk inflation criterion g = 1/k2

2 (Foster and George, 1994), and the benchmark
prior g = 1/ max(n, k2

2) (Fernández et al., 2001). For additional references and recent developments on
the choice of priors in BMA, the reader is referred to Eicher et al. (2011) and Ley and Steel (2009, 2012).

Another well-known practical issue that plagues standard BMA procedures is how to handle model
spaces of large dimensions. A widely used empirical strategy consists of using approximate estimates that
consider only a suitable subset of models supported by the data. The subset of models to be investigated
can be identified either by deterministic search methods such as Occam’s window (Madigan and Raftery,
1994) and the leaps and bounds algorithm (Furnival and Wilson, 1974), or by stochastic search methods
based on Markov chain Monte Carlo (MCMC) techniques; see Garcia-Donato and Martinez-Beneito
(2013) for a recent review.

Several BMA estimators have been developed in the context of the linear regression model, but
extensions to more general regression setups are also available. For example, BMA estimation of GLMs
has been considered in Raftery (1996), Clyde (2000), and Czado and Raftery (2006). More recently,
Jordan and Lenkoski (2012) and Eicher et al. (2012) focused on BMA estimation of models for truncated
and censored data; Crespo Cuaresma and Feldkircher (2012) applied BMA in the presence of spatial
autocorrelation using spatial filtering; Koop et al. (2012), Karl and Lenkoski (2012), and Lenkoski et al.
(2013) developed BMA methodologies to jointly address model uncertainty and endogeneity; and Chen
et al. (2009), Moral-Benito (2012), and McCormick et al. (2012) proposed BMA estimators for panel
data models. Notice that, outside the classical linear regression model with conjugate priors, the marginal
likelihoods in (30) do not usually have analytic closed-form expressions. Approximations to either the
marginal likelihoods or the posterior model probabilities are therefore needed. Such approximations can
be obtained through the Laplace method for integrals (Tierney and Kadane, 1986), the output of some
MCMC method (Han and Carlin, 2001; Ghosh and Clyde, 2011), or a suitable combination of these two
methods (DiCiccio et al., 1997; Lewis and Raftery, 1997).

13.2 Frequentist Model Averaging

Frequentist model averaging (FMA) differs from BMA and WALS in that it avoids the need of priors
elicitation, because FMA uses model weights that are totally determined by the data on the basis of
some diagnostic criterion. Useful overviews of this approach can be found in Claeskens and Hjort
(2008) and Wang et al. (2009). The frequentist perspective to model averaging is more recent than the
Bayesian perspective, and significant progress has recently been made in developing optimal data-driven
weighting schemes and investigating the properties of the resulting estimators. For example, Buckland
et al. (1997) suggested mixing models with weights based on smoothed Akaike information criterion or
Bayesian information criterion scores; Yang (2001, 2003) proposed a frequentist-based adaptive regression
mixing method that allows the combination of estimators from different estimation procedures; Hjort
and Claeskens (2003) introduced a likelihood-based local misspecification framework to analyze the
asymptotic distribution of model-average estimators; Hansen (2007) and Wan et al. (2010) developed
least-squares model-average estimators with weights selected by minimizing the Mallows criterion; and
Liang et al. (2011) proposed a weighting procedure which minimizes an unbiased estimator of the mean
squared error of the FMA estimator in finite samples.

Most of the available distributional results of FMA estimators are based on large-sample approximations
and they are typically established under the assumptions of the local misspecification framework (Hjort
and Claeskens, 2003). The work of Pötscher (2006), who investigated the finite-sample and asymptotic
distributions of a special case of the FMA estimator discussed in Leung and Barron (2006), provides a
helpful guide for further research on these topics.
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As for BMA, exact FMA estimation can be computationally very demanding when the model space
is large. This issue is typically addressed through a preliminary model-screening step that removes
the poorest-performing models before combining the conditional estimates into an unconditional FMA
estimate. Applications of this preliminary model screening step can be found in Yuan and Yang (2005),
Claeskens et al. (2006), Wan et al. (2014), and Zhang et al. (2013a), among others. The computation of
exact FMA estimates in growth applications with large model spaces was first attempted in Amini and
Parmeter (2012) by introducing an operational version of the model-average estimator of Hansen (2007),
using the same semiorthogonal transformations as adopted in WALS.

Extensions of FMA estimators to more general regression setups cover a variety of models such as
logistic regression models (Claeskens et al., 2006); models for survival analysis (Hjort and Claeskens,
2006); generalized additive partial linear models (Zhang and Liang, 2011); Tobit models (Zhang et al.,
2012); multinomial and ordered logit models (Wan et al., 2014); and linear mixed-effects models (Zhang
et al., 2014). For linear models with nonsperical disturbances, Hansen and Racine (2012) and Zhang
et al. (2013b) developed jackknife model-average estimators which are asymptotically optimal under
heteroskedastic and serially correlated errors, while Liu and Okui (2013) and Liu et al. (2013) extended
the MMA estimator of Hansen (2007) to models with heteroskedastic errors. In the context of prediction,
Hansen (2008) extended the idea of Mallows model averaging to forecast combinations, while Yang
(2004), Zou and Yang (2004), and Zhang et al. (2013a) developed combining forecasting procedures for
time-series models. Finally, Schomaker et al. (2010) examined the properties of various FMA estimators
in the presence of missing data and Kuersteiner and Okui (2010) used the MMA estimator of Hansen
(2007) to construct optimal instruments in the context of linear models with endogenous regressors.

13.3 Intermediate Position of WALS

The WALS procedure surveyed in this paper is a Bayesian combination of frequentist estimators. The
parameters of each model are estimated by constrained least squares, hence frequentist. However, after
implementing a semiorthogonal transformation to the auxiliary regressors, the weighting scheme is
developed on the basis of a Bayesian approach in order to obtain desirable theoretical properties such
as admissibility and a proper treatment of ignorance. The final result is a model-average estimator that
assumes an intermediate position between strict BMA and strict FMA estimators.

WALS is closely related to the FMA estimator proposed by Liang et al. (2011). The model setup, the
assumptions, and the estimator are the same, but Liang et al. choose the weights to minimize an unbiased
estimator of the mean squared error of the FMA (or WALS) estimator rather than of the mean squared
error itself.

WALS is conceptually also close to BMA. The assumption that the data are normally distributed is the
same, and the treatment of noninformative priors on the model space, the focus parameters β1 and the
error variance σ 2 is essentially the same. The main difference between the two model-average procedures
lies in the prior treatment of the auxiliary parameters β2. In WALS we write β2 as β2 = σ�2T 
−1/2γ ,
where γ = γ2/σ , and assume that the k2 components of γ are i.i.d. according to a reflected Weibull
distribution

π (γh) = qc

2
|γh |−(1−q) exp(−c|γh |q )

with c = log 2 and q = 0.8876. This implies that each γh is symmetrically distributed around zero, that
the median of γ 2

h is one, and that the variance of γh is σ 2
γ = �((q + 2)/q)/c2. As argued in Section 9,

this choice of prior moments is based on the concept of neutrality which attempts to formalize the vague
notion of ignorance in an explicit and applicable form, and on other theoretical considerations related to
robustness and optimality in the minimax regret sense.
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The resulting prior mean of β2 is zero and its prior variance is given by

var (β2) = σ 2σ 2
γ �2T 
−1T ′�2 = σ 2

c2/�((q + 2)/q)
(X ′

2 M1 X2)−1. (32)

A comparison of (31) and (32) shows that the prior moments adopted in BMA and WALS are in fact closely
related, and suggests in addition a new value for g in BMA applications, namely g = c2/�((q + 2)/q) =
0.1878.

A key feature of WALS is that the choice of prior is not ad hoc (like in BMA) but theoretically
based. A second key feature of WALS provides a practical rather than a theoretical advantage over both
BMA and FMA, namely that, even though there are 2k2 possible models to consider, the computational
burden of this model-average estimator is reduced to the order k2 by the semiorthogonal transformation of
the auxiliary regressors discussed in Section 6. Thus, while standard BMA and FMA estimators require
sophisticated approximation algorithms to explore small subsets of the model space, WALS provides exact
model-average estimates of the parameters of interest in negligible computing time. This computational
advantage is likely to play an important role in a variety of empirical applications where the estimation
of all models is impossible.

Both from a theoretical and a practical viewpoint WALS has many attractive features. Of course,
the semiorthogonal transformation—which leads to the simplifications which WALS requires—also has
a cost, both theoretically and practically. From a theoretical viewpoint, some of our assumptions are
not made directly on the auxiliary parameters β2 but rather on the transformed parameters γ2, whose
components are linear combinations of the components of β2. For example, the notion of ignorance
is defined in terms of γ2, not in terms of β2. This can be defended because both sets are auxiliary
parameters, and if we are ignorant about one set we are equally ignorant about the other. From a more
practical viewpoint, the flexibility of the WALS procedure is bounded, although we do not know yet
precisely what the bounds are. Consider, for example, certain forms of model uncertainty that require
mixing nonnested models such as the choice of the link function in a GLM setup. While these forms of
model uncertainty can be handled by standard model-average procedures (Czado and Raftery, 2006), the
generalization of WALS along these directions appears to be difficult.

Finally we emphasize (again) that WALS is a model-average procedure, not a model-selection
procedure. At the end we cannot and do not want to answer the question: which model is best? This
brings with it certain restrictions. For example, WALS cannot handle jointness (Ley and Steel, 2007;
Doppelhofer and Weeks, 2009). The concept of jointness refers to the dependence between explanatory
variables in the posterior distribution, and available measures of jointness depend on posterior inclusion
probabilities of the explanatory variables, which WALS does not provide.

14. Software for WALS

User-friendly packages for WALS estimation of linear regression models with i.i.d. errors are
available both in MATLAB and Stata. The latest 2.0 version of both packages—together with
documentation, examples, and supplementary material—can be downloaded free of charge from the
website http://www.janmagnus.nl/items/WALS.pdf.

Version 2.0 differs from earlier versions of the WALS packages in two important respects. First, we
have enlarged the set of priors available for WALS estimation to three possible distributions: Weibull
(the default), Subbotin, and Laplace. Parameters of all these prior distributions are always fixed to their
minimax regret solutions under the neutrality condition.

Second, because of differences in the integration routines available in MATLAB and Stata, we have
implemented two alternative strategies for computing the mean and variance in the posterior distribution.
By default, the integrals involved in the computation of these posterior moments are solved numerically
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by high-order global adaptive quadrature in the MATLAB package and by Gauss-Laguerre quadrature with
100 data points in the Stata package (Cheney and Kincaid, 2008). Even though these integration routines
seem to produce very similar results in our examples, we cannot guarantee that this is true in general.
For this reason, we introduced the postmoments option which interpolates m(x) and v(x) between the
moments of the nearest x-values contained in precompiled tables of posterior means and variances under
the Weibull and Subbotin priors at given x-values in the interval [0, 100] with step 0.01. These tables
have been computed in MATLAB using a high degree of accuracy. For x > 100, posterior moments are
approximated by m(100) and v(100). For the Laplace prior, the postmoments option is not active since
moments of the resulting posterior distribution can be computed accurately in any statistical software.

No user-friendly packages are currently available for generalizations of the WALS procedure to more
general regression models. However, as discussed in Section 12, most of these generalizations can be
easily implemented either by applying standard WALS estimates to suitable transformations of the data,
or by computing simple weighted averages of standard WALS estimates.
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