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a b s t r a c t

In this paper a strategy to perform elastoplastic analysis with linear kinematic hardening
for von Mises materials under plane strain conditions is shown. The proposed approach
works with the Symmetric Galerkin Boundary Element Method applied to multidomain
problems using amixed variables approach, to obtain amore stringent solution. The elasto-
plastic analysis is carried out as the response to the loads and the plastic strains, the latter
evaluated through the self-equilibrium stress matrix. This matrix is used both, in the pre-
dictor phase, for trial stress evaluation and, in the corrector phase, for solving a nonlinear
global systemwhich provides the elastoplastic solution of the activemacro-zones, i.e. those
zones collecting bem-elements where the plastic consistency condition has been violated.

The simultaneous use of active macro-zones gives rise to a nonlocal approach which is
characterized by a large decrease in the plastic iteration number, although the proposed
strategy requires the inversion and updating of Jacobian operators generally of big dimen-
sions. A strategy developed in order to reduce the computational efforts due to the use of
this matrix, in a recursive process, is shown.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The present paper shows a Symmetric Galerkin Boundary ElementMethod (SGBEM)using amixed variablesmultidomain
approach [1] in initial strain elastoplastic 2D problems, in the hypothesis of von Mises materials, associated flow rule, plane
strain state and linear kinematic hardening behaviour.

In the past, in the BEM context, the elastoplastic analysis was dealt with using the collocation approach: we canmention
the papers by Aliabadi and Martin [2] dealing with the contact problem, Hatzigeorgeou and Beskos [3] in dynamics through
3D inner discretization, Ribeiro et al. [4] through generation of cells introduced during the analysis process, Brebbia et al. [5]
and the numerous researches inserted in the relevant references to the authors cited.

Differently, the present approach utilizes the symmetric BEM and starts from the discretization of the domain into sub-
structures, called bem-elements (bem-e), where the plastic strains stored in discrete terms have to be computed. The idea of
subdividing the domain into substructures was introduced in the SGBEM by Maier et al. [6] through a variational approach.
Subsequently Gray and Paulino [7] utilized substructuring in potential problems; Layton et al. [8] proposed a formulation
dividing the body into macroelements, each of which is governed by boundary quantities only, obtaining inside a condensa-
tion process a system having some non-symmetric blocks; Ganguly et al. [9] presented an entirely symmetric approach for
a plane elastic body subdivided by two macroelements, discretized along the boundary and characterized by a symmetric
solving system having as unknowns the boundary quantities of both the macroelements.

∗ Corresponding author. Tel.: +39 91 23896753; fax: +39 91 6568407.
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Panzeca et al. dealt with the same problem by using a strategy connected to the SGBEM variational formulation intro-
duced by Maier and Polizzotto [10] and Polizzotto [11,12], and obtained two different multidomain approaches defined as
mixed variable approach [13] and displacement one [14,15], both characterized by strong variable condensation, numeri-
cally compared by Terravecchia [16] inside an elastic analysis. Through these strategies the authors obtained an equation
system only depending on the interface nodal variables of the contiguous bem-elements.

The mixed variables multidomain approach was developed as a natural evolution of the displacements approach [15],
applied by the same research group in some mechanics problems like thermoelasticity [17], the contact-detachment
problem [18], the mechanics of quasi-brittle fracture [19] and ideal elastoplasticity [20]. The approaches guarantee the
compatibility and equilibrium at all the points of the domain, but only in weighted form along the boundary elements as a
consequence of the discretization.

The strategy contemplates the evaluation, for each bem-e, of expressions which relate mechanical and kinematical
weighted quantities in the interface boundaries and stresses evaluated at Gauss points to mechanical and kinematical nodal
quantities defined in the same interface boundaries, and to the boundary (forces and imposed displacements) and domain
(body forces and plastic strains) actions. These expressions, written for every bem-e, are characterized by elastic operators
containing the geometry and constitutive data.

The governing equation is obtained by imposing the regularity conditions between bem-elements regarding the kine-
matical and mechanical quantities both in terms of nodal variables (strong regularity) and in terms of generalized ones
(weak regularity).

This procedure uses a self-equilibrium stresses equation [21,22] governing the elastoplastic problem and relates stresses,
valuated at the Gauss points, to stored plastic strains through an influence matrix (self-stress matrix) which is non-
symmetric, negative semi-definite and fully-populated.

Inside a step-by-step load process, within which the elastoplastic analysis is considered path-independent, this matrix
makes it possible to perform the predictor phase, and therefore it locates all the active bem-elements, and as a consequence
defines the active macro-zones.

Then, in a subsequent phase, the elastic solution is corrected by a return mapping algorithm. The proposed strategy per-
mits the simultaneous correction of the elastic solution in all the active bem-elements and utilizes the same self-equilibrium
stresses matrix, changed in sign, in a nonlinear system having the end-step stresses, the internal variables (back stresses)
and the plastic multiplier increments as unknowns. In the present approach the approximate solution of the previous non-
linear problem is obtained by the well-known Newton–Raphson procedure (N–R), utilized for Bem formulations by several
authors [23–27].

The strategy shows considerable computational advantages: the low number of unknowns in the elastic analysis, the
reduced number of plastic iterations (three or four for any load step), and the updating of the plastic strains in the bem-
elements through the employment of a nonlocal strategy where the plastic strains are stored simultaneously in all the
active bem-elements. The operative difficulties arise from the large dimension of the Jacobian operator, but in this paper for
its inversion a strategy to reduce the computational efforts is shown.

Moreover the present approach offers the advantages of updating the nodal unknowns caused by plastic actions only at
the end of single load step and directly obtaining a path-independent elastoplastic solution.

This paper shows some characteristics of the elastoplastic analysis dealt with the SGBEM using the active macro-zones,
in two previous papers by some of the present authors. In the first paper [28] the elastoplastic analysis is carried out through
the so-called ‘‘displacementmethod’’ of the SGBEM, where the constitutivemodel of thematerial is elastic-perfectly plastic.
In the second one [29] the elastic-perfectly plastic analysis is dealt with as a limit analysis, performed in a canonical form
as a convex optimization problem with quadratic constraints, in terms of discrete variables, and implemented with the
Karnak.sGbem code coupled with the optimization toolbox by MatLab.

Some examples are shown using the Karnak.sGbem analysis code [30], by which it was possible to make some
comparisons with other approaches for the purpose of showing the effectiveness of the proposed method.

2. Self-stress equation via multidomain SGBEM

This section shows a detailed description of the procedure utilized to obtain, using the SGBEM applied to multidomain
problems, an elasticity equation connecting the stresses to the plastic strains through a stiffness matrix involving all the
bem-elements of the discretized system.

Consider the classical Somigliana Identities (S.Is.):

u =


Γ

Guuf dΓ +


Γ

Gut(−u) dΓ +


Ω

Guσε
pdΩ (1a)

t =


Γ

Gtuf dΓ +


Γ

Gtt(−u) dΓ +


Ω

Gtσε
pdΩ (1b)

σ =


Γ

Gσuf dΓ +


Γ

Gσ t(−u) dΓ +


Ω

Gσσε
pdΩ. (1c)
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These provide the displacements, tractions and stresses in the unbounded domain caused by layeredmechanical jumps f
and double-layered kinematical ones−u aswell as by volumetric inelastic actions εp inΩ domain. The operatorsGpq are the
Fundamental Solutionmatrices, whose symbology was introduced byMaier and Polizzotto [10]; the subindices p = u, t, σ
and q = u, t, σ indicate the effect and the dual quantity in an energetic sense associated with the cause, respectively.

Consider a bi-dimensional body having domain Ω and boundary Γ , subjected to actions acting in its plane:

- forces f̄2 at the portion Γ2 of free boundary,
- displacements ū1 imposed at the portion Γ1 of constrained boundary,
- plastic strains εp in Ω .

In the hypothesis that the physical and geometrical characteristics of the body are zone-wise variables, an appropriate
subdivision of the domain into bem-elements is introduced. This subdivision involves the introduction of interface bound-
aries Γ0 between contiguous bem-elements.

We want to obtain the elastic response to the external actions in terms of displacements u2 on Γ2 and reactive forces
f1 on Γ1, but also in terms of the displacements u0 and tractions t0 on the interface boundary Γ0 and of the stresses σ in
the domain of each bem-element by using the mixed variables multidomain SGBEM approach [13]. Eqs. (1a) and (1b) are
utilized in order to obtain, through the employment of weighted quantities, the algebraic operator coefficients necessary
to perform the analysis phase; Eq. (1c) is utilized to provide the stress state at the Gauss points of the bem-elements in the
post-processing phase employing the self-stresses equation.

2.1. Governing equations of the bem-e

Consider a generic bem-e, characterized by the boundary Γ distinguished into three parts, free Γ2, constrained Γ1 and
interface Γ0, but generally not all present. For this bem-e the following Dirichlet and Neumann conditions may be written:

u1 = ū1 on Γ1 (2a)

t2 = f̄2 on Γ2. (2b)

If we introduce in Eqs. (2a) and (2b) the S.I. of the displacements and tractions, the following boundary integral equations
may be obtained:

u1[f1, −u2, f0, −u0] + u1[ε
p
] + u1[f̄2, −ūPV

1 ] +
1
2
ū1 = ū1 (3a)

t2[f1, −u2, f0, −u0] + t2[εp] + t2[f̄PV2 , −ū1] +
1
2
f̄2 = f̄2 (3b)

where a symbolic form has been used andwhere the typologies of the boundary are characterized by the indices introduced
in the displacement and traction vectors.

It is necessary to define the unknowns u0 and t0, related to the interface boundary Γ0

u0 = u0[f1, −u2, f0, −uPV
0 ] +

1
2
u0 + u0[ε

p
] + u0[f̄2, −ū1] (4a)

t0 = t0[f1, −u2, fPV0 , −u0] +
1
2
t0 + t0[εp] + t0[f̄2, −ū1] (4b)

and to introduce the stress field in the domain Ω:

σ = σ [f1, −u2, f0, −u0] + σ[εp] + σ [f̄2, −ū1] (5)

where the terms u[−uPV
] and t[tPV ] define the presence of integrals as the Cauchy Principal Values, and the terms where

1/2 occurs are the corresponding free terms.
Eqs. (3a) and (3b) have to be rewritten in a different way

u1[f1, −u2, f0, −u0] + u1[ε
p
] + u1[f̄2, −ūPV

1 ] −
1
2
ū1  

û1

= 0 (6a)

t2[f1, −u2, f0, −u0] + t2[εp] + t2[f̄PV2 , −ū1] −
1
2
f̄2  

t̂2

= 0 (6b)

whereas Eqs. (4a), (4b) and (5) remain unchanged.
In the previous integral equations (4), (6) and (5), εp is the plastic strain vector, whose evaluation strategy is defined in

the next section.
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We introduce the boundary discretization into the boundary elements by performing the following modelling of all the
known and unknown quantities:

f1 = Ψ t F1, (7a)

f̄2 = Ψ t F̄2, (7b)

t0 = Ψ t F0, (7c)

u2 = Ψ u U2, (7d)

ū1 = Ψ u Ū1, (7e)

u0 = Ψ u U0, (7f)

εp = Ψ p p (7g)

whereΨ t andΨ u are appropriatematrices of shape functions regarding the boundary quantities, whileΨ p are domain shape
functions used to model the volumetric plastic strains. Further, the capital letters indicate the nodal vectors of the forces
(F1, F̄2 and F0) and of the displacements (Ū1, U2 and U0) defined on the boundary nodes.

We now perform the weighting of all the coefficients of Eqs. (4) and (6). For this purpose, the same shape functions
as those modelling the causes are employed, but introduced in an energetically dual way in according to the Galerkin ap-
proach [10], thus obtaining the following generalized equations:

Γ1

ψT
f (u1 − ū1) = 0, (8a)

Γ2

ψT
u(t2 − f̄2) = 0, (8b)

W0 =


Γ0

ψT
f u0, (8c)

P0 =


Γ0

ψT
ut0. (8d)

As a consequence, Eqs. (8a)–(8d) and (5) are rewritten in the following symbolic form:

W1[F1, −U2, F0, −U0] + W1[p] + β Ŵ1 = 0
P2[F1, −U2, F0, −U0] + P2[p] + β P̂2 = 0
W0 = W0[F1, −U2, F0, −U0] + W0[p] + β Ŵ0

P0 = P0[F1, −U2, F0, −U0] + P0[p] + β P̂0

 Symmetric BEM

σ = σ[F1, −U2, F0, −U0] + σ[p] + β l̂σ

Collocation BEM

(9a–e)

where the load multiplier β of the external actions has been introduced.
In this way it is possible to obtain the following block system regarding Eq. (9):

0
0
W0
P0

 =


Au1u1 Au1f 2 Au1u0 Au1f 0
Af 2u1 Af 2f 2 Af 2u0 Af 2f 0

Au0u1 Au0f 2 Au0u0 Āu0f 0

Af 0u1 Af 0f 2 Āf 0u0 Af 0f 0




F1
−U2
F0

−U0

 +


Au1σ
Af 2σ
Au0σ
Af 0σ


 p

 + β


Ŵ1

P̂2

Ŵ0

P̂0

. (10)

In the latter block equation the matrix is symmetric. Moreover, the submatrices A and the subvectors W, P are formed
by coefficients obtained through a double integration according to the SGBEM strategy. In detail, the first and second rows
represent the Dirichlet and Neumann conditions written in weighted form W1 − W̄1 = 0 and P2 − P̄2 = 0. The remaining
rows regard the weighting of the displacements and tractions at the interface zones. The terms Āu0f 0 = ĀT

f 0u0 include the
weighting of the CPV integrals and of the corresponding free terms.

The stress field (Eq. (9)) is obtained by the following equation:

|σ| =
aσu1 aσ f 2 | aσu0 aσ f 0




F1
−U2

F0
−U0

 + |aσσ ||p| + β|l̂σ | (11)

where the small letters are matrices containing coefficients obtained according to collocation BEM.
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In order to analyze the plastic phenomenon, the domain is discretized by introducing several bem-elements in the zones
where the plastic strains have to be stored during the load-unload process.

In Eq. (10) some coefficients show singular or hyper-singular kernels. These difficultieswere overcomewithin the SGBEM
approach by using different techniques. We can mention the strategies of Bonnet [31], Frangi and Novati [32], Panzeca
et al. [15], Holzer [33] and Terravecchia [34].

In Eq. (11) the singularities regard the coefficients of thematrix aσσ located on the diagonal, the latter providing stress at
theGauss points due to plastic strainpdistribution in the samebem-e. These integralsmay be considered as Cauchy Principal
Values with which the Bui free term [35] is associated. Otherwise, it is possible to employ the regularization technique with
the aim of cutting off the strong singularity, followed by the Radial Integral Method (RIM) [25,36] in order to permit the
transformation of the domain integrals into boundary ones. This strategy has to be used in each bem-e. The reader can refer
to Panzeca et al. [17,37] and Zito et al. [20] for a more detailed discussion of the computational aspects and the related
implementation techniques.

Eqs. (10) and (11) may be expressed in compact form in the following way:

0 = AX + A0X0 + Aσp + β L̂ (12a)

Z0 = AT
0X + A00X0 + A0σp + β L̂0 (12b)

σ = aσX + aσ0X0 + aσσp + β l̂σ (12c)

where

Z0 =

W0
P0

 , (13a)

X =

 F1
−U2

 , (13b)

X0 =

 F0
−U0

 , (13c)

L̂ =

Ŵ1

P̂2

 , (13d)

L̂0 =

Ŵ0

P̂0

 . (13e)

The vector Z0 collects the generalized (or weighted) displacementW0 and traction P0 subvectors defined at the interface
boundaries, obtained as the response to all the known and unknown actions, regarding the boundary and domain quantities.
The vector σ represents the stresses, computed at the Gauss points, due to the same known and unknown actions.

By performing variable condensation through the replacement of the vector X extracted from Eq. (12a) into Eqs. (12b)
and (12c), one obtains:

Z0 = D00X0 + D0σp + βẐ0 (14a)

σ = dσ0X0 + dσσp + βσ̂ (14b)

where one sets

D00 = AT
0A

−1A0 − A00, (15a)

D0σ = −AT
0A

−1Aσ + A0σ , (15b)

Ẑ0 = −AT
0A

−1L̂ + L̂0, (15c)

dσ0 = aσA−1A0 − aσ0, (15d)

dσσ = −aσA−1aσ + aσσ , (15e)

σ̂ = −aσA−1L̂ + l̂σ . (15f)

Eqs. (14a) and (14b) are two characteristic equations of each bem-e. They relate the generalized (or weighted) displace-
ments and tractions Z0 defined on the interface zone Γ0 and the stresses σ at the bem-e domain to the interface mechanical
and kinematical nodal quantities X0, to the plastic strains p and to the load vectors Ẑ0 and σ̂. Moreover D00, D0σ , dσ0, dσσ

are appropriate stiffness matrices of the bem-e.
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2.2. Bem-element assembling

We start by subdividing the body intom bem-e and in considering for each of these elements Eqs. (14a) and (14b). Thus
we obtain two global relations related to all the bem-elements considered, i.e.:

Z1
0
...
Zm
0

 =


D1

00 . . . 0
...

. . .
...

0 . . . Dm
00



X1

0
...

Xm
0

 +


D1

0σ . . . 0
...

. . .
...

0 . . . Dm
0σ



p1

...
pm

 + β


Ẑ1
0
...

Ẑm
0

 (16a)


σ1

...
σm

 =


d1

σ0 . . . 0
...

. . .
...

0 . . . dm
σ0



X1

0
...

Xm
0

 +


d1

σσ . . . 0
...

. . .
...

0 . . . dm
σσ



p1

...
pm

 + β


σ̂
1

...

σ̂
m

 (16b)

or in compact form

Z0 = D00X0 + D0σp + βẐ0 (17a)

σ = dσ0X0 + dσσp + βσ̂ (17b)

formally equal to Eqs. (14a) and (14b), but regarding all the bem-elements in a global form.
We introduce the nodal interface vector ζ0 of the mechanical and kinematical unknowns related to the assembled sys-

tem and perform a suitable nodal variable condensation through the matrices of equilibrium LT and of compatibility N,
respectively:

F10
−U1

0

· · ·

· · ·

Fm0
−Um

0


=



(L1)T 0
0 N1

· · · · · ·

· · · · · ·

(Lm)T 0
0 Nm


 F0

−U0

 i.e. X0 = E ζ0. (18)

The latter relation has to be considered as a strong regularity condition.
The same transposed matrices L and NT define the weighted equilibrium and compatibility, respectively.

 L1 0 · · · · · · Lm 0
0 (N1)T · · · · · · 0 (Nm)T




W1
0

P1
0

· · ·

· · ·

Wm
0

Pm
0


=

 0
0

 i.e. ET Z0 = 0. (19)

The latter relation has to be considered as a weak regularity condition.
Eqs. (18) and (19) introduced in Eqs. (17a) and (17b) give rise to the following relations:

K00ζ0 + K0σp + β f̂0 = 0 (20a)

σ = kσ0ζ0 + kσσp + βσ̂ (20b)

where the following positions are valid:

K00 = ETD00E, K0σ = ETD0σ , f̂0 = ET Ẑ0, kσ0 = dσ0E, kσσ = dσσ . (21)

Introducing a new variable condensation through the replacement of the ζ0 vector extracted fromEq. (20a) into Eq. (20b),
the self-equilibrium stress equation is obtained:

σ = Kp + βσ̂s (22)

where

K = −kσ0K−1
00 K0σ + kσσ , (23a)

σ̂s = −kσ0K−1
00 f̂0 + σ̂. (23b)

Eq. (22) provides the stress at the Gauss points of each bem-e as a function of the plastic strains p and of the external
actions σ̂s, the latter amplified by β . K is defined as a self-stress influence matrix, fully-populated, not symmetric and semi-
defined negative [21]. The evaluation of this matrix only involves the elastic characteristic of the material and the structure
geometry.
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3. Constitutive relations for rate-independent plasticity and the return mapping algorithm

The governing equations of classical plasticity will now be briefly summarized.
The stress vector is related to the elastic strain (ε− εp) through the standard elasticity tensor D, i.e.

σ = D (ε− εp) (24)

The essential feature that characterizes the plastic constitutive law is that the stress solution must belong to the space
of the admissible stresses:

F [σ, ρ] ≤ 0. (25)

F being the yield function and ρ the internal variable (back-stress) vector which define the kinematical part of the hard-
ening behaviour.

The irreversible part of the plastic process is given by the evolution of the plastic strain ε̇p and of the back-stress ρ̇. The
evolution laws, called flow rule and hardening law, are defined by the following incremental laws:

ε̇p = λ̇∂σF [σ, ρ], (26a)

ρ̇ = λ̇H∂ρF [σ, ρ] (26b)

where λ̇ is the increment in the plastic multiplier and is defined by means of the following loading/unloading conditions:

λ̇ ≥ 0, (27a)
F [σ, ρ] ≤ 0, (27b)

λ̇F [σ, ρ] = 0. (27c)

Let us consider the classical theory developed by Simo and Hughes [38], called operator split, where the implicit–
backward Euler scheme is applied to Eqs. (26). The following equations, governing the elastoplastic analysis, can be ob-
tained for the elastic predictor:

σ∗

n+1 = σn + ∆σn+1 (28)

and for the plastic corrector:σn+1 = σ∗

n+1 − ∆λn+1D∂σn+1F [σn+1, ρn+1] (a)
ρn+1 = ρn + ∆λn+1H∂ρn+1F [σn+1, ρn+1] (b)
F [σn+1, ρn+1] = 0 (c)

(29)

H being the matrix of the hardening moduli and ∆λ the plastic multiplier increment.
It is important to note that the same result can be obtained through the extremal path theory [39,40] or by the closest

point return mapping algorithm [38].
The indices n and n+1 represent the previous and the current load step, and σ∗ the elastic (trial) stress. In the hypothesis

of a plane strain state, Eq. (29) represents a nonlinear equation system in the unknowns σn+1, ρn+1, ∆λn+1.
In particular, with regard to the case of a 2D continuous solid and in the hypothesis of a plane strain condition, associated

plastic flow rule, linear kinematic hardening and von Mises yield law, Eqs. (29) can be rewritten in the following form:
σn+1 − σ∗

n+1 + ∆λn+1DM(σn+1 − ρn+1) = 0 (a)
ρn+1 − ρn − ∆λn+1HM(σn+1 − ρn+1) = 0 (b)
1
2
(σn+1 − ρn+1)

TM(σn+1 − ρn+1) − σ 2
y = 0 (c)

(30)

σy being the yield stress andM a matrix of constants [40].
The unknowns σn+1, ρn+1 and ∆λn+1 of this nonlinear problem may be obtained by applying the standard or modified

N–R procedures.

4. The elastoplastic algorithm for active macro-zones

In the elastoplastic analysis a return mapping algorithm has to be performed through the N–R procedure considering all
the plastically active macro-zones.

This approach utilizes the self-equilibrium stress equation to compute the trial stresses in the predictor phase and uses
the self-stressmatrix coefficients, changed in sign, to perform the corrector phase, the latter considered as a discrete nonlocal
strategy.

Elastic predictor phase
Let us start to compute the trial stresses, i.e. the purely elastic response at the instant n + 1 in each bem-element of the

discretized body.
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For this purpose, Eq. (22) provides the predictors σ∗

(n+1) as a function of the stored plastic strains p(n+1) = p(n) + ∆p,
imposed as volumetric distortions, and of the load increment β(n+1) = β(n) + ∆β:

σ∗

(n+1) = K

p(n) + ∆p


+ β(n+1) σ̂s (31)

where ∆p is the plastic strain increment vector evaluated by the corrector phase inside the n + 1 load step and K is the
self-stress influence matrix, fully-populated, and regards all them bem-elements.

It is necessary to check the plastic consistency condition at the Gauss points of all them bem-elements by using the von
Mises yield law, where the elastic domain is moved by ρi(n+1) during the loading/unloading process:

F [σ∗

i(n+1), ρi(n+1)] =
1
2
(σ∗

i(n+1) − ρi(n+1))
TM(σ∗

i(n+1) − ρi(n+1)) − σ 2
iy ≤ 0 (32)

i = 1, . . . ,m being the generic bem-e.
In the active a ≤ m bem-elements where the inequality (32) is violated, i.e. F [σ∗

i(n+1), ρi(n+1)] > 0, a corrector phase
occurs, involving the birth of self-stresses and of the internal variables caused by the plastic strains.

Plastic corrector phase
The corrector phase uses the first term of Eq. (22), i.e. σp

= K∆p, to obtain the elastoplastic solution in every bem-e
where the plastic consistency condition appears to be violated. In this phase the vectorsσ,ρ and the scalar∆λ are unknowns,
whereas the vector ∆p = f [∆λ, σ, ρ] is the volumetric plastic strain to impose for every plastically active bem-e of the
discretized body, in order to have a plastically admissible stress field.

To reach this goal a strategy, called activemacro-zone analysis, may be employed. It permits one to obtain the solution by
a global nonlinear equation system involving all the active bem-elements through simultaneous satisfaction of the plastic
consistency conditions. This strategy shows the remarkable advantage of using a low number of plastic loops and the
drawback of working with Jacobian operators usually having large dimensions.

In a similar way to what is shown in Section 3, Eq. (29) is written for a discrete system having a active bem-elements.
The corrector phase is applied simultaneously to the active macro-zones identified in the previous predictor phase through
the following equations:

σA(n+1) = σ∗

A(n+1) − σ
p
A(n+1) (a)

ρA(n+1) = ρA(n) + ρ
p
A(n+1) (b)

FA[σA(n+1), ρA(n+1)] = 0 (c)
(33)

where σp
A(n+1) = KAA∆pA(n+1) represents the nonlocal self-stress vector which replaces the local D∆ε

p
n+1 contribution of

Eq. (29)(a) and ρp
A(n+1) preserves the local characteristic.

For simplicity, in the next equations the n + 1 subindex will be omitted and ρ(n) = ρ̃ will be assumed.
In the hypothesis that the shape function defined in Eq. (7g) is the same as the shape function related to the plastic

multiplier increment, i.e. ∆λh = ψp∆Λh with ψp ≥ 0, the plastic flow and hardening law vectors, related to all the active
bem-elements, can be expressed as:

∆pA =


∆p1

...
∆pa

 =


∆Λ1∂σ1F [σ1, ρ1]

...
∆Λa ∂σaF [σa, ρa]

 =


∆Λ1M(σ1 − ρ1)

...
∆ΛaM(σa − ρa)

 (34a)

ρ
p
A =


ρ1
...
ρa

 =


∆Λ1 H1 ∂ρ1F [σ1, ρ1]

...
∆Λa Ha ∂ρaF [σa, ρa]

 =


∆Λ1H1M(σ1 − ρ1)

...
∆ΛaHaM(σa − ρa)

 . (34b)

As a consequence, the nonlinear system (33) can also be rewritten in the following form:Fσ ≡ σA − σ∗

A + KAA∆pA = 0 (a)
Fρ ≡ ρA − ρ̃A − ρ

p
A = 0 (b)

FΛ ≡ FA[σA, ρA] = 0 (c)
(35)

where one assumes:

σA =


σ1
...
σa

 , σ∗

A =


σ∗

1
...
σ∗

a

 , KAA =


−K11 · · · −K1a

...
. . .

...
−Ka1 · · · −Kaa

 ,

ρA =


ρ1
...
ρa

 , ρ̃A =


ρ̃1
...
ρ̃a

 , FA[σA, ρA] =



1
2
(σ1 − ρ1)

TM(σ1 − ρ1) − σ 2
1y

...
1
2
(σa − ρa)

TM(σa − ρa) − σ 2
ay


.

(36)
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The KAA matrix is positive semi-definite and derives from the Kmatrix present in Eq. (22), extracting the blocks relative
to the a plastically active bem-elements, changed in sign.

In the first function Fσ , σA is the total stress vector, σ∗

A the trial stress, and KAA∆pA the corrective self-stress vector con-
taining the local and nonlocal contributions. The functions Fρ and FΛ only have local contributions.

Eq. (35) is a nonlinear equation system in the unknowns: stresses σA, back-stresses ρA and plastic multipliers ∆ΛA for
the active macro-zone bem-elements.

The approximate solution of this nonlinear problem is here obtained by applying the standard N–R procedure:
Jjσσ Jjσρ JjσΛ

Jjρσ Jjρρ JjρΛ
JjΛσ JjΛρ JjΛΛ




σ
j+1
A − σ

j
A

ρ
j+1
A − ρ

j
A

∆Λ
j+1
A − ∆Λ

j
A

 =


−Fjσ
−Fjρ
−FjΛ

 (37)

or in compact form:

JjAA

Yj+1
A − Yj

A


= −FjA (38)

where the apex j is related to the N–R recursive procedure.
The generic block Jjαδ = [∂δFα]j of the Jacobian matrix JjAA, represents the derivate of function Fα (with α = σ , ρ, Λ)

with respect to the variable δ (with δ = σA, ρA, ∆ΛA).
The Jacobian operator JjAA is non-symmetric and collects the submatrices Jjρσ , J

j
ρρ , J

j
ρΛ, J

j
Λσ and JjΛρ having diagonal blocks,

and the submatrix JjΛΛ which is null.
The vector Yj+1

A is the approximate solution in terms of stresses, internal variables and plastic multipliers evaluated at
the Gauss points of the plastically active macro-zone bem-elements.

The use of the self-stressKAA matrixmeans that this proceduremay provide the nonlocal solution in the plastically active
macro-zones, where the plastic consistency conditions prove to be satisfied simultaneously.

5. Computational burden reduction in the N–R procedure

The Jacobian operator JjAA is usually of large dimensions, and therefore the updating and inversion of this operator may
prove onerous.

We introduce a strategy that has the aim of reducing the computational efforts due to the updating and subsequent
inversion of this operator in the recursive process.

The nonlinear system of equation (37) may be rewritten in the following form: Jjσσ Jjσ r

Jjrσ Jjrr

  σ j+1
A − σ

j
A

rj+1
A − rjA

 =

 −Fjσ
−Fjr

 (39)

where one assumes

Jjσ r =

Jjσρ JjσΛ

 , (40a)

Jjrσ =

JjρσJjΛσ

 , (40b)

Jjrr =

Jjρρ JjρΛ
JjΛρ JjΛΛ

 , (40c)

rj+1
A − rjA =

 ρ
j+1
A − ρ

j
A

∆Λ
j+1
A − ∆Λ

j
A

 , (40d)

Fjr =

FjρFjΛ
 (40e)

or in explicit formJjσσ


σ
j+1
A − σ

j
A


+ Jjσ r


rj+1
A − rjA


= −Fjσ (a)

Jjrσ

σ
j+1
A − σ

j
A


+ Jjrr


rj+1
A − rjA


= −Fjr (b)

(41)

with obvious meaning of symbols.
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By performing a diagonalization process of Eqs. (41), one obtains: Jjss 0
0 Jjrr


 σ j+1

A − σ
j
A

rj+1
A − rjA

 =

 −FjS
−FjR

 (42)

where

Jjss = Jjσσ − Jjσ r(J
j
rr)

−1Jjrσ , FjS = Jjrσ (Jjrr)
−1Fjr − Fjσ , FjR = Jjrσ (Jjss)

−1FjS − Fjr . (43)

The solution of Eq. (42) proves more advantageous, in comparison with Eq. (37), since the two equations are de-coupled
and the inversion only concerns two blocks, that is Jjss and Jjrr . In detail the submatrix Jjss has small dimensions, while the
submatrix Jjrr is formed by diagonal blocks. As a consequence it is easy to prove that its inverse

J−1
rr =

 J−1
ρρ − J−1

ρρ JρΛG
−1
ΛΛJΛρJ−1

ρρ J−1
ρρ JρΛG

−1
ΛΛ

G−1
ΛΛJΛρJ−1

ρρ −G−1
ΛΛ

 with GΛΛ = JΛρJ−1
ρρ JρΛ (44)

is easily invertible with lower CPU times than Eq. (37).
Subsequently, from the solution vector Yj+1

A it is possible to obtain the plastic strain increment vector ∆pA and the new
back-stress vector ρA associated with the load step n + 1 and related to the active bem-elements only. These vectors allow
one to update the global vectors for the purpose of computing the new trial stress and verifying the plastic consistency
condition of the yield domains in a restricted iterative process.

In Fig. 1 the elastoplastic procedure is shown. It is important to note that the updating of the nodal solution ζ0(n+1) and
X(n+1) is performed at the end of the n + 1 load increment, contrary to what happens in other formulations, which need
continuous correction of the nodal solution for each plastic iteration.

6. Numerical results

In order to show the efficiency of the proposed method some numerical tests were performed under the following
hypotheses: plane strain condition, perfect plasticity or kinematic hardening, vonMises law and associated plastic flow rule.

These applications prove the good performance of the proposed strategy, implemented as an additional module inside
Karnak.sGbem code [30]. The advantage lies in a better response, because it is based on

• the symmetric BEMwhere the fundamental solutions are used in every bem-element into which the body is subdivided.
Indeed the compatibility and equilibrium are guaranteed at any point in each domain;

• the use of the mixed boundary value approach of the symmetric BEM where the boundary conditions regarding the
compatibility and the equilibrium are introduced in both strong and weak form (see Panzeca and Salerno, [13]);

• the transfer of the domain inelastic actions into the boundary action in closed form [17,21,25,36,37];
• the updating of the plastic strains in the bem-elements which define the active macro-zones in a nonlocal strategy;
• a strategy which reduces the computational efforts of the Jacobian operator inversion in the N–R recursive process;
• the location of the elastic macroelements, only involving the boundary unknowns with strong variable reduction.

From the computational point of view, all the coefficients of the elastic matrices are computed in closed form. The
symmetric matrices, definite in sign obtained, are naturally ill-conditioned, but the adopted matrix inversion technique,
based on the Gauss method, used a particular pivot strategy.

6.1. Cube subjected to imposed displacement

In this first example, the response of a cube (Fig. 2) subjected to uniaxial imposed tensile displacement is evaluated. The
material characteristics are: Young’s modulus E = 1 MPa and Poisson’s ratio ν = 0.3, whereas the uniaxial yield value is
σy = 0, 8 MPa. Further, tolerance Tol = 0.001 was chosen in the return mapping analysis.

This example is intended to illustrate the perfect plasticity, the kinematical hardening and the softening phenomena
under monotonically increasing uniaxial imposed displacements. The material satisfies the von Mises criterion.

The cube is discretized by 49 linear bem-elements and the ‘‘roller’’ condition is imposed at the two planes x = 0, y = 0.
The computation is made with controlled displacements and the results shown in Fig. 3a, b, c are representative of the
vertical stresses σy, at the bem-e marked by A, for the perfect plasticity (H = 0), hardening (H = 0.1), and softening
(H = −0.1) cases, respectively.

It can be observed that the results calculated by the present method are in excellent agreement with the Gao and Davies
solution [36].

6.2. Plate with circular hole

In the present subsection a thin square plate with a circular hole (Fig. 4a), subjected to uniform tensile load q = 100MPa,
is considered. The internal discretization is made by 144 bem-elements (Fig. 4b) and is characterized by linear modelling of
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Fig. 1. Flow chart of the elastoplastic procedure.

a b

Fig. 2. Cube under imposed displacement: (a) geometric descriptions; (b) mesh adopted.



Author's personal copy

110 L. Zito et al. / Journal of Computational and Applied Mathematics 264 (2014) 99–114

a b c

Fig. 3. Vertical stress-imposed displacement curves: (a) perfect plasticity; (b) hardening; (c) softening.

a b

Fig. 4. Thin square plates with circular holes: (a) geometric descriptions; (b) mesh adopted.

a b

Fig. 5. Load factor-displacement curves: (a) perfect plasticity; (b) hardening.

the boundary quantities. The material characteristics are: Young’s modulus E = 206 700 MPa and Poisson’s ratio ν = 0.29,
whereas the uniaxial yield value is σy = 450MPa. Further in the returnmapping analysis tolerance Tol = 0.001was chosen.

The aim is to perform the elastoplastic analysis through two different simulations: the first in the hypothesis of perfect
plasticity (H = 0), and the second in the hypothesis of kinematical hardening (H = 20 000). In Fig. 5 the loadβ-displacement
curves of point A, both in the perfect plasticity hypothesis and kinematical hardening one, are shown. The firstwas compared
with the solution obtained by Zito et al. [20] inside the SGBEM for a strongly iterative approach. In treating this example the
computational gain using the macro-zone strategy was 63%, but we believe that this gain is due to the example dealt with.

In Fig. 6 the N–R solution convergence in terms of vertical stress σy and plastic multiplier increment∆Λ evaluated at the
Gauss point of the bem-e near to the hole, both in the perfect plasticity hypothesis (Fig. 6a, b) and kinematical hardening
one (Fig. 6c,d), are shown for load factor β = 4. In all the bem-elements the solution is obtained by few N–R iterations,
generically three for each load step.

In the perfect plasticity hypothesis the load multiplier attains the value β = 4.235.
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a

c

b

d

Fig. 6. N–R solutions: (a, c) vertical stress; (b, d) plastic multiplier increment.

Fig. 7. Frame supported by non-homogeneous soils: geometric description.

6.3. Frame supported by non-homogeneous soil

In this example an elastoplastic plane frame, characterized by a double T-section, is located on non-homogeneous soil.
The material characteristics and the geometric are shown in Fig. 7, where the dimensions are expressed in cm and ‘‘s’’ is the
thickness of the substructures. The external action is a load uniformly distributed along all the beamwith q = 200 kN/m as
the initial value. Further, the same tolerance Tol = 0.001 was also chosen in this application. This system consists of a steel
perfectly plastic frame, two concrete plinths and two different kinds of soil with an elastic ratio between moduli of 25. The
constitutive behaviour of the concrete blocks and of the soil regions are linear elastic.
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Fig. 8. Adopted mesh of the frame.

Fig. 9. Load-vertical and horizontal displacement curves of point A.

In this test first a previous purely elastic analysis of all the system, using the procedure developed by Panzeca et al. [14,15],
is performed. It permits one to evaluate the stress state related to the initial load value and, as a consequence, to locate the
macro-zones potentially involved by plastic strains where it is appropriate to intervene through the mesh formed by bem-
elements, as reported in Fig. 8. It is important to emphasize that in order to define the optimalmesh it is sufficient to use one
or leastwise two trial meshes. Indeed, this strategy locates the potentially active macro-zones, which cause the collapse of
the structure, by an elastic analysis to define the zone that has to be discretized. Then the chosen mesh has to be verified by
an elastoplastic analysis amplifying the range where plastic activation is possible. In Fig. 8 the active macro-zones at plastic
collapse emphasized in grey. The strategy offers the great advantage of studying the remaining zone of the structure, i.e. that
having elastic behaviour, as unique macroelements without domain discretization.

In Fig. 9 the load–displacement curves related to the middle point A of the frame in Fig. 7 are shown. In detail the
curves regard both vertical and horizontal displacement during the loading process. Further, the plastic collapse load value
βq = 6.41 ·200 = 1283.2 kN/m is shown. It is to be noted that for this limit load value point A is subjected to displacement
whose components increase without any limit.

In the presence of the collapse load in Fig. 10a the strained shape, obtained by enlarging the values of all the node
displacements deduced from the analysis problem, and in Fig. 10b the normal stress distributions in the soil, for different
depths, are shown.

In Fig. 10c, d the principal compression stress maps of the soil related to two different load instants are drawn. The first
(Fig. 10c) regards the stress state for initial load βq = 200, and the second one (Fig. 10d) the stress state for the collapse
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a b

c d

Fig. 10. (a) Deformed shape at plastic collapse; (b) stress distributions of the soils at plastic collapse; (c, d) mapping of principal compression stresses for
the initial and final load factors.

load βq = 1283.2. From comparison between the two pictures it can be deduced that the plastic phenomenon in the frame
changes the stress state of the soil.

This application also shows a very important advantage of this strategy, which allows one to introduce in the frame a
domain discretization exclusively in the zones of potential storage of the plastic strains, leaving the rest of the structure
having elastic behaviour governed by macroelements with few boundary variables.

7. Conclusions

A new strategywhich couples the SGBEMwith a returnmapping scheme in elastoplasticity is shown in this paper. Atten-
tion has mainly been addressed to the case of homogeneous and non-homogeneous bi-dimensional solids in the hypothesis
of utilizing von Mises law linear kinematic hardening and plane strain state, but the generality of this methodology makes
it possible to apply it to more complex plastic models.

The elastic analysis was performed using the SGBEM for multidomain type problems, in detail called ‘‘mixed interface
variable method’’ [13,15], which ensures the compatibility and equilibrium at all the points of the domain and in discrete
form (nodal and generalized regularity conditions) on the interface boundaries. This method makes it possible to obtain
a self-equilibrium stress equation to solve the elastoplastic problem regarding all the plastically active bem-elements, the
latter consisting in the active macro-zones. The use of active macro-zones gives rise to a nonlocal approach which is char-
acterized by a decrease in the plastic loops. The presence of a Jacobian operator of large dimensions involves an inversion
whose computational burden is reduced through an appropriate strategy.

Moreover, the use of the SGBEMdealtwith through amultidomain strategy allows one to introduce domain discretization
exclusively in the zones of potential storage of plastic strains, leaving the rest of the structure as elastic macroelements,
which are therefore governed by few boundary variables. This aspect makes the strategy proposed extremely advantageous.

In order to prove the efficiency of the proposed strategy, some numerical tests, performed using the Karnak.sGbem
code [30], are shown.
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