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Abstract 

In the classroom practice the notion of the magnetic vector potential is never introduced, 
both because it is not contained in secondary school textbooks and because teachers 
usually associate this concept with complex topics they dealt with in their university 
courses. In our experience instead, we have found that the introduction of the vector 
potential can be of great help in students’ understanding of electromagnetism and modern 
physics topics. In this paper we will show how the use of the vector potential allows  
a phenomenological and consistent explanation of superconductivity at a level suitable for 
high school students. We will deal with the two main aspects of superconductivity: the 
resistivity of the superconductor that drops to zero at the critical temperature and the 
expulsion of the magnetic field from the bulk of a superconductor (Meissner effect). By the 
use of the vector potential, students can build a phenomenological interpretation of 
superconductivity, always remaining in the frame of electromagnetism and thus avoiding 
the use of too complicated mathematical tools that the explanation of the microscopic 
mechanism would require. 
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Introduction 

The physics education research group of the University of Milan has been dealing with 
superconductivity for 8 years with high school students and, despite superconductivity is  
a very difficult topic, in our experience students have been always interested and involved. 
Depending on the time that students can spend in our laboratory, we propose two types of 
interventions: a) an afternoon lab of about 4 hours, just to familiarize with low 
temperatures physics and some typical phenomena of superconductivity,  
or b) an educational path of at least 24 hours, including lectures and laboratory. 

As superconductivity links electromagnetism, thermodynamics, waves and quantum 
physics, the educational path of type b), whose main theoretical part we describe in this 
work, is thought for the final year of a secondary school physics course (12th or 13th grade). 
In fact, the complexity and the witchery of superconductivity can be a stimulus for students 
to take up topics covered till that moment, deepen them and frame them in a new light. 
Before entering the core of our proposal we resume the main prerequisites needed to face 
superconductivity. 

1. Electromagnetism. In particular, the vector potential A, through which we can 
introduce the London equation, as we will see in the next sections. 

2. Thermodynamics. In particular, the definition of a thermodynamic state as  
a function of some variables: temperature T, pressure P, volume V and also the 
magnetic field B. 
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3. Waves. In fact it is possible to describe the super-current in terms of (material) 
waves (i.e. to generalize the London equation and to get the quantization of the 
magnetic flux in a superconductor). 

For what concerns this paper only prerequisite 1. is needed, while the others are important 
for a deeper approach. We have developed our educational path in the frame of 
electromagnetism, by the use the mathematical tools of flux and circulation that students 
should have already known from their study when dealing with the Maxwell’s equations. 
In this same framework the introduction of the magnetic vector potential becomes very 
helpful. Although in this paper we will not treat explicitly how to introduce the vector 
potential to high school students, as it is described in [1,2], we will use it to develop  
a consistent phenomenological description of superconductivity. 

The two fluid model to explain the experimental evidences of 
superconductivity 

The two main features of superconductivity are: 

1. The resistivity U of the superconductor drops to zero below a particular temperature 
TC, called critical temperature that is characteristic of the given superconductive 
material. 

2. If a magnetic field Bapp is applied to a superconducting sample, the magnetic field 
in the bulk of the sample remains always zero, unless the applied field overcomes  
a critical intensity BC. This experimental evidence that occurs with sufficiently low 
applied magnetic fields, is the well-known Meissner effect (discovered by Meissner 
and Ochsenfeld in 1933). 

In order to construct a meaningful path for secondary school, we have to develop a model 
able to explain the previous features. The theory that inspired our work is the two-fluid 
theory that has been developed in 1934 by Gorter and Casimir. In this theory the 
superconductor is treated as containing a mixture of two fluids: the normal fluid, with the 
same properties of the ohmic electrical current in a metal, and the superconducting fluid, 
that flows without any friction (see Table 1). The two fluids are always present at the same 
time, therefore the superconducting sample can be thought as a circuit with two branches 
in parallel, the superconductive one and the normal one, as can be seen in Figure 1. 

 

 

 

Figure1. Schematic representation of a superconductor, where SC stands for 
superconductor 

Hence, if a constant current I is flowing in the superconductor, than the presence of the 
superconducting branch shunts the circuit, so that all the current runs in that branch, as the 
arrows in Figure 1 show. 

In this paper we suppose that the properties of the normal fluid have already been treated in 
the lessons on electrical conduction, as its behaviour is explained by the Ohm laws, that 
can be summarized in the local formulation Jn = VE, where Jn is the density current and E is 
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the electric field. The behaviour of the superconducting fluid is, instead, the main fact to be 
modelled. 

Description of the superconducting fluid 

In 1935, the brothers F. and H. London proposed for the first time a phenomenological 
equation for the frictionless motion of the super-current [3]: 

 .  (1) 

In fact, taking the time derivative of eq. (1) we get: 

 ,  (2) 

where E is the electric field inside the sample. 

The Ohm equation (describing the normal fluid) states that the current density Jn is 
proportional to the electric field, so that it is the velocity of the fluid that is proportional to 
the force acting on it: motion in presence of friction. On the contrary, from the equations  
(1) and (2) we see that it is the time derivative of the current density that is proportional to 
the electric field, so that it is the acceleration of the superfluid that is proportional to the 
force acting on it and the superfluid is thus frictionless (U� �����

It is interesting to observe that the frictionless condition described by eq.(2) is not 
equivalent to the London condition given by eq.(1). In fact to deduce eq.(1) from eq.(2) we 
have to choose the integration constant equal to zero. This is a new phenomenological 
assumption, made by the London brothers, that is needed to explain the Meissner effect. 

It is also necessary to stress that eq.(1) is valid only if the superconductor is simply 
connected (it has no holes), and therefore it describes only a narrow, although very 
important, set of experimental situations: roughly speaking, very weak magnetic fields 
applied to samples without holes. In the following, we will hint the necessity of a 
generalization of eq. (1) while, in Table 1, we summarize what we have found so far. 

Table 1. Characterization of the two fluids 
Normal fluid 

 
friction  Jn - VE =  

Superconducting fluid  no friction   

The London equation and the Meissner effect  

An approach for teachers 

Starting from the London equation, through the application of differential operators such as 
the curl, we can immediately obtain a relation that explains the expulsion of the magnetic 
field from the bulk of the superconductor. Since differential operators are not known to 
secondary school students, we address this part only to teachers. 

Taking the curl of both members of eq.(1) and using the relation , we have: 

 .  (3) 

If we now consider the Maxwell’s equation:  from eq.(3), we obtain: 

   (4) 

Hence, recalling that: 

  
281



S. Barbieri et.al: The explicative power of the vector potential 

 

   (5) 

and taking into account the solenoidality of the magnetic field, from eqs.(4) and (5) we 
have: 

 .  (6) 

Starting from eq.(6) we can discuss the penetration of a magnetic field inside  
a superconductor. We do this in a mono-dimensional case of very simple geometry: the 
superconducting sample, in an applied magnetic field, fills a semi-space and its surface is 
in the yz plane, while the field and the super-current depend only on x, as Figure 2 shows.  
In this case the solution of eq.(6) is: 

 ,  (7) 

where OL  is a phenomenological parameter, called penetration length, that is  
a measure of how much the magnetic field penetrates the superconductor before vanishing. 
Eq.(7) shows that the magnetic field goes exponentially to zero inside the superconductor, 
as it is sketched in Figure 2. 

 

 

 

 

Figure 2. Intensity of the magnetic field: B is uniform outside the superconductor (Bapp) 
while it decreases exponentially inside the superconductor 

Since OL is of the order of 50 nm for most superconductors, we argue that the magnetic 
field is present only on the surface of the superconductor itself. Being the Meissner effect  
a fundamental property of superconductors, in the next paragraph we propose a way to 
describe it, with a simpler mathematical formalism that is suitable also for high school 
students. 

An approach for students  

Students can have a mathematical explanation of the Meissner effect using integral 
operators, such as circulation and flux that they should have already used in their previous 
path of electromagnetism. It should be convenient to divide this explanation in two parts:  
(1) the first part is preparatory to the second and pertains the fact that an applied magnetic 
field orthogonal to the superconductor surface cannot penetrate the sample; (2) the second 
part pertains the expulsion from the bulk of the superconductor of a magnetic field parallel 
to the surface. 

To follow the sequence that we propose, students have already to know some properties of 
the magnetic vector potential and some basic properties of the magnetic field that we 
resume below: 

1.   (8) 

where  indicates the circulation of the vector potential along a closed line J, 
while  indicates the flux of the magnetic field through the surface that 
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has J as a boundary. This property must have already been explained within a path 
on the vector potential which we cannot treat in this work [2]. 

2.   (9) 

that is the Ampère-Maxwell law, where I  is the current passing through J��

3.   (10) 

that is the Maxwell’s equation that states the solenoidality of the magnetic field��

(1) An orthogonal magnetic field cannot penetrate the superconductor. 

We suppose that a uniform magnetic field B is applied orthogonally to the superconductor 
surface, as shown in Figure 3(a). We also suppose that the magnetic field can penetrate the 
superconductor. If the superconductor is homogeneous, isotropic and infinitely extended 
along the yz plane, then we can conclude that the problem has a symmetry for translation 
along the y and z axes. For this reason the magnetic field will be uniform over planes 
parallel to the yz plane, also inside the superconductor. If we consider a closed surface S, 
for example a parallelepiped, whose section is represented in Figure 3(a), and apply 
eq.(10), we can immediately deduce that the intensity of the magnetic field B is also 
invariant along x, and the magnetic field must therefore be uniform inside the entire 
superconductor. 

 

 

 

 

Figure 3. (a) The superconductor, in green, is infinitely extended along the x axis. It is also 
shown a section of the closed surface S and the arrows indicate the direction of the 

magnetic field. (b) A portion of the infinite superconductor and the two paths J and Jc. 

Now, if the magnetic field is uniform, for every closed loop J�

� ,  (11) 

and, therefore, if we take a little loop J� orthogonal to J, from eq. (9) we get: 

 ,  (12) 

where I is the current passing through the line J along which we calculate the circulation, 
that is represented in Figure 3(b) and S is the surface having J  as boundary. Thus, from 
eq.(12) we have: 

 .  (13) 

If we recall the London equation (1), we immediately get: 
 .  (14) 

We can now apply eq.(8), choosing a closed line Jc parallel to the surface of the 
superconductor. Being , we obtain:  
 ,  (15) 

where the surface Sc has Jc as a boundary. Therefore B = 0. 
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Since the surface Sc can be taken next to that surface as you want, eq.(15) states that no 
orthogonal magnetic field can penetrate the sample. 

To have a picture of the behaviour of a superconductor it is necessary to consider together 
the London equation and the equations of the electromagnetism. This is what we did in the 
previous part (1); we will do the same in the next part (2). We stress this concept here 
because it is important that students understand that the London equation is the key point 
in the development of their path on superconductivity and it is important that they are able 
to recognize where this equation is implied. 

(2) The expulsion of a parallel magnetic field from the bulk of a superconductor. 

We suppose that a magnetic field is applied parallel to the superconductor surface, as in 
Figure 4 and that it enters the superconductors. 

 

 

 

 

 

Figure 4. Section of the superconductor, in green. The red arrow represents the magnetic 
field applied parallel to the surface. 

First of all, if the superconductor is isotropic the field inside will have the same direction 
as that applied. We want to demonstrate that the inside field cannot be uniform. Let us 
suppose for absurd that the field inside of the superconductor is uniform, as represented in  
Figure 5(a). 

 

 

 

 

Figure 5. The magnetic field applied is represented in red, while the magnetic field that 
enters the superconductor is represented in yellow. The three figures show three 

hypothetical possibilities for the inside field. 

If we apply eq.(9) to the closed narrow line J represented in Figure 5(a) we have, for the 
uniformity of the magnetic field, that  and hence: 

 .  (16) 

Now, we rewrite the current I in terms of the current density J and apply the London 
equation (1), so to get: 

 .  (17) 

We must conclude that A = 0. 

But A = 0 implies that also B = 0, because we can apply eq.(8). In fact, from A = 0 we have 
 and thus: 

 .  (18) 
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Since S is an open surface that can be chosen as you want, then eq.(18) implies that the 
magnetic field must be zero. 

In other words, there can be no region inside the superconductor where the magnetic field 
is uniform, or tends asymptotically to a finite value different from zero. Then it is 
reasonable to suppose that the field increases or decreases with the distance from the 
surface. For obvious reasons related to the conservation of the energy density, we have to 
reject the case of an indefinitely increasing field, as represented in Figure 5(b). Therefore 
the only possibility is represented in Figure 5(c) in which the magnetic field decreases to 
zero. Referring to what we have just said, we can notice that the slower the spatial 
variation of the magnetic field, the more the intensity of the field approaches zero. Taking 
into account that the intensity of B is different from zero at the surface, it turns out that B 
must vanish quickly inside the superconductor. Therefore, the magnetic field B will be 
present only very close to the surface where there will be also the current density J, the 
source of the magnetic field that the superconductor produces in opposition to the applied 
field. In fact, we note that the relationship  contains the minus sign just because 
the current density J that is established on the superconductor surface, flows in such a way 
to generate just the magnetic field opposite to the applied field in order to cancel the field 
inside the superconductor. 

By the use of integral tools we have seen that the magnetic field must vanish in a small 
distance very close to the surface, and this can be considered a meaningful result for the 
secondary school, although it is not so precise from the mathematical point of view. 
Nonetheless the concept of penetration depth OL can be easily introduced to students all the 
same. Moreover we note that in the practice the penetration depth is evaluated by 
experiments because its mathematical expression is often unusable. 

A brief comment on the validity of the London equation 

As it is well-known, there are many cases in which a magnetic field can penetrate  
a superconductive sample without destroying superconductivity, giving the so called mixed 
state [4]. Therefore, the situation described above of the completely expulsion of the 
magnetic field from the bulk of the sample, is only a limit case that holds for weak 
magnetic fields and for particular geometries and dispositions of the sample in the field. 
Most of the lab experiences for secondary school students, that are commonly called 
Meissner effect, are performed in situations in which the magnetic field does indeed 
penetrate the sample [5,6] although very weakly. In order to explain these more complex 
situations, a generalization of the simple London equation (1) is needed. In this paper we 
have not room to discuss this point but we strongly believe that this generalization is 
necessary even in secondary school, otherwise the phenomena observed by students could 
not have a complete explanation. 

Conclusions 

Educational paths on superconductivity are often based on experimental approaches which 
are accompained by a popular explanation of the well-known BCS theory, a theory whose 
mathematical framework is really beyond the possibilities of secondary school students. 
For this reason we propose in this work an educational path based on a model (the two 
fluid model) that we have developed by mean of mathematical tools suited for a secondary 
school and that is able to explain most of the lab experiences that students perform. 
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The model proposed is fully set in the framework of electromagnetism and is based on the 
magnetic vector potential that can be certainly accessible to secondary school students [1] 
and very useful to better understand electromagnetism, even if, traditionally, it is never 
treated before the university courses. In our experience, high school students are very 
involved in superconductivity and for this reason we think that it is possible to exploit this 
occasion to deepen many topics covered in their physics courses until that moment and 
also become familiar with the important tool of the vector potential [7]. 

In this paper, we have listed among the prerequisites for superconductivity the knowledge 
of the wave behaviour of matter, for which we have developed a separate educational path 
[8] in order to present the modern physics in the secondary school. The wave behaviour of 
matter becomes the basis for a deeper understanding of superconductivity in which the 
superconducting fluid is described by a complex wave field, as in the Ginzburg-Landau 
theory. Even without taking into account any other equation, the description of the 
superconducting fluid as a wave field allows a generalization of the London equation in  
a quite clear and easily understandable way. Moreover, from the same generalization, it 
becomes also possible the discussion of the quantization of the magnetic field in  
a superconductor, and the introduction of the concept of fluxoid. We have not enough 
place here to discuss this topic, but it is part of a more complete path on superconductivity 
we are working on. In fact, through this last part, students can have an explanation of the 
phenomenology that they observe in lab, when they perform experiments using YBCO 
samples in which the magnetic field is not always expelled as in the Meissner effect, but 
can penetrate in fluxoids throughout the sample in the mixed state. 
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