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Abstract: The diversity of data collected on both social networks and digital interfaces is extremely
increased, raising the problem of heterogeneous variables that are not often favourable to classification
algorithms. Despite the significant improvement in machine learning (ML) and predictive analysis
efficiency for classification in customer relationship management systems (CRM), their performance
remains very limited by heterogeneous data processing, class imbalance, and feature scales. This impact
turned out to be more important for simple ML methods which in addition often suffer from over-fitting.
This paper proposes a succinct and detailed ML model building process including cross-validation of
the combination of SMOTE to balance data and ensemble methods for modelling. From the conducted
experiments, the random forest (RF) model yielded the best performance of 0.86 in terms of accuracy and
f1-scoreusing balanced data. It confirms the literature summary about this topic which shows that RF
was among the most effective algorithms for customer predictive classification issues. The constructed
and optimized models were interpreted by Shapley values and feature importance analysis which shows
that the “age” feature was the most significant while “HasCrCard” was the less one. This process has
proven effective in bridging previously reported research gaps and the resulting model should be used
for supporting bank customer loyalty decision-making.

Keywords: SMOTE; heterogeneous data; imbalance data; machine learning; shapley values; ensemble
methods; bank churn modelling; feature importance

MSC: 62H30; 68T10

1. Introduction

Customer relation management (CRM) tools are increasingly enriched with the use of
Artificial Intelligence (AI) through machine learning (ML) algorithms for real-time predic-
tions [1,2]. Using ML algorithms in CRM may be intended to help companies to predict
scores on their opportunities, potential customers and purchases, customer reliability and
loyalty [3,4], detect credit and insurance fraud [5,6], customer satisfaction [7,8], predict
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personalized recommendations for products and services [9,10], or the potential churn risk
(loss of customers or subscribers) [11–14]. In this wide range of potential applications of
ML in CRM decision support systems, the particular case of customer churn prediction
is particularly interesting. Churn customer forecasting is an activity performed to predict
whether a customer will leave the company. In addition, this was inspired by the fact that
there are about 1.5 million bank churn customers annually, which is increasing each year [15].
Indeed, if it is difficult to win a customer, it is very easy on the other hand to lose him. The
automatic predictions of customer churn would therefore be crucial to orientate the market-
ing operations of loyalty. Facing these major challenges and tough competition, involving
ML algorithms would be better than simple tools now at the center of the digitalization of
all companies.

The literature shows that several works have already been proposed to address the
churn prediction problem [14,16]. However, not only are most of them focused on telecom
customer churn (more recurrent and sensitive) but also the data, methods and experimental
processes raise doubts about the results. For different ML algorithms applications as for
bank churn prediction, the reliability of the built model closely depends on the data features
involved [17,18]. Nowadays, the bank churn data is not only limited to information entered
manually by the customers (sometimes not very reliable) but also includes other data from
very operational activities such as interactions (active member status), tenure, estimated
salary, etc., and also data collected from external sources (such as social networks) to enrich
the banking information management system [6,19]. We speak of heterogeneous data.
The main characteristic of heterogeneous data is that they are of several types (numerical,
Boolean, scaled, nominal, . . . ) and are merged from many different sources. To achieve
the best performance of prediction algorithms, a transformation of these heterogeneous
data is needed by appropriate preprocessing methods. Its optimization is one of the main
challenges as currently no ML algorithm well processes non-digital data. Optimizing the
transformation of this mosaic dataset for better prediction performance is the first goal we
seek to achieve during preprocessing.

The binary classification constitutes a major part of the predictive classification prob-
lems [20], especially concerning the CRM applications such as bank churn prediction.
However, this classification most often suffers from the problem of imbalance between
the classes, which means that the majority class often tends to corrupt the decisions of the
model in its favor, knowing that it is most often not the target of future correction. For
example, in the case of bank churn, we want to predict which customers are likely to close
their accounts and try to retain them. However, this class target (although important for
bank customer loyalty) is in the minority (statistically) compared to the opposite. Some
algorithms such as support vector machine (SVM), Naive Bayes (NB), k nearest neighbours
(KNN), etc. are very affected by the class imbalance and unilaterally favor the majority
class [18]. Methods such as decision trees (DT) and the derived ensemble methods are
somewhat resistant to the impact of the majority class but the data balancing improves
and stabilizes their performance. Moreover, transformed data presents a problem of dif-
ferent variable scales which affect many ML model performances. Standardization is an
additional step in dealing with this problem but it has an adverse or favorable effect on the
performance of certain algorithms that are said to be unstable to variable scales; knowing
that a very large scale difference is more favourable for overfitting. Choosing ensemble
methods overcomes this problem without the need to normalize the data [21]. The sec-
ond contribution of this paper is to use the synthetic minority oversampling technique
(SMOTE) method to balance the data while the third one is the building of stable and better
performing models based on an ensemble approach.

To be useful and convincing to the targeted banking stakeholders, the ML models
should be as transparent as possible by explaining how they proceeded to provide their
decision. Thus, the fourth contribution of our study consists of explaining the constructed
model using two variables, one based on the analysis of the Shapley values [22] of the
model and the other on the importance of the features [23].
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Following this work, Section 2 will investigate the literature on the application of
machine learning techniques in bank churn prediction. Section 3 will depict the proposed
methodology which constructs balanced data to train and explain our models. Then,
Section 4 will analyze the performance results of the experiment, explain the results, and
finally, Section 5 will conclude our work.

2. Related Work

Based on previous research, data mining models are currently very much needed
to support or apply the effects of a CRM strategy [1] and this need does not date from
today but it is growing with the central place that data has taken in recent years. The
choice of a data mining model is based on the key CRM issues that the article wants to
address. For example, clustering models are used more often for problems of automatic
recommendation of products and services to customers [2,24], regression models are able
to predict customer scoring, while classification models are more useful for predicting po-
tential targets, reliability, loyalty and satisfaction [2] or customer churn prediction [11–14].
However, classification algorithms remain the most widely used for churn modeling and
CRM learning problems. We can segment specific parts of a lead into groups to form
an initial class of classification model strategy [1,25,26]. E.W.T. Ngai strategy [1] asserts
for example that concerning loyalty programs, 83.3% used classification models to assist
in decision-making. Furthermore, these problems often come down to the binary clas-
sification for which the most used methods are: SVM [27,28], DT [29–31], ANN [32,33],
RF [30,31,34,35], etc. Among these works, only one [36] has addressed the problem of
modeling bank churn in the form of clustering using the k-means algorithm, which has
been outperformed by the KHM algorithm.

Overall, the task of automatic prediction of banking churn results, does not really
have a classical dataset as for other problems, knowing that the subject is very active, the
datasets often differ from one study to another depending on the country of the authors.
which we present in more detail in Section 4.1. Various datasets have been used to test the
majority of approaches proposed in the literature to predict the risk of bank churn. To better
analyze the literature concerning the works publishing these approaches, we conducted a
systematic survey to answer the questions:

• In which year was the paper published?
• Which ML algorithms were tested, which was the best and with what performance?
• What metrics were used to evaluate the proposed method(s)?
• Did the authors balance the data?
• Did the authors explain or interpret the ML models constructed?

The answers to the questions in this survey provide key information and even a
benchmark on the elements involved in the process of building an efficient ML algorithm
for the bank churn prediction task. The survey results are summarized in Table 1 below.

Table 1. Summary of papers using ML for bank churn prediction. The best models are in bold.

Ref Year Algorithm Metrics Best Score Balancing
Data?

Explained
Model?

[29] 2016 DT Acc, pre, rec, f1 99.7, 91.8, 91.0, 90.96 No Yes
[32] 2016 ANN Acc 0.89 No No
[37] 2014 SVM Acc, sen, spe 83.1, 79.7, 83.7 No No
[15] 2019 SVM recall 0.73 Yes No
[38] 2021 RF Acc, AUC, f1 0.92, 0.91, 0.92 No Yes

[35] 2020 RF Acc, spe, sen,
AUC 0.8, 0.81, 0.79, 0.84 No Yes

[34] 2022 SVM, RF Acc, f1 88.7, 91.90 Yes No
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Table 1. Cont.

Ref Year Algorithm Metrics Best Score Balancing
Data?

Explained
Model?

[31] 2022 DT, KNN,
SVM, RF AUC 0.9 No Yes

[36] 2019 k-means,
KHM Acc 91.4 No No

[30] 2020 RF, DT pre, f1 0.99, 0.76 Yes No

Table 1 summarizes the relevant papers that have dealt with direct bank churn predic-
tion using machine learning approaches. It also gives details about the years of publication,
the algorithms used, the performance metrics, the best scores and if the balancing of the data
and the explanation (interpretation) of the model have been done. The topic has been active
for a long time and is still active today with several publications in the year 2022. Among
the most used ML algorithms, we have RF which most often gives the best performance,
DT, SVM, etc. The most commonly used metrics include accuracy first, then specificity,
sensitivity, precision, and recall which are often compromised by the f1 score, and finally,
the AUC (area under the curve). Only three studies have balanced the data [15,30,34] and
four others explained their models by the importance of features [29,31,35,38] but none
used Shapley values or an approach involving both data balancing and model explanation.

3. The Proposed Approach

Regarding the state of the art, we notice that ensemble methods have been little used
for CRM prediction. However, this technique has proven itself in several challenges con-
cerning predictive analysis. A concrete example remains its best performance at the Netflix
challenge [39] which has made ensemble methods very famous and highly recommended
for the scientific community. Several research contributions have been done to improve
the ensemble methods which currently remain a major challenger of deep learning which
is most used [21]. Recently, many studies [40–43] have shown that the combination of
ensemble models with preprocessing techniques improves performance in modeling of
the unbalanced classification problem. For a CRM dataset such as bank churn data having
heterogeneous features and imbalance classes, appropriate data preprocessing is necessary
to have the best model performance. Thus, the combination of features’ encoding, imbal-
anced processing techniques, and ensemble classifiers would improve the churn modeling
prediction efficiency. Moreover, our model explanation by the joint analyses of Shapley
values and features’ importance allow us to make reliable insights and recommendations
to CRM managers on the indicators of variables directly affecting the bank churn decision.
The flowchart in Figure 1 well depicts how we have constructed our proposed approach
that will challenge existing approaches [30,31,34,36].

Following the collection of the bank customers’ churn data, we first perform their vi-
sual exploratory analysis to highlight the impact of the features on the customers’ churn de-
cisions. After this analysis, the first step of our method is the data pre-processed (Section 3.1)
before then starting the machine learning process to build the predictive model based on the
ensemble methods (Section 3.3). The training data is first balanced by the SMOTE algorithm
(Section 3.2) to mitigate the effects of the majority class on the algorithms’ efficiency. The
constructed model is optimised and finally explained by the analysis of shap values and
feature importance (Section 3.4).
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Figure 1. Flowchart of the proposed approach.

3.1. Data Preprocessing

The preprocessing step turns out to be very important for the prediction process
because the performance closely depends on it. Indeed, heterogeneous data are of different
types including numerical, scaled, nominal, Boolean, etc. Since our dataset does not
contain any missing values, the preprocessing of the data will consist much more of the
transformation of the non-numerical data and the balancing. For the transformation of the
non-numerical data, we followed the protocol used in [17,18] which consists of transforming
specifically each categorical variable according to whether it is scaled, boolean or pure
nominal.

3.2. SMOTE Method for Data Balancing

During the preprocessing phase, it is important to balance the instances of class records
for accurate results. Refs. [30,34] used the imbalance methods including the synthetic
minority oversampling technique (SMOTE) [44,45] algorithm, random oversampling (ROS),
Random Balance (RB) [46], etc. in a similar context. In their work, the SMOTE algorithm
proved to be the most relevant for balancing the data. Concerning random under-sampling
of the majority class, previous authors have shown that this is not desirable, especially
in combination with the ensemble method, as it can lead to data information loss [21].
SMOTE’s strategy is to create an artificial instance of a minority class through the following
operating process: Considering an instance xi of the minority class, the algorithm starts by
creating a new artificial instance from xi by first separating the k nearest neighbors to x′i ,
from the minority class. Then, randomly choose a neighbor and finally generate a synthetic
example on the fictive line joining xi and the selected neighbor [21,40,44,47]. This process is
clearly described by Algorithm 1. Several similar approaches will derive from this strategy,
by which SMOTEBoost [48], Borderline-SMOTE [45], Majority-Weighted SMOTE [49], etc.
However, we have not used them in this work for reasons of efficiency compared to SMOTE
for VF data, but they could inspire many other researchers.
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Algorithm 1 SMOTE algorithm [21]

Input: • N: the number of instances in the minority classes;
• n: the amount of SMOTE (in %);
• k: the number of nearest neighbours;
• minority data D = xi ∈ X, where i = 1, 2, . . . , N.

Output: D’: synthetic data from D;
1: n← (int)(n/100);
2: for i = 1 to N do
3: Find the k nearest neighbours of xi;
4: while n 6= 0 do
5: Select one of the k nearest neighbours of xi
6: Select a random number α ∈ [0, 1]
7: x← xi + α(x− xi)
8: Append x to D’
9: end while

10: end for

3.3. Modelling and Prediction with Ensemble Methods

Ensemble-based methods consist of a combination of several independent basic clas-
sifiers that are in most cases decision trees (DT) but can also be artificial neural networks
(ANN) or support vector machine (SVM), k-nearest neighbours (k-NN) or naive Bayes
(NB) [21]. Each of these independent weak learners provides an alternative prediction of
the whole problem and the final prediction results in a combination (usually by weighted
or unweighted vote) of these alternative predictions [50]. The ensemble technique generally
allows for more stable and accurate output prediction because the error is much smaller
than that provided by one of the individual base models which form the ensemble model
Ensemble learning techniques generally allow for more stable and accurate output predic-
tions due to the much smaller errors than the individual basic models that make up the
ensemble model [40,51]. The strategy involved in aggregation-weak learners is important
and could affect the performance of the model [21]. Over time, several ensemble aggre-
gation strategies have emerged, most of which are static or dynamic [40,52]. In each case,
whether the final ensemble-based model corrects the error was actually done separately
from the base model, significantly reducing the overall error. To be effective, the baseline
model must be forced to meet two conditions: independence and being a weak learner
with high diversity in terms of bias and variance [21]. This operation allows for building
much more robust models allowing them to surpass the classical models not only in terms
of performance but also by avoiding overfitting and by limiting data imbalance and the
impact of variable scales.

3.4. Model Explanation with Shapley Values and Feature Importance

Explaining ML models remains one of its biggest challenges today. Indeed, an ex-
plained model gives more insights to support decision-making. However, when the ML
model makes predictions, not all variables play the same role. Some variables have little
effect, while others have a significant effect on model decision parameters. Calculating and
analyzing the shape values allow us to know the contribution effect of each variable in
prediction [53–55] that we also compare to the importance of the features [29,30,38]. Indeed,
the objective of Shape and Shapely value as well as feature importance is to accurately
quantify the contribution of each data feature in the final decision of the algorithm.

Shap values refer to Shapley values [56], a game theory jargon and these values are
primarily composed of two elements: the game and the players, where “game” represents
the outcome of the predictive model and “players” reflects the attributes of the model.
Shapley calculates the value of each player’s input proportion to the game [53]. About our
scenario, the SHAP value calculation is done by applying these components and determin-
ing the contribution proportion of each feature to the result of the model. The contribution
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sizes of individual players are processed by examining all possible combinations of i for all
possible player coalitions or characteristics (i ranges from 0 to n), with n representing the
total number of accessible features).

Unlike the importance of features which also plays the same role, the shap illustration
highlights the positive and negative impact of each variable for the ML model. The
visualization associated with the Shap values provides insight into the internal behavior
of the predictive model used in this process and therefore, increases its transparency
and reliability for users [54,55]. The shap strength visualization specifically provides an
accessible overview of the variable indicators that influence the bank churn decision that
non-technical users can quickly interpret.

4. Results Analysis and Discussion

This section discusses in turn the data used with exploratory visual analysis, the
experimental protocol we followed and finally an in-depth analysis of the obtained results
each time with the appropriate interpretation.

4.1. Bank Churn Dataset

The predictive modelling of customer churn consists of estimating the probability that
a customer will be defected using historical, behavioural and socio-economic information.
This prediction is very important because it can boost customer satisfaction and is likely
to churn. It is generally approached by classification algorithms to learn the different
models of churn and non-churn [57]. Nevertheless, the current overview classification
algorithms are not well aligned with business objectives [58]. In our work, we handle
bank churn data (https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
of 10,000 customers in three countries including France, Germany and Spain. Table 2
gives more details about the data variables. The initial dataset contains 12 attributes
including the target (Exited) which can take one of the values 0 (not exited) or 1 (exited)
for each customer depending on whether the customer has quit or not. 2037 customers are
tagged “exited” while 7963 are “not exited”, so it is an average imbalance between the two
classes with a ratio of the majority class to the minority class. Since the “IDClient” and
“Surname” variables were not significant in training the models, they were excluded before
the machine learning steps. We will first try to do a visual exploratory analysis of our data
in the next section.

Table 2. Details of bank churn dataset.

N Attribute Description Type Role

1 IDclient A unique identifier for each customer Categorical feature
2 Surname The surname of the customer Categorical feature

3 CreditScore This number is between 300 and 850 and
depicts the creditworthiness of a consumer Numerical feature

4 Gender The customer’s gender: Female (0) and Male (1) Boolean feature

5 Age The client’s current age, at the time of being
a customer Numerical feature

6 Tenure The number of years the client has been with
the bank. Numerical feature

7 Balance The actual bank balance of the customer Numerical feature

8 NumOfProducts The number of banking products used by
the client Numerical feature

9 HasCrCard The number of credit cards obtained from the
bank by the client Boolean feature

10 IsActiveMember Binary status indicating whether or not the
client was active with the bank before he left it. Boolean feature

11 EstimatedSalary The estimated customers’ salary Numerical feature

12 Exited Binary flag stating if the customer closed an
account with the bank or not. Boolean target

https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
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4.2. Visual Exploratory Data Analysis

This section allows analyzing customer characteristics, such as geography, and age,
balance, etc while highlighting how it affects customer decisions. Through these different
analyses, the bank will be able to predict the savings behaviors of customers and identify
which type of customer is most likely to make term deposits on the one hand or to predict
future account closures to carry out the necessary loyalty actions [35]. The bank’s CRM
can then focus its marketing efforts on these customers. This will not only allow the bank
churn prevention but also increase customer satisfaction by reducing unwanted advertising
to certain customers. To obtain a better understanding of the dataset, the distribution of
key variables such as “age”, “geography”, “balance”, “estimated salary”, etc. and the
relationships among them by graphical visualization of the following figures.

Figure 2a illustrates the age distribution of the clients: The bank clients in this
dataset have a wide age range, from 18 to 92 years old with a standard deviation of
10.49 and a mean age of 39 years. However, the majority are between 30 and 40 years old
(32 to 44 years old are in the 25th and 75th percentiles). The age distribution of the clients is
fairly normal with moderate skewness and kurtosis values of 1.01 and 4.39, respectively.
The Anderson-Darling statistic test is 142.19 which is well above each critical value for the
corresponding significance level. For example, a significance level of α = 0.01 with a critical
value of 1.092 shows that the results are significant at the 0.01 level of significance. The same
analysis can be done for the other numerical variables. Correlating the age distribution
with the target variable, as shown in Figure 2b, reveals that the age groups with the highest
attrition rates are 45–55 and 55–65, while the rate is very low for those under 35.

(a) (b)

Figure 2. Visualizing age variable (a) distribution and (b) group by exited status.

The scatter matrix in Figure 3 reveals a very mixed relationship between age, balance,
estimated salary, credit score, and target (Exited). To learn more, a correlation matrix was
plotted with all quantitative variables in Figure 3. It is clear that the independent variables
are not correlated at all with each other, which is quite good for the modeling. However,
the strongest correlations are observed for the “age” and “balance” variables with the
target. Their influence on the result of the campaign will be studied in more detail in the
explanation of the models built in Section 4.5.
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Figure 3. Correlation matrices between numerical variables and target variables.

Figure 4 provides insights into the exploration of categorical variables and possibly
indicators of variables that mostly affect the churn decision and that should be particularly
targeted or controlled. As shown by bar charts in Figure 4a,c, female are more likely to churn
than male members, and the same is true for non-active versus active members. Similarly,
Figure 4b shows that German customers are two times churned more than French and Spanish
customers. Finally, Figure 4d customers having a number of products of 3 or 4 should be
closely screened because the churn rate is 100% and 82% for these two indicators, respectively.

(a) (b)

(c) (d)

Figure 4. Visualizing the churn rate by (a) Gender (b) Country, (c) Active member status,
and (d) Number of products.

4.3. Experimental Protocol

The purpose of this section is to highlight the different steps followed in the develop-
ment of our simulation, the simulation tools, the experimental parameters related to both
the data and models, then finally the performance evaluation metrics.
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To detect the stability of the models on the different distributions of our dataset, we
have evaluated them through the 5-fold cross-validation process as shown in Figure 5.
All the experiments were carried out on a Windows operating system under python 3.7
involving principally Scikit-learn library [59]. We use the “Asus” brand computer having
the following configuration: intel core i7 processor with 8 GB of RAM and an NVIDIA
Geforce 930M for graphic card [21].

Figure 5. Illustration of the experimental protocol (a) without and (b) with data balancing.

Regarding the models involved in our experiments, we first perform initial simula-
tions of all models with default parameters to detect the most promising one for better
performance. For the most promising model, we applied a grid search to determine its
optimal parameters. After optimizing the model we explained its decision process through
shape value analyses and the importance of the variables’ features.

Performance Measure

The predictive accuracy score of Equation (1) is the most commonly used classification
metric, but it does not show how the model has correctly classified instances of minority
classes, which are often the main purpose of this type of learning problem. Therefore,
accuracy score is necessary but not sufficient as a performance metric for imbalanced
classification problems. It is not an effective tool for evaluation. Knowing that our dataset
is unbalanced [60], we will evaluate our models with additional performance measures
and ideally f1-score. Indeed, f1-score is a compromise between precision and recall (also
called TPR), thus taking into account both minority and majority classes [21]. The f1-score
formula is given by Equation (2).

Accuracy− score =
a + b

b + c + d
(1)

f1-score =
2a

2a + c + d
(2)

a: represents the set of the correctly predicted “1”, b: is the set of the correctly predicted
“0”, c: represents the number of false-positives, and d: refers to the number of false-negatives.
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4.4. Results Analysis and Discussion

The main objective is to show the influence of hybrid imbalance and machine learning
techniques in optimizing the performance of predictive analytic integrated into CRM which
aims to conquer, acquire and retain target customers by predicting future churn. Cross-
validation has been used to evaluate the involved models and the best one is interpreted
through shap values and feature importance.

4.4.1. Cross-Validated Results without Balance Data

First, we evaluated the basic involved models without data balancing. The cross-
validated results are illustrated in Figure 6 and the average scores are summered in Table 3.
Without data balancing, the results were already quite interesting for the ensemble methods
(RF, B, GB, ET, and AB) and simple machine learning-based methods (KNN, SVC, DT,
LR, ANN, and NB). Among these ensemble-based methods, two stand out with the best
performance notably RF and GB whose both average performance reached 0.86 and 0.66 for
accuracy and f1-score, respectively. Moreover, the height of the boxes in Figure 6 show that
the simple learning methods are more sensitive to the distribution of the data, thus unstable
and especially very affected by the imbalance of the classes. Indeed, these methods predict
the minority class only with an average score lower than 13% except for the decision trees.

(a) (b)

Figure 6. Performance results without balanced data (a) accuracy score and (b) f1 score.

Table 3. Summary of the average cross-validated performance results of the models without and
with data balancing. The best scores are highlighted in bold.

ML Model ML Model
Model Accuracy f1-Score Accuracy f1-Score

KNN 0.75 0.12 0.68 0.70
SVM 0.80 0.00 0.57 0.64
DT 0.79 0.50 0.80 0.80
LR 0.79 0.09 0.67 0.67

ANN 0.66 0.10 0.52 0.54
NB 0.79 0.13 0.72 0.74
RF 0.86 0.58 0.86 0.86
B 0.85 0.54 0.84 0.83

GB 0.87 0.59 0.84 0.84
ET 0.86 0.55 0.86 0.86
AB 0.86 0.57 0.83 0.83

For this first simulation, there is a large gap between the performance measured by
accuracy and that of f1-score. This large gap in performance is due to the class imbalance
data and this imbalance favors the majority class to the detriment of the minority class. To
overcome this problem, it is necessary to balance the data for the two classes.

In the second experiment, we used the SMOTE method to balance the data between
the two classes before using them to train the models. The SMOTE method has proved its
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effectiveness in several unbalanced class prediction problems. The cross-validated results,
still in terms of accuracy and f1-score, are shown in Figure 7a,b, respectively. Once again
the ensemble methods perform better overall than the individual methods. There is also
near equality between the performances as measured by the accuracy and f1-score. This
result shows that the minority class was predicted with the same chance as the majority
class and more efficiently. RF and GB also keep the lead of the best performances.

(a) (b)

Figure 7. Performance results after using smote to balance the data (a) accuracy score and (b) f1-score.

These first two experiments allowed us to identify the most promising models in order
to improve them by the optimization technique based on the grid search method before
explaining them. In the following, we experiment only with the random forest method (RF)
which is our best model.

4.4.2. Optimizing Random Forest Performances Results

Grid search is the most widely used parameter optimization technique in machine
learning. However, many works lack transparency on this step. It consists of training the
model with all the possible combinations of the different values that its key parameters can
take to find the most efficient combination. This operation can be very time-consuming if
the model is slow or if its parameters and their possible values are numerous. For the RF
model in our case, its key parameters are the number of estimators which is 50, and the
weak learner which is a decision tree with a random state.

4.5. Model Explanation

The ML models previously built often constitute black boxes which we interpret by analyzing
the value of Shap and the importance of the features illustrated by Figure 8a,b, respectively.

(a) (b)

Figure 8. Visualizing the model explanation with the plotting of (a) shap values and (b) features importance.

The biggest difference between this shap value with the regular feature importance
plots is that it shows the positive and negative relationships of the predictors with the target
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variable. Shap summary plot in Figure 8a looks dotty because it is made of all the dots in
the train data. Both rankings aim to identify which feature or set of features influenced
the prediction in descending order. The joint analysis of these two figures allows us to
highlight two perspectives on the impacts of the “age” and “HasCrCard” variables, which
for the first is by far the most important while the second is the least of all. The “Balance”
characteristic is also among the most important variables according to both rankings. These
two perspectives more or less validate the hypothesis put forward in Section 4.2 by doing
the exploratory analysis of our data with the correlation matrices. It is also important to
note that all the variables contribute to decision-making.

4.6. Discussion and Insights

Facing the diversification and the volume of data collected which are increasingly big
and heterogeneous, the classification algorithms currently used are facing many challenges.
Sometimes, they are limited by the size of the data which makes them slower and weakens
their performance, the gap of scales between the variables that make them unstable, hetero-
geneity of data and especially non-numerical data that requires appropriate preprocessing
affect the model performance. Moreover, when it comes to classification problems, more
often than not there is an imbalance in the classes which greatly impacts the models. This
impact turned out to be more important for simple ML methods such as SVM, KNN, DT,
LR, etc., which in addition often suffer from overfitting. This paper proposed a succinct
and detailed ML model-building process including cross-validation of the combination
of SMOTE to balance data and ensemble methods for modelling. The constructed and
optimized models were interpreted by analysis of shap value and feature importance. This
process has proven to be effective in overcoming the problems previously reported by
offering several insights for bank churn prediction issue.

Firstly, using data balancing methods like SMOTE would not only help improve the
accuracy of the models but also make them more stable. The approach of [34] achieves
best result when the SMOTE technique is applied to overcome the unbalanced dataset and
also combines undersampling and oversampling. However, undersampling would not be
highly recommended as it results in a loss of information that could have been used for
the model.

Secondly, ensemble methods prove to be much more efficient than other methods,
offering robust and stable models that are also resistant to the effects of feature scales and
overfitting. The RF ensemble method has challenged other ML models in many studies
which reinforce this hypothesis [30,31,34,35]. The robustness of these set methods makes
it possible to avoid certain additional transformations during preprocessing such as the
selection of attributes or the normalization of data.

Thirdly, the interpretation of the ML models built in parallel with the results of the
exploratory data analysis gives perspectives on certain variables and indicators of variables
that would directly or very little affect the bank churn decision. Thus, the age of bank
customers would greatly affect their decision to churn, while the fact of having a credit
card or not would have less impact. Indeed, [61] demonstrates that customer churn can be
influenced by two other important factors: customer age and customer background. The
investigation of [31] customers who have strong relationships with financial institutions,
have a lot of goods and services, and borrow a lot from banks are less likely to close their
accounts. A better understanding of churn features is expected to allow bank managers to
consider several churn prevention strategies [29].

5. Conclusions and Perspectives

This paper discussed the explainable machine learning application to optimize the
bank churn prediction by combining data balancing and ensemble based-methods. Its first
summarizes the literature on this topic which shows that random forests and other ensemble
methods were among the most promising algorithms for customer predictive classification
issues. However, the classification problems, often suffer from data heterogeneity and class
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imbalance which greatly impact the machine learning models. This impact turned out to be
more important for simple ML methods such as SVM, KNN, DT, LR, etc., which in addition
often suffer from overfitting. This paper has proposed a succinct and detailed ML model
building process including cross-validation of the combination of SMOTE to balance data
and ensemble methods for modelling. RF model yielded the best performance of 0.86 in
terms of accuracy and f1-score using balanced data. The constructed and optimized models
were interpreted by analysis of shap value and feature importance analysis which show
that the “age” feature was the most significant while “HasCrCard” was the less one. This
process has proven to be effective in overcoming the previously reported research gaps
and the obtained model should be used for customers that features are becoming more
and more similar to the above-identified churn groups. Providing the facilities needed
by clients, improving the service quality, identifying the needs of different groups, and
improving customer service are included in these strategies [29].
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