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Abstract: Wildfire early detection and prevention had become a priority. Detection using Internet of
Things (IoT) sensors, however, is expensive in practical situations. The majority of present wildfire
detection research focuses on segmentation and detection. The developed machine learning models
deploy appropriate image processing techniques to enhance the detection outputs. As a result, the
time necessary for data processing is drastically reduced, as the time required rises exponentially
with the size of the captured pictures. In a real-time fire emergency, it is critical to notice the fire
pixels and warn the firemen as soon as possible to handle the problem more quickly. The present
study addresses the challenge mentioned above by implementing an on-site detection system that
detects fire pixels in real-time in the given scenario. The proposed approach is accomplished using
Deeplabv3+, a deep learning architecture that is an enhanced version of an existing model. However,
present work fine-tuned the Deeplabv3 model through various experimental trials that have resulted
in improved performance. Two public aerial datasets, the Corsican dataset and FLAME, and one
private dataset, Firefront Gestosa, were used for experimental trials in this work with different
backbones. To conclude, the selected model trained with ResNet-50 and Dice loss attains a global
accuracy of 98.70%, a mean accuracy of 89.54%, a mean IoU 86.38%, a weighted IoU of 97.51%, and a
mean BF score of 93.86%.

Keywords: fire; firefront_gestosa; deep learning; deeplabv3+; backbone; dice loss; image processing

1. Introduction

Wildfires account for most burnt land in Portugal, which has burnt regions of more
than 500 thousand hectares in the past decade. In fact, the number of wild and urban
fires has been growing significantly in the recent decades. According to statistical data, in
2021, three thousand hectares of land had been burnt in Portugal due to wildfires. The
highest statistics were recorded in 2017, with 520 thousand hectares of green land destroyed
by wildfires [1]. As per the nation’s record, Portugal’s total land area was covered by
801 thousand hectares of natural forest, accounting for 24% of the country’s total area, by
the year 2010. However, the wildfires drastically reduced the lush green forest environment
to 16.8 thousand hectares as per the data recorded by the year 2020 [1]. Peak fire season
typically begins in mid-July and lasts around 14 weeks. Between 26 October 2020 and
18 October 2021, 129 genuine fire alerts were registered [2]. These statistics are consis-
tent with those from the previous year [1]. According to October 2020 statistical figure,
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the region with the most burned area was observed to be the cluster of Guarda, with
304 thousand hectares, accounting for 12% of the total burnt area in Portugal.

The devasting wildfires in Portugal set most of the regions in the country on high
alert for fires. Several factors contribute to wildfires [3]; factors like human negligence
or other biomes due to lack of awareness toward the environment appear to be some
predictable causes of wildfires [4]. Some unpredictable factors include lightning, high
atmospheric temperature, or dryness due to global warming with rapid industry growth
and air pollution [1]. Moreover, dryness, wind, and humidity in the atmosphere set
favorable conditions for the propagation of forest fires [5–7]. In turn, it affects the inhabitant
of the forest and eco-system to a greater extent. Besides, it impacts the economic growth and
harmony of the agricultural and industrial sectors. Thus, generally, it is essential to identify
the vulnerable forest fire regions and spot the real fire zones to eliminate unnecessary
movement of fire fighters’ teams [8].

The present work addresses the above challenge by implementing an on-site detection
framework and spotting the fire pixels in the original picture in real-time. It is achieved
by adopting a deep learning architecture, Deeplabv3+ [9], an extended version of the
already existing model. This parameter of the Deeplabv3+ is fined tuned with several
experimental trails that attain better performance. The experiments were conducted on
two public aerial datasets: the Corsican dataset [10] and FLAME [11], and one private
dataset, Firefront_Gestosa (The Firefront_Gestosa database is available upon request to the
authors.). Compared to the public datasets, the private dataset comprises fewer fire pixels,
however not labeled. Thus, for experiments, the data in the private dataset are labeled
manually in the present work.

The main contributions of this paper include the following:

- An in-depth analysis of the impact of different loss function, with different encoder
architectures over different types of aerial images is performed. Firefront_Gestosa
and FLAME are two dataset of aerial images covering different scenarios. The first set
contains very limited fire pixels, less than 1% over the final dataset. The second set
contains a higher ratio of fire pixels in comparison to the first one, but it includes some
different images of the same view. Usually, the aerial datasets draw segmentation
results very low in comparison with the attended performance presented in this paper.

- Deeplabv3+ parameter fine tuning to train a model in order to efficiently segment
aerial images with limited flame area. Moreover, choosing the adequate encoder
architecture combined with a proper loss function will reduce the false negatives (FN)
and boost the intersection over union (IoU) and BF score.

- A private labeled set of aerial fire pictures named Firefront_Gestosa dataset has been
used in the experiments. The labeling task of such aerial profiles is challenging
since the part of smoke sometimes fully cover the flame part. A wrong labeled data
while induce a misleading trained classifier. The firefighters are more interested in
localizing the exact GPS positions of flames to promptly start intervention to limit the
propagation. With huge smoke clouds, it is unbearable to visibly localize the flame
positions from soil or air.

The remainder of the paper is organized as follows: Section 2 discusses the related
work and the state-of-the-art techniques and its performance in fire pixel detection. Section 3
explains the methods of the proposed framework, detailing the segmentation process of
the Deeplabv3+ model with different backbones and loss functions. Moreover, the datasets
adopted in the present study are explained with data preparation and processing techniques.
Section 4 discusses the experimental setup, and the results of the flame detection are
visualized and evaluated in detail. Section 5 summarizes and concludes the present work.

2. Related Work

State-of-the-artwork detects the forest fires utilizing a wide-area sensor network [12,13];
however, the deployment of such a network in a dense forest is expensive and not practical.
Alternatively, hyperspectral data may also be utilized in this context for spotting a forest
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fire in a larger region [14–16]. However, it has a low temporal and spatial resolution,
thus narrowing down the surveillance area [17,18]. The most often employed method
is to acquire visible or infrared images via exploration flights with planes or low-cost
drones [19,20]. In most cases, detecting the flame and alarming the firefighters with real
fires is a crucial task [21], thus, enabling locating the actual fires and moving the firefighter
to the desired location for extinguishing and preventing further fire spread. Several works
classify the fire and non-fire region from the image dataset [10,22]. It is broadly categorized
into two groups: fire detection (flame detection) [23–25] and early fire detection (smoke
detection) [26–28]. The former detection is challenging, as the smoke persists for hours even
after the fire stops, thus making real fire detection more complex, with acquired images
or on-site.

State-of-the-art work performs wildfire detection with two strategies: target local-
ization (decision-based techniques) and segmentation [29,30]. Moreover, there are recent
studies that had proposed frameworks based on either traditional classification and image
processing methods [31,32] or deep learning techniques [33,34]. The latter gained research
interest in the past decade for real-time applications that perform faster and more efficient
learning on various large image datasets. In recent work, fire segmentation is performed
efficiently, adopting a segmentation approach based on traditional methods [29]. Thus,
extracting the essential information from near infrared (NIR) and visible images for accu-
rately segmenting the fire images. Furthermore, low and high-frequency components are
extracted from visible and IR images of the Corsican dataset [10] using a contourlet-based
decomposition. Subsequently, the low-frequency information of visible and IR images
is fused utilizing a pulse-coupled neural network (PCNN). While the high-frequency
components are fused using the Local log Gabor energy-based fusion rule. Lastly, with
implementing the fuzzy C-means clustering (FCM) algorithm, segmentation of images is
performed and an accuracy of 98.45% is achieved over the Corsican French dataset [10].

A recent study performed fire segmentation adopting a lightweight deep learning
architecture, namely squeezed fire binary segmentation network (SFBSNet) [35]. SFBSNet
performed the segmentation adopting the traditional encoder-decoder architecture with
depth-wise separable convolution layers that induce a richer feature map. The adopted
approach attained a mean Intersection over Union (mIoU) of 90% on a Corsican dataset,
highlighting certain model limitations. A recent study implemented Deeplabv3 architecture
for fire segmentation on a custom augmented dataset with some image processing algo-
rithms [36]. Experiments were performed on datasets adopting three backbones: ResNet-50,
ResNet101, and ResNet-105 and reported a mIoU of 70.51% and an accuracy of 98.78% over
the test set.

To summarize, the existing studies on wildfire detection widely focus on segmentation
and detection, and adopt suitable image processing techniques in conjunction with machine
learning models; thus, drastically reducing the time required for data processing as the
time grows exponentially with the size of the acquired images. It is highly essential to
spot the fire pixels and alert the firefighters without any delay to handle the situation more
responsively in a real-time fire situation. However, most existing systems are modeled
for fire segmentation in offline mode, as real-time segmentation and detection necessitate
data preprocessing. Thus, it is challenging to perform fire detection and segmentation as it
attracts high computational costs.

3. Materials and Methods

A brief explanation of the segmentation process using deeplabv3+ is explained in this
section. Further, the dataset adopted for the present study is described in detail, along with
data annotation and augmentation procedure. Figure 1 depicts the framework adopted in
the present study for fire segmentation adopting the deeplabv3+ model.



Remote Sens. 2022, 14, 2023 4 of 22

Remote Sens. 2022, 14, 2023 4 of 22 
 

 

3. Materials and Methods 

A brief explanation of the segmentation process using deeplabv3+ is explained in 

this section. Further, the dataset adopted for the present study is described in detail, 

along with data annotation and augmentation procedure. Figure 1 depicts the frame-

work adopted in the present study for fire segmentation adopting the deeplabv3+ mod-

el. 

 

Figure 1. The proposed framework for fire detection. First, the dataset is labeled and correctly 

formatted; later, the model is trained to locate the flames. Then the deeplabv3+ model is used to 

generate the segmentation mask. 

Before implementing the segmentation process, the adopted datasets are labeled 

manually and annotated accordingly. Subsequently, the labeled or annotated data are 

partitioned using a data partitioning technique. The adopted datasets were also fused to 

implement the proposed framework with an increased number of images. It is worth 

noting that with a few or a limited number of training images, the segmentation process 

of fire pixels will be challenging. Thus, the model is trained with the images of three dif-

ferent datasets (Corsican [10], FLAME [11], and Firefront_Gestosa [37]) fused for locat-

ing the flames in the images. The segmentation mask is generated for fire pixels using 

the deeplabv3+ model. Performance is measured with global accuracy, mean accuracy, 

mean IOU, weighted IOU, and mean BF score as assessment metrics. 

3.1. Dataset 

The present work performed the fire segmentation using the images of public da-

tasets, namely the Corsican dataset [10] and FLAME [11]. Moreover, it performed fire 

detection with images acquired during the Gestosa mission by the Firefront project 

team. 

3.1.1. Description 

The original Corsican dataset [10] comprises almost 2000 wildfires captured with 

different camera configurations. The pictures were shot in the visible (Please refer to 

Figure 2b) and near-infrared (Please refer to Figure 2c) spectral ranges at a resolution of 

1024 × 768 pixels and stored in portable graphics format (png). The present study select-

ed 1175 pictures from the available image collections, spotting heterogenous color 

flames with proper background conditions (light and textures). The dataset comprises a 

collection of multimodal images (see Figure 2a) captured with a “JAI AD-080GE” cam-

era [10]. This sort of camera can simultaneously capture images in the visible and near-

infrared spectra using the same optics that are aligned. The Corsican dataset is built 

 

FLAME 

Corsican 

Firefront_Gestosa 

Deeplabv3+ 

Model Test 

- Detection and Flame 

segmentation 

Manual 

labeling 

Format 

adjustement 
Training Data Fusion 

and Partition 

Figure 1. The proposed framework for fire detection. First, the dataset is labeled and correctly
formatted; later, the model is trained to locate the flames. Then the deeplabv3+ model is used to
generate the segmentation mask.

Before implementing the segmentation process, the adopted datasets are labeled
manually and annotated accordingly. Subsequently, the labeled or annotated data are
partitioned using a data partitioning technique. The adopted datasets were also fused
to implement the proposed framework with an increased number of images. It is worth
noting that with a few or a limited number of training images, the segmentation process
of fire pixels will be challenging. Thus, the model is trained with the images of three
different datasets (Corsican [10], FLAME [11], and Firefront_Gestosa [37]) fused for locating
the flames in the images. The segmentation mask is generated for fire pixels using the
deeplabv3+ model. Performance is measured with global accuracy, mean accuracy, mean
IOU, weighted IOU, and mean BF score as assessment metrics.

3.1. Dataset

The present work performed the fire segmentation using the images of public datasets,
namely the Corsican dataset [10] and FLAME [11]. Moreover, it performed fire detection
with images acquired during the Gestosa mission by the Firefront project team.

3.1.1. Description

The original Corsican dataset [10] comprises almost 2000 wildfires captured with
different camera configurations. The pictures were shot in the visible (Please refer to
Figure 2b) and near-infrared (Please refer to Figure 2c) spectral ranges at a resolution of
1024 × 768 pixels and stored in portable graphics format (png). The present study selected
1175 pictures from the available image collections, spotting heterogenous color flames with
proper background conditions (light and textures). The dataset comprises a collection of
multimodal images (see Figure 2a) captured with a “JAI AD-080GE” camera [10]. This sort
of camera can simultaneously capture images in the visible and near-infrared spectra using
the same optics that are aligned. The Corsican dataset is built adopting a homography
matrix transform-based picture registration technique, and every image is annotated with
its corresponding segmentation mask.
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(e) pictures from Firefront_Gestosa.

The FLAME [11] dataset is another public aerial fire dataset adopted in the present
study. The FLAME dataset pictures were captured using drones and are primarily com-
posed of videos; some were transformed into frames for segmentation purposes. The
designated videos were shot using a Zenmuse X4S and a phantom 3 camera with a res-
olution of 640 × 512 and a frame rate of 30 frames per second. The dataset consists of
2003 pictures already annotated with corresponding ground truths for every picture.

Firefront Gestosa is an unlabeled aerial private dataset (which will be made public in
the future) obtained during the Firefront project team’s Gestosa mission [37]. This dataset
primarily consists of five main recorded videos that last between two and three minutes.
Please refer to Table 1 for further information about each video. The last video is not
an actual recording of the mission; it is a compilation of multiple perspectives from the
first five videos. Indeed, this dataset poses a significant challenge as it comprises images
completely obscured by smoke, making it quite hard to distinguish the flame location from
the rest of the image.

Two hundred thirty-eight fire frames were selected for the present study experimen-
tation through the already existing videos. The fire images were manually labeled. More
details on the data annotation procedure are explained briefly in the subsequent section.
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Table 1. Firefront_Gestosa dataset: The first five videos consist of five main recorded videos. The last
video is a compilation of multiple perspectives from the first five videos.

Video Pixel Resolution Number of Frames
Second (Frame Rate)

Durations in
Seconds

Number of
Bits per Pixel Video Format

PIC_081.MP4 1920 × 1080 50 182.88 24 RGB24

PIC_082.MP4 1920 × 1080 50 163.68 24 RGB24

PIC_083.MP4 1920 × 1080 50 178.56 24 RGB24

PIC_085.MP4 1920 × 1080 50 66.24 24 RGB24

PIC_086.MP4 1920 × 1080 50 191.04 24 RGB24

Gestosa2019.MP4 1280 × 270 29.97 218.18 24 RGB24

3.1.2. Data Annotation Technique

The newly extracted images from the Firefront_Gestosa data were labeled manually
with pixel labels based on human observation using “MATLAB ImageLabeler”. Following
that, the labels were normalized and transformed to binary images. Table 2 summarizes the
preprocessing steps adopted in the present study. The mask variable refers to ground truth
pictures. First, the indexed ground truth images were normalized and then transformed to
grayscale pictures.

Table 2. Firefront_Gestosa ground truths preprocessing.

Preprocessing Algorithm

Initialization For the Mask of Every Picture

Image normalization

• Compute minimum and maximum pixel intensity of the mask as follow:

minv = min
i={1, ..., xsize};j={1, ..., ysize}

(mask(i, j))

maxv = max
i={1, ..., xsize};j={1, ..., ysize}

(mask(i, j))

xsize and ysize correspond to the number of row and columns of the ground truth picture.

• The indexed mask is normalized:

nmask = round
(

1 + (ncol − 1) ∗ (mask−minv)
(maxv−minv)

)
ncol corresponds to the Number of columns of the used gray map.
The function round is used to round the results to the next integer number.

Storing format switch: number
colors adjustment

• Convert the indexed mask to grayscale image:

rgb_mask(i, j) = nmask(map(i, j))
map is a matrix defining the gray colormap used.
map is an 256 × 3 containing floating-point values of color intensities in the range [0, 1].
Reduce the number of colors and translation to indexed image using Inverse colormap
computation algorithm [38], input is rgb_mask and output is ind_mask.

Final step: Switch to binary image

• Convert the indexed image to binary format:{
bn_maskind_mask(i,j) = 1, i f ind_mask(i, j) ≥ γ

bn_maskind_mask(i,j) = 0, i f ind_mask(i, j) < γ

γ is the luminance threshold, the adopted value is 0.5.

• Save the mask in binary/categorical format.

Furthermore, an inverse colormap algorithm [38] was applied to convert the pictures
again to indexed values. The algorithm quantizes the colormap into 25 distinct nuance
degrees per color component. Later, the closest nuance in the quantized colormap is
localized for each pixel in the grayscale image.
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The main objective of the transformations mentioned above (indexed to grayscale and
grayscale to indexed) is to have images that deploy a fixed colormap to make the processing
easier later. Then the images are binarized based on a threshold value and stored correctly.

The same preprocessing steps were applied to the FLAME dataset that was already
labeled. However, before training the models, it was required to convert infrared photos of
Corsican data to RGB storage format by simply duplicating the content of the red channel
over the green and blue ones.

3.1.3. The Final Dataset

Table 3 summarizes the contribution of each dataset to the simulation data generated
by the present study in terms of fire images. It is to be noted that the simulation data
generated with fire images contributes to the present work in terms of new data generated
from existing data. However, the final dataset’s pixel distribution before scaling is shown
in Table 4. The resulting newly created dataset is extremely unbalanced, with Corsican
data having the highest amount of fire pixels (Please refer Table 4) in contrast to the other
two aerial datasets. Indeed, aerial datasets include fire captures from extremely high
altitudes, providing a very distant view of the flame. As a result, the detecting task becomes
more challenging.

Table 3. Statistics about the data used to train and test the detection module in terms of the number
of samples.

Dataset Corsican Dataset FLAME Firefront_Gestosa Total

Fire pictures 1775 2003 238 4016

Table 4. The pixel distribution of our final dataset and the fire pixel contribution in terms of percentage.

Dataset Corsican Dataset FLAME Firefront_Gestosa

Fire pixels count 2.95 × 108 9.71 × 107 1.77 × 105

Background pixels count 1.72 × 109 1.66 × 1010 6.58 × 108

Contribution in final dataset
in terms of percentage (%) 24.74 75.22 <1

3.2. Segmentation Approach
3.2.1. DeeplabV3+

DeepLabv3+ is an extension of DeepLabv3 architecture that includes an encoder and
decoder structure that help the model work more efficiently. Dilated convolution is used by
the encoder module to deal with multiscale contextual information, whereas the decoder
structure improves the segmentation performance by focusing on object boundaries. Thus,
the encoder–decoder architecture is adopted by Deeplabv3+ [9] in the present study. The
model is divided into three blocks: encoder, effective decoder, and a spatial pyramid
pooling block, as shown in Figure 3. To create a rich feature map, the encoder uses dilated
or atrous convolution at different rates [9]. The present work applies an atrous convolution
to each location on the output and filter, where the rate of convolution corresponds to how
quickly the inputs are sampled. We can maintain a constant stride while increasing the
field of view using atrous convolution without increasing the number of parameters or the
amount of computation. Finally, a larger feature map is obtained through this process as an
output, that enhances the segmentation process.
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Figure 3. The segmentation module architecture: The encoder block is for feature extraction, deploy-
ing atrous convolutions with different rates (spatial pyramid pooling block). The decoder block helps
reduce the obtained feature map.

Later, these features are bilinearly upsampled by a factor of four and combined with
the low-level output of the backbone. To ensure information integrity and minimal compu-
tational cost, a 1 × 1 convolution is applied to the obtained features to limit the number of
channels. The present work utilized multiple backbone types as encoders for experimental
simulations, namely ResNet-18 [39], ResNet-50 [40], MobileNetV2 [41], Xception [42], and
InceptionResNetV2 [43]. In the final section of the decoder, 3 × 3 convolutions and bilinear
upsampling are further applied for obtaining an affine feature map.

3.2.2. Loss Function

The present work conducted multiple experiments employing sophisticated loss
functions that address the unbalancing data problem, such as Generalized Dice [44], Tver-
sky [45], and focused [46] loss functions, in addition to the conventional binary cross-
entropy [47] loss function.

Let us define x0i and x1i as the probability of the ith pixel to be a fire and non-fire,
respectively. Let us also take the ground truth annotated as y0i/y1i.
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• The Cross-entropy loss: It is the default function with the deeplabv3+ model. It is
formulated as follows [47]:

Tce = −
(

N

∑
i=1

y0i log x0i +
N

∑
i=1

y1i log x1i

)
(1)

where N corresponds to the number of classes in the dataset.

• Generalized dice loss: The mathematical formulation alleviates the class imbalance
problem. The function is given as follows [44]:

Tdc = 1− 2
∑N

i=1 x0iy0i

∑N
i=1 x0i + ∑N

i=1 y0i
(2)

The function weights the contribution of each class to the final loss by the inverse size
of the expected region.

A negligible non-null constant is further introduced in the denominator to avoid
invalid values during training.

• Tversky loss: The loss function is defined as follows [45]:

Ttv(a, b) =
∑N

i=1 x0iy0i

∑N
i=1 x0iy0i + a ∑N

i=1 x0iy1i + b ∑N
i=1 x1iy0i

(3)

The parameters a and b allow to adequately tune up the weights of false positives
(FPs) and false negatives (FNs). The fact of deploying a value of “b” higher than “a”
emphasizes FPs, diminishes the FNs, boosts the recall factor, and favorably improves the
training process.

• Focal loss: It is a variant of the original cross-entropy loss that performs class weight-
ing by down-weighting the contribution of every class with a corresponding modulat-
ing factor. The following equation gives the mathematical formulation: [46]

Tf c(α, γ) = −
(

N

∑
i=1

α(1− y0i)
γ log x0i +

N

∑
i=1

α(1− y1i)
γ log x1i

)
(4)

The α value scales the loss function linearly while Y is the focusing parameter of the
function. Increasing the value of Y improves the sensitivity of the trained network. The
optimal value of α is 0.25, and Y is 2 [46].

3.2.3. Assessment Metric

The metrics used to access the performance of the segmentation models are: global
accuracy, mean accuracy, mean IoU, weighted IoU, and mean BF score.

• Global accuracy is a more general metric that gives insight into the percentage of
correctly classified pixels without considering the classes. This metric is completely
misleading in the case of highly unbalanced datasets.

• Mean accuracy gives an idea about the portion of correctly classified pixels considering
all the classes. Mathematically defined as:

Accuracy =
TPs

TPs + FNs
(5)

where TPs is the number of true positives, the number of positive pixels correctly classified.

• Mean IoU or Jaccard similarity measure, computed as the average IoU measure of all
data classes calculated for all the images and averaged. In other words, it is a statistical
measure of precision that penalizes FPs. IoU (or Jaccard) metric is mathematically
defined as:
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IoU =
TPs

TPs + FPs + FNs
(6)

• Weighted IoU is a measure that considers the minority classes in unbalanced datasets.
Hence, the overall score is more realistic. This metric is defined as the mean IoU of
each class in the data, weighted by the number of pixels in that class.

• Mean BF Score, the boundary F1 contour matching score, mathematically defined by
the following formula:

BF =
TPs

TPs + 0.5 ∗ (FPs + FNs)
(7)

The mean BF score is pointed as the mean value of the BF score calculated overall
images for a corresponding class. This metric measures the degree of matching of the object
contours (prediction) and the given ground truth.

4. Experiments
4.1. Experimental Setup

The segmentation model was experimentally evaluated with 20 different configura-
tions. Deeplabv3+ is used with four distinct loss functions (Cross-Entropy, Dice, Tversky,
and Focal loss) and five different backbones: ResNet-18, ResNet-5, MobileNetV2, Xception,
and InceptionResNetV2. The models are improved and trained in the MATLAB environ-
ment, installed on a server equipped with an NVIDIA GeForce RTX 3090 GPU and the
Fedora operating system at the IT-Lisbon facility.

Image of resolution of 512 × 512 pixels is chosen with mini-batch size of 22 to obtain
the most significant information at the lowest computing cost. Stochastic gradient descent
(SGDM) optimizer with a momentum of 0.9 and a piecewise schedule learning rate method
is used for training the model. The learning rate drop period is set to 10 with the dropping
factor and initial learning rate assigned as 0.3 and 0.01, respectively. The maximum number
of training epochs was set to 100, with the L2 regularization factor as 0.0005. These chosen
parameter choices were assumed to have a rapid learning rate while converging to an
optimal solution when the learning rate drops. The experiments are parameterized to avoid
overfitting by terminating training sooner when the validation curve converges.

Every convolutional layer in the trained network is followed by a Batch Normalization
layer, which improves training stability, speeds up network convergence, and improves
performance even when the batch size is small. The parameters a and b are set to 0.3 and
0.7 for the Tversky loss function and 0.25 and 2 for the focal loss function, respectively.

The final dataset was randomly divided into 60% for training, 20% for validation,
and 20% for testing for five-fold cross-validation. As a result, 2410 samples were used for
training, 803 for validation, and 803 for testing.

Besides, the present work performed experiments with data augmentation to increase
network accuracy during training by randomly transforming the original data. As aug-
mentation techniques, random horizontal/vertical reflection, random left/right reflection,
random X/Y translation of ± ten pixels, and random rotation were employed. The results
were the same as the original, with no remarkable enhancement for augmented data, so the
present work refers only to show the original results.

4.2. Implementation and Results
4.2.1. Loss Function Choice

The overall results for deeplabv3+ using MobileNetV2 and Xception within the four
different loss functions previously introduced are given in Figures 4 and 5 respectively. All
the scores are expressed in percentage (%).
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For the case of MobileNetV2, the model trained with the Dice loss function draws 
the higher results, a global accuracy of 98.70%, a mean accuracy of 89.54%, a mean and a 
weighted IoU of 86.38% and 97.51%, respectively, and a mean BF score of 93.86%. This 
model is named Model_1. 

In fact, in the model’s selection process, the present study focused on the IoU metric 
more than the BF score even though the first one gives a better idea about the mask cor-
respondence with the ground truth. 

The IoU and BF scores seem equivalent for a single instance classification; however, 
averaging the results over an entire dataset is completely different. The IoU gives better 
insights into the number of misclassified instances, while the BF score gives the pixel-
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For the case of MobileNetV2, the model trained with the Dice loss function draws
the higher results, a global accuracy of 98.70%, a mean accuracy of 89.54%, a mean and
a weighted IoU of 86.38% and 97.51%, respectively, and a mean BF score of 93.86%. This
model is named Model_1.

In fact, in the model’s selection process, the present study focused on the IoU metric
more than the BF score even though the first one gives a better idea about the mask
correspondence with the ground truth.

The IoU and BF scores seem equivalent for a single instance classification; however,
averaging the results over an entire dataset is completely different. The IoU gives better
insights into the number of misclassified instances, while the BF score gives the pixel-level
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squaring error. Hence, the BF score averages while the IoU metric characterizes the worst
situation performance.

The global and the mean accuracy metrics do not correspond with our expectations
of the real segmentation performance for highly imbalanced datasets. Since the BF score
mathematical formulation does not consider the number of true negatives (TNs), a large
value of TNs will not affect the BF metric. However, for the models trained with Xception,
the highest results are recorded also using the Dice loss function. The selected model,
named Model_2, achieves a global accuracy of 98.57%, a mean accuracy of 90.04%, a mean,
and a weighted IoU of 85.47% and 97.29%, respectively, and a mean BF score of 92.34%.

The overall results for deeplabv3+ trained with InceptionRestNetV2 within the four
different loss functions previously introduced are depicted in Figure 6. The models trained
with Tversky and Dice loss functions draw high and approximatively similar mean IoU val-
ues. As a result, determining the best model based on these values was challenging. Hence,
to describe the behavior of the two models, a deeper investigation of the performance
across all datasets was necessary at this stage.
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InceptionResNetV2 as a backbone.

The two models testing results over the three sets of data, FLAME, Corsican, and
Firefront_Gestosa, are depicted in Figure 7. The chart depicts that the model trained with
Dice loss performs better over the two aerial datasets, FLAME and Firefront_Gestosa. Over
Corsican data, the model trained with Dice loss performs as well as the one trained with
Tversky loss. The main goal of the present work is to create a model that can properly
segment fire images captured from aerial datasets with extremely small flame regions.
Hence, the present study focused on the performance over the biggest aerial dataset,
FLAME, followed by Firefront_Gestosa, with limited flame areas. The model trained with
Dice loss and InceptionResNetV2 is named Model_3.

However, the results for deeplabv3+ trained with RestNet-18 within the four different
loss functions previously introduced are depicted in Figure 8. The models trained using
the Dice and Cross entropy loss functions produce nearly identical results. Hence, it was
crucial to analyze the results individually over every set of data.



Remote Sens. 2022, 14, 2023 13 of 22
Remote Sens. 2022, 14, 2023 13 of 22 
 

 

 
Figure 7. The overall metrics, over the three sets of data (FLAME, Corsican, and Fire-
front_Gestosa), gathered using Tversky and Dice loss functions with Deeplabv3+ with Inception-
ResNetV2 as backbone. 

However, the results for deeplabv3+ trained with RestNet-18 within the four differ-
ent loss functions previously introduced are depicted in Figure 8. The models trained us-
ing the Dice and Cross entropy loss functions produce nearly identical results. Hence, it 
was crucial to analyze the results individually over every set of data. 

 
Figure 8. The overall metrics were gathered using different loss functions with Deeplabv3+ with 
ResNet-18 as a backbone. 

The chart of Figure 9 presents the results of the models trained with Dice and Cross 
entropy loss functions over every data set. We could conclude that the model trained 
with Dice loss performs substantially better than the others over the two aerial datasets 

Figure 7. The overall metrics, over the three sets of data (FLAME, Corsican, and Firefront_Gestosa),
gathered using Tversky and Dice loss functions with Deeplabv3+ with InceptionResNetV2
as backbone.

Remote Sens. 2022, 14, 2023 13 of 22 
 

 

 
Figure 7. The overall metrics, over the three sets of data (FLAME, Corsican, and Fire-
front_Gestosa), gathered using Tversky and Dice loss functions with Deeplabv3+ with Inception-
ResNetV2 as backbone. 

However, the results for deeplabv3+ trained with RestNet-18 within the four differ-
ent loss functions previously introduced are depicted in Figure 8. The models trained us-
ing the Dice and Cross entropy loss functions produce nearly identical results. Hence, it 
was crucial to analyze the results individually over every set of data. 

 
Figure 8. The overall metrics were gathered using different loss functions with Deeplabv3+ with 
ResNet-18 as a backbone. 

The chart of Figure 9 presents the results of the models trained with Dice and Cross 
entropy loss functions over every data set. We could conclude that the model trained 
with Dice loss performs substantially better than the others over the two aerial datasets 

Figure 8. The overall metrics were gathered using different loss functions with Deeplabv3+ with
ResNet-18 as a backbone.

The chart of Figure 9 presents the results of the models trained with Dice and Cross
entropy loss functions over every data set. We could conclude that the model trained with
Dice loss performs substantially better than the others over the two aerial datasets in terms
of mean accuracy, mean IoU, and BF score. The model trained with Cross entropy shows
bit higher results over Corsican data, which is the set of data with the higher quota of Fire
pixels in terms of mean accuracy and mean IoU. So, the overall results tend to elite this
model as the best one. Nevertheless, the model trained with Dice loss draws the best results
over the most challenging aerial datasets. This model, named Model_4, achieves a global
accuracy of 98.65%, a mean accuracy of 88.92%, a mean, and a weighted IoU of 85.78% and
97.40%, respectively, a mean BF score of 93.75%.
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Nonetheless, the results for deeplabv3+ trained with RestNet-50 within the four
different loss functions previously introduced are depicted in Figure 10. Both models
trained within the Dice and Tversky loss functions show similar results in mean IoU even
though the one trained with Dice overpassed the one trained with Tversky in terms of
mean accuracy and BF score. So, it was necessary to analyze the results over every set of
data individually.
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The chart of Figure 11 present the results of the models trained with Tversky and
Cross entropy loss functions over every data set. The model trained with Tversky loss
gives a higher value of mean IoU and mean BF score over the Corsican set. Although the
model trained with Dice loss attains the best results in terms of mean accuracy, mean IoU,
and mean BF score over the two aerial sets of data. This model, named Model_5, reaches
a global accuracy of 98.65%, a mean accuracy of 90.86%, a mean and a weighted IoU of
86.27% and 97.44%, respectively, and a mean BF score of 93.63%.
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To resume, cross-entropy loss in her original formulation could not handle imbalanced
data problems and complex data cases.

The dice loss concentrates on the positive sample regions and is less sensitive to the
imbalanced data problem. Tversky loss relies on the principle of weighing FN and FP
by tuning the value of b bigger than a to penalize FN. However, this function remains
a tentative improvement of the Dice function to have more control over loss in case of
unbalanced datasets to promote the results of the segmentation of small-scale objects.

Nonetheless, focal loss introduces a mathematical constant (1− γ) that causes less
sensitivity to the imbalanced data problem. Furthermore, this function is better suited to
locate small and fine boundary objects that are difficult to identify accurately, and it can
handle complicated misclassified data samples.

Those two improvements of Dice loss allow detecting small-scale objects with finer
boundary, which is evident through the results, i.e., a slight improvement of the metrics
over Corsican data in most cases. This set has the bigger contribution of pixel fires in
the final dataset. However, as previously stated, the proposed framework is more suited
for aerial data, making it more challenging owing to the lack of publicly available data
for training.

4.2.2. Model’s Comparison

Table 5 shows the overall performance of the five selected models while Table 6 intro-
duces the computational cost of every model in terms of training and test time per dataset.
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Table 5. Resume of performance of the selected models.

Model Global
Accuracy

Mean
Accuracy Mean IoU Weighted

IoU
Mean BF

Score

Model_1 98.70% 89.54% 86.38% 97.51% 93.86%

Model_2 98.57% 90.04% 85.47% 97.29% 92.34%

Model_3 98.62% 89.42% 85.73% 97.37% 93.10%

Model_4 98.65% 88.92% 85.78% 97.40% 93.75%

Model_5 98.65% 90.86% 86.27% 97.44% 93.63%

Table 6. Computational cost of the five previously selected models: Average values of training time
per network and detection time per image per dataset. We note that we had averaged the results of
five repetitions.

Model
Average Training Time per

Network (Hour:Minute:Second)
Average Detection Time per Image (Second)

FLAME Corsican Firefont_Gestosa

Model_1 00:55:10 1.0181 0.6178 0.8745

Model_2 00:47:21 1.2033 0.68 1.0016

Model_3 01:29:20 7.0613 2.4511 4.9538

Model_4 00:47:59 0.9122 0.8375 0.7407

Model_5 01:05:34 1.1677 0.6459 1.0029

It can be observed from the overall results depicted in Table 5 that ResNet-50 (Model_5)
achieves the best performance with a global accuracy of 98.65%, a mean accuracy of 90.86%,
a mean IoU 86.27%, a weighted IoU of 97.44%, and a mean BF score of 93.63%.

MobileNetV2 (Model_1) attains competitive performance, with a smaller training
duration (average training time 55 min and 10 s), as shown in Table 6, in comparison with
ResNet-50 (Model_5). Model_5 draws a global accuracy of 98.70%, a mean accuracy of
89.54%, a mean IoU 86.38%, a weighted IoU of 97.51%, and a mean BF score of 93.86%. The
ResNet-50 had required an average training time of 1 h, 5 min, and 34 s.

The InceptionResNetV2 (Model_3) and the Xception (Model_2) architectures draw
relatively lower performance since the first focuses on computational cost and the second,
as an extension of the first, reframes the same network concept.

It is worth noting that the Xception substitutes the original Inception modules with
depth-wise separable convolutions. InceptionResNetV2, as expected, required maximum
training time (average 1 h, 29 min, and 20 s) as it is one of the most in-depth networks used
in our study.

We note that it is normal that the average detection time over Firefront_Gestosa is
relatively higher since the size of original images is bigger than FLAME and Corsican.

The performance of first and fifth models are highlighted in Table 7 for better insight.
It is evident that the Model_5 outperforms Model_1 based on performance comparison.
The Model_5 draws higher results over Flame data, a global accuracy of 99.79%, a mean
accuracy of 92.02% a mean IoU 84.74%, a weighted IoU of 99.61%, and a mean BF score of
96.43%. Alongside, Model_1 draws a very low mean accuracy and mean BF score of 87.81%
and 95.66% respectively, in comparison to Model_5.
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Table 7. The observed metrics over every set of data for Model_1 and Model_5.

Model Dataset Global Accuracy Mean Accuracy Mean IoU Weighted IoU Mean BF Score

Model_1

FLAME 99.80% 87.81% 84.32% 99.62% 95.66%

Corsican 97.30% 89.46% 85.76% 94.83% 91.21%

Firefront_Gestosa 99.98% 89.01% 80.13% 99.96% 98.39%

Model_5

FLAME 99.79% 92.02% 84.74% 99.61% 96.43%

Corsican 97.18% 90.49% 85.60% 94.69% 89.81%

Firefront_Gestosa 99.97% 92.61% 79.09% 99.95% 98.60%

However, Model_5 attains a global accuracy of 99.97%, a mean accuracy of 92.61%,
a mean IoU 79.09%, a weighted IoU of 99.95%, and a mean BF score of 98.60% over
Firefront_Gestosa. Besides, Model_1 attains a higher mean IoU of 80,13% but a very low
mean accuracy of 89.01% compared to Model_5. For the case of Corsican data, the Model_1
gives a higher mean Bf score.

Nonetheless, the computational cost of Model_5 is higher than Model_1. Notwith-
standing that Model_5 consumes higher training resources; the detection time is the same
as Model_1 (please refer to Table 6).

4.2.3. Test Samples

For example, the pictures in the third and seventh rows of the Figure 12 manifest
extensively enhanced segmentation. The MobilenetV2 and ResNet-50 give finer boundary
and more perfectly drawn flame shapes. Nonetheless, the corresponding results in the
fourth, fifth, sixth rows demonstrate coarse and inaccurate boundaries, imprecise flame
shapes, and more FNs (pixels drawn in pink).

4.3. State-of-the-Art Comparison

An accurate comparison of the results is challenging since the same training parame-
ters, and validation modalities are used, even if the authors are using the same data, but
evidentially not the same partition and metrics for evaluation.

For Corsican data, we had regrouped in the Table 8 the most outstanding studies
and their corresponding announced results. Our model trained with ResNet-50 and Dice
loss outperforms the Deep–Fire U-Net [48], CNN residual network [49], Deeplab [36],
Custom CNN architecture [50], and the color segmentation approach with fuzzy criteria [51].
Nevertheless, for bee colony algorithm-based color space segmentation [24] and the weakly
supervised CNN [52], it is quite difficult to judge following the few represented results.

Custom CNN residual network [49] outperforms our results, but it seems that no
cross-validation was performed, just a single run result that could not be quite accurate.
The FLAME dataset is newly released, so the work done is limited to the original dataset.
It is clear from Table 8 that the present work model outperforms the UNet approach [11].
Moreover, no work was recorded using Firefront_Gestosa Videos or images, since it is
private content. But the results are encouraging regarding the fact that the model is not
concepted for this data specifically.
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Figure 12. Example of segmentation of a picture of every dataset: The first, second, and third columns
are result examples from Firefront_Gestosa, FLAME, and Corsican data, respectively. The first and
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second rows are the pictures and their corresponding ground truths. The rows from three to seven
represent the results given by the four models trained with dice loss. The pixels that should be
detected as non-fire, but the model had labeled them as fire pixels (FP), are given in green color. Pink
color design pixels that are fire ones, but the model had labeled them as non-fire pixels (FN).

Table 8. Resume of the state-of-art, mainly the algorithms tested over FLAME and Corsican datasets:
comparison with the current work.

Algorithm
Reference Approach Dataset Global

Accuracy

Mean
Accuracy
(Recall)

Mean
IoU

Weighted
IoU

Mean BF
Score

(F1 Score)

[11] UNET

FLAME

99% 83.88% 78.17% ___ 87.75%

Proposed
approach

Deeplabv3+ with
ResNet-50 backbone and

Dice loss function
99.79% 92.02% 84.74% 99.61% 96.43%

[49] Custom CNN
residual network

Corsican

97.46% 95.17% 90.02% ___ 94.70%

[48] Deep–Fire U-Net 94.39% 88.78% 82.32% ___ 89.48%

[36] Deeplab 96.92% 90.42% 86.96% ___ 92.69%

[51] Color segmentation with
fuzzy criteria 92.74% 75.10% 72.53% ___ 80.04%

[24] bee colony algorithm-based
color space segmentation ___ ___ 76% ___ ___

[50] Custom CNN architecture 98.02% ___ ___ 92.53% ___

[52] Weakly supervised CNN ___ ___ 72.86% ___ ___

Proposed
approach

Deeplabv3+ with
ResNet-50 backbone and

Dice loss function
97.18% 90.49% 85.60% 94.69% 89.81%

Proposed
approach

Deeplabv3+ with
ResNet-50 backbone and

Dice loss function

Firefront_
Gestosa 99.97% 92.61% 79.09% 99.95% 98.60%

We note however, that in Table 8 some cells do not present results since the original
works do not use the same metrics that have been adopted in this work.

5. Conclusions

In the past decades, the number of wildfires has increased while the available ma-
terial and human capacities to fight them are still limited. Hence the response capacity
must be optimized to avoid time and logistic loss due to false alarms. Various intelligent
systems, namely artificial intelligence models, concepted to detect and localize fire zones
are proposed. Few tendencies to work over aerial datasets make the segmentation process
challenging due to the lack of fire pixels. The current system draws very encouraging
results over a minor set of aerial fire images.

To conclude, the selected model trained with ResNet-50 and Dice loss attains a global
accuracy of 98.70%, a mean accuracy of 89.54%, a mean IoU 86.38%, a weighted IoU of
97.51%, and a mean BF score of 93.86%. The computational cost is moderated. Nevertheless,
the trained model could be used for segmentation of more similar aerial pictures that the
manual segmentation is challenging and time consuming since it requires an affine level
of precision.

The used aerial images are considered as limited set of data, since the number of pixels
labeled as fire are less than usual. Hence, we had reinforced the dataset with Corsican
pictures that have a frontal view of fire. The Firefront_Gestosa is private limited content.
A performance analysis as functions of the training samples ratio could be conducted,
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however that would be more suited with a larger dataset. So, it will be considered in future
work. Moreover, we will consider a bigger labeled set of Firefront_Gestosa pictures.
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