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Fixed Point Results for F-Contractive Mappings of Hardy-Rogers-Type
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Abstract. Recently, Wardowski introduced a new concept of contraction and proved a fixed point theorem
which generalizes Banach contraction principle. Following this direction of research, in this paper, we
will present some fixed point results of Hardy-Rogers-type for self-mappings on complete metric spaces or
complete ordered metric spaces. Moreover, an example is given to illustrate the usability of the obtained
results.

1. Introduction

It is well known that the contraction mapping principle, formulated and proved in the Ph.D. dissertation
of Banach in 1920, which was published in 1922 [4], is one of the most important theorems in classical
functional analysis. Indeed it is widely considered as the source of metric fixed point theory. Also its
significance lies in its vast applicability in a number of branches of mathematics. Starting from these
considerations, the study of fixed and common fixed points of mappings satisfying a certain metrical
contractive condition attracted many researchers, see for example [1–3, 5, 6, 8–11, 16, 22–27]. The reader
can also see [18, 20, 21], for existence results of fixed points for contractive non-self-mappings.

Recently, Wardowski [28] introduced a new concept of contraction and proved a fixed point theorem
which generalizes Banach contraction principle. Following this direction of research, in this paper, we
will present some fixed point results of Hardy-Rogers-type for self-mappings on complete metric spaces or
complete ordered metric spaces. Moreover, an example is given to illustrate the usability of the obtained
results.

2. Preliminaries

The aim of this section is to present some notions and results used in the paper. Throughout the article
we denote byR the set of all real numbers, byR+ the set of all positive real numbers and byN the set of all
positive integers.

Definition 2.1. Let F : R+
→ R be a mapping satisfying:

(F1) F is strictly increasing;
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(F2) for each sequence {αn} ⊂ R+ of positive numbers limn→+∞ αn = 0 if and only if limn→+∞ F(αn) = −∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.

We denote with F the family of all functions F that satisfy the conditions (F1)-(F3).

Definition 2.2 ([28]). Let (X, d) be a metric space. A self-mapping T on X is called an F-contraction if there exist
F ∈ F and τ ∈ R+ such that

τ + F(d(Tx,Ty)) ≤ F(d(x, y)), (1)

for all x, y ∈ X with d(Tx,Ty) > 0.

Definition 2.3. Let (X, d) be a metric space. A self-mapping T on X is called an F-contraction of Hardy-Rogers-type
if there exist F ∈ F and τ ∈ R+ such that

τ + F(d(Tx,Ty)) ≤ F(αd(x, y) + βd(x,Tx) + γd(y,Ty) + δd(x,Ty) + Ld(y,Tx)), (2)

for all x, y ∈ X with d(Tx,Ty) > 0, where α + β + γ + 2δ = 1, γ , 1 and L ≥ 0.

By choosing opportunely the mapping F, we obtain certain classes of contractions known in the literature,
as shown with the following examples.

Example 2.4 ([28]). Let F : R+
→ R be given by F(x) = ln x. It is clear that F satisfies (F1)-(F2) and (F3) for any

k ∈ (0, 1). Each mapping T : X→ X satisfying (1) is an F-contraction such that

d(Tx,Ty) ≤ e−τd(x, y), for all x, y ∈ X, Tx , Ty.

It is clear that for x, y ∈ X such that Tx = Ty the previous inequality also holds and hence T is a contraction.

Example 2.5 ([28]). Let F : R+
→ R be given by F(x) = ln x + x. It is clear that F satisfies (F1)-(F3). Each mapping

T : X→ X satisfying (1) is an F-contraction such that

d(Tx,Ty)
d(x, y)

ed(Tx,Ty)−d(x,y)
≤ e−τ, for all x, y ∈ X, Tx , Ty.

Remark 2.6. From (F1) and (1), we deduce that every F-contraction T is a contractive mapping, that is,

d(Tx,Ty) < d(x, y), for all x, y ∈ X, Tx , Ty.

From (F1) and (2), we deduce that every F-contraction of Hardy-Rogers-type T satisfies the following condition:

d(Tx,Ty)) < αd(x, y) + βd(x,Tx) + γd(y,Ty) + δd(x,Ty) + Ld(y,Tx), (3)

for all x, y ∈ X, Tx , Ty, where α + β + γ + 2δ = 1, γ , 1 and L ≥ 0.

Let X be a non-empty set. If (X, d) is a metric space and (X,�) is partially ordered, then (X, d,�) is called
an ordered metric space. Then x, y ∈ X are called comparable if x � y or y � x holds. Let (X,�) be a partially
ordered set. A self-mapping T on X is called non-decreasing if Tx � Ty whenever x � y for all x ∈ X. An
ordered metric space (X, d,�) is regular if
(r) for every non-decreasing sequence {xn} in X convergent to some x ∈ X, we have xn � x for all n ∈N∪{0}.
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3. Fixed points for F-contractions of Hardy-Rogers-type

In this section, we give some fixed point results for F-contractions of Hardy-Rogers-type in a complete
metric space.

Theorem 3.1. Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that there exist F ∈ F
and τ ∈ R+ such that T is an F-contraction of Hardy-Rogers-type, that is,

τ + F(d(Tx,Ty)) ≤ F(αd(x, y) + βd(x,Tx) + γd(y,Ty) + δd(x,Ty) + Ld(y,Tx)), (4)

for all x, y ∈ X, Tx , Ty, where α + β + γ + 2δ = 1, γ , 1 and L ≥ 0. Then T has a fixed point. Moreover, if
α + δ + L ≤ 1, then the fixed point of T is unique.

Proof. Let x0 ∈ X be an arbitrary point, and let {xn} be the Picard sequence with initial point x0, that is,
xn = Tnx0 = Txn−1. If xn = xn−1 for some n ∈ N, then xn is a fixed point of T. Now, let dn = d(xn, xn+1) for all
n ∈N ∪ {0}. If xn , xn+1, that is, Txn−1 , Txn for all n ∈N, using the contractive condition (4) with x = xn−1
and y = xn, we get

τ + F(dn) = τ + F(d(xn, xn+1)) = τ + F(d(Txn−1,Txn))
≤ F(αd(xn−1, xn) + βd(xn−1,Txn−1) + γd(xn,Txn) + δd(xn−1,Txn) + Ld(xn,Txn−1))
= F(αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1) + δd(xn−1, xn+1) + Ld(xn, xn))
= F(αdn−1 + βdn−1 + γdn + δd(xn−1, xn+1))
≤ F((α + β)dn−1 + γdn + δ[dn−1 + dn])
= F((α + β + δ)dn−1 + (γ + δ)dn).

Since F is strictly increasing, we deduce

dn < (α + β + δ)dn−1 + (γ + δ)dn

and hence

(1 − γ − δ)dn < (α + β + δ)dn−1, for all n ∈N.

From α + β + γ + 2δ = 1 and γ , 1, we deduce that 1 − γ − δ > 0 and so

dn <
α + β + δ

1 − γ − δ
dn−1 = dn−1, for all n ∈N.

Consequently,

τ + F(dn) ≤ F(dn−1), for all n ∈N.

This implies

F(dn) ≤ F(dn−1) − τ ≤ · · · ≤ F(d0) − nτ, for all n ∈N (5)

and so limn→+∞ F(dn) = −∞. By the properties (F2), we get that dn → 0 as n→ +∞.
Now, let k ∈ (0, 1) such that limn→+∞ dk

n F(dn) = 0. By (5), the following holds for all n ∈N:

dk
n F(dn) − dk

n F(d0) ≤ dk
n (F(d0) − nτ) − dk

n F(d0) = −nτ dk
n ≤ 0. (6)

Letting n→ +∞ in (6), we deduce limn→+∞ n dk
n = 0 and hence limn→+∞ n1/k dn = 0. Now, limn→+∞ n1/k dn = 0

ensures that the series
∑+∞

n=1 dn is convergent. This implies that {xn} is a Cauchy sequence. As X is a complete
metric space there exists z ∈ X such that xn → z. If z = Tz the proof is finished. Assume that z , Tz. If
Txn = Tz for infinite values of n ∈ N ∪ {0}, then the sequence {xn} has a subsequence that converges to Tz
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and the uniqueness of the limit implies z = Tz. Then we can assume that Txn , Tz for all n ∈N∪ {0}. Now,
by (3), we have

d(z,Tz) ≤ d(z, xn+1) + d(Txn,Tz)
< d(z, xn+1) + αd(xn, z) + βd(xn,Txn) + γd(z,Tz) + δd(xn,Tz) + Ld(z,Txn)
= d(z, xn+1) + αd(xn, z) + βd(xn, xn+1) + γd(z,Tz) + δd(xn,Tz) + Ld(z, xn+1).

Letting n→ +∞ in the previous inequality, we get

d(z,Tz) ≤ (γ + δ)d(z,Tz) < d(z,Tz),

which is a contradiction and hence z = Tz.
Now, we prove the uniqueness of the fixed point. Assume that w ∈ X is another fixed point of T,

different from z. This means that d(z,w) > 0. Taking x = z and y = w in (4), we have

τ + F(d(z,w)) = τ + F(d(Tz,Tw))
≤ F(αd(z,w) + βd(z,Tz) + γd(w,Tw) + δd(z,Tw) + Ld(w,Tz))
= F((α + δ + L)d(z,w)),

which is a contradiction, if α + δ + L ≤ 1, and hence z = w.

As a first corollary of Theorem 3.1, taking α = 1 and β = γ = δ = L = 0, we obtain Theorem 2.1 of
Wardowski [28]. Further, putting α = δ = L = 0 and β + γ = 1 and β , 0, we obtain the following version of
Kannan’s result [12].

Corollary 3.2. Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that there exist F ∈ F
and τ ∈ R+ such that

τ + F(d(Tx,Ty)) ≤ F(βd(x,Tx) + γd(y,Ty)),

for all x, y ∈ X, Tx , Ty, where β + γ = 1, γ , 1. Then T has a unique fixed point in X.

A version of the Chatterjea [7] fixed point theorem is obtained from the Theorem 3.1 puttingα = β = γ = 0
and δ = 1/2.

Corollary 3.3. Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that there exist F ∈ F
and τ ∈ R+ such that

τ + F(d(Tx,Ty)) ≤ F(
1
2

d(x,Ty) + Ld(y,Tx)),

for all x, y ∈ X, Tx , Ty. Then T has a fixed point in X. If L ≤ 1/2, then the fixed point of T is unique.

Finally, if we choose δ = L = 0, we obtain a Reich [19] type theorem.

Corollary 3.4. Let (X, d) be a complete metric space and let T be a self-mapping on X. Assume that there exist F ∈ F
and τ ∈ R+ such that

τ + F(d(Tx,Ty)) ≤ F(αd(x, y) + βd(x,Tx) + γd(y,Ty)),

for all x, y ∈ X, Tx , Ty, where α + β + γ = 1, γ , 1. Then T has a unique fixed point in X.
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4. Fixed points in ordered metric spaces

The existence of fixed points of self-mappings defined on certain type of ordered sets plays an important
role in the order theoretic approach. It has been initiated in 2004 by Ran and Reurings [17], and further
studied by Nieto and Rodrı́guez-Lopez [13]. Then, several interesting and valuable results have appeared
in this direction [1, 14–16, 24].

Theorem 4.1. Let (X, d,�) be an ordered complete metric space and let T be a non-decreasing self-mapping on X.
Assume that there exist F ∈ F and τ ∈ R+ such that T is an ordered F-contraction of Hardy-Rogers-type, that is,

τ + F(d(Tx,Ty)) ≤ F(αd(x, y) + βd(x,Tx) + γd(y,Ty) + δd(x,Ty) + Ld(y,Tx)), (7)

for all comparable x, y ∈ X, Tx , Ty, where α + β + γ + 2δ = 1, γ , 1 and L ≥ 0. If the following conditions are
satisfied:

(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) X is regular;

then T has a fixed point. Moreover, if α + δ + L ≤ 1, then the set of fixed points of T is well ordered if and only if T
has a unique fixed point.

Proof. Let x0 ∈ X be such that x0 � Tx0, and let {xn} be the Picard sequence of initial point x0, that is,
xn = Tnx0 = Txn−1. If xn = xn−1 for some n ∈ N, then xn is a fixed point of T. Now, let dn = d(xn, xn+1) for all
n ∈N ∪ {0}. Assume that xn , xn−1 for all n ∈N. As T is non-decreasing and x0 � Tx0, we deduce that

x0 ≺ x1 ≺ · · · ≺ xn ≺ · · · , (8)

that is, xn and xn+1 are comparable and Txn−1 , Txn for all n ∈N ∪ 0.
Proceeding as in the proof of Theorem 3.1, we obtain that {xn} is a Cauchy sequence. As X is a complete

metric space there exists z ∈ X such that xn → z. If z = Tz the proof is finished. Assume that z , Tz. Since
X is regular, from (8), we deduce that xn and z are comparable and Txn , Tz for all n ∈N ∪ {0}.

Now, using (3), we obtain

d(z,Tz) ≤ d(z, xn+1) + d(Txn,Tz)
< d(z, xn+1) + αd(xn, z) + βd(xn, xn+1) + γd(z,Tz) + δd(xn,Tz) + Ld(z, xn+1).

Letting n→ +∞ in the previous inequality, we get

d(z,Tz) ≤ (γ + δ)d(z,Tz) < d(z,Tz),

which is a contradiction and hence z = Tz.
Now, we assume that α + δ + L ≤ 1 and that the set of fixed points of T is well ordered. We claim that

the fixed point of T is unique. Assume on the contrary that there exists another fixed point w in X such that
z , w. Using the condition (7), with x = z and y = w, we get

τ + F(d(z,w)) = τ + F(d(Tz,Tw))
≤ F(αd(z,w) + βd(z,Tz) + γd(w,Tw) + δd(z,Tw) + Ld(w,Tz))
= F((α + δ + L)d(z,w))
≤ F(d(z,w)),

which is a contradiction and hence z = w. Conversely, if T has a unique fixed point, then the set of fixed
points of T, being a singleton, is well ordered.

Theorem 4.2. Let (X, d,�) be an ordered complete metric space and let T be a non-decreasing self-mapping on X.
Assume that there exist F ∈ F and τ ∈ R+ such that T is an ordered F-contraction of Hardy-Rogers-type. If the
following conditions are satisfied:
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(i) there exists x0 ∈ X such that x0 � Tx0;

(ii) X is regular;

then T has a fixed point. Moreover, if α + 2γ + δ + L < 1 and the following condition holds:

(iii) for all z,w ∈ X there exists v ∈ X such that z and v are comparable and w and v are comparable;

then T has a unique fixed point.

Proof. The existence of a fixed point of T is consequence of Theorem 4.1. Now, let z ∈ X be a fixed point of
T. For all v ∈ X comparable with z such that Tz , Tv, we have

τ + F(d(Tz,Tv)) ≤ F(αd(z, v) + βd(z,Tz) + γd(v,Tv) + δd(z,Tv) + Ld(v,Tz))
≤ F(αd(z, v) + γ(d(v, z) + d(z,Tv)) + δd(z,Tv) + Ld(v, z))
= F((α + γ + L)d(z, v) + (γ + δ)d(z,Tv)).

Since F is strictly increasing, we deduce

d(z,Tv) < (α + γ + L)d(z, v) + (γ + δ) d(z,Tv)

and hence

(1 − γ − δ)d(z,Tv) < (α + γ + L) d(z, v).

Since 1 − γ − δ > 0, we get

d(z,Tv) <
α + γ + L
1 − γ − δ

d(z, v).

As T is non-decreasing we have that z and Tnv are comparable for all n ∈N. If z , Tnv for all n ∈N, then

d(z,Tnv) < λnd(z, v), for all n ∈N,

where λ =
α+γ+L
1−γ−δ < 1. From the previous inequality, we obtain d(z,Tnv)→ 0 as n→ +∞.

Now, if z,w are two fixed points of T, by the condition (iii) there exists v ∈ X such that z and v are
comparable and w and v are comparable. If z = Tnv or w = Tnv for some n ∈N, then z and w are comparable
and the uniqueness of the fixed point follows since T is an F-contraction of Hardy-Rogers-type. Assume
that z , Tnv and w , Tnv for all n ∈N. Then

d(z,w) ≤ d(z,Tnv) + d(w,Tnv)→ 0, as n→ +∞

and hence d(z,w) = 0, that is, z = w.

If in Theorems 4.1 and 4.2, we choose opportunely the mapping F, then we obtain some results of fixed
point in the setting of ordered metric spaces known in the literature. For example, if we choose F(x) = ln x
in Theorem 4.1 and putting β = γ = δ = L = 0 and τ = 1, then we obtain Theorem 2.2 of [13].

Example 4.3. Let X = {Sn := n(n+1)
2 : n ∈ N} and d(x, y) = |x − y| for all x, y ∈ X. Clearly, (X, d) is a complete

metric space. Let T be the self-mapping on X defined by

TSn =


S1 if n = 1,
Sn+1 if n is even,
Sn−1 if n > 1 is odd.
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Firstly observe that TSm , TSn for m , n. Also the mapping T is not an F-contraction if we choose F(x) = x+ ln x.
In fact, for every m,n ∈N with m > n, we have

d(TS2m,TS2n)
d(S2m,S2n)

ed(TS2m,TS2n))−d(S2m,S2n) =
S2m+1 − S2n+1

S2m − S2n
eS2m+1−S2n+1−S2m+S2n

=
2(m + n) + 3
2(m + n) + 1

e2(m−n)

≥ 1 > e−τ,

for all τ ∈ R+. This implies that T is not an F-contraction (see Example 2.5).
Now, we consider the partial order � on X defined by

Sm � Sn if (m = n) or (m < n and m,n odd).

We show that T is an ordered F-contraction of Hardy-Rogers-type with β = γ = δ = L = 0 and τ = 1. To see this,
for m > n > 1 and m,n odd, let us consider the following calculations:

d(TSm,TSn)
d(Sm,Sn)

ed(TSm,TSn)−d(Sm,Sn) =
Sm−1 − Sn−1

Sm − Sn
eSm−1−Sn−1−Sm+Sn

=
m + n − 1
m + n + 1

en−m

≤ e−1.

Obviously, the same holds if m > n = 1. Next, if {xn} is a convergent non-decreasing sequence, then there is m ∈ N
such that xn = xm for all n ≥ m and so X is regular. As S1 � TS1, all the conditions of Theorem 4.1 are satisfied and
hence T has a fixed point. Clearly, S1 is a fixed point of T.
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