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Abstract. Many clinical and epidemiological studies rely on survival modelling to de-
tect clinically relevant factors that affect various event histories. With the introduction
of high-throughput technologies in the clinical and even large-scale epidemiological
studies, the need for inference tools that are able to deal with fat data-structures, i.e., rel-
atively small number of observations compared to the number of features, is becoming
more prominent. This paper will introduce a principled sparse inference methodology
for proportional hazards modelling, based on differential geometrical analyses of the
high-dimensional likelihood surface.

1 Scientific background
In the study of the dependence of survival time T on covariates x = (x1, . . . , xp),

the Cox proportional hazards model (Cox, 1972, 1975) has proved to be a major tool
in many clinical and epidemiological applications. Especially when the number of ex-
planatory variables are small, the standard model combined with regression-like struc-
ture learning hypothesis testing is adequate in most situations. However, when the num-
ber of features is large, the simple Cox proportional breaks down. However, in practice,
not all the covariates may contribute to the prediction of survival outcomes: some com-
ponents of coefficients may be zero in the true model.

Many variable selection techniques for linear regression models have been extended
to the context of survival models. They include best-subset selection, stepwise selec-
tion, asymptotic procedures based on score tests, Wald tests and other approximate
chi-squared testing procedures, bootstrap procedures and Bayesian variable selection.
However, the theoretical properties of these methods are generally unknown. Recently
a family of penalized partial likelihood methods, such as the Lasso (Tibshirani, 1997)
and the smoothly clipped absolute deviation method (Fan and Li, 2002) were proposed
for the Cox proportional hazards model. By shrinking some regression coefficients to
zero, these methods select important variables and estimate the regression model simul-
taneously. Whereas the Lasso estimator does not possess oracle properties, the smoothly
clipped absolute deviation estimator for linear models, has better theoretical properties.
However, the non-convex form of the penalty term of the latter makes its optimization
challenging in practice, and the solutions may suffer from numerical instability. In this
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paper we propose an alternative to the penalized inference methods. We extend the
least angle regression approach (Efron et al., 2004) to the case of the Cox proportional
hazards model. This means that we have to explore the geometry of the underlying
likelihood in order to define efficient computational methods for the solution.

2 Differential geometric Cox proportional hazards model
The aim of this section is to extend the dgLARS method (Augugliaro et al., 2013) to

the relative risk regression models described in section 2.1. The basic idea underlying
the dgLARS method is to use the differential geometrical structure of a generalized
linear model (GLM) (McCullagh and Nelder, 1989) to generalize the LARS method
originally proposed in Efron et al. (2004). We first relate the partial likelihood with
the likelihood function of a specific GLM. As originally observed in Thomas (1977),
to solve this problem we shall use the identity that exists between the partial likelihood
(3) and the likelihood function of a logistic regression model for matched case-control
studies. The idea to use this identity to study the differential geometrical structure of
a relative risk regression model is not new and was originally used in Moolgavkar and
Venzon (1987) to construct approximated confidence regions in matched case-control
studies.

2.1 Relative risk regression models
In analyzing survival data, one of the most important tools is the hazard function,

which is used to express the risk or hazard of death at some time t. Formally, let T be
the absolutely continuous random variable associated with the survival time and let f(t)
be the corresponding probability density function, the hazard function is defined as

λ(t) =
f(t)

1−
∫ t

0
f(s)ds

, (1)

and specifies the instantaneous rate at which failures occur for subjects that are surviving
at time t. Suppose that the hazard function (1) can depend on a p-dimensional vector
of covariates which can depend on time and is denoted by x(t) = (x1(t), . . . , xp(t))

T .
The relative risk regression models are based on the assumption that the vector x(t)
influence the hazard function by the following relation

λ(t;x) = λ0(t)ψ(x(t);β), (2)

where β ∈ B ⊆ Rp is a p-dimensional vector of unknown fixed parameters and λ0(t)
is the base hazard function at time t which is left unspecified. Finally, ψ : R → R is a
fixed twice continuously differentiable function, called the relative risk function, and the
parameter space B is such that ψ(x(t);β) > 0 for each β ∈ B. We also assume that the
relative risk function is normalized, i.e. ψ(0;β) = 0. Model (2), originally proposed in
Thomas (1981), extends the usual Cox regression model Cox (1972), which is obtained
when ψ(x(t);β) = exp(βTx(t)).

Suppose that n observations are available and let with ti the ith observed failure
time. Assume that we have k uncensored failure times and let by D the set of indices
for which the corresponding failure time is observed. The remaining failure times are
right censored. As explained in Cox and Oakes (1984), if we denote by R(t) the risk
set, i.e. the set of indices corresponding to the subjects how have not failed and are still
under observation just prior to time t, under the assumption of independent censoring,
the inference about the β can be carried out by the following partial likelihood function

Lp(β) =
∏
i∈D

ψ(xi(ti);β)∑
j∈R(ti)

ψ(xj(ti);β)
. (3)
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When the exponential relative risk function is used in model (2) and we work with fixed
covariates, (3) is clearly equal to the original partial likelihood introduced in Cox (1972)
and discussed in great detail in Cox (1975). The inferential aspects of the relative risk
regression models (2) are studied in Prentice and Self (1983) where are extended the
results given in Andersen and Gill (1982) for the Cox regression model.

2.2 Differential geometric description of the relative risk regression model
In order to define the generalized equiangularity condition for the relative risk regres-

sion model, it is useful to see the partial likelihood (3) as arising from a multinomial
sampling scheme. Consider an index i ∈ D and let Yi = (Yih)h∈R(ti) be a multinomial
random variable with sample size equal to 1 and cell probabilities πi = (πih)h∈R(ti) ∈
Πi, i.e. p(y;πi) =

∏
h∈R(ti)

πyih
ih . Assuming that the random vectors Yi are indepen-

dent, the joint probability density function is an element of the model space

S =

∏
i∈D

∏
h∈R(ti)

πyih
ih : (πi)i∈D ∈

⊗
i∈D

Πi

 . (4)

In the following of our differential geometric constructions, the set (4) will play the
role of ambient space. We would like to stress that our differential geometric construc-
tions are invariant to the chosen parameterization which means that ambient space S
can be equivalently defined by the canonical parameter vector and this will not change
our results. In this paper we prefer to use the mean value parameter vector to specify
our differential geometrical tools because in this way the relationship with the partial
likelihood (3) will be more transparent.

Consider the following model for the conditional expected value of the random vari-
able Yih, i.e.

Eβ(Yih) = πih(β) =
ψ(xh(ti);β)∑

j∈R(ti)
ψ(xj(ti);β)

, (5)

then our model space is the set

M =

∏
i∈D

∏
h∈R(ti)

(
ψ(xh(ti);β)∑

j∈R(ti)
ψ(xj(ti);β)

)yih

: β ∈ B

 . (6)

The partial likelihood (3) is formally equivalent to the likelihood function associated
with the model spaceM if we assume that for each i ∈ D, the observed yih is equal to
one if h is equal to i and zero otherwise.

Let `(β) =
∑

i∈D
∑

h∈R(ti)
Yih log πih(β) be the log-likelihood function associated

to the model spaceM and let ∂m`(β) = ∂`(β)/∂βm. The tangent space TβM ofM at
the model point

∏
i∈D
∏

h∈R(ti)
πih(β)yih is defined as that linear vector space spanned

by the p elements of the score vector, formally

TβM = span{∂1`(β), . . . , ∂p`(β)}.

Under the standard regularity conditions, it is easy to see that TβM is the linear vector
space of the random variables vβ =

∑p
m=1 vm∂m`(β) ∈ TβMwith zero expected value

and finite variance, i.e.

Eβ(vβ) = 0 and Eβ(v2β) <∞.

As a simple consequence of the chain rule we have the following identity for any tangent
vector belonging to the tangent space TβM,

vβ =

p∑
m=1

vm∂m`(β) =
∑
i∈D

∑
h∈R(ti)

(
p∑

m=1

vm
∂πih(β)

∂βm

)
∂`(β)

∂πih
=
∑
i∈D

∑
h∈R(ti)

wih
∂`(β)

∂πih
,
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which shows that TβM is a linear vector subspace of the tangent space TβS spanned
by the random variables ∂ih`(β) = ∂`(β)/∂πih. To define the notion of angle between
two given tangent vectors belonging to TβM, say vβ =

∑p
m=1 vm∂m`(β) and wβ =∑p

n=1wn∂n`(β), we shall use the information metric (Rao, 1949; Burbea and Rao,
1982), i.e

〈vβ;wβ〉β = Eβ(vβ · wβ) =

p∑
m,n=1

Eβ (∂m`(β) · ∂n`(β)) vmwm = vT I(β)w, (7)

where v = (v1, . . . , vp), w = (w1, . . . , wp) and I(β) is the Fisher information matrix
evaluated at β. As observed in Moolgavkar and Venzon (1987), the matrix I(β) used
in (7) is not exactly equal to the Fisher information matrix of the relative risk regression
model, however it has the appropriate asymptotic properties for the inference (Prentice
and Self, 1983).

As we shall see in the next section, the dgLARS estimator is based on a differential
geometric characterization of the Rao score test statistic which is obtained considering
the inner product between the bases of the tangent space TβM and the following tangent
residual vector

rβ =
∑
i∈D

∑
h∈R(ti)

rih(β)∂ih`(β), (8)

where rih(β) = yih − πih(β). Since in the definition (8), the observed response vector
y is considered fixed, it is easy to see that rβ ∈ TβS.

2.3 DgCox: dgLARS method for the relative risk regression model
The dgLARS method is a sequential method developed to estimate a sparse solution

curve embedded in the in the parameter space B. To explore the sparse structure of a
relative risk regression model, we can use the following differential geometric charac-
terization characterization of the mth element of the score vector, i.e.

∂m`(β) = 〈∂m`(β); rβ〉β = cos(ρm(β)) · I1/2mm(β) · ‖rβ‖β, (9)

where Imm(β) is the Fisher information for βm, ‖rβ‖2β is equal to

Eβ(r2(β)) =
∑
i,j∈D

∑
h∈R(ti)

∑
k∈R(tj)

Eβ(∂ih` (β) · ∂jk`(β)) rih(β)rjk(β) =

=
∑
i∈D

∑
h,k∈R(ti)

Eβ(∂ih` (β) · ∂ik`(β)) rih(β)rik(β) =

=
∑
i∈D

∑
h,k∈R(ti)

rih(β)rik(β)

πih(β)1{h=k} − πih(β)πik(β)

and ρm(β) is a generalization of the Euclidean notion of angle between the mth column
of the design matrix and the residual vector r(β) = (rih(β))i∈D,h∈R(ti). Using (9) one
can see that the signed Rao’s score test statistic can be geometrically characterized as
follows:

rum(β) = I−1/2mm (β)∂m`(β) = cos(ρm(β)) · ‖rβ‖β,

then we shall say that two given predictors, say m and n, satisfy the generalized equian-
gularity condition at the point β when |rum(β)| = |run(β)|. Inside the dgLARS theory,
the generalized equiangularity condition is used to identify the predictors that are in-
cluded in the active set. Formally, for a given value of the tuning parameter γ ∈ R+
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Table 1: Overview of the dgCox method to compute the solution curve

Step DgCox algorithm
1 start with the intercept only model

2 repeat

3
increase the parameters of the active variables keeping the angles
between their scores and residual tangent vector the same

4
if the angle of a not-included variable is the same as the ones
currently in the model include that variable in the active set

5 until a stopping rule is met

the corresponding active set is denoted by Â(γ) and the dgLARS estimator, denoted by
β̂(γ), is such that the following conditions are satisfied:

∀m ∈ Â(γ) →
∣∣∣rum(β̂(γ))

∣∣∣ = γ, (10)

rum(β̂(γ)) = smγ, (11)

∀n /∈ Â(γ) → |run(β̂(γ))| < γ, (12)

where sm = sign(β̂m(γ)).
Using the differential geometrical structure of a relative risk regression model ex-

plained in section 2.2 and the previous conditions, it is possible to use the dgLARS
method to explore the sparse structure of a relative risk regression model. Formally, the
dgLARS method computes a finite sequence of transition points, say 0 ≤ γ(K) ≤ . . . ≤
γ(2) ≤ γ(1), such that for each γ(k) one of the following two conditions can occur:

(i) ∃n /∈ Â(γ(k−1)) such that
∣∣∣run(β̂(γ(k)))

∣∣∣ = γ, and therefore Â(γ(k)) = Â(γ(k−1))∪
{n};

(ii) ∃m ∈ Â(γ(k−1)) such that sign(rum(β̂(γ(k)))) 6= sign(β̂m(γ(k))), and therefore
Â(γ(k)) = Â(γ(k−1)) \ {m},

which means that a new predictor is included in the active set when the generalized
equiangularity condition is satisfied, namely condition (i), or an active predictor is re-
moved from the active set if the sign of the corresponding signed Rao’s score test statis-
tic is not in agreement with the sign of the estimated coefficient, i.e. condition (ii). Table
1 shows in a concise form the outline of the dgCox algorithm.

3 Simulation study
In this section we compare the dgCox model with there popular algorithms for sparse

Cox regression: the coordinate descent method (glmnet) developed by Simon et al.
(2011), the predictor-corrector (glmpath) introduced by Park et al. (2007) and the gradi-
ent ascent algorithm (penalized) proposed by Goeman (2010). In our simulation study
we generate survival times ti, i = 1, 2, . . . , n, following exponential distributions with
subject-specific parameters λi = exp(βTXi). In the linear form βTXi, the variables
X1, . . . , Xp are sampled from a multivariate normal density N(0,Σ) where the entries
of Σ are fixed to corr(Xj, Xk) = ρ|j−k| for ρ ∈ (0.5, 0.7, 0.9). The censorship is ran-
domly assigned to the survival times with probability π ∈ (0.2, 0.4, 0.6). We fix the
sample size n to 50 and the number of predictors p to 100 to emulate an scenario in
which p > n. From the 100 predictors used, we fix first 30 to 2 and the remaining 70
are set to zero.
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Figure 1: Results from the simulation study; for each scenario we show the averaged ROC curve (using
100 datasets) for the dgCox, the coordinate descent method (glmnet), the predictor-corrector (glmpath)
and the gradient ascent algorithm (penalized). The 45-degree diagonal is also included in the plots.

For each one of the previous scenarios we generate 100 datasets and we calculate the
receiver operating characteristic (ROC) curves for the four methods. In scenarios (a)
and (b), where ρ = 0.5, the four method methods exhibit a similar performance, having
overlapping curves for both levels of censorship. A similar performance of the methods
has been also observed for combinations of smaller values of ρ and π. In scenarios
(c) and (d), where the value of ρ increases to 0.7, the glmnet, glmpath and penalized
approaches still overlap, whereas the dgCox model appears to be consistently the best
method. In scenarios (e) and (f) where the correlation among the predictors is high, say
ρ = 0.9, the dgCox model is clearly the superior approach for both levels of censorship.
For the same false positive rate, the true positive rate of the dgCox method is around
10% higher than the rate obtained by the glmnet, glmpath and penalized approach. The
results for scenario (e) and (f) are shown as a ROC curve in Figure 1.

In summary, the dgCox method shows a better or equal behaviour than the glmnet,
glmpath and penalized approaches in all the scenarios. In particular, we observe that
the performance of the four methods is similarly affected by the inclusion of different
proportions of censored data. However, the dgCox models is much more efficient in
cases in which the predictor variables show high correlations levels.

4 Case study: large-B-cell lymphoma
In this section we analyze the diffuse large-B-cell lymphoma dataset (DLBCL) origi-

nally presented by Rosenwald and et. al. (2002). This dataset consist on the gene expres-
sion measurements and survival times of 240 patients in 7399 genes after a chemother-
apy treatment. Originally, the purpose of the experiment was to formulate a molecular
predictor model of survival after the chemotherapy treatment. Our goal is to use the
dgLars model to identify the most influential genes in such predictor.

From the original 240 patients, we first remove the five with survival time zero. We
impute the missing data using the k-nearest neighbour approach proposed in Troyan-
skaya et al. (2001). In order to test the robustness of the estimations, we use the original
partition of the data into a training set, consisting on 156 patients and a validation set
consisting of 79 patients.
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