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Abstract. A new three-dimensional grain-level formulation for intergranular degradation and failure in 
polycrystalline materials is presented. The polycrystalline microstructure is represented as a Voronoi 
tessellation and the boundary element method is used to express the elastic problem for each crystal of the 
aggregate. The continuity of the aggregate is enforced through suitable conditions at the intergranular 
interfaces. The grain-boundary model takes into account the onset and evolution of damage by means of an 
irreversible linear cohesive law, able to address mixed-mode failure conditions. Upon interface failure, a 
non-linear frictional contact analysis is introduced for addressing the contact between micro-crack surfaces. 
An incremental-iterative algorithm is used for tracking the micro-degradation and cracking evolution. The 
behavior of a polycrystalline specimen under tensile load has been performed, to show the capability of the 
formulation. 

Introduction 

For modern structural applications (aerospace, automotive, off-shore, etc.), a deep understanding of 
materials degradation and failure is of crucial relevance. Fracture modelling can be considered at different 
length scales: it is nowadays widely recognized that the macroscopic material properties depend on the 
features of the microstructure [1]. 

Polycrystalline materials (metals, alloys or ceramics) are commonly employed in engineering structures. 
Their microstructure is characterized by features of the grains (morphology, size distribution, anisotropy 
and crystallographic orientation, stiffness and toughness mismatch) and by physical and chemical properties 
of the intergranular interfaces. These aspects have a direct influence on the initiation and evolution of 
microstructural damage, which is also sensitive to the presence of imperfections, flaws or porosity. 

The microstructure of polycrystalline materials, and its failure mechanisms, can be investigated using 
different experimental techniques (see references in [2] for a brief overview); these provide fundamental 
information and understanding but require sophisticated equipment, careful material manufacturing and 
preparation and complicated postprocessing, especially whenever a truly three-dimensional (3D) 
characterization is pursued. 

A viable alternative, or complement, to the experimental effort is offered by the Computational 
Micromechanics [3]. Several investigations have been devoted to modelling of polycrystalline 
microstructures and their failure processes [4] and there is currently an interest for the development of truly 
3D models. Until recently, this has been hindered by excessive computational requirements. However, the 
present-day availability of cheaper and more powerful computational resources and facilities, namely high 
performance parallel computing, is favoring the advancement of the subject, especially in the framework of 
the Finite Element Method (FEM), see e.g. [5]. 

A popular approach for modelling both 2D and 3D fracture problems in polycrystalline materials 
consists in the use of cohesive surfaces embedded in a finite element (FE) representation of the 
microstructure. In this way, initiation, propagation, branching and coalescence of microcracks stem as an 
outcome of the simulation, without any assumptions. Several cohesive laws have been proposed in the 
literature [6]. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53291493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


An alternative to the FEM is the Boundary Element Method (BEM) that has proved effective for a 
variety of physical and engineering problems [7,8]. A cohesive boundary element formulation for brittle 
intergranular failure in polycrystalline materials was proposed by Sfantos and Aliabadi [9]. A 3D grain 
boundary formulation has been recently developed by Benedetti and Aliabadi for the material 
homogenization of polycrystalline materials [2]. 

In this work, a novel 3D grain-level model for the analysis of intergranular degradation and failure in 
polycrystalline materials is presented. The polycrystalline microstructure is represented as a Voronoi 
tessellation and the formulation is based on a grain-boundary integral representation of the elastic problem 
for the anisotropic crystals, that have random orientation in the 3D space. The integrity of the aggregate is 
restored by enforcing suitable intergranular conditions. The onset and evolution of damage at the grain 
boundaries is modeled using an irreversible cohesive linear law. Upon interface failure, a non-linear 
frictional contact analysis is used, to address separation, sliding or sticking between micro-crack surfaces. 
An incremental-iterative algorithm is used for tracking the degradation and micro-cracking evolution. A 
numerical test is presented to demonstrate the capability of the formulation. 

Grain boundary formulation for polycrystalline aggregates 

Artificial microstructure. For polycrystalline materials, Voronoi tesselations are widely used for the 
generation of the microstructural models [10]. The assignation of a specific orientation to each crystal of the 
aggregate completes the microstructure representation. 

Grain constitutive modelling. Each grain is modeled as a three-dimensional linear elastic orthotropic 
domain with arbitrary spatial orientation. This is not restrictive, as the majority of single metallic and 
ceramic crystals present general orthotropic behavior. 

Grain boundary element formulation. Each crystal is modeled using the BEM for 3D anisotropic 
elasticity [11]. The polycrystalline aggregate is seen as a multi-region problem, so that different elastic 
properties and spatial orientation can be assigned to each grain [2]. Given a volume bounded by an external 
surface and containing gN  grains, two kinds of grains can be distinguished: the boundary grains, 

intersecting the external boundary, and the internal grains, completely surrounded by other grains. 
Boundary conditions are prescribed on the surface of the boundary grains lying on the external boundary, 
while interface equations and equilibrium conditions are forced on interfaces between adjacent grains, to 
restore the integrity of the aggregate. The boundary integral equation for a generic grain kG  is written 
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where k
ju  and k

jt  represent components of displacements and tractions of points belonging to the surface of 

the grain kG , the tilde refers to quantities expressed in a local reference system set on the grain surface, k
i jU  

and  
k

i jT  are the 3D displacement and traction fundamental solutions for the anisotropic elastic problem. 

The integrals in Eq.(1) are defined over the surface of the grain, that is generally given by the union of 
contact interfaces CB  and external non-contact surfaces NCB . The model for the polycrystalline aggregate 
is obtained by writing Eq.(1) for each grain and then complementing the system so obtained with the 
boundary conditions 
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and with a set of suitable interface equations, expressing the different possible states of an interface. 

Interface model. The interface between two grains can be in three different possible states: pristine, when 
no damage is present and perfect bonding between the grains holds; damaged, when damage is present and 
intergranular tractions and displacement jumps are linked through a cohesive traction-separation law; failed, 
when the grains are completely separated and the laws of the frictional contract mechanics hold. 

Let us consider two adjacent grains aG  and bG . When the interface between them is in pristine state, the 
following interface continuity equations hold 
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The previous equations express the absence of interface displacement opening and the equilibrium of the 
interface tractions. The equilibrium equations always hold during the analysis, regardless the interface state, 
so they are always assumed in the following, while the continuity equations are replaced by other laws 
expressing the interface state during the interface evolution. 
Damage is introduced at the interface when the value of a suitable effective traction overcomes the interface 
cohesive strength maxT  
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In the previous equation, the local tractions are expressed in terms of local normal and tangential 
contribution, nt  and tt . The parameters  and  give different weight to mode I and mode II loading. When 
the previous condition is fulfilled, the following traction-separation laws are introduced at the interface 
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where * [0,1]d   is a damage parameter given by 
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where nu  and tu  are the normal and tangential opening displacements at the interface and c
nu  and c

tu  
represent their critical values in pure mode I and II respectively. The parameter d is the effective opening 
displacement and the damage parameter is given by the maximum value reached by the effective 
displacement during the loading history. For * 0d   the interface is pristine, while * 1d   expresses the 
failure of the interface. 
Upon interface failure, the traction-separation laws are replaced by the laws of the frictional contact 
mechanics. In general, the micro-crack surfaces can be either separated or in contact; moreover, two 
surfaces in contact can either stick or slip over each other. The equations of frictional contact mechanics are 
not recalled here, but the interested reader is referred to the literature on the subject (see [8] and references 
therein). 

Discretization and numerical solution. The present formulation has the advantage that only meshing of 
the grain surfaces is required. The artificial microstructure is, in this context, a collection of flat convex 
polygonal faces. Plane triangular linear elements are used to discretize such faces. Linear discontinuous 
triangular elements are implemented for representing the unknown boundary fields. Since the Voronoi 
tessellations used for microstructure modelling have stochastic nature, care must be taken to ensure mesh 
consistency and homogeneity to the greatest extent [2]. 

After discretization and classical BEM treatment of the Eqs.(1), the following system can be written 
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where the matrix blocks kA  contain columns of the boundary element matrices kH  and kG  corresponding 

to the unknown displacements and tractions of the k-th grain, contained in the vector kx , and ky  derive 



from the applications of the known boundary conditions. The block  *dΨ  implements the varying 

coefficients of the interface equations, i.e. the continuity, cohesive and frictional contact equations, for all 
the grain boundary interfaces. 

System (7) is sparse and special solvers can be used for its solution. To track the evolution o f a poly-
crystalline microstructure, an incremental/iterative algorithm is employed. A load increment is applied and 
the system solution is iterated until no violation of the interface equations is detected. At each iteration, all 
the interfaces are checked, to assess whether any violation of the assumed interface state is detected. For 
example, if the effective traction of a pristine interface overcomes the cohesive strength, then damage is 
initiated and the continuity equations are replaced by cohesive laws. Analogous checks are also done for 
interfaces in the cohesive or failed state. For the damaged interfaces, the cohesive law has to be updated if a 
loading condition exists, while no update is required in the cases of unloading or reloading. When 
convergence is reached a new load increment can be applied and the iterative search is restarted. 

In this work PARDISO [12] is used as iterative solver and a hybrid direct/iterative solution strategy is 
employed to speed up the numerical solution of the polycrystalline evolution problem. 

Numerical simulation of a SiC micro-specimen under tensile load 

A prismatic polycrystalline specimen subjected to tensile load is considered. The specimen is comprised of 
200gN   fully three-dimensional SiC grains; an uniform displacement is applied over the bases and it is 

directed along the longer side, Fig.1. The material properties for crystalline SiC are given in Table 1, the 
grain size is ASTM G=12 (calculated number of grains per 3mm : 6/ 4.527 10n v    [13]). The specimen's 
size is 2 2 2W W H   with 2H W  , its volume is 28 g grainV HW N V   , where grainV  is the estimated 

average grain volume. The mesh density is specified by 0.5md  (see [2] for further details about the 
meshing strategy). The properties of the interfaces are uniform and they are given in Table 2. 
 

 

Figure 1: Polycrystalline SiC specimen with 200 grains subjected to tensile load. 

 

11C  12C 13C 33C  44C  66C  

502 95 96 565 169 203.5

Table 1: Material constant for single SiC crystals. 

 



Fig. 1 shows the microstructural crack pattern immediately before the complete failure of the specimen. The 
corresponding macroscopic stress-strain curve is shown in Fig.2. The curve reports the value of the relevant 
component of the averaged stress tensor versus the nominal strain, obtained from the value of the applied 
displacement over the relevant specimen size. It is apparent how the specimen softens before the complete 
failure. Table 3 reports some statistics about the considered microstructure. 
 
 

 
Figure 2: Volume average stress component versus nominal strain for the considered specimen. 

 

maxT    II IG G  
500 1 2 1 0.05 

Table 2: Selected values for the interface properties. 

 
 

elementsN  interfacesN  DoFs T   

17,031 7,709 222,660 ~5000s  

Table 3: Some statistics about the considered polycrystalline specimen. 
The time per load increment was measured on 12-core nodes. 

 

Summary 

A new three-dimensional formulation for the analysis of intergranular degradation and failure in 
polycrystalline materials has been developed. The polycrystalline microstructure is represented as a three-
dimensional Voronoi tessellation, able to retain the main morphological and crystallographic features of 
polycrystalline aggregates. The micromechanical model is expressed in terms of intergranular fields, 
namely displacement jumps and tractions. The nucleation and evolution of intergranular damage has been 
followed using an irreversible cohesive law at the intergranular interfaces: this resulted particularly 
straightforward, being the formulation itself expressed in terms of grain boundary variables. Upon complete 
intergranular failure the frictional contact analysis is introduced to follow the intergranular micro-cracking 
process, taking into account separation, contact and sliding between the micro-crack surfaces. 
A numerical test demonstrated the capability of the formulation to model the nucleation, evolution and 
coalescence of multiple damage and cracks. For its nature, the developed formulation appears particularly 
promising in the framework of grain boundary engineering. 
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