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Abstract. A two-scale three-dimensional approach for degradation and failure in polycrystalline 
materials is presented. The method involves the component level and the grain scale. The damage-
induced softening at the macroscale is modelled employing an initial stress boundary element 
approach. The microscopic degradation is explicitly modelled associating Representative Volume 
Elements (RVEs) to relevant points of the macro continuum and employing a cohesive-frictional 
3D grain-boundary formulation to simulate intergranular degradation and failure in the Voronoi 
morphology. Macro-strains are downscaled as RVEs' periodic boundary conditions, while overall 
macro-stresses are obtained upscaling the micro-stress field via volume averages. The comparison 
between effective macro-stresses for the damaged and undamaged RVEs allows to define a 
macroscopic measure of local material degradation. Some attention is devoted to avoiding 
pathological damage localization at the macro-scale. The multiscale processing algorithm is 
described and some preliminary results are illustrated. 

Introduction 

The prediction of materials degradation and failure is relevant for several structural applications and 
it is recognized that the macroscopic material properties depend on the material microstructure[1]. 

Polycrystalline materials, either metals, alloys or ceramics, are commonly employed in 
engineering and their degradation is influenced, at the microscopic level, by grains morphology, 
size distribution, anisotropy and crystallographic orientation, stiffness and toughness mismatch and 
by physical and chemical properties of the intergranular interfaces. These features, and their effect 
on the macro-properties, can be investigated using experimental [2] and computational [3] 
techniques. The present-day availability of more powerful computational resources and facilities, 
namely High Performance Computing, is promoting the advancement of Computational 
Micromechanics [4]. 

The explicit simulation of the micro-structure has remarkable application in the multiscale 
analysis of solids. The term multiscale may assume a variety of meanings: however, here we focus 
on simulations involving two spatial scales, the component level and the grain level. The objective 
of these studies is modelling the constitutive behavior without explicit assumptions at the macro-
scale: the constitutive behavior emerges from simulations at a scale below the considered one, 
where fewer approximations may be introduced. The approach is particularly useful when a simple 
macro-constitutive model cannot be assumed, e.g. when transformations or damage are present. 

In this work, a two-scale fully 3D boundary element approach to polycrystalline degradation is 
proposed. At the macroscale, the damage-induced local softening is modelled employing a classical 
initial stress approach, while the microscopic degradation processes are explicitly modelled 
employing a cohesive-frictional three-dimensional grain-boundary formulation to simulate 
intergranular degradation and failure in the microstructural Voronoi-type morphology [2,5]. The 
strategies for coupling the two scales and avoiding pathological damage localization at the 
macroscale are briefly described. Some preliminary results are eventually discussed. 



 
 

 

Multiscale formulation 

Macroscale model. The macro-level is modelled through a non-linear incremental 3D boundary 
element formulation, where material softening, due to microstructural degradation, is taken into 
account introducing an initial stress approach [6,7]. The total macro-stresses at a macro-point are 
defined by 
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where D
ij  are decremental macro-stresses contributing to ij  by reducing the value of the elastic 

macro-stresess el
ij  that would correspond to the local macro-strains ij  in absence of damage. The 

boundary integral equation used to model the macro-scale is 
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where the last integral is performed over internal regions experiencing damage evolution. At a 
given macro-step, associated with a distribution of internal damage, Eq.(2) provides the values of 
boundary displacements and tractions that are subsequently used to compute the macro-strain 
components through the integral equation [6,7] 
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The macro-strains at an internal macro-point X are subsequently downscaled as boundary 
conditions for the corresponding associated micro-RVE. However, the direct use of the components 

ij  provided by Eq.(3) may induce pathological localization of damage at the macro-scale. For this 

reason, a non-local integral counterpart of ij , denoted here with ˆ
ij , is used for providing the RVE 

boundary conditions, ensuring uniqueness and reproducibility of results. The terms D
ij  in Eqs.(2-3) 

are provided by suitable homogenization performed over the micro-scale RVEs, as it will be shown. 

Microscale model. The micro-scale grain-boundary formulation is described in detail in [2,5]. 
Here, it is briefly recalled for the sake of completeness. The microstructure morphology is a 
Voronoi tessellation. Each grain is a 3D linear elastic anisotropic domain with arbitrary spatial 
orientation, and it is modelled through BEM for 3D anisotropic elasticity [8]. The aggregate is seen 
as a multi-region problem [2]. The boundary integral equation for a generic grain kG  is written 
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where k
ju  and k

jt  represent components of displacements and tractions of points belonging to the 

surface of the grain kG , the tilde refers to quantities expressed in a local reference system set on the 

grain surface,  
k
i jU  and  

k
i jT  are the 3D displacement and traction fundamental solutions for the 

anisotropic elastic problem. 
Eq.(4) is defined over the surface of the grain, generally given by the union of contact interfaces CB  
and external non-contact surfaces NCB . The model for the aggregate is obtained by discretizing 
Eq.(4) for each grain and complementing the system with a set of boundary and interface equations. 
The interface between two grains can be either pristine, damaged or failed. When an interface is 
pristine, continuity equations hold. Damage is introduced at the interface when the value of a 
suitable effective traction overcomes the interface cohesive strength maxT  [5]. When such condition 
is fulfilled, the following traction-separation laws are introduced at the interface 
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where * [0,1]d   is an interface damage parameter, nu  and tu  are the normal and tangential 

interface opening displacements and c
nu  and c

tu  represent their critical values in pure mode I and 
II respectively and d is the effective opening displacement. Upon interface failure, the traction-
separation laws are replaced by the laws of the frictional contact mechanics. After discretization 
and classical BEM implementation of Eqs.(4) and the associated boundary and evolving interface 
conditions, a sparse system is obtained and an incremental/iterative algorithm is employed to track 
the microstructural evolution. Details in [5]. 

Scales coupling. The macro- and micro- scales must be suitably coupled. The macro-component is 
initially pristine and no damage is present. Under external loads, the internal points experience 
macroscopic strains ij , which can be computed through Eq.(3) and provide the boundary 

conditions for the micro-RVEs. In this work periodic boundary conditions are implemented for the 
RVEs. Once the RVEs' BCs coming from the macro-scale simulatiosn are available, the micro-scale 
can be simulated. Starting from a threshold value, damage initiates in some RVEs. The micro- 
damage is reflected at the macro-scale by local softening. To define the macro-damage, i.e. to up-
scale damage, volume stress averages for the damaged RVEs are computed and used to compute 
the components of decremental stess D

ij  for the macro-point associated with the RVE. 

Macro-micro algorithm. The solution of the two-scale problem involves an incremental-interative 
macro-micro iterative solution strategy, which is briefly discussed here. The analysis starts with the 
determination of the macro load factor that initiates micro-structural damage. From that moment on, 
the analysis is fully non linear. The macro-strains provide periodic BCs for the micro-RVEs. The 
micro-RVEs are simulated and macro-damage is defined for each active RVE through 
homogenization. The macro-damage is then used to compute the decremental stresses used in 
Eqs.(2-3). Convergence is checked by assessing the convergence of internal energy at the macro-
level. When a micro-RVE is too damaged, the corresponding macro-cell is removed and a macro-
crack is initiated. The two-scale analysis strategy is illustrated in Fig.(1). 

 

Fig. 1: Multiscale analysis scheme: the macro- analysis provides the boundary conditions for the micro-RVEs, whose 
simulation provides the constitutive behaviour for the macro-scale. 

Some preliminary numerical results 

Some preliminary results are reported. A relevant challenge of the fully 3D multiscale method is the 
computational burden. Several simulations are currently being carried out to test its capability 
However, some preliminary results are shown to illustrate the method’s aim. 



 
 

 

The analyzed macro-scale component is shown in Fig.(2), where also the specimen size, loading 
conditions are given. The specimen is loaded in displacement control. 
Micro-scale data. The considered material is polycrystalline alumina. In Voigt notation, for the 
alumina single crystals, the elastic constants are: 11 496.8 GPaC  , 12 163.6 GPaC  , 13 110.9 GPaC  , 

14 23.5 GPaC   , 33 498.1 GPaC  , 44 147.4 GPaC  . The grain size is ASTM 10G  . The cohesive-

frictional inter-granular properties [5] are: 1/ 24 MPa mICK   , max 500 MPaT  , 1   , 0.2  . 
Micro-RVEs with 20 and 40 grains are considered. 
Macro-scale data. The considered macro-meshes have 15 8 4   (mesh A) and 17 10 4   (mesh B) 
volume macro-cells, with the corresponding associated micro-RVEs. The macro-scale material 
properties are 407 GPaE   and 0.24  . 
Fig.(2) shows the macro-damage distribution for four different tests. Tests A and B involve the 
smaller and larger macro-meshes, respectively, with 20 grains per RVE. Tests C and D involve the 
smaller and larger macro-meshes, respectively, but with 40 grains per RVE. For all tests, 240 hours 
elapsed time has been set, so that simulations with smaller RVEs have attained larger macro-load 
factors. The four macro-damage snapshots correspond to the macro load factors: 

0.817994E-01A  ; 0.799908E-01B  ; 0.651501E-01C  ; 0.635259E-01D  . Preliminary results 
appear consistent. 

 

Fig. 2: Macro-damage patterns for the performed tests. 

Summary 

A two-scale framework for degradation in polycrystalline materials is presented. The formulation is 
quasi-static and fully three-dimensional. The macroscale accounts for the presence of damage 
through a boundary element incremental initial stress approach. The micro-RVEs are analyzed 
using a grain-boundary cohesive-frictional approach. The macro-strains provide periodic boundary 
conditions for the micro-RVEs and micro-damage is up-scaled through volume stress averages. 
Some preliminary tests are shown to illustrate the aim of the technique. Several aspects and 
challenges of the method are currently under investigation. 
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