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Abstract
The human brain varies between individuals in both shape and size. These variations are
not unique for each brain region. This causes grey matter density between regions to covary, a
phenomenon known as “structural brain covariance”. The reasons for this structural covariance,
and its possible relations to functional connectivity, remain poorly understood. In order to
study this morphological variation, a standard brain atlas – also called a brain template – is
commonly used to enable consolidation of information across individuals. In the early days of
computerised brain research, this was done by creating an average of a large number of brain
images from young adults resampled into a common stereotaxic space known as the “MNI
space”, which is still widely used today. However, this space is less ideal for ageing studies since
the brain changes structurally with age.

The aim of this thesis was to provide a deeper understanding of the principles governing
structural covariance across the age span. In Study I, the need of a computerised brain atlas
in ageing was addressed by constructing a standard non-linear brain template from 314 older
individuals (average age 75 years) together with a regional atlas and corresponding tissue
probability maps. This template was constructed to be linearly mapped to MNI space while
forming its own non-linear ageing space. The tissue probability maps also allowed us to con-
struct a non-linear transformation to other spaces and warp the regional atlas to other study
cohorts. This approach was used in Study II-IV.

In Study II, the nature of structural covariance in ageing was investigated by calculating for
each grey matter voxel (data point) its number of significant correlations with all the other grey
matter voxels in the brain, in a large sample of 960 healthy individuals (age range 68-83 years).
Voxels with many significant correlations (known as “hubs”) were found in the basal ganglia,
the thalamus, the brainstem, and the cerebellum. No significant difference in the covariance
structure could be found between relatively younger (68-75 years) and older (76-83 years)
individuals or between men and women, suggesting that the hubs represent a fundamental
property of structural brain variation that is relatively unaffected by the ageing process.

Study III investigated if the subcortical hub regions from Study II would also be present
as hubs with a high level of covariation in a study cohort of 138 young adults between 18-35
years. Secondly, we explored if the observed patterns of structural covariation were related to
patterns of functional connectivity during resting state. We replicated the finding from Study II
that the basal ganglia, the thalamus, and the brainstem were structural hub regions, further
strengthening the support that these hubs are not caused by old age. Comparisons of structural
covariance patterns and patterns of functional connectivity during rest demonstrated only
limited overlap, suggesting that functional connectivity does not cause structural covariance
as a general principle.

In the final study (Study IV), a dimensionality reduced latent space representation of the
cohort from Study III was examined using a convolutional variational autoencoder. The results
revealed that only four dimensions – or latent factors – were required to reconstruct most of
the structural covariance, including the hubs. Regions with low overall structural covariability
typically showed an inconsistent pattern of intercorrelations with other regions in their scores
on different factors (e.g. significantly correlated on one factor, but not on other factors). In
contrast, hub regions tended to covary across the whole latent space. The factors that correlated
positively with the subcortical hubs were also positively related to an increase in functional
connectivity during resting state in wide-spread cortical regions.

In summary, these results show that subcortical hubs in human brains are robust across the
age span and that structural covariance only shows weak relations to patterns of functional
connectivity. Further studies in genetically informative samples would be required to investigate
the genetic basis of structural covariation in the human brain.
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1 Introduction

1.1 Background

Brains are remarkably similar, even between species. For instance, many properties of
the basal ganglia, such as its overall organisation and connections to other regions in
the brain, are indeed close to identical between all vertebrates. That may be explained
by the fact that the basal ganglia constitute a core circuitry in the brain, involved in
the selection of behaviour and motor learning, that evolved over 560 million years ago
(Grillner and Robertson, 2016).

Brains are obviously also very different between species. This diversity does not
merely reflect the fact that larger and more cognitive advanced animals have larger
brains. Consider for instance the dolphin brain, which resembles the human brain in
both size and complexity, but has a larger cerebellum where the cerebellar lobules
are specialised in echolocation (Hanson et al., 2013). In fact, all cetaceans (dolphins,
porpoises, and great whales) have developed specific brain features adapted for their
marine environment not seen and not needed by mammals living on land (Morgane
et al., 1990).

Behavioural differences matter too. Carnivores that have a larger home range tend
to also have a larger cerebellum (Chambers et al., 2021). There are also associations be-
tween diet, foraging strategy, habitat, and relative brain size between mammals (Mace
et al., 1981). This diversity leads to differences in brain structure while maintaining
fundamental similarities (Kaiser and Varier, 2011). In general, inter-species differences
in brain structure seem therefore to be related to evolutionary processes governed by
natural selection to better fit different environments.

Even brains within the same species, such as the human brain, differ in both shape
and size between individuals. Ageing is one of the factors that has a great impact on
human brain volume, with reductions in both grey matter (GM) and white matter
(WM) (Sigurdsson et al., 2012). Genetic variation is another factor that has shown to
covary with regional brain volume (Bryant et al., 2013; Zhao et al., 2019). However,
even when genetic and ageing variations are controlled for, there will still be a brain
variance due to environmental differences (Manzano and Ullén, 2018).

This raises an important question. What are the fundamental principles that govern
these differences in human brain morphology? The aim of this thesis is to investigate
these principles of structural brain organisation at old age and in young adulthood
using large scale computational methods.
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1.2 Brain atlases

1.2.1 Brodmann atlas

Sir William Macewen was a pioneer in brain surgery who lived during the 19th cen-
tury. His methods were for the time rather astonishing as he was able to successfully
perform the first removal of a lesion (meningioma) in 1879 (Macmillan, 2005). It
was especially astonishing given the fact that he did not have any sort of brain atlas
for guidance, but had to rely entirely on observed focal epileptic signs. Illustrations
did exist of course and much of the understanding regarding the brain was made by
anatomists such as Friedrich Tiedemann (who studied the brain of the fetus and the
brain structure in animals) (Idelberger, 1936), Paul Broca (who discovered the speech
production center) (LaPointe, 2014), and Carl Wernicke (who discovered the area for
speech comprehension) (Pillmann, 2003).

However, it was also in the 19th century that scientists began to work on studying
the cytoarchitectural structure of the brain, starting with psychiatrist Theodor Meynert
who studied regional differences based on cellular structure in the year 1867 (Triarhou,
2021). Other scientists followed and in 1909 the very first comprehensive brain atlas
was published by Korbinian Brodmann, with the definition of 52 areas in the cerebral
cortex based on cytoarchitecture (see Figure 1.1) (Brodmann, 1909). This atlas of the
brain was so unique and comprehensive that it still influences an entire brain imaging
field today (Strotzer, 2009; Zilles, 2018).

Figure 1.1: The Brodmann atlas.
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1.2.2 Talairach atlas

One would think that the Brodmann atlas would improve surgery of the brain, which
during the early 20th century was imprecise and difficult. However, because the human
brain varies in shape and size, it was very difficult to localise specific GM nuclei in
an individual’s brain. In 1947, Jean Talairach therefore designed a surgical frame
with support for various sizes of the human brain, which was used for grey nuclei
localisation in brain surgery. This new method had a profound influence on brain
surgery, as it allowed for increased accuracy in the localisation of deep grey nuclei.
Later, in 1952, Talairach further improved his stereotaxic system by using the anterior
and posterior commissures as reference points for a brain coordinate system. This work
was released as a brain atlas of GM nuclei in 1957, followed by a stereotaxic atlas in
1967 of the cerebrum to be used for the surgery of epilepsy (Mazoyer, 2008). The 1967
version of the atlas also contained labels of the Brodmann areas, based on Brodmann’s
atlas from 1909 (see example in Friedman et al. (1998)). Eventually, this was further
developed into an atlas for guidance of deep brain surgery that was released in 1988
(see Figure 1.2) (Talairach and Tournoux, 1988).

The earliest use of the Talairach atlas to approximate locations in functional brain
mapping is possibly from a study of stereognostic testing back in 1976 by Roland with
colleagues using a gamma camera technique to measure changes in regional cerebral
blood flow (rCBF) (Roland and Larsen, 1976). In 1980, this technique was further
improved to study changes of rCBF in the supplementary motor area at a group level
by transferring the individual results to a brain of standard dimensions similar to the
Talairach atlas and then averaging the results across individuals (Roland et al., 1980). A
few years later, in 1985, Fox with colleagues developed a similar method for anatomical
localisation of functional activation in positron emission tomography (PET) using the
Talairach atlas as a stereotactic framework; this time in a fully 3D stereotaxic space
(Fox et al., 1985).

When finally the 1988 version of the Talairach atlas came, computerised functional
human brain mapping was getting more advanced. Although the main purpose of the
atlas was still to facilitate brain surgery, it nevertheless had a large impact on the entire
brain mapping field as it allowed consolidating information across individuals with
various brain size to an even larger degree than before.

The widespread use of a standardised 3D coordinate system allowed the scientists
to report their findings from brain mapping experiments in a common space, which
was to be called the “Talairach space”. This procedure involved manually identifying
a line between the anterior and posterior commissures (AC-PC line) and the location
of six other landmarks in each brain (the anterior point (AP), the posterior point (PP),
the superior point (SP), the inferior point (IP), the right point (RP), and the left point
(LP)), then applying piecewise linear mapping between these points to transform the
coordinates of a single brain to the Talairach space (see Figure 1.3).
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1.2.3 Computerised brain templates

It was a tedious process to manually identify different landmarks in each PET image
and use these to transform the 3D foci of functional activity to Talairach space. One
issue was that PET images lacked details on anatomical structure and it was therefore
challenging to correctly identify all landmarks. Evans et al. (1992) therefore proposed
a method in which a T1-weighted Magnetic Resonance image (MR image, or MRI) of
the subject’s brain could be used for the labelling of the different landmarks.

Figure 1.2: The Talairach & Tournoux atlas from 1988. The different parts of the cortex are
labelled with Brodmann area numbers. Published with permission from publisher.
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Figure 1.3: The Talairach proportional grid, applied on the MNI brain template.

The reason was that the T1-weighted MRI had a better resolution and better con-
trast. In T1-weighted images, the GM appears as grey and WM appears as white. This
makes it easier to identify different brain structures and landmarks. These landmarks
were then transformed over to the PET images of the same subject and then used to
linearly resample the PET images to Talairach space. The transformation allowed to
translate, scale, rotate, and shear the images globally, but did not involve any local
adjustments of brain structures.

The procedure by Evans with colleagues still required manual labelling of landmarks
to transform the data into Talairach space. However, if an MRI of a brain already
existed as a “brain template” in a standard space, it would be possible to automate
that procedure. Such a brain template would preferably be located in Talairach space
so that scientists could continue to report 3D foci of functional activations in the same
space. Automated algorithms could then be used to transform an individual brain to
template space. This involves finding the parameters of a 4× 4 transformation matrix
A such that a given 3D coordinate v in native space (subject space) is transformed to
the new 3D coordinate v′ in template space:

v′ = Av (1.1)
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where v = (x , y, z, 1) and v′ = (x ′, y ′, z′, 1). This is known as an affine transformation,
as it allows for 3 translations, 3 rotations, 3 scaling factors and 3 shears. Obtaining the
optimal parameters for matrix A to move from the subject’s native space to template-
space is called “registering” the image to another coordinate space. Optimisation algo-
rithms can automate this procedure based on the information available in the images.
If one image is to be registered to another image of the same subject (e.g., PET to
MRI), only 6 parameters (3 translations and 3 rotations) are needed. This is known as
a rigid registration, as it does not allow rescaling or shearing of the brain. The number
of parameters is often called the degrees of freedom.

In the beginning of the 1990s, two different groups started to work on computerised
atlases with the aim to create a brain template in Talairach space; the Human Brain
Atlas (HBA) (Roland et al., 1994) and the Montreal Neurological Institute (MNI) atlas
(Evans et al., 1993). These new templates consisted of either a single MRI of a brain
or an average of many MRIs. They are sometimes referred to as a “standard brain”.

The standard brain of the HBA was a single young male brain that deviated the
least from a cohort of 20 other male brains. It was furthermore scaled very accurately
according to the definitions of the Talairach space, deviating within just a few mil-
limetres. As such, it was assumed that any transformation of brain images to the HBA
would remain in Talairach space. The MNI atlas took a different approach. The first ver-
sion, the MNI305 T1 template, was constructed by first manually identifying Talairach
landmarks in 241 young healthy individuals and transforming them to Talairach space
using a linear regression to construct a first pass, manually derived, and averaged
T1-weighted MRI template. In the second step, 305 brain images were automatically
mapped to the average template with a 9-parameters linear transformation, which
would further reduce manual errors induced in the first pass.

The Talairach atlas and corresponding Talairach space had a number of limitations
for brain research. Since it was based on the post-mortem brain of a 60-year old
female, which deviated heavily from what we would consider a representative brain of
the population, almost any mapping to this space would result in a large anatomical
deviance. The piecewise linear mapping was employed to overcome some of the non-
linear anatomical differences. However, this piecewise linear mapping was difficult to
apply for resampling brain images. While still a useful approach for surgery, piecewise
linear mapping was therefore not well-suited for brain imaging research.

The MNI305 was therefore only a linear approximation to Talairach space and
it turned out that the remaining non-linear anatomical variability would cause the
template to be larger than the typical brain. It is therefore referred to as MNI space
rather than Talairach space (Brett et al., 2002). This also had an advantage. This meant
that the MNI space would become more representative of the population as it is not
locally deformed to perfectly match the Talairach atlas.

This approximation has unfortunately given rise to confusion in the neuroimaging
field, where coordinates in MNI space have sometimes been reported as Talairach
coordinates. At the same time, research groups using the HBA would also report their
findings in Talairach space, even though a linear transformation to the HBA template
would also be just an approximation.
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A number of atlases that are based on the MNI305 atlas have been created. In
1998, the Colin27 atlas was published which was based on an average of 27 MRI scans
from one individual that was linearly transformed to the MNI305 template (Holmes
et al., 1998). The ICBM152 template (International Consortium for Brain Mapping)
was created in 2001 as the average of 152 brain images with the benefit of being in a
higher resolution than the original MNI305 template (Mazziotta et al., 2001a,b). The
ICBM152 template also came with probability maps for GM, WM, and cerebrospinal
fluid (CSF). These images were still only linearly mapped to MNI305, making the
template a bit fuzzy since the linear mapping only adjusts the brains on a global scale
and not locally. For instance, two brains that have the same total brain volume may
still have differences in some local brain structures, both in shape and size.

The affine transformation that is used to linearly transform coordinates from one
space to another space can be complemented with non-linear transformations. There
exist a number of different methods to perform non-linear transformations, including
polynomial warps, cubic B-splines, local translations, and discrete cosine transforms
(Klein et al., 2009). By using a non-linear transformation to warp the individual brain
images to standard space, it is possible to create a non-linear template. The procedure
is repeated a number of times, where for each iteration a more detailed non-linear
template replaces the previous version. This procedure was used to create the non-
linear ICBM152 template. A first version was released in 2006 and a refined version
was released in 2009 (Grabner et al., 2006; Fonov et al., 2009).

Figure 1.4 depicts some of the various templates that have been developed through-
out the years. The procedure for using these templates can vary, but are essentially as fol-
lows: The functional images for an individual are registered linearly to the T1-weighted
MRI image of that individual (often using 6 degrees of freedom in the transformation
calculation to allow rotation and translation but not scaling) and the T1-weighted
image is in turn registered linearly to the template (often using either 9 degrees of
freedom or 12 degrees of freedom, to also allow scaling in all directions separately and
also shearing). This allows all the functional images to be linearly transformed to MNI
space as accurately as possible.

Having transformed the images into a common space, one can assume that a given
voxel with a given MNI coordinate is approximately describing the same position in
different brains. To further improve the transformations, non-linear transformations
that would allow for local changes can also be used.

1.2.4 Computerised regional atlases

In 1983, two different groups worked independently on computerised regional atlases,
both with the idea to construct a system to automatically locate and measure local
anatomical structures in brain images, such as the thalamus and the basal ganglia.
Both systems worked similarly by the use of a predefined atlas that could be non-
linearly warped to the image of a subject’s brain (Bohm et al., 1983; Bajcsy et al.,
1983). The system by Bohm and colleagues was further developed and later called the
Computerized Brain Atlas (CBA) (Bohm et al., 1991).



8 1. Introduction

MNI305 (1993)Talairach (1988) HBA (1994)

Colin27 (1994) ICBM152 (2001) ICBM152NLSYM (2009)

Figure 1.4: A comparison between the printed Talairach atlas, the MNI305, the HBA, the
Colin27, the ICBM152, and the non-linear and symmetric ICBM152.

Neither system seemed to have used the Talairach coordinate system, but the land-
marks used in the CBA were at least similar to the Talairach landmarks. Both systems
were designed to run on a VAX-11/780 minicomputer, which was a very expensive and
big computer available to relatively few. These were very specialised systems. Hence,
it wasn’t really possible to share these atlases with the larger scientific community.
This was maybe the main reason why these early computerised atlases never got estab-
lished as a standard. The printed Talairach atlas was much more accessible for most
researchers and around 1985 it was already getting established as a common space
to report findings (Fox et al., 1985). The HBA and MNI templates would make this
procedure even easier.
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However, note that the HBA and MNI templates shown in Figure 1.4 do not have
any labels. It is the analogue of having a world atlas without any delineations between
countries or labels describing points of interests. For more detailed information about
a certain coordinate, such as which Brodmann area that it belongs to, it was for a
long time necessary to look it up using the printed Talairach atlas. To automate this
procedure, Lancaster with colleagues developed a tool that they called the Talairach
Daemon, which consists of a database with 3D coordinates where researchers can enter
the Talairach coordinates and get back a hierarchical list of labels from the Talairach
atlas including the Brodmann areas (Lancaster et al., 1997). Nevertheless, since the co-
ordinates are entered in Talairach space, a transformation between MNI and Talairach
space has also been proposed to correct for bias between the two spaces (Lancaster
et al., 2007).

Mapping the Brodmann areas to a standardised 3D space from Brodmann’s own
drawings (see Figure 1.1) was for obvious reasons not a very accurate procedure.
Amunts et al. (2020) therefore created a modern computerised cytoarchitectonic atlas
based on 23 postmortem brains, which were transformed to both the single subject MNI-
Colin27 template and the 2009 version of the non-linear and symmetrical ICBM152
template. These have been released as part of the JuBrain Anatomy Toolbox (Eickhoff
et al., 2005). Atlases for gross anatomical structures have also been constructed, in
which the automated anatomical labelling (AAL) atlas is one of the most used ones
(Tzourio-Mazoyer et al., 2002). Figure 1.5 shows an axial view of the Talairach Daemon,
the JuBrain, and the AAL atlas (version 3) in comparison to the printed Talairach atlas.

Talairach (1988) JuBrain (2005) Colin27 (1994)AAL3 (2020)Talairach 
Daemon (1997)

Figure 1.5: From left to right: The printed Talairach atlas, the Talairach Daemon, the JuBrain
Anatomy Toolbox, and the AAL atlas (version 3).

Lancaster described two different procedures for using a regional atlas (Lancaster
et al., 1997). The forward-transform method is the one used by the Talairach Daemon,
where the regional information can be obtained for coordinates in standard space. The
other method is called the inverse-transform, where a region is transformed from the
atlas to the individual brain (or another template space) in order to obtain the volume
of the given region in that space. By combining it with the individual’s tissue segmented
maps (GM, WM, CSF), it is possible to get fairly accurate regional volume information
on an individual level (Collins et al., 1999).
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Most regional atlases are nowadays constructed for either the ICBM152 or the
Colin27 templates, which are templates of young adults. This includes the JuBrain
atlas and the AAL atlas. However, age is one of the factors that correlate with brain
size. The brains of older individuals have often cortical atrophy and larger ventricles
compared to younger individuals (Blinkouskaya and Weickenmeier, 2021). This makes
a template of younger adults less ideal as a transformation target for ageing studies. The
warping algorithm will in that case need to reduce the size of the ventricles and reverse
the cortical atrophy in order to match the younger template – in a sense reversing the
ageing process in order to match the older brain to a younger template space.

The aim of Study I was therefore to develop an old brain template (average age 75
years) with corresponding tissue atlases and a regional atlas to be used for ageing stud-
ies, called the AGES atlas (from the Age Gene/Environmental Susceptibility-Reykjavik
Study). This would reduce the deformations required to warp from native space to
template space or vice versa. The tissue atlases would also allow the calculation of a
deformation field between the AGES template and other study specific tissue templates,
making it possible to warp the atlas to other study cohorts.

1.3 Functional brain imaging

1.3.1 Measuring brain activity

In the late 1870s, Angelo Mosso hypothesised that cognitive tasks can increase cerebral
blood flow locally in the brain. This hypothesis was tested using a device that could
measure changes in cerebral blood flow on patients with skull defects by recording
brain pulsations. He continued his work by developing the ’human circulation balance’,
a device that could measure the redistribution of blood in the body for healthy subject
with the skull intact during emotional and intellectual activities. William James, who
was interested in blood flow variations of the brain, reported Mosso’s findings in his
book that was published in 1890 (Sandrone et al., 2014). The same year, Roy and
Sharrington hypothesised a connection between neural activity and cerebral blood
flow due to cerebral oxygen consumption (Roy and Sherrington, 1890).

However, it would take many years before someone would investigate this experi-
mentally again. The first study to report quantitative measurements of the total blood
flow to the brain was published by Kety and Schmidt (1945). Their technique used
nitrous oxide to measure global cerebral blood flow. Some years later, in 1961, an early
technique that allowed the measurements of rCBF in animals used the radioactive noble
gas krypton85 that would follow the blood flow and emit low energy β -radiation. This
radiation was measured locally using a Geiger-Müller tube and craniotomy was needed
to allow the tube to get close to cortex of the brain. The signal was then recorded with
an ink-writing plotter (Lassen and Ingvar, 1961). In 1967, a similar principle but with
the skull intact was applied in humans where four detectors at different locations mea-
sured rCBF using a xenon133 isotope, demonstrating an increase in rCBF during mental
effort (Ingvar and Risberg, 1967).
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In 1973, computer technology allowed for an even more advanced study using
32 detectors. This study demonstrated a difference in rCBF patterns between two
psychological tests and a rest condition where the subject did not perform a specific
task (Risberg and Ingvar, 1973). This was probably one of the first digitised studies of
rCBF changes in the human brain. It did not provide images of brain activity, but had
at least had a grid of detectors that covered the brain sagittally. This kind of technology
was enhanced a few years later, with a digital gamma camera technique consisting of
254 detectors that could provide true imaging (Roland and Larsen, 1976). This early
technique only allowed to measure a 2D image of the brain, for instance as a sagittal
view in which case the signal could either come from the left or the right hemisphere.

Obtaining a true 3D volume of the rCBF in the brain (with voxels – the 3D equivalent
of a pixel – as the element of measurement) first became possible with the PET scanner.
In 1983, Raichle with colleagues demonstrated that by using H2

15O as an intravenous
radio tracer, it was possible to measure rCBF using the PET scanner. The radio tracer
was injected in the subject’s blood stream and when it decayed, a positron (the anti-
matter of an electron) was emitted. Once it would hit an electron, both particles would
annihilate and be replaced by two photons travelling in opposite directions, each with
an energy of 511 keV (Herscovitch et al., 1983; Raichle et al., 1983). These coordinated
gamma pulses would then be observed by the detectors in the PET scanner. Computer
algorithms were used to reconstruct the 3D location of the decay.

This radio tracer has a half life of 122 seconds, so a typical experimental setup
could be to measure one scan every 5 minutes while the subject would repeat a task
throughout the scan. The contrast between the task and the rest condition would then
reveal which areas in the brain that had an increased rCBF during the task. This kind of
design is typically known as block design, since each task is repeated for many seconds
during the scan.

During the late 1980s and the beginning of the 1990s, PET imaging remained the
most common non-invasive technique to measure local brain function. However, in
1990, functional MRI (fMRI) was invented. This allowed the use of the MR scanner to
measure increased neural activity through changes in oxygenation concentration using
the so called Blood Oxygen Level Dependent (BOLD) contrast. This contrast uses the
blood itself as a contrast agent without the need of injecting an intravenous contrast
(Ogawa et al., 1990; Glover, 2011).

Functional MRI also allowed a higher temporal resolution of just a few seconds,
which should be compared to 5 minutes with PET. Although many fMRI studies still
apply block design (where the task is repeated for a number of seconds), the higher
temporal resolution opened for so called event related design where the timing of an
event could be modelled in the experiment (Friston et al., 1998). Nowadays, fMRI is
the most common imaging technology to measure brain activity.

1.3.2 Functional connectivity

In task related studies, a typical approach could be to contrast a test condition (for
instance, move the right hand) with a rest condition at a voxel level. The result would
then show which voxels in the brain that are more active in hand movement compared
to a resting state.
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Voxels that are co-activated during the same task may also be functionally con-
nected. In 1993, Friston with colleagues defined functional connectivity as the tempo-
ral correlation between neurophysiological (functional) measurements made in different
brain areas. By applying Principal Component Analysis (PCA), they demonstrated how
a data mining approach could automatically identify functionally connected regions
commonly involved in a verbal fluency task, based on a large set of PET images (Friston
et al., 1993).

The poor temporal resolution in PET does not make it possible to directly measure
temporal correlations. We can just assume that the co-activations seen in PET have
a temporal relationship. However, this is possible with fMRI. By using a seed voxel
approach, Biswal et al. (1995) demonstrated from resting state images that a voxel
known to be activated in a finger-tapping task also correlated with a primary motor
cortex network at rest. The voxel that is chosen as the source is called a “seed voxel”.
The temporal signal from this voxel correlated with voxels in the motor cortex but
remained uncorrelated with other voxels, even when the subject was resting. This was
an indication that the network continued to have spontaneous fluctuations in the BOLD
signal even at rest.

A few years later, Raichle et al. (2001) demonstrated the existence of a default mode
state of the resting brain, where some regions (including anterior cingulate cortex and
posterior cingulate cortex) showed greater activity at rest compared to cognitive de-
manding tasks. This work was followed by Greicius et al. (2003), who demonstrated
an inverse correlation between the posterior cingulate cortex and three lateral pre-
frontal regions using seed based analysis in resting state fMRI. A further investigation
of the spontaneous BOLD signal fluctuations was done by Fransson (2005), who found
that the brain at rest toggles between different states, a state-of-mind state and an
extrospective state, rather than having a single default mode state. This was done by
looking at the actual frequencies of the BOLD signal. A similar result was shown by Fox
et al. (2005), who demonstrated an intrinsic organisation of an attention-demanding
network that continues to have spontaneous fluctuations even at rest and that is anti-
correlated with a default mode network.

A third approach to investigate spontaneous fluctuations was introduced by Beck-
mann et al. (2005), who used Probabilistic Independent Component Analysis (PICA)
to demonstrate the existence of eight distinct brain networks including the default
mode network. Fransson et al. (2007) further showed the presence of five unique
and spontaneous intrinsic brain activation networks in infants using PICA analysis. A
correspondence of these networks with functional brain maps from task related ex-
periments was shown by Smith et al. (2009), demonstrating that explicit activation
networks continue to be temporally correlated by spontaneous activations even at rest.
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Graph theoretical approaches have also been used to study functional connectivity.
These methodologies analyse patterns of covariation at a large scale by mapping brain
activity to a graph with brain regions corresponding to “nodes” and the significant
correlations between them to “edges”, i.e. links between nodes (see Figure 1.6). From
such graphs, a number of different metrics can be obtained. The simplest metric is
“degree centrality”, which represents, for each node, the number of connected nodes.
Nodes that have a high degree centrality are known as hubs. More advanced metrics
are the shortest path length between two nodes and the average distance between
one node and all the other nodes (Rubinov and Sporns, 2010). The results can also be
represented as a matrix. It is common to divide the brain into a limited set of regions to
keep the number of nodes low since the calculations are computationally heavy (e.g.,
100 nodes) (Evans, 2013).
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Figure 1.6: An example of a graph, where the nodes may represent regions or voxels depending
on the level of granularity and the edges between the nodes represent significant correlations.
The number in each node represents the number of connections to the other nodes in the graph,
known as "degree centrality" in graph theory. The node depicted in bold has the highest level
of "degree centrality" with 5 edges connecting to other nodes, and is therefore considered as a
hub.

Graph theory can also be used with each voxel as a node, but is then often limited
to only measure the degree of functional connectivity due to the complexity of the
computations. By calculating an n×n correlation matrix, with n number of voxels, and
then counting the number of significant correlations for each voxel at a given threshold,
it is possible to obtain a connectivity degree map that is reflecting the functional global
brain connectivity (fGBC) at each voxel.

Some voxels will have a higher fGBC during resting state, depending on which
networks they belong to. This was first demonstrated by Buckner et al. (2009), who
also showed that the hub regions are vulnerable of amyloid-β deposition in Alzheimer’s
disease using PET amyloid imaging. This procedure was also used to demonstrate that
voxels within the default mode network and the cognitive control network have a high
level of fGBC (Cole et al., 2010).
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1.4 Structural volumetric imaging

1.4.1 Voxel-based morphometry

The need for a standard coordinate space in brain imaging was originally to allow
consolidation of functional information across individuals so that a group level result
could be obtained. The aim was therefore to minimise inter-individual differences in
both shape and size to remove anatomical differences.

It was not until 1995 that Wright with colleagues published a work that described
how to characterise differences in GM and WM between individuals with schizophrenia
in a standard space at a voxel-by-voxel level (Wright et al., 1995). The method seg-
mented out GM and WM as separate maps from the T1-weighted images, filtered the
maps with a spatial filter, and transformed them into Talairach space. A general linear
model (GLM) was used at a voxel level with GM and WM density as dependent vari-
ables and syndrome score as independent variable along with confounding variables
(age and sex). The results showed a significant relation between severity of symptoms
and tissue density. The procedure used to quantify differences in local tissue density
at a voxel level was later called voxel-based morphometry (VBM).

An optimised VBM method was presented in 2001, where a non-linear GM study
specific template was created based on the study material and the GM map from
each individual was non-linearly transformed to this template (Good et al., 2001).
Since such a transformation could either result in local expansion or contraction, the
optimised procedure would adjust for this so that the total GM would remain the same
(by dividing the GM voxel values with the scaling factors). This study investigated GM
loss both globally and locally with increasing age and found both a global loss of GM
as well as an accelerated regional loss in specific areas.

1.4.2 Structural covariance

The same methods that are used in functional connectivity, such as seed voxel analysis,
can also be used to study GM covariance between individuals. This was first demon-
strated in a study by Mechelli et al. (2005), where they used a VBM seed voxel approach
to demonstrate that the GM density in 12 different regions indeed covary with other
regions across individuals. This is not at all a given fact. As the authors explained,
an alternative outcome could have been that the GM density topography is unique
for each individual, in which case there would be no shared variance between voxels
across individuals. Their result showed the opposite, for instance that a seed voxel in
the left amygdala will correlate not only with other voxels within the left amygdala
but also with voxels within the right amygdala and vice versa across individuals. Con-
sequently, this also means that if an individual has a high GM density in voxels within
the left amygdala, it will probably also have a high GM density in voxels within the
right amygdala.
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The results from Mechelli et al. (2005) also demonstrated that different seed voxels
may have a different number of significantly correlated voxels. Study II investigated
this further in an older population (68 to 83 years) by raising the question if there are
specific voxels that covary to a larger extent with many other voxels by using every
single GM voxel as a seed voxel and counting the number of significant correlations
(“degree centrality” in graph theory).

The technique used in Study II resembles the one used for fGBC, but in this case
it was used to measure the degree of structural covariance. We called this the voxel’s
level of structural covariability. Relating back to ageing as one of the contributors
to morphological differences, this study compared the resulting covariability maps
between two different age groups (68-77, 78-83).

Study III investigated further if a similar covariability map would emerge in a much
younger population with age range 18-35 years. Since GM density removes any effects
of global brain size, Study IV looked at the differences in covariability between GM
density and GM volume for the younger population.

Another way to investigate GM covariance patterns is to use ICA in combination
with VBM to determine separate sources of covariation within GM structure. This
was done in a study where they identified five different sources that covaried with
different aspects of the brain. The authors discovered that the GM densities were
greater in healthy controls compared to schizophrenia patients in all sources (Xu et al.,
2009). These sources consisted of variations in a) the temporal GM, b) the thalamus,
c) the basal ganglia, d) the parietal GM, and e) the frontal/temporal GM. A similar
analysis using ICA on GM showed that structural variation at some level mapped onto
the functional organisation of the brain (Smith et al., 2019). However, another study
only identified a limited relationship between functional connectivity and structural
covariance by looking at nine seed regions (Reid et al., 2017).

Study III therefore explored to which extent the full correlation matrix of inter-
individual GM densities overlapped with a corresponding functional correlation matrix,
after thresholding at a significance threshold level.

A similar method to ICA is to use unsupervised autoencoders to obtain non-linear
latent factors in a dimensionally reduced latent space that still explains most of the
variance. An autoencoder is an artificial neural network with two parts. The first part
is called the encoder, which learns to represent brain images in the latent space. The
second part is called the decoder, which learns to reconstruct the same brain images
from the latent space. Therefore, when training the autoencoder, the input of the
neural network is the same as the output, while the middle layer consists of only a
few neurons representing the latent factors. This technique was used in a study to find
relations between cognitive symptoms and neurodegenerative processes in the latent
space (Martinez-Murcia et al., 2020).
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In Study IV, a variational autoencoder was used to discover the number of latent
dimensions that are required to reproduce a majority of all significant GM volume
correlations between all voxels. A variational autoencoder is similar to an autoencoder,
but maps the input to a multivariate latent distribution and is less prone to overfit
(Kingma and Welling, 2013). The correlations between the latent factors and GM
structure were obtained in a VBM analysis to see how these correlations were related
to the covariability hubs. The latent factors were also correlated to phenotypic variables
such as sex, age, and fGBC.



2 Aims

This thesis aims at answering a number of fundamental questions regarding brain
structure variability and its relation to age.

Study I: The aims were to develop a non-linear brain template and a corresponding
regional atlas for ageing studies, together with a regional segmentation analysis pro-
cedure to study how well it could account for individual morphological differences.
Ageing brains are affected by gross morphological changes over time, making brain
templates and atlases from younger cohorts less ideal for ageing studies.

Study II: This study aimed at investigating how ageing brains differ in GM and es-
pecially if there are core differences that are coordinated between brain regions, by
studying GM correlations between brain voxels in a study cohort between 68 to 83
years. Since the brain goes through gross morphological changes over time, the ques-
tion was also if such core differences in an ageing population would be explained by
the age differences or if these core regions have a totally different origin.

Study III: To further understand the core of the coordinated variations, the aim was
to see if the core differences within a younger cohort of young adults between 18 to
35 years would be similar or different from those of an older cohort. Furthermore, the
study also investigated to what extent patterns of structural covariation at the group
level corresponded to patterns of functional connectivity seen during resting state.

Study IV: The fundamental core of structural covariance could either be the result
of a few unknown factors or the result of many different factors. The aim of this study
was to investigate if the core hubs of structural covariance could be reproduced in a
low-dimensional latent space or require a high-dimensional latent space indicating a
heterogeneous interplay between many factors.
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3.1 Study materials

The participants in Study I and Study II were randomly selected from the AGES-
Reykjavik Study cohort, which consists of 5764 participants where 4811 underwent
MRI (Harris et al., 2007; Sigurdsson et al., 2012). In Study I, the aim was to build a
template and a regional atlas for ageing studies, called the AGES atlas. With the purpose
of being representative for the whole study cohort, 400 individuals were selected
randomly from the 4811 individuals with MRI (T1-weighted, (PD)/T2-weighted, and
FLAIR), and 86 individuals were subsequently removed due to poor image quality or
having too large brain infarcts. The remaining 314 individuals were considered to
be a representative subsample of the whole cohort. These were used to construct the
template and atlas (mean age 75 years, age range 66 to 92 years, 60 % women). Cases
with dementia and mild cognitive impairment were also included if they were selected
by the random selection process.

In Study II, the aim was to investigate structural covariance in a healthy older
cohort with a balanced distribution of age and sex. For each year of age between 68
and 83 years, 30 men and 30 women without dementia or larger infarcts were randomly
selected, giving 960 individuals in total.

In Study III and Study IV, where the aim was to further investigate structural
covariance in a younger cohort, the control group of young adults from the publicly
available dataset ABIDE was selected (Martino et al., 2014). Individuals with an age
between 18 to 35 having a measured Full Scale IQ (FIQ), resting state fMRI, and
T1-weighted images, were included giving 138 individuals in total (19 women, 119
men).

3.2 Making the AGES atlas: Study I

3.2.1 Pre-processing

All MR images had previously been processed through a tissue segmentation pipeline,
where T1-, T2-, PD-weighted, and FLAIR images were used as input to a tissue seg-
mentation classifier (Sigurdsson et al., 2012). Each voxel was classified into either
GM, normal WM (NWM), CSF, or WM hyperintensities (WMH). White matter was then
regarded as the sum of NWM and WMH.



3. Methodological proceedings 19

3.2.2 Constructing the symmetric templates and tissue atlases

Four templates were constructed, one for each image sequence (T1-, T2-, PD-weighted,
and FLAIR). The procedure started with a linear transformation to MNI space, where
an initial linear T1-weighted template was constructed by averaging all the individual
images in MNI space. The aim was to construct a symmetric template, so each image
was also left-right flipped and averaged with itself.

After this first phase, all T1-weighted images were non-linearly transformed to
the linear template using the ANIMAL tool (Collins and Evans, 1997), where a new
symmetric non-linear template was constructed. This registration/averaging procedure
was repeated a number of times to improve the template for each generation. For
the first two generations, both the source images and template were blurred using
a Gaussian kernel with a full width at half maximum (FWHM) of 8 mm. The early
generations had a large spatial filter, which then decreased with increasing number of
generations to give a range from 8 mm for the first generation to 1 mm for the last
generation. The same level of blurring was repeated twice for the early generations
and four times for the last generations. A total of 16 generations were constructed,
with 5 different levels of blurring. The template was called the AGES314 template.

The subject-to-template deformation fields obtained from the final generation were
then used to also construct the corresponding T2-, PD-weighted, and FLAIR templates,
using the same procedure of mirroring and averaging the individual images in tem-
plate space. The same procedure were used to construct tissue atlases (CSF, GM, WM,
WMH), by warping each individual’s tissue segmentation to the template space and
then mirroring the tissue maps before averaging the results.

3.2.3 Constructing the regional atlas

The aim of the regional atlas was to construct a gross anatomical atlas, for which all
major cortical structures (frontal GM/WM, temporal GM/WM, etc), all major structures
in deep GM (the thalamus, the basal ganglia, etc), and ventricles were included, giving
a total of 56 anatomical regions.

An application written for Mac OS X was developed to allow manual labelling using
a Wacom tablet. It allowed the user to follow the borders from the tissue segmentation
or draw freehand, depending on the region. This helped the user to optimise the
labelling process, but it would still take a week to manually label one brain. In whole,
seven subjects were labelled, where four were used to construct the regional atlas and
three were used to validate the atlas using a regional segmentation pipeline.

In a first phase, the manually labelled images from the four subjects were warped to
the non-linear template and subsequently mirrored. Each region was warped separately
to template space. In template space, an initial max-likelihood atlas was constructed.
This atlas was then warped to all the 314 template subjects for an initial regional seg-
mentation. The tissue maps of the individual template subjects were used to constrain
the segmentation, so that e.g. WM voxels would not be classified as GM regions.

In the second phase, the results were warped back to template space where a max-
likelihood regional atlas for each tissue (GM, WM, CSF) was constructed. Some regions,
such as the thalamus and the globus pallidus, contain both GM and WM structures and
were therefore added to both the GM and WM regional atlases.
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3.2.4 Validation using a regional segmentation pipeline

The size of the regions matter. If the regions are too small, the performance of an
automatic regional segmentation algorithm will be poor. In order to validate this, the
three manually labelled subjects that were not used in the creation of the atlas were
regionally segmented using the regional atlas. The manually labelled regions were
then compared to the automatic segmentation.

The procedure of the regional segmentation is shown in Figure 3.1. Each regional
tissue atlas was warped to the individual subject where it was multiplied with the
corresponding tissue mask of the subject (for instance, the regional GM atlas was
multiplied with the subject’s GM mask). The sum of the masked regional atlases in
subject space gave the final output.
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Figure 3.1: The regional segmentation of a subject starts with warping the template to the
subject space. The deformation field is then used to separately warp the regional tissue atlases
to subject space where they are multiplied with the tissue masks of the subject. The results are
summed together to form a final regional segmentation of the subject.
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For each region, the accuracy of the segmentation was tested by calculating how
well the manually labelled regions overlapped with the automatically segmented re-
gions. This was done using the Dice Similarity Coefficient (DSC), which gives a measure
between 0 and 1 depending on how well they overlap (0 means no overlap, 1 means per-
fect overlap) (Zijdenbos et al., 2002). The reproducibility of the regional segmentation
was also validated using data from 31 subjects with two different visits. Within-subject
Coefficient of Variation (CV), between-subject CV, and DSC were calculated for each
region. The Index of Individuality ratio (IoI) was also calculated as the ratio between
the within-subject and between-subject CV.

3.3 Analysis of structural covariance: Study II - IV

3.3.1 Tissue segmentation

In Study II, the MR images were processed through a tissue segmentation pipeline
that separated each brain into CSF, GM, WM, and WMH. This pipeline was specifically
developed for the AGES-Reykjavik Study to consider WMH as a separate tissue class
and is described in detail by Sigurdsson et al. (2012). In Study III and Study IV, the
MR images were tissue segmented into CSF, GM, and WM using the FSL tools (Smith
et al., 2004).

3.3.2 Voxel-based morphometry pre-processing

The VBM procedure was performed separately for the Study II cohort and for the Study
III and Study IV cohort. The GM maps obtained from the tissue segmentation were
first warped to the MNI-ICBM152 2 mm isotropic template, where a study specific
symmetric GM template was created. This template was used as a non-linear target
to warp the GM maps to the template. The GM maps were then corrected for local
expansions and contractions, resulting in GM maps representing the GM density of
each voxel.

For Study IV, maps representing GM volumes were also calculated. This was done
by first calculating the scaling factor from subject space to template space and then
dividing it with the GM density map. In Study II, the GM mask consisted of 207110
voxels. For Study III and Study IV, the GM maps were subsampled to the same reso-
lution as the resting state fMRI-images in MNI space (3 mm isotropic), giving a GM
mask of 79187 voxels.
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3.3.3 Calculate covariability maps

Given a GM seed voxel, either from GM density or GM volume maps, and a significant
threshold T , we can calculate a brain map that describes how well this seed voxel
correlates with all the other GM voxels in the brain across a large set of individuals.
Some seed voxels will only correlate significantly with a few other voxels, whereas
others will correlate significantly with many voxels. In these studies, we called this the
voxel’s covariability level, indicating to which extent it covaries with other voxels. A
large number would indicate that it has a central position in the covariance structure.
Regions with a high covariability level are therefore regarded as hub regions. Figure 3.2
demonstrates how the level of covariability can differ between two different seed voxels
from Study II.

A covariability map of the whole brain can be obtained by using each voxel as a
seed voxel to calculate the number of significant correlations per voxel. In practice,
this is done by first calculating the correlation matrix between all voxels and then
thresholding the matrix at the threshold level T . The sum of all rows then gives, for
each column, the number of significant correlations. In Study II, this matrix had the
size 207110× 207110. For Study III and Study IV, the matrix was smaller with the
size 79187× 79187.

A permutation analysis can be used to obtain the significant threshold T . In Study II,
this was done by permuting the order of the subjects in the seed voxels 5000 times,
resulting in 5000 permuted correlation matrices, each of size 207110× 207110, from
which the maximal false correlation for each permutation can be obtained to get a
distribution of the null-hypothesis. The obtained thresholds were T = 0.54 at p = 0.001
and T = 0.45 at p = 0.05.

In Study III and Study IV, the threshold T = 0.54 was reused and a permuta-
tion based false discovery rate procedure was used to validate that the threshold was
still significant at q < 0.05 (allowing up to 5% false positive voxels among the true
positives), even though there were fewer subjects.

In Study II, the study cohort was also subdivided into four different groups (men
between 68-75, women between 68-75, men between 76-83, and women between 76-
83). The covariability maps within each group were calculated. A permutation analysis
between the groups was done to find out if one group had a significant different
covariability level than any other group.
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Figure 3.2: Two examples of seed voxels from Study II, where the seed voxel in the occipital
lobe gives rise to a green correlation pattern of 125 significantly correlation voxels and has
therefore a very low covariability. The seed voxel in the putamen gives rise to a red correlation
pattern of 2331 significantly correlating voxels and has a high covariability. The two seed voxels
are depicted as white voxels.
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3.4 Analysis of functional connectivity: Study III

In Study III, one of the aims was to see how well the structural correlation matrix
and the functional correlation matrix overlapped. Under the hypothesis that functional
connectivity would be a major causal factor for structural covariance, one would expect
a large overlap between the two matrices. The intersection between the structural
covariability matrix and the functional connectivity matrix after thresholding gave an
intersection matrix telling which voxel pairs that covaried significantly both structurally
and functionally. The sum of all rows would then give the shared structural covariability
and fGBC level for each voxel. The resting state fMRI data was downloaded from the
pre-processed ABIDE data set, which had already been pre-processed and transformed
to MNI-space.

The inter-individual functional correlation matrix was calculated by first obtaining
the functional correlation matrix for each subjects, Z-transforming each correlation ma-
trix using Fisher’s transform, summing together the matrices using Stouffer’s method,
and finally transforming the sum back to a Pearson correlation matrix where the val-
ues could be thresholded at T = 0.54. The validity of using the same threshold for
functional connectivity was again tested using a permutation based false discovery
rate.

3.5 Analysis of structural dimensionality: Study IV

Different seed voxels may give rise to totally different correlation patterns, as is shown
in Figure 3.2. However, two correlation patterns obtained from two different seed
voxels may also overlap, even if the two seed voxels do not correlate significantly with
each other. All voxels within a correlation pattern may be seen as having a common
source of variability (genetic or environmental, or both). This raises the question of how
many underlying factors – or latent dimensions – that are needed in order to describe
a majority of all significant correlation patterns across all seed voxels. These would
most likely correspond to external factors of both genetic and environmental origin
that capture the major characteristics of inter-individual structural brain covariance.

The first aim of Study IV was to use a convolutional variational autoencoder to
discover how many latent factors that were necessary to reconstruct the majority of
all significant correlations. An autoencoder is a neural network which aim is to gen-
erate the input as output, but with a limited number of neurons in the middle layer
representing the reduced latent space. The autoencoder was used to reconstruct the
images through the latent space to see if the reconstructed images could replicate the
covariance patterns at a given number of hidden latent factors.

The second aim was to use the latent factors in a VBM analysis to study how they
correlated with GM. These correlation patterns may reveal something about the nature
of the structural hub regions. The third aim was to investigate the relationship between
the latent factors and functional connectivity, total GM volume, total GM density, age
and Full scale IQ (FIQ). The relationship with functional connectivity was explored by
calculating a fGBC map for each subject. These were then used used in a GLM with
the latent factors as independent variables.
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4.1 Main findings

4.1.1 Study I

All the studies of this thesis focused on different aspects of variance in human brain
morphology. Ageing is one important factor behind this variance. The aim of Study I
was therefore to create a multi-purpose brain template with tissue probability atlases
and a corresponding regional atlas for ageing studies. One of the purposes was to use
it for regional segmentation of individual older brains, since an old brain template
would be a better target for such studies. Another purpose was to use the GM tissue
probability map (GM template) to warp the GM regional atlas to other VBM study
specific GM templates. This feature was used in Study II - IV to warp the atlas to
different VBM studies of other study cohorts.

Figure 4.1 shows that the non-linear AGES template of older individuals with mean
age 75 years has both more cortical atrophy and larger ventricles compared to the
younger ICBM152 template. This demonstrates that older individuals on average differ
in brain morphology compared to younger individuals at a large scale.

Older individuals also differ in brain morphology between each other. Especially
in ageing, the brain morphology differs quite substantially between individuals, as
demonstrated by Sigurdsson et al. (2012). Despite this high brain variability in ageing,
the AGES template is still highly detailed and only slightly more blurred than the non-
linear ICBM152 template. Figure 4.2 shows a 3D rendering of the template, where the
sulci and gyri are highly detailed.

The corresponding regional atlas is shown in Figure 4.3. The results from the
validation procedure of the regional atlas showed that 48 out of 56 regions had an
average DSC > 0.70. This was regarded as a good score. Regions with a lower score
were typically small in size. The Pineal Gland, a very small structure, had a DSC of
only 0.23, but all other regions had at least a DSC > 0.60 and the mean DSC across all
regions was 0.84. The reproducibility results from the two visits showed better results,
where all DSC > 0.70. Also, all regions had an IoI< 0.50, indicating a higher between
subject variance than within subject variance. Overall, we considered these results to
be robust evidence that the template and regional atlas could be used for regional
segmentation in ageing studies.
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AGES314 (2019) ICBM152NL (2009)

Figure 4.1: On the left side, the non-linear and symmetric AGES template constructed from old
individuals with an average age of 75 years. On the right side, the non-linear and symmetric
ICBM152 template, constructed from younger individuals with an average age of 25 years.
Notable differences are enlarges ventricles and cortical atrophy in the AGES template.

Figure 4.2: The AGES template rendered as a 3D volume. The sulci and gyri of the brain are
clearly visible with a high level of detail.
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Figure 4.3: The T1-weighted AGES314 template and the different regional tissue atlases along
with the combined regional atlas.

4.1.2 Study II

The results from Study I lead to an important question. Given that the morphological
changes with age are so large that they impact the brain structure at a large scale with
enlarged ventricles and cortical atrophy, and given that the ageing process also differ
between individuals, we may expect a structural covariability pattern that is driven by
the ageing process. How is this variance in brain morphology manifested in old age?

Study II investigated this by looking at which regions in the brain that have a
greater level of GM density covariability in the age range 68-83 years. For each GM
voxel, we calculated the number of significant correlations in GM density with all the
other GM voxels in the brain. Regions with the highest level of covariability were
considered as hub regions. These were found in the thalamus, the basal ganglia, the
brain stem, and the cerebellum, at the threshold T = 0.54 (p < 0.001) (Figure 4.4).
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However, no significant difference in the covariability pattern could be found be-
tween subjects with the age range 68-75 years and the age range 76-83 years (Figure
4.5). Furthermore, a group level covariability map for each age and sex was also con-
structed to see if there would be any significant change with increasing age or between
men and women (32 groups and 30 subjects in each group). Again, no significant differ-
ence was found in the covariability levels between the groups. The same covariability
pattern emerged in each group. Although we cannot exclude that ageing marginally
affects regional covariability level, we found no evidence that the ageing process is the
cause of the covariability hubs.
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R Caudate nucleus
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Figure 4.4: Boxplot of the covariability levels in percentage for different regions. The vertical
line depicts the covariability level for the top 5% of all voxels with the highest covariability level,
which were considered as hubs. These hubs were found in the thalamus, the basal ganglia, the
cerebellum, and the brainstem.
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0.94%

4%
68-75
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Figure 4.5: The covariability pattern for each of the four groups. No significant difference
between the patterns was found. The scale represents the number of significant correlations
per voxel in percentage.

4.1.3 Study III

The results in Study II indicated a pattern of structural covariability that may not
be related to old age. In Study III, we therefore investigated if the pattern can be
replicated in a population of young adults (age 18-35 years). We also asked if functional
connectivity could be a driver for structural covariance. Figure 4.6 demonstrates that
the covariability pattern from Study II was indeed replicated in a population of young
adults, where the thalamus and the basal ganglia were the strongest structural hubs.
Figure 4.7 shows a boxplot of the corresponding fGBC levels, with a different order of
the functional connectivity hubs compared to the structural covariability hubs.

This study also investigated how much the structural correlation matrix between
all GM voxels overlapped with the functional connectivity correlation matrix of the
same voxels. The results showed that although there were some overlap, functionally
connected voxels did not in general also covary structurally. Figure 4.8 shows the
boxplot of the intersection between structural covariance and functional connectivity,
and Figure 4.9 shows the comparison between the structural covariability map, the
fGBC map, and their overlap.
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Figure 4.6: Boxplot of the covariability levels in percentage for different regions in a cohort of
young adults. The order of the regions is similar to Study I, with the thalamus and the basal
ganglia having the highest level of covariability.

One hypothesis for the existence of covariability hubs in old people could be that
the ageing related variability in ventricle size of older people would affect neighbouring
regions and therefore give rise to the covariability. However, since the same results
emerged in young adults, the conclusion is that age cannot be the driving factor of
these covariability hubs and that the covariability hubs between young adults are well
preserved to old age.
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Figure 4.7: Boxplot of the functional global brain connectivity levels in percentage for different
regions in a cohort of young adults. The order is very different from the covarability results.

Another hypothesis for these hubs is that an underlying functional connectivity
could give rise to structural covariance. Two functionally connected regions may due
to neuroplastic mechanisms form more synaptic connections, resulting in increased
GM density. If the within-individual functional connectivity also vary between indi-
viduals, this may lead to a corresponding structural covariance between individuals.
Some overlap between the two matrices were indeed found in the subcortical regions.
However, if this was a general principle, one could expect a quite large overlap between
the functional connectivity and the structural covariance for all voxel pairs, which was
not the case.
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Figure 4.8: Boxplot of the overlapping functional connectivity and structural covariance for
each region. Most of the overlap is found in the subcortical covariability hubs.

4.1.4 Study IV

In Study IV, we first investigated if there were any differences in the covariability levels
for GM density maps and GM volume maps. The result showed that the same regions
appeared as covariability hubs (Figure 4.10). However, GM volume maps resulted in
a slightly higher covariability level for all regions and were therefore used for the rest
of the study because they did not reduce the inter-subject variance.

In order to further understand the principles of how these subcortical regions be-
come hub regions, Study IV used a variational autoencoder that could reproduce the
hubs in a dimensionally reduced latent space. The results showed that only four dimen-
sions (or factors) were required to reproduce the majority of all significant correlations
(Figure 4.11 and 4.12).
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Figure 4.9: A: The structural covariability map. B: The structural covariability map that do
not overlap with functional connectivity. C: The structral covariability map that overlap with
functional connectivity. D: Global functional connectivity map, where many regions have a
high level of significant functional connectivity. E: Global function connectivity map between
voxels having no underlying significant structural correlation. F: The MNI template. The scale
represents the number of significant correlations per voxel in percentage.

When using the latent factors as explanatory variables in a VBM analysis, the results
showed that subcortical regions had a tendency to always covary across the entire
latent space as long as there were an underlying variance in these regions. The first
factor correlated positively with all GM regions. The second factor correlated with
both subcortical regions and fronto-parietal GM regions. The third factor correlated
with cortical regions but not subcortical regions. This lack of variation in factor 3 were
consistent across the subcortical regions. The fourth factor had an interesting pattern
of both positive correlations with subcortical regions and negative correlations with
cortical regions (Figure 4.13).

Other regions, such as the cingulate and the insula, were not consistent in their
correlations with other regions. For factors 1 and 2, the cingulate had a positive cor-
relation with the subcortical hubs. For factor 4, the correlation was negative. Hence,
it did not maintain a high covariability across the entire latent space. By reducing the
variance of the first factor, we could study how this would change the covariability
levels.
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Figure 4.10: The difference in covariability level between GM volume and GM density maps
within each GM region. The hub regions remained the same, with the thalamus and the basal
ganglia as the regions with the highest covariability levels. The GM volume maps resulted in a
slightly higher covariability pattern overall.

N1 N2 N3 N4 N5 Original MNI
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Figure 4.11: The results from reconstructing the covariability pattern using autoencoders with
different number of latent factors. The structural covariability hubs start to appear already in
network N3 (with 3 latent factors), but 4 latent factors are needed to reconstruct a majority
of all significant correlations as shown by network N4. The scale represents the number of
significant correlations per voxel in percentage.

This was done by selecting the 69 subjects with the lowest variance in factor 1.
A random set of 69 individuals was also selected as comparison. The results showed a
quite different order of the regions for the limited variance subset, with the insula, the
cingulate, and frontal GM having the highest level of covariability, while the subcortical
hubs only increased slightly in the covariability level (Figure 4.14).
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Figure 4.12: A boxplot of the covariability levels for the original data compared to a boxplot
of the reconstructed data at four latent dimensions.

The four factors also correlated with other phenotypic variables. Factor 1 and 3
correlated significantly with total GM volume, and factor 3 correlated significantly also
with total GM density. Factor 4 had a significant negative correlation with both age
and total GM volume. Although FIQ correlated significantly with total GM volume,
even from the reconstructed data, it did not correlate significantly with any specific
factors. The result from the correlation with fGBC, also shown in Figure 4.13, showed
that factors with a positive subcortical correlation in the VBM also correlated with a
widespread cortical increase in functional connectivity.
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Figure 4.13: VBM and fGBC GLM analyses, with latent factors from the autoencoder N4 as
regressors. Red colour represents positive correlations and blue colour represents negative
correlations.
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Figure 4.14: A boxplot demonstrating the covariability levels of a random subset of 69 indi-
viduals (top) and a latent space of 69 individuals where the variance in factor 1 was reduced.
The results showed that the covariability of the insula, the cingulate, and the frontal GM, got
a higher level of covariability in the reduced latent space.

4.2 Sources of structural covariance

The causes of structural covariance have previously been discussed in other studies.
One conclusion is that both genetical and environmental factors are likely to be involved
and that the covariance may be in part related to differences in individual behaviour
(Mechelli et al., 2005). It is indeed an interesting observation that some of the hubs
were found within the basal ganglia, which consists of subcortical structures involved
in many different behaviours (Arsalidou et al., 2013). These structures are also highly
interconnected with the cerebral cortex.
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One interesting thing to note in that respect is that the latent factors in Study IV
that correlated positively with the volume in basal ganglia regions also correlated
positively with increasing functional connectivity in cortical regions. In other words,
individuals with increased basal ganglia volume also tend to have an overall increased
functional connectivity throughout the cerebral cortex.

Studies have shown that common genetic variants may explain up to 80% of the
variance in regional brain volume (Zhao et al., 2019). This connection has also been
observed in the thalamus (Elvsåshagen et al., 2021) and the basal ganglia (Bryant
et al., 2013), indicating that genetic factors may play an important role for the subcor-
tical hubs. One study explored in particular the genetic covariation with volumes of
subcortical regions and found four distinct genetic factors: a basal ganglia/thalamus
factor, a separate nucleus accumbens factor, a ventricular factor, and a limbic factor
(Eyler et al., 2011).

Other factors that have been discussed as sources of structural covariance are mu-
tual trophic influences, experience-related plasticity, and normal development and age-
ing (Evans, 2013). There are indeed evidence of an activity-dependent plasticity for
certain types of learning in the basal ganglia (Wickens, 2009). However, as we have
seen in this thesis, ageing seems not to be a major factor behind the subcortical hubs
since these hubs appear throughout the age span.

4.3 Comparison to other studies

The brain template of older individuals from Study I resembles that of other templates
at old age (Fillmore et al., 2015; Dadar et al., 2022), with very similar characteristics of
cortical atrophy and enhanced ventricles compared to the young adult MNI template.
However, the aim of the AGES atlases was not only to create a brain template but also
a corresponding regional atlas and tissue atlases (including WM lesions), to allow it
to be used for multiple purposes including warping the regional atlas to other study
cohorts by using the GM tissue probability map. As far as we know, this makes the
AGES atlas still unique.

Study II - IV are the first studies we know of to investigate large scale structural
covariance across the entire brain using all voxels as seeds. Other studies have either
used seed voxel analyses of a few voxels, graph theoretical approaches at a regional
level, or ICA on GM (Mechelli et al., 2005; Xu et al., 2009; Evans, 2013; Smith et al.,
2019). Hence, a direct comparison is difficult to obtain. Some covariance studies are
based on cortical thickness, where two studies found hubs in the association cortices
(He et al., 2007; Chen et al., 2008). Being based on cortical thickness methodology,
these studies excluded subcortical structure in the analysis so the results are difficult
to compare with a VBM approach.
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Nevertheless, the absence of an age-related change in covariability at old age in
Study II is consistent with a few other studies. One study used graph theory to compare
local efficiency between three different age groups. The result showed differences
between the young group and the middle aged group, but no differences between a
middle aged group and an old group of subjects (Wu et al., 2012). Another study found
the structural covariance patterns to be relatively stable at old age but that the pattern
changed from younger to middle age (DuPre and Spreng, 2017). The results in this
thesis do not exclude that the subcortical hubs are influenced by ageing processes to
some degree. What is demonstrated is that they exist as hubs independent of age.

Another study used ICA on VBM GM maps and identified the precuneus, the fusiform
area, the posterior intraparietal sulcus, and the dorsolateral prefrontal cortex to be the
most common GM regions across the independent components maps, without any
indications of the thalamus and the basal ganglia in the maps (Smith et al., 2019).
However, a similar ICA on VBM study found the thalamus and the basal ganglia as
two separated independent components maps (Xu et al., 2009). Also, patterns of struc-
tural covariance have been identified in the basal ganglia based on four seeds in the
neostriatum (Soriano-Mas et al., 2013).

Some studies have investigated a potential relationship between functional connec-
tivity and structural covariance. One study looked specifically at nine different seed
voxels in the default mode network, task positive network, and sensory networks, and
found similar patterns between functional connectivity and structural covariance for
some of the seeds (Zhang et al., 2011). Another study used ICA for both structural
covariance and functional connectivity and found independent component maps that
were similar between the two modalities (Smith et al., 2019). However, a third study
only found a limited relationship based on nine seed regions (Reid et al., 2017).

In Study III, we did not find that functional connectivity would give rise to struc-
tural covariance as a general principle. However, some overlap between structural
covariance and functional connectivity in the subcortical hubs were found. This seems
also to be in line with the study by Soriano-Mas et al. (2013), who found that neostri-
atal structural covariance patterns overlapped well with the corresponding functional
connectivity networks, and the study by Segall et al. (2012) who identified the basal
ganglia structures to have the strongest structural to functional correlation using ICA.

In Study IV, we found four latent factors that correlated well with different aspects
of GM and that could replicate a majority of the significant structural correlations. One
of the factors (F4) correlated with a distinct pattern of voxels in the subcortical re-
gions (see Figure 4.13). The variational autoencoder provides a non-linear component
analysis similar to other studies using non-linear component analysis. In one of these
studies, they found distinct non-linear patterns in the basal ganglia and the thalamus
that were different between schizophrenia patients and controls (Castro et al., 2016).
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4.4 Evolutionary perspectives

The subcortical hubs are evolutionary old regions that have been preserved through
vertebrate evolution, where the basal ganglia are thought to have evolved over 560
million years ago (Stephenson-Jones et al., 2011; Grillner and Robertson, 2016) and
belong to an ensemble of highly connected regions involved in higher-order behaviours
together with the thalamus (Bell and Shine, 2016).

The basal ganglia appeared in vertebrate evolution at the time of the Cambrian
explosion, which filled the seas with a vast diversity of animals. The Cambrian explosion
is seen as the most significant event in evolution, which possibly emerged from a
complex interplay of environmental changes including a sudden rise in oxygen that
may have enabled the emergence of carnivores and predators (Fox, 2016).

Being a system for selection of behaviour, motor learning and value-based decisions,
the basal ganglia were possibly at the very core of this leap in evolution. It had to
evolve rapidly to incorporate new behaviours necessary for survival in an ever-changing
competitive environment. Grillner and Robertson (2016) noted that the number of
modules in the basal ganglia had to increase progressively during vertebrate evolution.
However, evolving new functionality solely through mutation is expensive and takes
time. A faster process would be to evolve new modules with a similar design as the
older modules to control new behaviours. This process, where an ancestral core is
reused for new functions, is known as exaptation (Grillner and Robertson, 2016).

It has been shown that the basal ganglia of the lamprey has all the parts of the mam-
malian basal ganglia, but with simpler circuits, demonstrating that the basal ganglia
circuitry has been conserved, reused, and expanded through evolution (Stephenson-
Jones et al., 2011). Rather than generating new structures, it is quicker to reuse and
extend existing networks. As an example, the structures of the cortico-basal ganglia-
thalamo-cortical loop, with its direct pathway to initiate and execute voluntary move-
ment and indirect pathway to inhibit behaviour, do exist in the lamprey but consist
of a much more complex network in the human brain (Grillner and Robertson, 2016;
Parent and Hazrati, 1995).

Another evolutionary process that will lead to faster evolution is to reutilise already
existing genetic variants from its ancestors. This inheritance is called standing genetic
variation and the evolvability of a population depends highly on it (Barrett and Schluter,
2008; Lai et al., 2019). A standing genetic variation through evolution will eventually
lead to a genetic variability that is shared across species (phylogenetic variability) as
the branches in the pylogenetic tree are splitting. As a result, the variation in structure
seen in the human brain resembles that of other species, probably due to phylogenetic
variability (Charvet et al., 2013).

These two evolutionary processes are probably at interplay. The standing genetic
variation allows to inherit and store different genetic variants across the species DNA,
which could potentially cause GM volume variance in the subcortical regions. Studies
have indeed demonstrated a genetic correlation with both the thalamus and the basal
ganglia (Elvsåshagen et al., 2021; Bryant et al., 2013). At the same time, the exaptation
process have created intricate networks in the subcortical regions through evolution
that evidently also covary structurally across individuals.
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Combined, these two processes may lead to inter-individual variance in both func-
tional connectivity and structural covariance. In Study IV, there were evidence that
some latent factors would correlate with both subcortical brain volume and inter-
individual increase in fGBC (see Figure 4.13). In Study III, there were also some
evidence of a shared within-individual functional connectivity and inter-individual
covariance in the subcortical hub regions (see Figure 4.9).

At the same time, on individual level, adaptation to a new environment has to be
done at a synaptic plasticity level for survival and several parts of the basal ganglia
are also susceptible to synaptic plasticity (Wickens, 2009). If both genetic and envi-
ronmental factors are causing variance in subcortical volume, it is plausible that these
factors would be embedded in the latent space from Study IV. The subcortical regions
maintained a high covariability level throughout the entire latent space. Thus, it may
be that these subcortical hubs origins from both genetic and environmental factors.



5 Conclusions, limitations and future
perspectives

5.1 Conclusion

The main aim of this thesis has been to understand the principles of structural brain
variance that cause different brains to have different shape and size. The development
of a standard template of old individuals (mean age 75) showed cortical atrophy and
increased ventricles compared to the MNI template of younger individuals (Study I).
From this, we can conclude that ageing is one important factor for morphological
differences between individuals.

However, when studying which voxels that have the highest level of covariability, the
results showed that voxels in the subcortical regions, the thalamus and the basal ganglia,
had the highest covariability both for individuals at old age (68-83 years, Study II)
and younger age (18-35 years, Study III & IV). By using a variation autoencoder to
obtain a dimensionally reduced latent space (Study IV), we found that the correlations
between the structures in these subcortical hubs are maintained as we span across
the whole latent space. This is not true for other structures such as the frontal lobe,
which obtained a higher covariability when the latent space was reduced. If the latent
space contains both environmental and genetic factors that correlate with subcortical
structures, a conclusion could be that the correlations between the subcortical regions
are similar across the different factors.

An interesting connection between increased basal ganglia volume and an overall
increase in cortical fGBC was found for some factors, indicating that there is a relation-
ship between structural covariance and functional connectivity (Study IV). However,
we found no indication that the functional connection between two voxels would com-
monly give rise to an inter-individual structural covariance between the same two
voxels (Study III). Most voxel pairs did not have both a functional connection and a
structural covariance.
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5.2 Limitations and future perspectives

These studies have a number of limitations that need to be addressed. In Study I,
the number of subjects used to create the regional atlas was limited to four subjects
and only three subjects were used for validation. However, the AGES template itself
was created from 314 subjects. One approach could have been to label the actual
AGES template instead of individual subjects, but we found it easier to locate certain
borders within the individual subjects and then warp the results to the template. More
validation subjects would be necessary to draw larger conclusions. Nevertheless, the
manual inspection of the final results demonstrated a regional atlas with quite accurate
delineations between regions.

In Study II, the regional atlas was used to define the level of covariability in each
region. The age range of the study cohort was similar to the AGES template and by
obtaining the deformation field between the AGES GM probability map and the study
specific GM probability map obtained from the VBM study, it was possible to warp the
atlas to the VBM study space. However, in Study III and Study IV, the study cohort is
between 18 to 35 years. The rationale for using the same procedure here, was that we
needed the same definitions of the regions to be able to compare the results. A visual
inspection of the AGES atlas after warping to the VBM template showed that it was
accurate enough for the purpose of the study, reflected also by the results.

This work has hypothesised that both environmental and genetic factors have in-
fluenced the structural covariability levels. However, we do not know how the latent
factors map to these external factors. If the genetic variance could be separated from
the environmental variance, it should be possible to compute a covariability map that
only represents environmental factors and another covariability map representing only
genetic factors. In principle, this could be done using large genetically informative data
sets, e.g. from twins. Once separated, the latent space of the variational autencoder
could also be mapped based on this information.

The difference between an autoencoder and a variational autoencoder is that the
latter is a so called generative model. It can generate new samples of simulated brain
images by sampling points in the variational space from which it has not been trained.
This is done by learning the probability distribution of the input data. We did not have
enough subjects to train and validate the network for this purpose.

However, with more subjects, it may be possible to create a latent space of the
structural covariances where the morphology of simulated brains could be studied and
the latent space could be clustered into different features. Another interesting aspect is
to investigate how individuals with a neurodegenerative disease would move through
the latent space as the disease is progressing. This could give further insights into the
mechanisms of the disease and could potentially also be used as a prediction tool based
on the trajectories of other individuals.
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