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ABSTRACT 

In precision medicine, predicting the risk of an event during a specific period may help, 

for example, to identify patients that need early preventive treatment. Modern machine 

learning (ML) techniques are therefore ideal for building these predictions. However, 

medical datasets often suffer from right-censoring of the outcome of interest posing 

an obstacle to the direct applicability of ML algorithms. The aim of this thesis work is 

to develop and advance methods for prediction in settings of right-censoring, and in 

some settings also including competing risks. Specifically, in Project I, we developed 

an approach that combines inverse probability of censoring weighting (IPCW) with 

bagging as a pre-processing step to enable the application of all existing ML methods 

for classification in settings of right-censoring and competing risks, and we propose a 

procedure to combine optimally a set of single IPCW bagged methods. In Project II, 

we developed an extension of Project 1 to combine optimally not only over ML 

procedures for the same outcome but combining survival outcomes such as Cox 

regression model and continuous outcome such as pseudo-observations-based 

regression. In Project III, we integrated pseudo-observations into Convolutional Neural 

Network to predict the cumulative incidence using images and structured clinical data. 

In Project IV, we applied the methods developed in Project 1-2 to build a flexible risk 

prediction model to predict the risk of any cancer diagnosis using a Swedish 

population-based register among sarcoidosis patients.  

In the last project, Project V, we explored the utility of a dynamic prediction model in a 

setting of complete data as decision support tool for public health to manage future 

pandemics. Specifically, we applied two state-of-the-art batch reinforcement learning 

algorithms to learn the best face covering policy response at the national level with the 

goal of reducing the spread of COVID-19. 
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1 INTRODUCTION 

Precision medicine is an emerging approach for disease prevention and management 

based on delivering treatment strategies that are deeply tailored to each individual 

patient (Collins & Varmus, 2015). Unlike the standard strategy “one-size-fits all”, where 

the same treatment is assigned to all patients that suffer a disease, precision medicine 

aims at assigning the right treatment for the right patient given at the right time. In this 

new medical paradigm, the development of machine learning methods, jointly with 

large real-world databases, hold promise in providing a personalized medicine to each 

patient. 

Machine learning (ML) can be broadly defined as ''computational methods using 

experience to improve performance or to make accurate predictions" (Mohri, 

Rostamizadeh, & Talwalkar, 2021). Here, experience is in the form of observational 

data. The components of any ML problem is data, where we can learn from; a model, 

that tells us how to transform the data; a loss function, that measures the badness of 

the model, and an optimization algorithm to update the model parameter in the 

direction that reduces the loss function.    

There are many kinds of ML problems. The research projects that support this 

proposal plan towards the doctoral degree focus only on supervised learning and 

reinforcement learning. Project 1, Project 2, Project 3 and Project 4 fall into supervised 

learning where the experience is survival data that suffer from right-censoring and, in 

some cases, competing risks. On the other hand, Project 5 falls into reinforcement 

learning using observational data.  

Supervised learning is the most common problem in machine learning. It addresses 

the task of predicting a response, also called target or label, given the covariates, also 

called features. Let 𝑦 denote the response and 𝑋 the covariates. Given a dataset of 𝑁 

observations of the pair covariates and response denoted by {𝑋 , 𝑦 } , supervised 

learning aims at constructing a prediction function 𝑓  that maps the inputs to the 

prediction function 𝑓 (𝑋). Moreover, we are interested in the following task in 

supervised learning: predicting the individual risk of an event (𝑦 = 1 if the event 

happened otherwise 𝑦 = 0) before a specific time given 𝑋 . This quantity plays an 

important role in precision medicine to identify and target those individuals at higher 

risk of experience an adverse event for early preventive strategy and thus minimizing 

their future risk. Cox proportional hazards regression model (Cox, 1972) is standard 
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method to build predictive models in setting of censored time-to-event data. However, 

such modeling strategy often lack the necessary flexibility. Machine learning methods 

can be much more flexible, making them more suitable to handle high-level 

interactions and higher-order associations, which may result in predictions that are 

more accurate. However, survival data poses an obstacle to the direct applicability of 

machine learning algorithms due to missing events times for censored individuals (for 

instance, 𝑦  is not observed for those who are censored). Project 1, 2 and 3 develop 

methods that enable the application of supervised ML to survival data. 

Reinforcement learning (RL) provides a mathematical framework to study problems 

that involve the task of learning to make a sequence of decisions so as to optimize an 

outcome (called reward) (Sutton & Barto, 1998). Unlike supervised learning, RL 

algorithms collect information by interacting with the environment through a sequence 

of actions. At every decision point, the RL algorithm chooses an action and it receives 

a new observation of the environment (state) and an immediate reward. In settings 

such as healthcare, this online interaction is dangerous or unfeasible. Batch or offline 

RL is the task of learning from an observational data (fixed dataset) without further 

interaction with the environment (Lange, Gabel, & Riedmiller, 2012). Batch RL has 

only the fixed dataset of transitions in common to supervised learning, still not having 

an external supervisor. In the context of healthcare, the meaning of state, action and 

reward could be defined as patient covariates and treatment history; treatment options 

and clinical response after treatment, respectively. A policy, or similarly, a decision 

rule, specifies what action to take at any time step given the state. The goal in batch 

RL is to learn a policy that maximize the sum of rewards received at each time decision 

point. This optimal policy, which is a tailored treatment recommendation, 

operationalizes precision medicine.
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2 RESEARCH AIMS 

The overall goal of the projects is to develop and advance methods for prediction and 

medical decision-making. For instance, the methods developed in these projects may 

be used to target treatments or therapies to those patients most likely to benefit from 

them and potentially enhance the clinical benefits, reduce side effects and increase 

the treatment compliance. 

Project 1, 2, 3 and 4 use the cumulative incidence as a tool for personalizing treatment. 

The information given by quantifying the proportion of patients, who could experience 

any of the causes, that fail from cause 𝑘 before to time 𝜏  is relevant for choosing 

treatment options. On the other hand, Project 5 explores the potential usefulness of 

reinforcement learning methods in public policy as a decision-supporting tool. 

2.1 PROJECT SPECIFIC AIMS 

o Project 1: To develop ensemble machine learning methods for right censored 

data, with or without competing risk, using IPCW bagging methods. 

o Project 2: To extend ensemble machine learning methods for right-censored 

data using pseudo-observation based loss functions. 

o Project 3: To develop improved Convolutional Neural Network (CNN) 

methods using pseudo-observations. 

o Project 4: To apply methods developed in Project 1 and Project 2 to be able 

to predict risk of any cancer diagnosis in sarcoidosis patients using a Swedish 

population-based register. 

o Project 5: To apply deep reinforcement learning methods to discover the 

best face covering policy with the aim at reducing the spread of COVID-19. 
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3 MATERIALS AND METHODS 

3.1 SUPERVISED LEARNING IN SURVIVAL DATA 

3.1.1 Notation 

Let  𝑇  be the true event time, 𝐶  be the censoring time, 𝑇 = min {𝑇 , 𝐶 }  be the 

observed right-censored event time and ∆ = 1{𝑇 < 𝐶 } be the event indicator for 

individual 𝑖 = 1, … , 𝑁. If there is competing risks, let 𝛿 𝜖{1, … , 𝐾} be the event-type 

and 𝛿 =  ∆  𝛿 be the event indicator. In the absence of competing risks 𝐾 = 1 and 

𝛿 = 0 implies that an individual is right-censored. In addition, we observe a set of 

covariates for each individual given by 𝑋 = (𝑋 , , … , 𝑋 , ). In Project 3, in addition to 

the structured covariates, we observe an image data that is a three dimensional 

given by its spatial and channel dimension. We denote the image data as 𝐼. The goal 

is to predict the individual risk of experiencing the main event before a specific time 

𝜏 using the information of the patient, 𝑋 (Project 1 and 2) and 𝐼 (Project 3). 

Specifically, in Project 1, we were interested in estimating the cumulative incidence 

under the presence of competing risks 

𝑃(𝑇 ≤ 𝜏, 𝛿 = 𝑘|𝑋) 

based on the following available data 𝐷 = 𝐸 , , ∆ , 𝛿 , 𝑋  for 𝑖 = 1, … , 𝑁 where 

𝐸 , =
1
0

𝑁𝐴

𝑖𝑓 𝑇 ≤ 𝜏 𝑎𝑛𝑑 𝛿 = 𝑘 

𝑖𝑓 𝑇 ≤ 𝜏 𝑎𝑛𝑑 𝛿 ∉ {0, 𝑘} 𝑜𝑟 𝑖𝑓 𝑇 > 𝜏 
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

In Project 2, we were interested in estimating the cumulative incidence quantity: 

𝑃(𝑇 ≤ 𝜏|𝑋) 

based on 𝐷 = {𝑇 , 𝑦 , 𝑋} for 𝑖 = 1, … , 𝑁 where 𝑦 = ∆ 1{𝑇 ≤ 𝜏} . 

In Project 3, we were interested in estimating the cumulative incidence quantity 

𝑃(𝑇 ≤ 𝜏|𝑋, 𝐼) 

using 𝐷 = {𝑇 , 𝑦 , 𝑋 , 𝐼 } for 𝑖 = 1, … , 𝑁. 

Using directly the outcome 𝐸 ,  or 𝑦  in a predictive model to estimate the 

corresponding target quantity would lead to biases due to not taking account the 
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presence of right-censoring. Two approaches to overcome this problem, other than 

the naïve method of excluding censored observations in the analysis, are IPCW and 

pseudo-observations.  

3.1.2 Supervised ML 
 

Our goal is to apply ML methods to survival data in order to estimate the quantity 

cumulative incidence to make predictions. We assume that there is a relationship 

between our quantity of interest, 𝐸[1(𝑇 ≤ 𝜏)] or 𝐸[1(𝑇 ≤ 𝜏, 𝛿 = 𝑘)], and 𝑋 that is 

summarized by the unknown function f. We want to estimate f using the training data 

given by 𝐷 . In this thesis, the ML methods are treated as a black box. We are 

concerned about the accuracy of the predictions. 

In Project 1, we applied ML methods for classification (for example, logistic regression 

and more flexible methods such neural networks) to estimate f using observation 𝐸 ,  

and 𝑋. In Project 2, we applied ML methods for binary and continuous outcome. In 

Project 3, we applied convolutional neural network using images. 

Furthermore, in Project 1 and Project 2 we applied stacking (Breiman L. , 1996), an 

ensemble method that combines predictions from several ML methods into one with 

the goal of increasing predictive accuracy. For instance, if one consider the linear 

combination as the stacking procedure (as in Project 1 and Project 2), the final 

prediction is given by 

𝛽  𝑓1 + ⋯ +𝛽 𝑓𝐴 

where  𝑓𝑎 denotes the 𝑎-th ML method in the library that was fitted in the training set. 

The library contains a total of A algorithms and the coefficients 𝛽 , for  𝑗 = 1, …,A , 

weights each algorithm in the final prediction. These weights are unknown a priori. 

We uses V-fold cross validation to find the optimal contribution of each candidate 

algorithm to the final prediction. Implementation of the V-fold cross validation using 

the linear stacking procedure is as follows: 

Step 1. Split the data into V-folds 

Step 2. For each fold v = {1,…,V}, 

a) The observations in the v-th fold are used as validation set and the 

remaining of the observations as training set. 
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b)  Train each candidate algorithm on the training set and used the trained 

algorithm to compute predictions for the validation set 

Step 3. Collect the predictions of each algorithm across the validation sets 

Step 4. Form the weighted linear combination 

 

𝛽  𝑓 + ⋯ +𝛽 𝑓  

and select the weights that minimize a desired loss function (for example, one minus 

the area under the ROC curve (AUC)). 

3.1.3 Approaches to adapt ML methods to survival data 

3.1.3.1 Application of IPCW in existing ML methods 

Inverse probability of censoring weighting (IPCW) is a technique for dealing with 

censored data (Robins & Finkelstein, 2000). IPCW works reweighting the individuals 

who are not censored by the inverse probability of remaining uncensored. Individuals 

who are censored are not included as observations in the analysis and are 

represented by those weighted individuals. In mathematical terms, IPC weight is 

defined as 

𝑤 =

1

𝐺(min{𝑇 , 𝜏} |𝑋)
  𝑖𝑓 min {𝑇 , 𝜏} ≤  𝐶

0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where 𝐺(𝑡|𝑋) = 𝑃(𝐶 > 𝑡|𝑋) is the censoring survivor function, an unknown function 

that must be estimated from the data. Estimation methods go from the simplest 

method as Kaplan-Meier (KM) in the case of independent censoring to procedures 

that allow for covariates to account for dependent censoring (Robins & Finkelstein, 

2000; Satten, Datta, & Robins, 2001) such as Cox regression model. In Project 1, we 

estimated the IPC weights using Cox regression model and a more flexible model 

such as boosted Cox regression (Binder, 2013). In Project 2, the IPC were estimated 

in the simplest way using KM. In Project 3, we estimated the IPC using Cox regression 

model. 

 

IPCW has been incorporated in ML methods in order to account for right-censoring in 

survival data (Vock, 2016; Wolfson, 2015; Bandyopadhyay, et al., 2015; Molinaro, 

Dudoit, & Laan, 2004; Hothorn, Buhlmann, Dudoit, Molinaro, & Van Der Laan, 2006).  
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For instance, (Vock, 2016) shows how to incorporate weights in different ML methods 

such as naive Bayes; bayesian networks; k-nearest neighbors; generalized additive 

logistic model, and support vector machine. These adaptations are specific to the 

method and some of them do not have software implementations like the neural 

network package in R.  

3.1.3.2 IPCW bagging 

IPCW bagging combines IPCW and bagging (Breiman L. , 1996). Bagging or 

bootstrap aggregation is a procedure used to reduce the variance of a ML method and 

increase its accuracy. It works generating 𝐵 training samples from the original training 

set, then training the ML on 𝑏-th bootstrap sample (𝑓 ) and finally averaging all 

predictions to obtain the final prediction (𝑓). In mathematical terms, 

𝑓 =  
1

𝐵
 𝑓 (𝑥) 

In IPCW bagging, IPC weights are used to generate a weighted sample from the 

training set. That allows training any ML on a right-censored data and removes the 

need to directly adapt any of ML. IPCW bagging (Hothorn, Bühlmann, Dudoit, 

Molinaro, & Van Der Laan, 2006) is extended in Project 1.  

3.1.3.3 Other proposals that not rely on IPCW  
 
There are other approaches that are specific to the method too and do not use weights 

to handle censoring. For example, some authors suggested modifying the splitting 

criteria for decision trees and random forest for survival data (Gordon & Olshen, 1985; 

Hothorn, Lausen, Benner, & Radespiel-Tröger, 2004; Ishwaran, et al., 2014). Other 

works have adapted deep neural networks (Faraggi & Simon, 1995; Katzman, et al., 

2018; Ching, Zhu, & Garmire, 2018) and convolutional neural networks 

(Mobadersany, et al., 2018; Zhu, Yao, & Huang, 2016; Li, et al., 2019) replacing the 

linear representation of the log of hazard by the output of the network, which is a non-

linear, and using the negative log partial likelihood to train the network. However, they 

maintained the proportional hazard assumption. Other works such as (Luck, Sylvain, 

Cardinal, Lodi, & Bengio, 2017) avoided the proportional hazard assumption using a 

sophisticated loss function for censored data. 
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3.1.3.4 Pseudo-Observations 

Pseudo-observation (PO) is a technique used with the goal of transforming a censored 

problem into an uncensored one and thus apply standard statistical methods 

developed for complete data (Andersen & Perme, 2009). PO replaces the censored 

response variable of each individual by the individual jackknife. For instance, the PO 

cumulative incidence for individual 𝑖, as in Project 3, is: 

𝐶𝐼 (𝜏) =  𝑁 𝐶𝐼(𝜏) − (𝑁 − 1)𝐶𝐼 (𝜏) 

where  𝐶𝐼(𝜏) = 1 − 𝐾𝑀(𝜏) and 𝐾𝑀(𝜏) is computed using the entire sample and 

𝐶𝐼 (𝜏) is computed removing the 𝑖-th individual from the data. Note that in the 

absence of competing risks, the cumulative incidence is equal to one minus the 

survival function. If competing risks were present, we would use one minus the Aalen-

Johansen estimator (Aalen & Johansen, 1978).  

The theory of PO approach requires that  𝐶𝐼 (𝜏) be a consistent estimator and that 

censoring be independent of the event time (Graw, Gerds, & Schumacher, 2009). 

When censoring is covariate-dependent and conditionally independent of the event 

time given the covariates, the KM estimator is biased. This bias can be corrected using 

IPCW in order to compute weighted PO for each individual (Xiang & Murray, 2012). In 

Project 3, we modeled the censoring using a Cox’s PH model but options that are 

more flexible are valid options (for example, random forest).  

Once the POs are computed, the analysis is carried out based on the new data that 

contains the PO as the new response variable. For example, in Project 3 the new data 

𝐷 , = {𝐶𝐼 (𝜏), 𝑋 , 𝐼 } for 𝑖 = 1, … , 𝑁 is used to train the CNN model. 

3.1.4 Evaluation 

Evaluation of the performance of the ML method to predict future data is central to the 

development of any prediction model. At the end, the final goal is to accurately predict 

the risk of an event for future patients based on their clinical measurements (for 

example, predict the five-year risk of any cancer diagnosis as in Project 4). Thus, we 

are interested in the accuracy of the predictions on the test data, the data that was 

not used to train the model. 

 

The area under the ROC curve (AUC) is extensively used as a performance measure 

of a maker in the medical domain. Here the marker is represented by the risk 
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predictions 𝑓. The ROC curve compares the sensitivity estimates (probability of a true 

positive) against the one minus the specificity (probability of a false positive) for all 

possible values of 𝑓. A higher AUC value indicates a better 𝑓 performance and it is 

usually assumed that a higher marker value is more indicative of more risk of 

experiencing the event. When the event status is time-dependent, sensitivity and 

specificity become time-dependent too, leading to time-dependent AUC (Heagerty & 

Zheng, 2005; Heagerty, Lumley, & Pepe, 2000). 

3.1.4.1 Time-dependent AUC 

In time-dependent AUC, cases and controls are defined in a cumulative/dynamic 

fashion. More precisely, at a fixed time 𝜏 an individual is classified as a case for  𝑇 ≤

𝜏  and as control for 𝑇 > 𝜏 . Thus, the classification of the population in terms of cases 

and controls depends on the specific time of interest 𝜏. For a marker value 𝑓, 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑐, 𝜏) = 𝑃(𝑓 > 𝑐|𝑇 ≤ 𝜏) 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑐, 𝜏) = 𝑃(𝑓 ≤ 𝑐|𝑇 > 𝜏) 

Thus, the AUC is given by: 

𝐴𝑈𝐶 = 𝑃(𝑓 > 𝑓 |𝑇 < 𝜏, 𝑇 > 𝜏 ) 

In competing risks, two definitions of time-dependent specificity can be considered 

depending on the control group definition considered (Zheng, Cai, Jin, & Feng, 2012). 

If the control group is defined as those who are free of any event at time 𝜏, 𝑇 > 𝜏, 

leads to the previous specificity.   

Whereas, the second definition of control include those who experienced the 

competing risks before time 𝜏, 𝑇 > 𝜏 𝑜𝑟 𝑇 ≤ 𝜏 𝑎𝑛𝑑 𝛿 ≠ 𝑘  , and leads to the following 

specificity measure: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦∗(𝑐, 𝜏) = 𝑃(𝑓 ≤ 𝑐|𝑇 > 𝜏 𝑜𝑟 𝑇 ≤ 𝜏 𝑎𝑛𝑑 𝛿 ≠ 𝑘) 

These two definitions of the control group result in two AUC: 

𝐴𝑈𝐶 = 𝑃(𝑓 > 𝑓 |𝑇 < 𝜏, 𝛿 = 𝑘, 𝑇 > 𝜏 ) 

𝐴𝑈𝐶 = 𝑃(𝑓 > 𝑓 |𝑇 < 𝜏, 𝛿 = 𝑘, 𝑇 > 𝜏 𝑜𝑟  𝑇 ≤ 𝜏 𝑎𝑛𝑑 𝛿 ≠ 𝑘) 



 

 11 

In Project 1, we used this latter definition, 𝐴𝑈𝐶 , for the evaluation of the predictive 

performance of the stacked procedure. Furthermore, we minimize the amount 

 1 − 𝐴𝑈𝐶  for selecting the optimal contribution, 𝛽 , … , 𝛽 , to the stacking. 

Estimation of the AUC has been approached using Bayes theorem and applying KM 

estimator (Heagerty, Lumley, & Pepe, 2000). For example, using Bayes theorem, 

one can re-write the sensitivity as 

𝑃 𝑓 > 𝑐 𝑇 ≤ 𝜏 =
𝑃 𝑇 ≤ 𝜏, 𝑓 > 𝑐

𝑃(𝑇 ≤ 𝜏)
=

𝑃 𝑇 ≤ 𝜏|𝑓 > 𝑐 𝑃(𝑓 > 𝑐)

𝑃(𝑇 ≤ 𝜏)
 

And recognizing that 𝑃 𝑇 ≤ 𝜏|𝑓 > 𝑐  is the conditional survival function in the subset 

of individuals with 𝑓 > 𝑐, one can estimate that quantity using KM estimator. The 

quantity 𝑃(𝑓 > 𝑐) can be estimated using the empirical distribution, 1 − ∑  . Other 

approaches have used IPCW estimates of the AUC (Blanche, Dartigues, & Jacqmin-

Gadda, 2013; Uno, Cai, Tian, & Wei, 2007). In Project 1, we followed that latter 

approach. 

In Project 2, we used a time-dependent AUC that uses PO as outcome. This is justified 

by the property of the PO for the cumulative incidence (Graw, Gerds, & Schumacher, 

2009) 

𝐸 𝐶𝐼 (𝜏) 𝑋 = 𝑃(𝑇 ≤ 𝜏|𝑋 ) + 𝑜 (1) 

where 𝑜 (1) is a term that vanishes asymptotically. 

This property and Bayes’ rule suggest estimating the true positive as 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑐, 𝜏) = 𝑃 𝑓 > 𝑐 𝑇 ≤ 𝜏 =
𝑃 𝑇 ≤ 𝜏, 𝑓 > 𝑐 𝑃(𝑓 > 𝑐)

𝑃(𝑇 ≤ 𝜏)
≈

∑ 𝐶𝐼 (𝜏) 1(𝑓 > 𝑐)

∑ 𝐶𝐼 (𝜏)
 

In a similar way, specificity approximation using PO is: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑐, 𝜏) ≈
∑(1 − 𝐶𝐼 (𝜏)) 1(𝑓 > 𝑐)

∑(1 − 𝐶𝐼 (𝜏))
 

  

Lastly, the optimization of the AUC is challenging because the AUC is invariance to 

monotone transformations and non-differentiable due to the step function. There has 

been several approaches to deal with this identifiability problem from imposing a 
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constraint on the coefficients to including a penalization term on the coefficients 

(Fong, Yin, & Huang, 2016). In Project 1 and Project 2, we followed the latter. The 

step function in the AUC is usually approximated, as we did in Project 2, using a 

smooth version of these indicators functions such as sigmoid or ramp function (Fong, 

Yin, & Huang, 2016).  

 

3.2 RL IN OBERSERVATIONAL DATA 

 
Reinforcement learning (RL) problem has been formalized using a Markov Decision 

Process (MDP), which it has been used in theoretic stochastic decision-making 

problems. Formally, an MDP is defined by a five-tuple < 𝑆, 𝐴, 𝑅, 𝑃, 𝛾 > , where 𝑆 is 

the state space and 𝑠 ∈ 𝑆 is the state at time 𝑡, 𝐴 is the action space and 𝑎 ∈ 𝐴 is 

the action chosen at time 𝑡, 𝑅(𝑠 , 𝑎 ) is the reward function that determines the 

reward 𝑟  the agent receives after taking action 𝑎  in state 𝑠  and transitioning to 

next state 𝑠 , 𝑃(. |𝑠 , 𝑎 ) is the transition probability distribution that governs the 

transition from state 𝑠  to state 𝑠  after taking action 𝑎 , and 𝛾 ∈ [0,1] is the 

discount factor. Figure 1 shows schematically the dynamic of the MDP. In every time, 

the agent observes the current state 𝑠 , takes an action 𝑎  and observes a feedback 

from the environment in form of a reward 𝑟  and then observes the next state 𝑠 . 

Underlying the MDP is the Markov. The Markov property says that the future is 

independent of the past given the current state.  That is, 𝑃(𝑠 |𝑎𝑙𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑢𝑝 𝑡𝑜 𝑡) =

𝑃(𝑠 |𝑠 , 𝑎 ) and 𝐸(𝑟 |𝑎𝑙𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑢𝑝 𝑡𝑜 𝑡) = 𝐸( 𝑟 |𝑠 , 𝑎 ). 

 

Figure 1. Figure taken from Sutton and Barto (1998). 

 



 

 13 

A policy specifies what action to take at any time step t. Define the policy, 𝜋, as a 

mapping from states to actions. A policy could be deterministic, denote it as 𝑎 =

𝜋(𝑠), or stochastic policy, where 𝜋(𝑎|𝑠) represents the probability of taking action 𝑎 

in state 𝑠.  In Project 5, we considered a deterministic policy. 

 

Let a trajectory composed of the sequence {𝑠 , 𝑎 , 𝑟 , 𝑠 , … , 𝑠 , 𝑎 , 𝑟 , 𝑠  } 

generated by the policy 𝜋  in a finite MDP. The return associated to the trajectory is 

defined as 

𝑅 : = 𝛾 𝑟  

The state-value function is the expected return starting from state 𝑠, and then 

following policy 𝜋: 

 

𝑉 (𝑠) = 𝐸(𝑅 : |𝑠 = 𝑠) 

and the action-value function is the expected return starting from state 𝑠, taking 

action 𝑎, and then following policy 𝜋: 

𝑄 (𝑠, 𝑎) = 𝐸(𝑅 : |𝑠 = 𝑠, 𝑎 = 𝑎) 

Both definitions are related as follows: 

𝑉 (𝑠) = 𝐸 ~ ( )(𝑄 (𝑠, 𝑎)) 

The goal of an RL agent is to learn an optimal policy defined as one that maximizes 

its expected discounted future return: 

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐸 ~ ( )(𝑄 (𝑠, 𝑎)) 

The Bellman equation (Bellman, 1957) characterizes the optimal policy: 

𝑄
∗
(𝑠, 𝑎) = 𝑚𝑎𝑥 𝑅(𝑠, 𝑎) +  𝛾 𝑃(𝑠′|𝑠, 𝑎)𝑉 ∗(𝑠′) 

The techniques to compute an optimal policy for a given MDP are model-based or 

model-free. Model-based RL requires to modelling the transition distribution 

𝑃(𝑠′|𝑠, 𝑎) in order to use it to find the optimal policy 𝜋∗. On the other hand, model-

free RL learns an optimal policy based on the received observations and rewards 

without modeling 𝑃(𝑠′|𝑠, 𝑎). In Project 5, we took this latter approach. 

 

Algorithms such as value iteration and policy iteration have been used for solving 

MDPs. Value iteration starts with an initial Q-value, 𝑄 , and iterates the Bellman 

equation, updating the Q-function until 𝑄  and 𝑄  are really close and deriving the 
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optimal policy by 𝑎𝑟𝑔𝑚𝑎𝑥 𝑄  . On the other hand, policy iteration starts with an 

initial policy and the Q-value associated to that policy (policy evaluation) and then 

improves the policy in each iteration of the Bellman equation. These two algorithms 

are exact methods since they require to have access to the dynamic of the model 

governed by the rewards 𝑅(𝑠 , 𝑎 ) and transition probability 𝑃(. |𝑠 , 𝑎 ). When the 

dynamic of the model is not given, the optimal policy can be computed using sample 

based methods like Monte Carlo and Temporal Difference (TD) methods (Sutton R. 

, 1988) or tabular Q-learning (Watkins & Dayan, 1992). However, these methods do 

not scale with increase in the size of state space, something that is found in most 

real applications. A method proposed to overcome this limitation is Q-learning with 

function approximation. Q-learning approximates the Q-function using a parametric 

approximation 𝑄 (𝑠, 𝑎). For example, the Q-function could be represented using a 

linear function in 𝜃 or a deep neural network where 𝜃 are the parameters of the 

network. Q-learning algorithm learns the parameter 𝜃. So, instead of updating the Q-

function as the previous methods, Q-learning updates the estimate of 𝜃. Thus, the 

Q-function can be computed for any unseen pair (𝑠 , 𝑎) given 𝜃. The algorithm tries 

to find 𝜃 such that for every pair (𝑠 , 𝑎) the Bellman equation can be approximated 

well.  

 

Batch RL assumes that the dataset is fixed. The goal is to learn the best possible 

policy from an observational data without online interaction (Lange, Gabel, & 

Riedmiller, 2012; Fugimoto, Meger, & Precup, 2019). Instead of interacting with the 

environment observing the state 𝑠 and performing action 𝑎 and then updating the 

policy according to the reward 𝑟 and next state 𝑠′, the learner receives a sample of 

transitions (𝑠 , 𝑎 , 𝑟 , 𝑠′) sampled from the retrospective dataset.  

In batch deep reinforcement learning, the Q-function is approximated using a deep 

neural network 𝑄  (Mnih, et al., 2015). The parameter 𝜃 is updated minimizing a loss 

function over batches of transitions (𝑠 , 𝑎 , 𝑟 , 𝑠′) where the output of the network is  

𝑄 (𝑠, 𝑎) and the target 𝑟 + 𝛾 max 𝑄 (𝑠 , 𝑎 ): 

𝐿𝑜𝑠𝑠(𝑟 + 𝛾 max 𝑄 (𝑠 , 𝑎 ) − 𝑄 (𝑠, 𝑎)) 

A potential problem of using this algorithm is that 𝑄 (𝑠 , 𝑎 ) could be estimated 

poorly if the selected action 𝑎′ in the target policy and the next state 𝑠′ are not 

contained in the dataset (Fugimoto, Meger, & Precup, 2019). Discrete Batch 

Constrained deep Q-Learning is an algorithm to learn an optimal policy that 
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eliminates actions that are unlikely in the dataset (Fujimoto, Conti, Ghavamzadeh, & 

Pineau, 2019). In Project 5, we applied this latter algorithm as well as the standard 

deep Q-learning. 
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4 RESULTS 

4.1 PROJECT 1 

In Project 1, we developed ML methods for right censored data, with or without 

competing risks, combining IPCW and bagging methods. The integration of IPCW 

and bagging is used as pre-processing step allowing the application of any 

developed ML methods for classification to data that suffers from right-censoring, 

including competing risks. Previously, there have been adaptation of ML to survival 

data to account for right-censoring. IPCW has been used for this purpose. However, 

the way in which the IPC weights are incorporated depend on the ML algorithm. 

There have been other adaptations that do not use IPCW but they are class specific 

too. For instance, survival trees accommodates the splitting and pruning criteria in a 

specific manner in order to account for right-censoring. Our proposal incorporates 

the IPC weights in the resampling step of the bagging method and that removes the 

need to directly adapt the specific ML algorithm. Moreover, we proposed a procedure 

to stack optimally predictions from any set of IPCW bagged methods. We use the 

IPCW time-dependent AUC, which account for censoring and competing risks, to 

find the optimal coefficients to combine multiple predictions and to evaluate the 

predictive performance of each method. Lastly, our proposal can account for 

dependent censoring modeling the censoring survivor function conditional on 

covariates.  

To illustrate our developed method, we investigated the performance of our 

proposed IPCW bagging procedure in four simulations scenarios that differs in terms 

of independent/dependent censoring and competing risk, and in a real data 

application. In the latter, we applied our stacking method in the Swedish InfCareHIV 

register to predict treatment failure in maintain an undetectable viral load for at least 

2 years following initial suppression. We compared our procedure to survival 

methods such as Cox PH model, Cox Boost and Random Forest, and to methods 

that allow weights as an argument in the R package function.  

The results concluded that our proposed method performed similarly to the 

counterpart algorithms that allow natively weights and the stacked IPCW bagging 

performed similarly to the best single IPCW bagging. Furthermore, our proposed 

method allowed building a risk prediction model that accounts for censored 

observations based on an ML method that cannot directly incorporate weights. We 

have developed an R package “stackBagg” that can be found at my GitHub page. 
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4.2 PROJECT 2 

In Project 2, we proposed an ensemble method of a wide range of algorithms that 

differ in survival outcomes or methods to account for right censoring with the goal of 

predicting an individual risk. A mix of models may form the ensemble such as IPCW 

classification that was developed in Project 1, PO based regression and survival 

methods such Cox PH. Each algorithm considered in the ensemble uses the 

estimation method appropriate for that type of model. Each prediction of each 

candidate algorithm in the ensemble were obtained using V-fold cross validation. We 

optimally stacked the cross-validated predictions of each individual method using the 

area under the PO-based time-dependent ROC curve. We illustrated the proposed 

method using two examples in breast cancer. In the first example, we used the breast 

cancer data of Royston and Altman (2013) as a training set and the German Breast 

Cancer Study Group (GBSG) as our external validation set. In this example, the goal 

was to predict death or recurrence within 5 years of primary surgery. In the second 

example, we used the breast cancer data from the Molecular Taxonomy of Breast 

Cancer International Consortium (METABRIC). In this latter example, we considered 

two endpoints: overall survival and recurrence-free survival in months. Since we did 

not have an external validation set, we split the patients randomly into training set 

(70%) and validation set (30%). We trained the models in the training set and we 

predicted the risk of dying and of breast cancer recurrence within five years in the 

validation dataset. The optimized ensemble showed the best predictive accuracy or 

similarly to the best individual method for the 5-year risk in the validation sets. 

Furthermore, the prediction model demonstrated better discrimination performance 

in the first example than the second example using KM curves for the predicted risk 

categorized into quartiles and hazard ratios. The results from these two real 

applications showed that our proposed method could improve on single survival based 

methods such as Cox PH model or on other single strategies that use a pre-processing 

step such as only IPCW or IPCW with bagging or pseudo-observations.  
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4.3 PROJECT 3 

In Project 3, we proposed to integrate pseudo-observations into CNN methods in order 

to make risk predictions based on medical images and clinical covariates in a context 

of right-censored outcome data. Pseudo-observations is used as a pre-processing 

step and allows the researcher to implement existing CNN methods with standard loss 

functions such as mean squared error and handling censoring without relying on 

complicated loss functions or Cox partial likelihood loss function under the 

assumption of PH that were used by previous works that have applied CNN for 

survival predictions. The performance of the proposed method is assessed in 

simulation studies that differs in terms of independent/dependent censoring based 

on the CIFAR-10 images and a real data example in breast cancer from The Cancer 

Genome Atlas (TCGA). The results are compared to the existing CNN with Cox loss 

(CoxCNN). Our simulation results showed that our proposed method performed 

similarly to CoxCNN in a small sample setting but in a large sample setting our 

proposal outperformed CoxCNN. Using a Cox PH model for the censoring 

mechanism to handle dependent censoring improved the predictive accuracy slightly 

when the censoring model is correct. Otherwise, there were losses in accuracy due 

to incorrect modelling. The results found in the application in the TCGA data were 

consistent with those found in the simulation.  

The proposed method facilitates the application of deep CNN methods to time-to-

event data with a simple and easy-to-modify loss function that contributes to modern 

image-based precision medicine. 

 
 

4.4 PROJECT 4 

Motivated by the fact that Sweden has the largest sarcoidosis incidence and the 

reported association between sarcoidosis and an increased risk of cancer (Arkema, 

Grunewald, Kullberg, Eklund, & Askling, 2016), we aimed at building a cancer risk 

prediction accounting for censoring and competing risk of death and emigration. 

We applied the methods developed in Project 1 and 2 with the aim of predicting the 

five- and ten-year risk of any cancer diagnosis among patients that were diagnosed 

with sarcoidosis. For that purpose, we used a large sarcoidosis cohort from the 

Swedish population-based register (Arkema, Grunewald, Kullberg, Eklund, & Askling, 
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2016) . This prediction model may be used as a tool for identifying patients at high risk 

of cancer who need early prevention. 

In terms of the study design, we started the follow-up at the second sarcoidosis 

diagnosis, and we used the information on demographics, diagnoses, and 

prescriptions available at the time of the first diagnosis for prediction. Patients were 

followed up until December 31st, 2019. 

 

 

We included in the prediction model the method developed in Project 1 applied to 

support vector machine and k-nearest neighbors, Cox model with step-wise variable 

selection, Cox model with lasso variable penalty, survival random forest, a boosted 

Cox model, a direct binomial regression and pseudo-observation based linear 

regression with and without penalization. We performed a 10-fold cross-validation 

where in each fold the models were trained on training set (70%) and optimally 

stacked and the performance of the resulting models is evaluated on a validation set 

(30%). For the training, we used a PO-based MSE instead of the PO-based AUC 

used in Project 2. For the validation set, we used the time-dependent AUC estimated 

using PO.  

The results showed a cause-specific cumulative incidence of all cancer types of 4.67% 

at five years and 8.88% at ten years. The ensemble had the best predictive accuracy 

for the five-year risk of cancer (an AUC of 0.789) and it resulted in an AUC of 0.821 

for the ten-year risk of cancer, which was slightly lower than the highest AUC, 0.823, 

obtained by one of the single method included in the ensemble. The prediction model 

showed good discriminatory power being able to differentiate those at the lowest 

10% risk to those at the highest 10% risk. The feature importance resulted that the 

predictor age, at first and second diagnosis, were the most important predictor.  
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4.5 PROJECT 5 

In Project 5, we investigated the utility of deep RL to discover the best face covering 

policy with the aim at reducing the spread of COVID-19. We used a retrospective 

dataset that is freely available online. The data includes historical daily records at 

the national level up to the date of publication. We restricted the data until 31 of 

March 2021 to focus on the period where the non-pharmaceutical interventions such 

as face coverings and lockdowns were the main actions to limit the spread of the 

virus and the roll-out of the vaccine was still very slow or null in most countries. The 

final dataset contained 140 countries and the total number of observations was 

50760. We examined two batch deep RL algorithms: deep Q-learning and discrete 

batch-constrained Q-learning. We performed 5-fold cross-validation where in each 

fold the RL model was run on the training set based on 80% of the countries and its 

performance is evaluated on held-out test set (20%). 

We considered the following state variables: new confirmed cases of COVID-19; 

stringency index; population density; GDP per capita; human development index; life 

expectancy; diabetes prevalence; cardiovascular death rate; share of the population 

that is 65 years and older and hospital beds.  

We found that the RL algorithms tended to recommend less strict actions compared 

to the government. We investigated the dynamic of this looking at a few countries by 

continent: Australia and New Zealand in Oceania; Argentina, Brazil, Canada and 

Mexico in America; China and Japan in Asia; Italy, Spain and Sweden in Europe; 

Israel in Middle East, and Niger and South Africa in Africa. The results showed that 

the RL algorithms recommended similar policy to what the country implemented. 

We found that the RL algorithms suggested similar dynamic but a different level of 

the policy like Japan. We also found cases, like in Sweden, that the RL algorithms 

recommended the same level of the policy for a period. 

We concluded that batch RL may be a useful decision support tool for implementing 

public health policies to the COVID-19 and future pandemics. 
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5 DISCUSSION 
 

The overall aim of this work has been to develop methods for prediction and medical 

decision-making. The first three methodological projects and the application in the 

fourth project contribute to the literature on the implementation of machine learning 

methods for time-to-event data with right censoring.  In Project 1, we extended the 

idea of combining IPCW and ensemble methods proposed by Hothorn et al. (2006) 

to allow for all ML methods for classification to be applied for survival data that suffers 

from right-censoring, including in the presence of competing risk, and a procedure 

to stack the predictions from these ML methods. In Project 2, we extended the idea 

of Project 1 to consider in the ensemble the methods suggested in Project 1 for 

classification methods, ML methods for continuous outcomes and classical survival 

methods. In Project 3, we proposed a method based on PO to fit deep CNN models 

to survival data using standard loss functions such as MSE. These projects build the 

adaptation of ML methods to survival data using a pre-processing step either IPCW 

or PO or both. 

Similar to Super Learner (van der Laan, Polley, & Hubbard, 2007), the optimally 

stacked prediction in Project 1 and Project 2 is guaranteed to perform, on average, 

at least as well as the best single method included in the stack. Our proposed method 

allows for an implementation of a Super Learner approach using survival data 

without limiting the types of ML methods in the stack.  

In Project 4, we applied the methodology developed in Project 1 and Project 2 to 

build a risk prediction model for any cancer diagnosis among sarcoidosis patients 

accounting for censoring and competing risk.  

We demonstrated the implementation of IPCW-AUC-based loss function for stacking 

in Project 1, the pseudo-observation-based AUC in Project 2 and the pseudo-

observation-based MSE in Project 4. Whereas, the AUC loss function available in 

the Super Learner package (Polley, LeDell, Kennedy, Lendle, & van der Laan, 2019) 

is unweighted and thus it does not account for censoring. 

Most of this thesis focuses on the AUC as performance metric. However, other 

performance metrics may be used such as IPCW non-negative log-likelihood in 

Project 1. Whereas, the use of other loss function in Project 2 is an area of future 

research. The use of PO in Project 3 enables us to use the MSE or MAE.  
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We demonstrated that under the assumption of coarsening at random (Robins & 

Finkelstein, 2000), our suggested methods can account for dependent censoring. 

Lastly, the proposed procedures are computationally intense. This may limit the 

number of methods that one would include in the stack. Moreover, the performance 

of the CNN model in Project 3 is limited to the small amount of images. The lack of 

investigation in detail of tuning hyper-parameters of each method may also limit the 

performance of the procedures proposed in this thesis.  
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