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Abstract

In this paper, for the first time, the boundary element method (BEM) is used for modelling
smart structures instrumented with piezoelectric actuators and sensors. The host structure and
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its cracks are formulated with the 3D dual boundary element method (DBEM), and the
modelling of the piezoelectric transducers implements a 3D semi-analytical finite element
approach. The elastodynamic analysis of the structure is performed in the Laplace domain and
the time history is obtained by inverse Laplace transform. The sensor signals obtained from
BEM simulations show excellent agreement with those from FEM simulations and
experiments. This work provides an alternative methodology for modelling smart structures in

structural health monitoring (SHM) applications.
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1. Introduction

In engineering applications, SHM helps to ensure the safety
and the reliability of structures. Generally speaking, while
structures in service are highly susceptible to both external
and internal hazardous conditions (e.g. foreign object impacts,
fatigue loadings, etc), SHM techniques are able to monitor
the occurrences of these hazards and to detect the existences
of any resultant damages done to the structures, before
catastrophic failures happen.

Among the available transducers for SHM, lead zirconate
titanate (PZT) piezoelectric transduction patches have
attracted much attention for real-time in-service monitoring
purposes, due to their light weight, high sensitivity, ability
to actuate and sense ultrasonic guided waves (UGWs), and
potential to form transducer networks. They have been used

1 On leave from: Dipartimento di Ingegneria Civile, Ambientale,
Aerospaziale e dei Materiali, Universita degli Studi di Palermo, Viale delle
Scienze, Edificio 8, I-90128, Palermo, Italy.

0964-1726/14/000000+15$33.00

extensively for the detection of damages and impacts on
various types of material and structure [1-7].

The development of a feasible SHM technique necessi-
tates multi-disciplinary knowledge, ranging from structural
mechanics to signal processing. In particular, a valid and
reliable mathematical model of the structure under inspection
would provide valuable assistance in understanding the
response of the structure. A broad review of the models
of smart structures with piezoelectric transducers can be
found in [8]. Crawley and de Luis [9] studied analytically
the static strain fields, induced by both surface-bonded and
embedded piezoelectric actuators, in one-dimensional beams.
Crawley and Lazarus [10] then extended this work into
two-dimensional isotropic and anisotropic plates. Raghavan
and Cesnik [11] introduced a dynamic model for the
piezoelectric actuation and reception and the propagation
of UGWs in plates. Lin and Yuan [12] proposed a static
formulation for piezoelectric actuators and sensors and
coupled it with a dynamic wave propagation model for Lamb
wave based damage detection for isotropic plates.

© 2014 IOP Publishing Ltd Printed in the UK
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In this work, the dynamic response of a 3D structure
with surface-mounted piezoelectric transducers and cracks is
solved with BEM. Compared to FEM, BEM only requires
discretization of the boundaries of structures. This leads
to significant reduction in the complexity of meshing,
especially for less regular structures. Also, since the unknown
parameters—traction and displacement—are only computed
on the boundaries, the systems of equations are much
smaller, resulting in less demand on computational resources.
Furthermore, with boundary discretization, the continuity
of the interior of structures is preserved. Consequently,
the solutions of internal points, which are obtained by
interpolating boundary values, keep high resolution [13]. In
recent years, with the development of DBEM, BEM has
become a preferred method for modelling cracks in both
two- [14] and three-dimensional [15, 16] domains. In DBEM,
each crack is treated as an additional pair of boundaries,
allowing for the calculation of stress intensity at crack tips
and the prediction of crack growth paths. The book by
Aliabadi [13] provides a comprehensive encyclopaedia of the
types of problem that have been solved with BEM.

In terms of modelling and solving for piezoelectric
applications with BEM, much research has been devoted to
investigating the behaviour of piezoelectric material itself
[17, 18]. For modelling piezoelectric smart structures in SHM,
Leme et al [19] established a static model for the analysis
of 2D plates bonded with piezoelectric sensors which are
formulated as beams. In a later model developed by Benedetti
et al [20], both the host structures and the piezoelectric
sensors are three dimensional. On the dynamic side, Alaimo
et al [21] proposed a 2D model for detecting delaminations
in composite panels using piezoelectric sensors. In all of
the abovementioned works, the excitations of the structures,
which are required for generating sensor signals, depend on
the application of mechanical loads. The lack of actuators
which can be used while the structures are in service alienates
these techniques from the concept of real-time monitoring.

The formulation presented in this paper extends the work
done by Benedetti er al [20] into the dynamic regime. For
the first time, BEM is used for modelling the actuation,
the propagation and the reception of UGWSs, which can be
used for the detection and the characterization of defects,
using piezoelectric transducers. The solid structure and its
cracks are formulated with 3D DBEM. The 3D models for
piezoelectric actuators and sensors are developed by taking
into account the full electro-mechanical coupling and the
relevant boundary conditions. They are expressed in terms
of the relationship between voltage and BEM variables,
i.e. displacement and traction, to allow for straightforward
coupling with the foundation. The elastodynamic analysis is
carried out in Laplace domain, in which the boundary integral
equations are solved for a number of Laplace parameters. The
corresponding response in the time domain is acquired by
inverse Laplace transform. Finally, the sensor signals obtained
from BEM and FEM simulations and experiments, for both
pristine and cracked structures, demonstrated exceptional
coherence.

Body domain 12

Crack surface T~

Body surface I’

Figure 1. A 3D elastic body with a crack.

2. Dual boundary element method

Consider an elastic isotropic body with a crack as shown in
figure 1. The outer boundary of the body is given by I' and the
crack is described by the boundaries 't and I'". Assuming
that there are no body forces, the dynamics of the body in the
time domain is governed by the Navier—Cauchy equation such
that

Sui e, 1) 4 (7 — g i (x, 1) = iz (x, 1)
x=0,2€eQ k=123 (1)

where ¢ and ¢ are the velocities of the longitudinal and
the shear waves, and u; is the displacement of the body. The
Laplace transform of equation (1) is given by

Sui (%, 5) + (¢ — S in(x, 5) = sPuix,s).  (2)

The solution of equation (2) has to satisfy the following
boundary conditions:

uj(x,s) = pi(x,s) xel

ti(x,s) = gi(x,s) (3)

xel
where t; is the traction, and p; and g; are the known values of
displacements and tractions.

With the assumption that displacements and strains are
continuous over the boundary, the solutions of equation (2),
using BEM formulation, are written as [22]

cij () () + /F Tj(x', x, s)uj(x) dT
= / Uij(x/’x, s)tj(x)dF (4)
r
34 + i (x) /r Trij(x', x, )y (x) dT

= ni(x’)/ Ukij(x', x, $)tr(x) dT 5)
r

where equations (4) and (5) are referred to as the
displacement and the traction boundary integral equations.
Also, Ujj(x', x,5), Upi(x', x, 5), Tjj(x', x, s) and Ty;(x', x, 5),
whose details are given in appendix A, are known as the
Laplace transformed fundamental solutions and kernels of
displacement and traction in elastodynamics. Moreover, in
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these equations, x’ is the field point and is used as the
collocation point, x is the source point, and »; is the outward
normal. ¢;; varies with the location of the collocation point,
and for collocation points on smooth surfaces ¢;; = %6,-]-, in
which §;; is the Kronecker delta.

In terms of numerical implementation, equation (4) is
collocated at the outer boundary and at one of the crack
surfaces, and equation (5) is at the other crack surface. For
collocations at the crack surfaces, equations (4) and (5) adopt
the following forms:

0o i) + D) + fr Tty %, 5)
x uj(x)dI'(x) = /1; U,-j(xa,x, $)tj(x) dl’ (6)
) — $46e) +nj(x5r)ferij(x§,x, $)uy(x) dI'
- mug{ﬁl@wx$x~ﬂmu)a‘ )

where x, and xar are the points on the crack surface at which
displacement and traction are collocated respectively. In order
to perform the integrations in the boundary integral equations,
the boundary of the body, including the crack surfaces, is
discretized into eight-node quadrilateral elements.

After carrying out the collocations and the integrations, a
linear system of equations results:

H(s)a(s) = G(s)K(s) (8)

where the tildes indicate discretized nodal values. By applying
boundary conditions, equation (8) can be rearranged into

A(9)x(s) = y(s) €)

where A is the collocation matrix, and X contains the unknown
nodal values and y the known nodal values.

3. Piezoelectric transducer model

In section 2, the formulation of DBEM for the host structure
was introduced. It is now necessary to develop a piezoelectric
transducer model which can be coupled with the host
structure.

3.1. Basic equations

Consider a piezoelectric transducer, whose top and bottom
surfaces are perpendicular to the electric poling direction,
i.e. the x3-direction. The elastic strain—displacement and the
electric relationships, in tensor notation, are described by

Vi = 3(ij + uj,i) ij=12,3

10
E =-V; i=1,2,3 (10)

where y;; is the strain, E; is the electric field and V
is the electric potential in the x3-direction. Also, the
electro-mechanical coupled relationships for piezoelectric

materials are given by

ik 1=17273
ik 1=1,273

oij = Cijuvu + eijiEx

(11)
D; = eiyu + €ikEx

where oj; is the stress, D; is the electric displacement, and
Cijii» ejjr and gy are the elastic, the piezoelectric and the
dielectric constants.

Equation (10) can be rewritten in matrix form as

(12)

where T, = [y y2 yi2 —E1 —E2]" and T, =
[¥13 23 ¥33 —E3]T are the generalized in-plane and out-of-
plane strains, U = [u1 u2 u3 V1T is the generalized displace-
ment, and D, and Dg are linear differential operators, whose
details are given in appendix B. Similarly, equation (11) can
be represented by

by R,, R r
p | _ | Koo Koz | | L (13)
X, R, R, ||T,
where X, = [o11 00012 D1 D2]"  and X, =

[o13 023 033 D3]T are the generalized in-plane and out-
of-plane stresses, and R,,, R,;, R; and R, are the
corresponding components of the elastic, the piezoelectric and
the dielectric constants.

3.2. Elemental state-space equation

In order to derive the dynamic elemental state-space equation,
a hybrid generalized functional for 3D piezoelectric materials
is introduced [23]:

n:/ o, Ez)dQ—/TT(U—l_])dF—/UTTdF
Q r r
(14)

where €2 and I" are the volume and the surface of the material,
o(U, X,) is the energy density, whose details are given in
appendix B, T = [t; t, t3 D,]" is the generalized traction, and
the overlines indicate boundary values.

The piezoelectric material is discretized into eight-node
quadrilateral elements, like the host structure, such that

Ul _|NGEm 0 0] . )
[EJ_{ 0 N(E,n)] [2J-N(E,n)Y (15)

U=1a" v = @l al &l vIi") and (=
[6° DT = [6& 653 &§3 l~)§]T) contain the nodal values
of generalized displacements and out-of-plane stresses.

Moreover, in equation (15),

where

N O 0 0
0N, 0 O
0 0N O
0 0 0 N

NE.n) =
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where N is a (1 x 8) matrix that contains the shape functions
of eight-node quadrilateral elements.

From the first variation (§I1 = 0) with respect to the
variables 3, and U, the following state-space equation is
obtained:

dy .
P % = QY (x3) (16)

where

P= / NT (&, n)NE, (&, ) dé dn

_ [|€Qn Qn
0= /s[Qzl sz] 76w ds dn.

The details of Q;; are given in appendix B. J(§,n) is the
determinant of the Jacobian matrix.

Finally, by performing integration on equation (16), the
resultant expression can be found:

Y(x3) = exp(P~' Qx3)Y (0). (17)

For a single-layered piezoelectric material, equation (17)
can be expanded into

ity Luu(h) Lyy(h) Lyo(h) Lyp(h)7 [ty
Vil _ | Ewlh) Lyy(h) Lyo () Lyp®) || Vo | (o
o Lou(h) Loy(h) Loo(h) Lop(h) | | &b
D, Lpu(h) Lpy(h) Lps(h) Lpp(h) | | Dy

where the subscripts t and b indicate the top and the bottom
surfaces of the piezoelectric transducer, and 4 is the thickness
of the material.

The models for piezoelectric actuators and sensors
can now be acquired by enforcing the relevant boundary
conditions.

3.3. Actuator model

Since electric potential is a relative quantity, the bottom
surfaces of piezoelectric transducers are often made the
reference surface with zero potential. This gives rise to an
electric boundary condition such that

Vp = 0. (19)

Also, a mechanical boundary condition, which comes
from the fact that the top surfaces of piezoelectric transducers
are stress free, can be expressed as

G = 0. (20)

By applying these boundary conditions in equation (18),
the following relationships can be obtained:

Vi = Ly,ity + Ly, 6 + LypDy (21)
6. = Loyity + Lyo6b + LopDy = 0. (22)
The manipulation of equations (21) and (22) yields
— LopLypLve) ™ LopLypLvi — Low)iy
— (Loo — LopLypLve) ™' LopLyp Vi (23)

&b = (Loo

In order to couple the actuator model with the host
structure, which is formulated by BEM, stress needs to be
converted into traction, and displacement, which is in the local
coordinate, needs to be transformed into the global coordinate
of the host structure. Therefore, by performing coordinate
transformations, the following expression is found:

t, = Wiy, + BV, (24)
where
U = ~A NLoo — LopLypLve) ™ (LopLypLyi
& = A (Loo — LopLypLyvo) 'LopLy),.

- Lau)A

In the above representations, A is the rotation matrix.

3.4. Sensor model

In addition to the boundary conditions formulated for the
actuator model, a couple of other boundary conditions are
necessary for developing the sensor model. The top and
the bottom surfaces of piezoelectric transducers are usually
coated with thin metallic layers to ensure that equipotentiality
is achieved on each surface. For the top surfaces, this is
described by

Vy — Vi, =BV, =0 i=2,...,7 (25)

where Vj; is the ith node of the top surface and B is a (7 x 8)
matrix.

Also, since piezoelectric sensors are not subject to
external electric potential, the law of charge conservation in
open circuits applies. On a discretized piezoelectric element,
the following boundary condition is obtained:

Orop = fA Ny(&, )J (€, Dy d& dy = 5™D, =0 (26)
top

where Ayp is the area of the top surface.

Using the boundary condition described by equation (19),
another equation, in addition to equations (21) and (22), can
be extracted from equation (18):

Dy = Lp,iiy, + Lps&p + LppDy. (27)

By enforcing the boundary conditions defined by
equations (25) and (26), equations (21) and (27) can be
rewritten as

B(Ly,ii, + Ly, 6y, + LypDy) = 0 (28)
b™(Lpyity, + Lps &, + LppDy) = 0. (29)

Equations (28) and (29) can be combined into a single
expression such that

BLy, | _ BLy, | _ BLyp | -
D, =0. (30
|:bTLDu] up + |:bTLD<7:| oy + |:bTLDD:| b ( )

The manipulation of equations (21), (22) and (30) gives
&b = _i;;iouab (31

Vi = (Lvy — LvoL; L)ty (32)
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Piezoelectric

transducer

Host structure

Figure 2. Coupling of piezoelectric transducer and host structure.

For coupling purpose, equations (31) and (32), after
coordinate transformations, become

t = WSy
V, = Oy,

(33)
(34
where

U= AL LA

© = (Lvy — LyoL;} Lo A.

The models for piezoelectric actuators and sensors, which are
already in the Laplace domain due to the use of the functional
described by equation (14), can now be coupled with the host
structure via BEM variables—displacement and traction.

4. Coupling of host structure and piezoelectric
transducers

Consider a piezoelectric patch, which is assumed to be
perfectly bonded to the host structure, as shown in figure 2.
The presence of piezoelectric transducers on the boundary of
the host structure modifies equation (8) such that

Hin + Y B+ Y B
K, ‘

K
= Gulh + Y G+ GPEP (35)
K, K

where K, and K are the numbers of actuators and sensors
respectively, the superscripts k, and kg indicate the kth actuator
and the kth sensor, the subscript i stands for the host structure
at the interfaces with transducers, and the subscript h refers to
the rest of the host structure.

Due to the continuity of displacements and tractions at
the interfaces, the following relationships can be deduced:

ik = ak (36)
#= 2 (37

where the superscript k indicate the kth transducer, be it an
actuator or a sensor.

By manipulating equations (24), (33), (36) and (37),

i = —(Whak 4+ &V,

]

(38)

= — Wkl (39)

1

By substituting equations (38) and (39) into (35),
Hyiiy, + Z(cha + Gifa\:[,ka)affa + Z(Hi(s + Gifsq,kb)iifs

Ky K
= Gnth — Z G eV, (40)
Ka
Equation (40) can be rearranged into
Hyiiy, + ZHZ.‘“&;"“ + ZHfsﬁfS + ZG;"“\I"%&;‘“
ka ks ka
(41)

+ Y GEERES =Gty — Y GV
ks ka

In equation (41), it can be seen that the first three terms
on the left-hand side and the first term on the right-hand
side assemble equation (9), and the other terms represent the
contribution from the presence of piezoelectric transducers.
Therefore, equation (41) can be rewritten in the form of
equation (9) such that

AR+ GRERaER Y GPwkal
% %
(42)

Equation (42) is then solved for a certain number of
Laplace parameters by using an adaptive cross approximation
(ACA) algorithm. Details of the ACA algorithm and its
applications can be found in [24, 25]. The response of the
structure in the time domain is obtained by the inverse Laplace
transform, whose details are given in appendix C.

5. Numerical results and experimental validation

In this section, the sensor signals obtained from BEM
simulations are compared with those from FEM simulations
and experiments. Some parametric studies are then carried out
with the experimentally validated model.

5.1. Actuation signal

In SHM applications, five-cycle Hanning-windowed sinu-
soidal tonebursts are often used as the diagnostic signals [12].
The formula of such a toneburst is written as

g Ceos (PN (2 -
f(t)—ZVs1n(2Jcht)|:1 cos( 5 >:|H<f t) “43)

where V is the peak voltage, f: is the central frequency and H
stands for Heaviside step function.

5.2. Experimental setup

The complete experimental setup, as shown in figure 4,
consists of a controller, a signal generator and a data logger.
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Five-Cycle Hanning-Windowed Sinusoidal toneburst
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Figure 3. Time history and power spectrum of a five-cycle Hanning-windowed sinusoidal toneburst with 10 V peak voltage and 100 kHz

central frequency.

DataLogger Controller
Breakout Box
Figure 4. Experimental setup.
Crack
0.3cm 0.3 cm
H S—— ED Centreline
Transducer Transducer

Figure 5. Arrangement of transducers and crack.

The controller, in this case, is a desktop computer with
an Intel® Core™ 2 Duo CPU. The signal generation and the
data acquisition are made possible by a National Instruments
PXIe-6366 data acquisition card, which is capable of
outputting signals at 3.33 MHz and sampling them at 2 MHz.
From experience, this data acquisition device is able to handle
signals with frequencies up to 100 kHz.

5.3. Specimens and details of numerical modelling

Experiments have been conducted on a pristine and
a cracked beam for validating the 3D DBEM. Both
beams are made from aluminum and have dimensions of
200 mm x 44 mm x 37.5 mm. The piezoelectric transducers,

Table 1. Material properties of aluminum beams.

Density (kg m™—3) 2700
Young’s modulus (GPa) 70
Poisson’s ratio 0.33

which measure 10 mm x 10 mm x 1 mm, are made from
Noliac Group NCES51 piezoelectric ceramic and are attached
to the beams by Loctite® 401 superglue. The crack on one of
the beams was manufactured by a wire-cut electric discharge
machine in order to obtain a negligible distance of separation
between the crack surfaces. The 0.1 mm wide crack runs
across the width of the beam and is 18.75 mm deep.

The specimens used in experiments and their correspond-
ing BEM models are shown in figure 6. The piezoelectric
transducers are meshed with finer elements than the rest of
the beam, because their model is essentially FEM based, and
thus requires finer elements for convergence. The transition
elements used around the piezoelectric transducers help to
avoid numerical instabilities that could arise from sudden
change of elements size.

Figure 7 compares the BEM and the FEM meshes
of the host structure. As explained previously, for BEM
discretization only happens on the boundaries of structures,
and for 3D structures the boundaries refer to the external
surfaces and internal crack surfaces. On the other hand, FEM
requires discretization of the whole volumes of structures.

From figure 3, it can be see that the frequency
components of the actuation signal are spread over the range
of 2f.. For inverse Laplace transform, the frequency increment
is expressed as

1
Af = —. 44
f T (44)
Since it is known that the sensor signals will also contain
the same frequency components [12], the number of Laplace
parameters required is given by

2
L= =2f.T.

AF (45)
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Figure 6. Experimental specimen and BEM model of pristine and cracked beams.

BEM surface mesh

AT T
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FEM volume mesh

Figure 7. Comparison of BEM and FEM meshes.

Table 2. Material properties of piezoelectric transducers.

7800

Density (kg m™>)

Ci2 Ci3 Co3 Cusg Css Ces

11690 86.402 83.062 83.062 28.830 28.830 21.410

Cs3

129.22

C»
Dy

129.22

Cu
Dy

Elastic (GPa)

D33
11.068 6.6406

11.068

h

Dielectric (nF m

€33 €24 els

€32
—3.3831

€31
—3.3831

Piezoelectric (C m~2)

15.149

15.149

16.520
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Pristine Beam - 50 kHz
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Figure 8. Validation of signals for pristine beam with 50 kHz
actuation frequency.

Cracked Beam - 50 kHz
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Figure 9. Validation of signals for cracked beam with 50 kHz
actuation frequency.

Benedetti et al [24] reported that the minimum
wavelength of the fundamental solutions is found as

- E T
V20 +WL

where E, v and p are the Young’s modulus, the Poisson’s ratio
and the density of the material.
By substituting equation (45) into (46),

o | E 1
TV 201 4v) 2f

For discretization using eight-node quadrilateral ele-
ments, the element size of the host structure needs to be less
than or equal to the value obtained by equation (47), so that
the behaviours of the fundamental solutions can be captured.

(46)

(47)

Pristine Beam - 80 kHz

0.03} BEM J
FEM
0.02 | - Experiment 4
001 : ]
S , il ]
= L
> i /
-0.01 ; J
FEM /
-0.02 numerical 1
instability
-0.03 ¢ J
0 1 2

Time (s) %1 0-4

Figure 10. Validation of signals for pristine beam with 80 kHz
actuation frequency.

Table 3. Parameters for BEM simulations.

50kHz  80kHz
T (s) 0.0002 0.0002
L 20 32
Required element 31.2 19.5
size (mm)

0.733 x 5
Actual element size (mm) 0.733 x 0.625

0.625 x 5

It can be seen from equations (45) and (47) that, as
the central frequency of the actuation signal increases, the
demands on computational time and memory are intensified
since more Laplace parameters and smaller elements are
required.

Actuation signals with two different central freq-
uencies—>50 and 80 kHz—are used for validating the model.
Their corresponding simulation parameters are listed in
table 3.

Note that the choice of element size for the beams is
constrained by the mesh of the piezoelectric transducers. For
example, the width of the top surface needs to be divided into
at least six elements in order to connect with the elements
which construct the piezoelectric transducers.

5.4. Sensor signals

The sensor signals obtained by using BEM are compared
with those from FEM and experiments. The FEM simu-
lations are carried out by Abaqus®/Standard with implicit
integration, which is known to be computationally expensive.
However, since piezoelectric elements are not available in
Abaqus®/Explicit, implicit integration is the only choice.
First of all, in all four figures, the signals obtained from
BEM, FEM and experiments show excellent agreements. The
fact that the results from BEM and FEM simulations match
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FEM
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Figure 11. Validation of signals for cracked beam with 80 kHz
actuation frequency.

well in amplitude approves BEM as a numerical model. For
signals with a central frequency of 50 kHz, slight delays
in phase can be seen in the FEM results. These delays
can be corrected by reducing the time increment and the
element size, but the computational effort would become
unaffordable. Also, if the reduction in time increment is not
accompanied by an appropriate reduction in element size,
as has been done in the cases with actuation signals of
80 kHz, the FEM simulations would begin to demonstrate
divergence after a certain period of time. Furthermore, it
is noticed that, for a different piezoelectric material, the
divergence would happen later, indicating that FEM with
implicit integration is potentially unstable for this type of
application. Finally, for the simulation involving a pristine
beam with an actuation signal of 80 kHz, the CPU times for
FEM using Abaqus®and BEM are, respectively, 123743 and
10850 s on an Intel® Core™ i7-2860QM processor. It is
worth mentioning that the BEM and its meshing algorithm
are in-house codes and as such not optimized.

In comparison with the experimental results, some parts
of the signals obtained from BEM simulations display higher
amplitude and slight advance in phase. However, these
phenomena are completely understandable because some of
the conditions established in the model cannot be seamlessly
satisfied in reality. For example, in the model, the presence
of the adhesive layers, which contributes to phase delay due
to shear lag, and material damping, which adds attenuation,
are not considered. Also, the edges and the boundaries of the
beams, if not machined to absolute precision, would affect
the behaviour of the reflections. Furthermore, measurement
errors, which may occur when cutting out the beams from
bulk material and when attaching the piezoelectric transducers
onto the beams, would lead to inconsistency of dimensions
and thus phase shift in signals. In addition, the material
properties of the aluminum and the piezoelectric ceramic may
contain up to 10% deviation from the actual values, as advised
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Figure 12. Comparison of signals from BEM simulations for
50 kHz actuation frequency.
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Figure 13. Comparison of signals from experiment for 50 kHz
actuation frequency.

by the manufacturers who provided the data. This would
result in differences in velocities of the transmitted waves
and voltage readings. Finally, other factors such as climate,
energy dissipation and errors embedded in the experimental
setup may equally contribute to the discrepancy between the
experimental and the BEM results.

Nevertheless, what is important in SHM applications is
the difference between the signals acquired from the pristine
and the damaged structures. In figures 12—-15, attenuations in
signals can be seen when cracks are present. Also, the fact
that attenuation is greater for signals with higher frequency
complies with the understanding that signals with higher
frequency are more sensitive to the presence of damage
sites [26].
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Figure 14. Comparison of signals from BEM simulations for
80 kHz actuation frequency.
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Figure 15. Comparison of signals from experiment for 80 kHz
actuation frequency.

5.5. Parametric study

The experimentally validated DBEM formulation is employed
to investigate the effects of a couple of parameters in
SHM applications. The actuation signals used have a central
frequency of 80 kHz and a peak voltage of 10 V.

5.5.1. Crack depth  The signals obtained from beams with
cracks of two different depths—6.25 and 18.75 mm—are
compared with that obtained from a pristine beam. For all
three cases, both the actuator and the sensor are placed 3 cm
away from the crack.

Two general trends can be observed from the signals
plotted in figure 16. As the crack deepens, the signal
becomes more attenuated and the time of arrival becomes
longer. The first phenomenon is due to the fact the crack

Comparison of Crack Depths

T
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=== Crack Depth = 6.25 mm
Crack Depth = 18.75 mm

0.03

Voltage (V)

2

x10*

0 1
Time (s)

Figure 16. Comparison of signals from BEM simulations for
different crack depths. (The actuation signal has a central frequency
of 80 kHz and a peak voltage of 10 V.)
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Figure 17. Comparison of time of arrival from BEM simulations
for different crack depths (80 kHz, 10 V).

acts as an obstacle which dissipates some of the energy
carried by the transmitted waves and thus attenuates the
amplitude. The second phenomenon, as shown in figure 17,
is because of the extra distance of separation between the
piezoelectric transducers, introduced by the discontinuity of
the material. Both phenomena have been reported in previous
research [27, 28].

5.5.2. Arrangement of transducer  Three different transducer
arrangements, in which both the actuator and the sensor are
placed 3, 5 and 7 cm away from the crack, are examined for
their ability to monitor the presence of cracks. All cracks used
in this study have a depth of 18.75 mm.

First of all, by looking at the signals from the pristine
beams, it can be seen that as the distance of separation
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Figure 18. Comparison of signals from BEM simulation for a
distance of 3 cm from the crack (80 kHz, 10 V).
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Figure 19. Comparison of signals from BEM simulation for a
distance of 5 cm from the crack (80 kHz, 10 V).

between the piezoelectric transducers increases, the time
of arrival becomes longer, as expected. Also, the directly
transmitted waves and the reflections become less isolated
since the transducers are closer to the boundaries.

In all three figures, the differences between the signals
obtained from the pristine and the damaged beams are
significant. The presence of damage leads to later time
of arrival, as explained in the previous section. Also, as
the piezoelectric transducers become more separated, phase
delay, in addition to attenuation in amplitude, can be observed.

5.6. Wave propagation

In figure 21, contour plots of vertical displacements and their
corresponding instants in sensor signals are shown for both
the pristine and the cracked beams. The actuation signal used
has a central frequency of 80 kHz and a peak voltage of 10 V.
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Figure 20. Comparison of signals from BEM simulation for a
distance of 7 cm from the crack (80 kHz, 10 V).

For the pristine beam, the three frames show, respectively,
the beginning of the actuation, the intermediate propagation
and when the waves are reflected from the boundaries. It can
be deduced that the second batch of waves in the sensor signal
and thereafter are the combinations of reflections from all
boundaries.

For the cracked beam, the frames are dedicated to the
time period in which the actuated waves encounter the crack.
From the three consecutive instants, it can be seen that the
waves are not able to pass through the crack directly but
have to negotiate around it. This gives explanation to how the
energy carried by the waves is dissipated when confronted by
a crack. Also, after the waves have travelled around the crack,
they immediately begin to occupy the whole body again, as
reported by Jian et al [27].

6. Conclusions

In this paper, the first dynamic BEM for modelling
smart structures, instrumented with piezoelectric transducers
for SHM applications, is introduced. The generalized 3D
dynamic model for piezoelectricity takes into account the full
electro-mechanical relationship and the effect of inertia. The
dedicated actuator and sensor models are then developed by
applying the appropriate boundary conditions, and with some
algebraic manipulation, they are purposely expressed in terms
of BEM variables to allow for direct coupling with the host
structure. The elastodynamic analysis of the whole structure
is achieved with boundary integrals in Laplace domain, and
the response in time domain is obtained with inverse Laplace
transform.

The BEM is validated against FEM and experimental
results. The specimens include a pristine and a cracked
beam. The agreement between the sensor signals obtained
from BEM and FEM simulations and from experiments is
outstanding. The experimentally validated formulation is used
to perform a series of parametric study in order to demonstrate
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Figure 21. Contour plots of vertical displacements and indications of frames for pristine and cracked beams. (The actuation signal has a

central frequency of 80 kHz and a peak voltage of 10 V.)

its feasibility in SHM developments. The capability of the
model for studying wave propagation and scattering of waves
by cracks is also shown.

As mentioned before, one reason for the difference
between the amplitudes of the signals obtained from BEM and
FEM simulations and experiments is the presence of damping
in the response of the structure. Therefore, a future work that
could be carried out is the inclusion of damping effects in
the numerical model. Jin et al [29] provided an overview

of the damping models that have been incorporated with
one-, two- and three-dimensional BEM in time and frequency
domains. More recently, Mazzotti et al [30], in their 2.5D
BEM, introduced material damping using the bulk attenuation
coefficient. Nevertheless, the predetermination of the overall
damping of a structure is not straightforward.

In the experimental results, ambient white noise can be
seen in the sensor signals. Although the modelling of white
noise has been done with BEM in acoustics [31], it, in
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solid mechanics, is still under investigation. In the future, it
would be ideal to incorporate white noise in the numerical
model because structures in service would experience an
even higher level of noise than specimens in laboratory.
With the fundamental solutions presented in this paper, the
high frequency components of white noise would lead to an
enormous amount of computation and numerical instability.
Therefore, other BEM formulations, such as time-domain
BEM and dual reciprocity BEM, should be investigated for
their abilities in handling high frequencies. Also, it would be
of interest to implement wide-band excitation signals, such
as white noise and swept sine, which have been used in
piezoelectric based SHM application [32], with BEM.

Compared to FEM, BEM is numerically more stable
and computationally less expensive. In particular, DBEM
possesses the natural advantage in modelling material
discontinuity, which is essential in SHM developments. With
the rapid advances in SHM in recent years, the need for an
accurate and efficient model for understanding the behaviour
of smart structures is becoming increasingly important. This
paper is the first step towards finding such an alternative to
FEM.

Appendix A
The fundamental solutions in equation (4) are given by
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Appendix B

The linear differential operators in equation (12) are given by
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The energy density in equation (15) is given by
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The constants k; come from operations on the elastic, the
piezoelectric and the dielectric constants. The term w denotes
frequency and is analogue to the Laplace parameter in Laplace
domain.

Q;j in equation (17) is given by
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Appendix C

In the field of BEM, the most often used approach for inverse
Laplace transform is the Durbin’s method [33], whose formula
1 L
—5Re(F(@) + >

is written as
at
f@) = 267{ |:Re (F <a+ 1sz71>>
k=0
m(F 2k

xcos( )—m( <a+17))
(7))}

x sin | —

T

where L is the total number of Laplace parameters and T
is the time period of interest. The term a + 12"7” is the
discretized form of the Laplace parameter a + iw, indicating
that the frequency range of interest is divided into a number
of increments. Therefore, the number of Laplace parameters
must be sufficient for fully covering the frequency range of
the response. Also, according to Zhao [34], the real part of the
Laplace parameter a, which affects the error of the inversion,

is determined by

2kmt

a = max(Re(p;)) + %

where p; are the singularities of the signal to be inverted.
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