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Abstract

In this study, a novel three-dimensional micro-mechanical crystal-level model for the analysis
of intergranular degradation and failure in polycrystalline materials is presented. The polycrys-
talline microstructures are generated as Voronoi tessellations, that are able to retain the main
statistical features of polycrystalline aggregates. The formulation is based on a grain-boundary
integral representation of the elastic problem for the aggregate crystals, that are modeled as three-
dimensional anisotropic elastic domains with random orientation in the three-dimensional space.
The boundary integral representation involves only intergranular variables, namely interface dis-
placement discontinuities and interface tractions, that play an important role in the microme-
chanics of polycrystals. The integrity of the aggregate is restored by enforcing suitable interface
conditions, at the interface between adjacent grains. The onset and evolution of damage at the
grain boundaries is modeled using an extrinsic non-potential irreversible cohesive linear law,
able to address mixed-mode failure conditions. The derivation of the traction-separation law and
its relation with potential-based laws is discussed. Upon interface failure, a non-linear frictional
contact analysis is used, to address separation, sliding or sticking between micro-crack surfaces.
To avoid a sudden transition between cohesive and contact laws, when interface failure happens
under compressive loading conditions, the concept of cohesive-frictional law is introduced, to
model the smooth onset of friction during the mode II decohesion process. The incremental-
iterative algorithm for tracking the degradation and micro-cracking evolution is presented and
discussed. Several numerical tests on pseudo- and fully three-dimensional polycrystalline mi-
crostructures have been performed. The influence of several intergranular parameters, such as
cohesive strength, fracture toughness and friction, on the microcracking patterns and on the ag-
gregate response of the polycrystals has been analyzed. The tests have demonstrated the capabil-
ity of the formulation to track the nucleation, evolution and coalescence of multiple damage and
cracks, under either tensile or compressive loads.
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1. Introduction

The development of critical structures requires deep understanding of mechanisms govern-
ing degradation and failure of materials, especially when applications in severe environments
are considered. Fracture modelling can be considered at different length scales: it is nowadays
widely recognized that macroscopic material properties depend on the features of the microstruc-
ture. The knowledge of this link, which is the main subject of Micromechanics [1, 2, 3], is of
relevant technological interest, as it may enable the design of materials with specific requirements
in terms of strength, stiffness, ductility, toughness, etc., by means of suitable manipulations of
the microstructural features that have a desired effect on the sought macroscopic property.
Polycrystalline materials, either metals, alloys or ceramics, are commonly employed in practical
structures. Their microstructure, generally in the range from 10−6 to 10−3 m, is characterized
by features of the grains, their morphology, size distribution, anisotropy and crystallographic
orientation, stiffness and toughness mismatch, and by physical and chemical properties of the in-
tergranular interfaces [4]. All these aspects have a direct influence on the initiation and evolution
of the microstructural damage, which is also sensitive to the presence of imperfections, flaws or
porosity. Any theory or model for explaining failure mechanisms in this class of materials must
then accommodate a relevant number of parameters [5].
Depending on a specific material and load and environment conditions, polycrystalline materi-
als exhibit different failure mechanisms spanning from ductile to brittle fracture. Brittle failure,
moreover, can be related to two main microstructural mechanisms, i.e. cleavage or transgranular
fracture, in which the crack propagates on specific crystallographic planes within the grains, and
intergranular failure, in which the microcracks follow the grain boundaries.
Brittle intergranular failure may occur in metals, alloys and ceramics [6] and it is particularly
dependent on the chemical-physical state of the grains interfaces [7, 8, 9], namely on the segre-
gation of impurities and/or embrittling particles or on the presence of precipitate-free zones, in
the case of precipitation-strengthened materials, [10, 11, 12, 13, 14, 15, 16, 17, 18]. Intergranular
failure is also favored by hostile environmental conditions [19], by phenomena such as corrosion
[20] or stress-corrosion cracking [21, 22] or by some combination of stress and high temperature
[23]. The investigation and modelling of the brittle intergranular failure is then particularly rel-
evant for better understanding and design with polycrystalline materials: in this framework it is
worth noting that the concept of grain boundary engineering is now well established [24].
The microstructure of polycrystalline materials, and its influence on the microscopic failure
mechanisms and on macroscopic material behavior, can be investigated by using different exper-
imental techniques [25, 26, 27, 28, 29, 30, 31, 32, 33]. The experimental techniques for materials
reconstruction and characterization are necessary for providing fundamental information and un-
derstanding; however, they require sophisticated equipment, careful material manufacturing and
preparation, complicated postprocessing. They are generally expensive and time consuming.
Such aspects are relevant whenever a truly three-dimensional (3D) characterization is pursued,
or the simultaneous effect of several microstructural features is studied, or damage and failure at
the microstructural level are investigated.
A viable alternative, or complement, to the experimental effort is offered by computational mi-
cromechanics. Several investigations have been devoted development of numerical models for
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the analysis of polycrystalline microstructures and their failure processes, both in two and three
dimensions [5]: among different approaches, multiscale methods appear to be the most promis-
ing, as they are able to bring together and link the diverse scales acting in the initiation and
evolution of fracture [34, 35, 36, 37, 38].
Several techniques have been developed and used for studying the crack initiation and propaga-
tion in heterogeneous or polycrystalline microstructures. Kamaya [39] employed the body force
method for investigating 2D intergranular stress corrosion cracking. Sukumar et al. [40] stud-
ied the competition between inter- and transgranular crack growth in 2D polycrystalline brittle
microstructure by using the extended FEM. Das et al. [41] coupled finite elements and cellular
automata (CAFE) and showed the potential for microstructural and multiscale analysis of het-
erogeneous and polycrystalline materials. Also lattice models for quantitative estimates of the
mechanical properties of polycrystalline microstructures and their damage have been reported
[42]. The application and advantages of peridynamics for modelling crack initiation, propaga-
tion and fragmentation in polycrystalline ceramics are discussed in [36].
The above studies have mainly focused on the analysis of 2D polycrystalline problems, although
some 3D applications of cellular automata and finite elements have been reported and the 3D
potential of peridynamics has been discussed. There is currently an interest for development of
truly 3D models for analysis of failure mechanisms in polycrystalline materials [5, 43, 44, 45].
This is motivated, on one hand, by the need for understanding complex inherently 3D phenomena
(such as the influence of the geometry on the microcracking evolution; the competition between
different failure modes, e.g. inter- and transgranular brittle propagation or the ductile-to-brittle
transition; the grain-to-grain propagation of cleavage fracture [46]) and, on the other hand, by the
need of complementing experimental investigations that, in the case of 3D microstructure recon-
struction and characterization are particularly complex and expensive, especially when damage
and failure are considered. Until recently, development of truly 3D models has been hindered
by their excessive computational requirements. However, the present-day availability of cheaper
and more powerful computational resources and facilities, namely high performance parallel
computing, is favoring the advancement of the subject [47, 48, 49, 50].
A 3D rigid bodies-spring model for the analysis of brittle microcracking in polycrystalline Voronoi
microstructures was developed by Toi and Kiyosue [51]. Marrow et al. [44] developed a simple
3D model for the analysis of intergranular stress corrosion cracking in austenitic stainless steel:
in order to reduce the computational effort, in their model each grain is represented by a discrete
system of elasto-plastic beams; grain boundaries are classified as either susceptible or resistant
to intergranular fracture and different simplified failure criteria are assumed for them. Hughes et
al. [45] developed a 3D geometrical model of the brittle fracture in polycrystalline zinc, with a
focus on propagation of cleavage cracks from grain to grain. The stress corrosion intergranular
crack initiation and growth in 3D polycrystalline microstructures was studied by using the finite
element analysis by Kamaya and Itakura [52]. In their work the initiation and propagation of
the cracks were modeled applying the concepts of damage mechanics. Musienko and Cailletaud
[53] simulated inter- and transgranular stress corrosion cracking in polycrystalline aggregates
with a finite element model in which the single grains exhibit viscoplastic behavior, transgranu-
lar cleavage is accommodated by introducing a pseudo-strain in the crystal plasticity framework
and the grain boundaries are modeled as thin viscoplastic finite elements modified in the spirit
of damage mechanics. Finite elements and continuum damage mechanics have been combined
by Bomidi et al. for modelling of intergranular fatigue failure of 3D fine grain polycrystalline
metallic MEMS devices [50].
A popular approach for modelling both 2D and 3D fracture problems in polycrystalline materials
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consists in the use of cohesive surfaces embedded in a finite element (FE) representation of the
microstructure. The cohesive zone models provide a phenomenological framework in which the
complex physical phenomena underlying the initiation and evolution of damage, in the so called
process zone, are embedded in a traction-separation law expressing the progressive loss of ma-
terial cohesion. In this way, initiation, propagation, branching and coalescence of microcracks
stem as an outcome of the simulation, without any a priori assumptions. Several cohesive laws
have been proposed [54, 55], but most popular are the potential-based laws by Tvergaard [56]
and Xu and Needleman [57] and the linear laws by Camacho and Ortiz [58] and Ortiz and Pan-
dolfi [59].
Cohesive FE models for 2D microstructures have been presented by several authors. Zhai and
Zhou [60, 61] used the cohesive FE method for studying the quasi-static and dynamic failure in
heterogeneous two-phase Al2O3/TiB2 ceramic microstructures. Espinosa and Zavattieri [62, 63]
developed a grain level model for the analysis of intergranular failure initiation and evolution in
brittle polycrystalline materials and discussed the features of different cohesive laws in numerical
simulations. Wei and Anand [64] employed crystal plasticity theory and cohesive laws in a FE
framework to study the dominant failure mechanisms in nanocrystalline fcc metals and carried
out simulations on pseudo-3D microstructures (columnar grains). The dynamic fragmentation
of granular ceramic microstructures has been studied with a cohesive FE scheme by Maiti et al.
[65]. Zhou et al. [66] simulated crack growth in the polycrystalline microstructure of single-
phase Al2O3 ceramic tool materials by introducing cohesive elements in the microstructure FE
model. A 3D cohesive finite element model has been presented by Simonovski and Cizelj for
intergranular cracks in a polycrystalline aggregate with elastic isotropic [48] and anisotropic,
elastic and crystal plastic, grains [49].
An alternative to the FEM is the Boundary Element Method (BEM) that has proved effective for a
variety of physical and engineering problems [67, 68]. A cohesive boundary element formulation
for brittle intergranular failure in polycrystalline materials was proposed by Sfantos and Aliabadi
[69], that subsequently used the developed technique in a multiscale analysis of polycrystalline
material degradation and fracture [35, 37]. A 3D grain boundary formulation has recently been
developed by Benedetti and Aliabadi for the material homogenization of polycrystalline materi-
als [70].
In this work, a novel 3D grain-level model for the analysis of intergranular degradation and fail-
ure in polycrystalline materials is developed. The proposed formulation is given in Section2.
The microstructure is generated using the Voronoi tessellations and the formulation is based on
a grain-boundary integral representation of the elastic problem for the crystals, represented as
anisotropic elastic domains with random orientation in space. The model is expressed in terms
of interface displacement jumps and interface tractions, that play an important role in polycrys-
talline micromechanics. The continuity of the aggregate is retrieved by enforcing suitable condi-
tions at the intergranular interfaces. The grain-boundary model given in Section3, which is the
core of the present contribution, takes into account the onset and evolution of damage by means
of an extrinsic irreversible linear cohesive law, able to address mixed-mode failure conditions. In
order to distinguish energetically mode I from mode II failures, and make then the decohesion
process energetically path-dependent, the requirement for existence of a cohesive potential is
withdrawn and the form of the traction-separation law is directly given, departing from the po-
tential-based derivation. Its relationship with potential laws used by several authors is however
discussed in Section 3.3.2. Upon interface failure, a non-linear frictional contact analysis is intro-
duced for addressing contact, either slip or stick, and separation between micro-crack surfaces.
Moreover, in case the of interface mode II failure under compressive loading conditions, to avoid
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some non-physical behavior induced by the switch-off transition between cohesive and contact
laws, the concept of cohesive-frictional law is introduced in Section 3.3.4. The incremental-it-
erative algorithm for tracking the micro- degradation and cracking evolution is presented and
discussed in Section 4 and the advantages provided by the use of interface fields only are high-
lighted. Several numerical tests on pseudo- and fully-3D polycrystalline aggregates have been
performed in Section 5, either in the case of tensile or compressive load. Directions of further
research are eventually discussed in Section 6.
To the authors’ knowledge, it is the first time that a comprehensive 3D boundary element model
of the polycrystalline microstructure, with interface cohesive-frictional evolution, has been pre-
sented.

2. Polycrystalline microstructure model

In this section, the computational model for the analysis of polycrystalline microstructures is
described.

2.1. Artificial microstructure generation

Artificial polycrystalline microstructures can be generated by using either experimental tech-
niques or computer models able to render the main statistical features of the aggregate. Vari-
ous experimental techniques are available for microstructural characterization [25, 26, 27, 28,
29, 71, 72, 73] and their output is sometimes used as input for finite element (FE) analysis
[74, 75, 48, 49]. However a complete 3D reconstruction still remains a challenging task. More-
over, experimental microstructures are often sampled in terms of voxels, and careful data process-
ing is needed to avoid the introduction of model artifacts, for example stepped grain boundaries,
that are not suitable for micro-cracking analysis. On the other hand, the use of reliable computer
models offers the opportunity of analyzing large numbers of microstructures, complementing
the experimental effort [76, 5]: synthetic microstructures and unstructured meshes, reflecting the
actual micro-morphology, are powerful tools for the study of complex phenomena like material
degeneration and fracture at the micro-scale.
In the case of polycrystals, a reliable computer representation must retain the main topological,
morphological and crystallographic features of the microstructural aggregate. The Voronoi tes-
sellations have been consistently adopted for representing polycrystalline materials at the grain
scale [77, 78, 79]. Although it has been shown that they slightly misestimate some polycrystalline
microstructural distributions [25, 80], they have however been widely successfully employed for
modelling purposes [5, 81, 80, 82, 83, 84, 85, 86, 70].
In any case, the Voroni tessellations have the advantage of being analytically defined and sim-
ple to generate. In this work, the free open-source C++ software library Voro++ (http://
math.lbl.gov/ voro++/; [87]) is used for generating the tessellation, Fig.(1). The repre-
sentation is completed by assigning random or specific orientation to each crystal in the group
S O(3) of rotations in the three-dimensional space. For further details about the microstructure
generation, the reader is referred to [70].
It is useful to give some details about the topology and morphology of the Voronoi tessellations

and introduce some notation that will be used in the following. Each Voronoi cell Gk is a convex
polyhedron bounded by the surface Bk and it represents a single crystal: it will be equivalently
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referred to as grain, cell or crystal. In general two different kinds of grains can be distinguished:
the domain boundary grains, which intersect the external boundary B of the analysis region C ,
and the internal grains, that are completely surrounded by other grains. A part Bk

nc of the surface
of a domain boundary grain Gk lies on B, while the remaining part Bk

c is the area of contact with
the surrounding contiguous grains:

Bk = Bk
nc ∪Bk

c Bk
nc = Gk ∩B Bk

c = Bk −Bk
nc (1)

where the subscripts nc and c stand for non contact and contact, respectively. Of course Bk
nc

only exists for the domain boundary grains, while for the internal grains Bk = Bk
c .

The grain surface Bk is given by the union of flat convex polygonal faces F k
j

Bk = ∂Gk =

Nk
f∪

j=1

F k
j (2)

where Nk
f is the number of flat faces of the k − th grain. Two contiguous faces share a straight

cell edge while two contiguous edges meet at a cell vertex. It is worth noting that flat faces and
straight edges are particularly suitable for numerical treatment. Each face F k

j is associated with
a unique outward unit normal vector nk

j = {ni}. A local reference system {x̃1 x̃2 x̃3}kj is set on each
grain face, so to express the local components of displacements and tractions of points belonging
to that face of that grain. The local reference system on each face is chosen so that x̃3 ≡ nk

j and
the plane x̃1 x̃2 contains the considered face, Fig.(2). Local components of displacements and
tractions are denoted with a tilde, so that ũk

j and t̃k
j refer to displacements and tractions of points

belonging to the face F k
j , expressed in the local reference system associated with that face.

Two adjacent Voronoi cells, say Ga and Gb, share a tessellation interface Iab = Ga ∩ Gb. Let us
assume that the n − th face F a

n of Ga and the m − th face F b
m of Gb are in contact. Then, if in the

grain global numbering a < b, the local reference system {x̃1 x̃2 x̃3}an on the face of Ga induces the
local reference system {x̃1 x̃2 x̃3}bm on the contiguous face of Gb, so that x̃b

i ≡ −x̃a
i for i = 1, 2, 3,

Fig.(3). The introduction of these grain-face local reference systems simplify the writing of the
interface equations, as it will be seen in Section 3.

2.2. Anisotropic grain boundary element formulation

In the present work, each crystal is modelled as a single elastic domain Gk with orthotropic
linearly elastic behavior and random spatial orientation. The numerical model for the single crys-
tal is obtained by using the Boundary Element Method (BEM) for three-dimensional anisotropic
elasticity [88]. The polycrystalline aggregate is modelled as a multi-region boundary element
problem, so that different elastic properties and spatial orientation can be assigned to each grain
[68].
The constitutive equations for the grain material are

σi j = ci jklεkl (3)

where the constants ci jkl denote the components of the stiffness tensor linking the components
σi j of the stress tensor to the components εkl of the strain tensor. If the compact Voigt notation is
used to denote the elements of the elastic tensors, see for example [89], the stiffness tensor can
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be written as a (6× 6) matrix C = [Ci j], where C11 = c1111, C12 = c1122, C16 = c1112, C44 = c2323,
etc. For the general orthotropic case, 9 constants are needed for the complete material character-
ization, due to material symmetries. The hypothesis of orthotropic material is not restrictive, as
the majority of single metallic and ceramic crystals present general orthotropic behavior.
If a generic grain Gk with its own crystallographic orientation and an accordingly defined coor-
dinate system is considered, the displacement boundary integral representation is given by [68]

ck
i j(y)uk

j(y) +
∫

Bk
nc∪Bk

c

T k
i j(x, y)uk

j(x)dB(x) =
∫

Bk
nc∪Bk

c

Uk
i j(x, y)t k

j (x)dB(x) (4)

where Uk
i j(x, y) and T k

i j(x, y) denote the displacement and traction fundamental solutions of the
3D anisotropic problem, see Appendix A, while ck

i j are the so called free terms, stemming from
the boundary integral limiting procedure [68]. In Eq.(4), the displacement and traction compo-
nents are expressed with respect to a unique reference system coincident with the axes of material
orthotropy of each grain: this is because, when a reference system is not coincident with the ma-
terial axes, an orthotropic grain will have a general anisotropic behavior. However, although it
might slightly simplify the numerical computation of the fundamental solutions, this choice is
not mandatory in the present work, since the fundamental solutions are computed using a scheme
for general three-dimensional anisotropy [90].
The surface integrals in Eq.(4) are defined over the entire boundary Bk of the grain. According
to Eq.(1), Bk

nc belongs to the external boundary of a microstructural cell and a suitable set of
boundary conditions (BCs) must then be prescribed over it. In general, for a point x ∈ Bk

nc ei-
ther displacement components uk

i (x) or the homologous traction components tk
i (x) are unknown,

being the other quantity prescribed by BCs. On the contrary, on the contact surface Bk
c , both

displacements and tractions are unknowns. In order to solve the microstructural boundary value
problem, Eqs.(4), written for each grain of the considered aggregate, must be complemented
with an adequate set of boundary conditions and interface equations, relating displacements and
tractions on the contiguous faces of adjacent crystals.
To simplify the expression of boundary conditions and interface equations, Eq.(4) is rewritten
representing all the displacements and tractions in the local reference systems {x̃1 x̃2 x̃3}kj set over
each face F k

j of the grain, according to what explained in Section 2.1. The displacement bound-
ary integral equations can be rewritten as

c̃ k
i j(y)ũ k

j (y) +
Nk

f∑
q=1

∫
F k

q

T̃ k
i j(x, y)ũ k

j (x)dF (x) =
Nk

f∑
q=1

∫
F k

q

Ũ k
i j(x, y)t̃ k

j (x)dF (x) (5)

where the tilde indicates local components and

c̃ k
i j = c k

inR q k
n j Ũk

i j = Uk
inR q k

n j T̃ k
i j = T k

inR q k
n j (6)

with the components Rqk
i j defining the coordinate transformation linking the components of vector

fields written in the material system and in the local system attached to the face F k
q according to

u k
i = R q k

i j ũ k
j t k

i = R q k
i j t̃ k

j . (7)

The boundary conditions can now be written as

ũ k
i (x) = ū k

i (x) or t̃ k
i (x) = t̄ k

i (x) i = 1, 2, 3 ∀x ∈ F k
j ⊂ B k

nc (8)
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where the x̄ denotes a prescribed value for x. On the other hand, the interface equations can be
expressed asΨ ab

i [ũ a
j (x), ũ b

j (x), t̃ a
j (x), t̃ b

j (x)] = ψ ab
i

Φab
i [t̃ a

j (x), t̃ b
j (x)] = 0

i, j = 1, 2, 3 ∀x ∈ Iab, (9)

on the interface between the grains Ga and Gb. The equations Φab
i can be generally interpreted as

equilibrium equations while the terms Ψab
i , depending on the evolution and internal state of the

microstructure, may represent either continuity, cohesive or frictional contact laws, as it will be
explained in Section 3. It is worth stressing that the interface equations involve local components
of displacements and tractions of different grains.
To solve numerically the polycrystalline problem, each grain face F k

q is discretized into a collec-
tion of non-overlapping triangular elements, Appendix B, and Eq.(5) is treated according to the
classical boundary element collocation procedure [68], leading to the following set of equations
for the single grain [

H̃k
nc H̃k

c

] { ũk
nc

ũk
c

}
=

[
G̃k

nc G̃k
c

] { t̃ k
nc

t̃ k
c

}
. (10)

The system of equations for the entire polycrystalline aggregate is obtained by evaluating Eq.(10)
for each grain and enforcing the boundary and interface conditions on the overall aggregate. The
final system is given by

A1 B1 0 · · · 0
0 A2 B2 · · · 0
...

...
. . .

...
0 · · · 0 ANg BNg

←− Interface equations Ψ −→
←− Interface equations Φ −→





x1
nc

x1
c
...

xNg
nc

xNg
c


=



C1y1
nc

C2y2
nc
...

CNg yNg
nc

ψ
0


(11)

where the matrix blocks Ak contain columns from the matrices H̃ k
nc and −G̃ k

nc corresponding to
the unknown components of ũ k

nc and t̃ k
nc that are collected in x k

nc, the blocks Ck collect columns
from −H̃ k

nc and G̃ k
nc corresponding to the known components of ũ k

nc and t̃ k
nc, i.e. the BCs, that are

collected in yk
nc, Bk = [H̃k

c − G̃k
c], the vectors xk

c collect the unknown interface displacements and
tractions of the k − th grain and the matrices Ψ and Φ implement the interface conditions (9) in
the system matrix. It is worth noting that, in writing system (11), it has been implicitly assumed
that the interface conditions can be expressed in matrix-vector product form. In general, this is
not strictly true. Indeed, as already mentioned, the interface equationsΨab

i depend on the internal
state H of the microstructure and it might not be possible to express them as linear functions of
the interface displacements and tractions. However, in the present work, an incremental-iterative
solution strategy is adopted and, during each iteration, a linear system of form (11) can be written
and solved, as it will be detailed in Section 4.1.
System (11) can be rewritten in the more compact form as M(BCs)

Ψ(H )
Φ

 X =


y(BCs, λ)

ψ
0

 or A(H )X = Y(λ), (12)

where the dependency of the various matrix and vector blocks on the boundary conditions (BCs),
on the internal state H of the microstructure and on the load factor λ has been highlighted.
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The population of the blocks Ak and Bk, appearing in system (11), is numerically demanding,
due to need of integrating the anisotropic kernels in Eqs. (5). The use of efficient schemes can
accelerate this stage: for further details, the reader is referred to [90], or to [91] for a more recent
overview.
For microstructures with a high number of grains, the problem is suitable for parallel computing,
as the matrices for different grains can be independently computed on different processors.

3. Grain-boundary model

The generic interface I between two grains, in polycrystalline materials, is subjected to the
development and evolution of damage and cracks. Before proceeding with the description of the
interface model, it is useful to give some notation and clarify the concept of interface pair.

3.1. Interface description

Let us assume that the n− th face F a
n of Ga and the m− th face F b

m of Gb meet at the interface
Iab. Let us now assume that the interface Iab is in the pristine state, so that F a

n ≡ F b
m ≡ Iab.

This implies that the generic point P ∈ F a
n ⊂ Ga is perfectly bonded to the point Q ∈ F b

m ⊂ Gb

and continuity of displacements and equilibrium of tractions hold. When the interface starts
developing damage, the previous considerations are no longer valid and, in general, F a

n , F b
m,

i.e. relative displacements between the two grain surfaces are now allowed. The two points P
and Q, that were coincident at the initial state, form an interface pair P . If ua

i (P) and ub
i (Q) are

the displacements associated to such points, in general ua
i (P) , ub

i (Q) and the difference between
them defines a displacement jump that, in local coordinates, can be expressed as

δũab
i = −

[
ũa

i (P) + ũb
i (Q)

]
. (13)

The above definition is a consequence of the choice of the local reference systems, that are
opposite on the two grain faces in contact. In particular, it is to be noted that the third component
of the displacement jump

δũab
3 = −

[
ũa

3(P) + ũb
3(Q)

]
= δuab

n (14)

expresses the opening between the two surfaces and, according to the given definition, only
δũab

n ≥ 0 is allowed, while δũab
n < 0 implies a violation of the impenetrability of grains.

On the other hand, if t̃a
i (P) and t̃b

i (Q) are the tractions associated to the two points, acting re-
spectively on the surfaces F a

n and F b
m with normal vectors na

i (P) and nb
i (Q) = −na

i (P), the
traction equilibrium, that holds also when damage or cracks have developed, always requires
that t̃a

i (P) = t̃b
i (Q). The tractions t̃a

i (P) or t̃b
i (Q) can then be interchangeably used to express the

traction state of the given pair.
Summarizing, the two points P and Q, initially in contact, constitute an interface pair P , whose
state, during the microstructure evolution, is characterized by the level of damage, the displace-
ment jump δũab

i and the interface tractions t̃a
i (or t̃b

i ). In the following, the superscripts a or b,
referring to the grains that form the considered interface, will be discarded for the sake of read-
ability in the expression of the displacement jump and interface tractions, if it does not generate
ambiguity.
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3.2. Interface status

It is assumed that interface pairs can be in one of the following regions:

• Intact or pristine region I R: these pairs are still in the pristine condition. The inter-
face tractions have never exceeded the threshold that defines the onset of damage and no
separation is allowed between the grain surfaces. Perfect bonding conditions are directly
enforced through displacement compatibility and traction equilibrium equations.

• Damaged or cohesive region DR: these pairs have experienced tractions over a certain
threshold value, and have started accumulating damage. Tractions equilibrium always
holds, but the grain surfaces are now allowed a separation. The interface tractions depend
now on the accumulated damage and displacement jump, according to a certain irreversible
cohesive law. The pairs entering this zone begin the process that will lead to failure, i.e.
cracking, of the interface.

• Failed or cracked region FR: these interface pairs have completed the damaging process
and have developed a free crack. Their status is now governed by the laws of frictional
contact mechanics: they can be either separated or in contact and if they are in contact
they will be either in slip or in stick status.

3.3. Interface equations

In this section, the equations describing the state of the interface pairs, in any of the afore-
mentioned regions, are introduced in some detail.
Before, however, it is useful to give a general premise about their structure. In the present for-
mulation, each interface pair carries six equations. In the pristine state, there are three continuity
equations, expressing identity of displacement components, and three equilibrium equations,
expressing identity of traction components. During the interface evolution, the three traction
equilibrium equations do not change. On the contrary, the continuity equations are replaced by
the cohesive separation-traction laws during the damage onset and subsequently by the frictional
contact equations, when failure is reached. In the following, only the three equations that will
be changing are discussed, in the different cases, while equilibrium equations must be satisfied
throughout the analysis.
Moreover, especially for contact analysis, it is worth making a conceptual distinction between
conditions and related equations: some conditions must be satisfied by the interface pair solution
displacements and tractions, when the related equations are forced in the system with reference
to the considered pair; if the conditions are violated, then another consistent set of equations
must be introduced into the system, with reference to the pair, and the related conditions must be
satisfied. A consistent solution is reached when conditions and equations are consistent for all
the interface pairs. These concepts will be further developed in the following.

3.3.1. Interface continuity equations
For an interface pair in the pristine state, P ∈ I R, the following compatibility and equilib-

rium equations hold

ũa
i + ũb

i = −δũab
i = 0

t̃a
i − t̃b

i = 0
i = 1, 2, 3 on Iab ≡ Ga ∩ Gb (15)
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The local traction components t̃a
i = t̃b

i = t̃i, at a point P ∈ F a
q ⊂ Ga, can be naturally used to

express the tangential and normal tractions for the pair. The local normal and tangential interface
tractions are defined by

t̃n = (t̃ · ñ)ñ =

 0
0
t̃3

 t̃s = t̃ − t̃n =

 t̃1
t̃2
0

 (16)

and their moduli are given by tn = t̃3 and ts = +
(
t̃2
1 + t̃2

2

)1/2
. It is worth noting that, in the above

definition, unlike ts, tn carries a sign. The sign of tn has an important role in the development
and evolution of the intergranular damage: when tn > 0, then the interface experiences tensile
tractions, that contribute to the spread of damage; if tn < 0, then the interface sees a compressive
load, that does not contribute to the evolution of damage.
The normal and tangential interface tractions are used to define the effective traction

te =
[
⟨tn⟩2 +

(
β

α
ts

)2] 1
2

(17)

where ⟨◦⟩ denote the Mc-Cauley brackets, defined by ⟨x⟩ = max(0, x), and α and β are suitable
coefficients weighing the relative contribution of the opening and sliding modes in the damage
process. Again, from the above definition, it can be noticed that only tensile normal tractions
contribute to the value of the effective traction. An interface pair P ∈ I R remains in the pris-
tine status until te < Tmax, where Tmax defines a threshold value for damage initiation.

3.3.2. Damaged interface: cohesive traction-separation laws
When the effective traction exceeds Tmax, often referred to as cohesive strength, the node pair

P enters the damaged region

te ≥ Tmax ⇒ I R →P → DR (18)

and an irreversible extrinsic cohesive law, or traction-separation law (TSL), t̃i = fi(Hd, δũ j) is
introduced, to link the pair tractions and displacement jumps: Hd symbolizes the dependence on
the history of the decohesion process, thus giving the cohesive law the character of irreversibility;
the adjective extrinsic, on the other hand, refers to the fact that the traction-separation laws are
introduced only after a certain threshold for the effective traction has been overcome.
To follow the evolution of damage, according to Ortiz and Pandolfi [59], a non-dimensional
effective opening displacement

d =

⟨ δun

δucr
n

⟩2

+ β2
(
δus

δucr
s

)2
1
2

(19)

is introduced, where δun is defined by Eq.(14), δus =
(
δũ2

1 + δũ
2
2

)1/2
and δucr

n and δucr
s denote

the critical values of the normal and sliding displacement jumps at which interface failure oc-
curs, in the case of pure Mode I or Mode II loading respectively. The parameter β assigns a
different weight to the two modes, in the mixed-mode case. The effective opening displacement
can assume values 0 ≤ d ≤ 1, where d = 1 implies the complete failure, or decohesion, of the
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considered pair.
The formulation of the cohesive law can be derived from the introduction of a scalar potential:
in this work this derivation is shown; eventually, however, it will be shown how a simple modi-
fication of the TSLs removes the hypothesis of existence of the cohesive potential, allowing for
the energetic path dependence of the work of decohesion, and then the energetic differentiation
between mode I and mode II failures. Following Ortiz and Pandolfi [59], the following potential
is introduced

ϕ = ϕ(δun, δus,q) (20)

where q represents a suitable collection of internal variables describing the irreversible processes
attending the decohesion, and whose evolution is governed by some kinetic relationship of the
form

q̇ = ψ(δun, δus,q). (21)

The cohesive traction-separation law can be then derived from the potential (20) through the
relationships

t̃i =
∂ϕ

∂δũi
i = 1, 2, 3 or tn =

∂ϕ

∂δun
, ts =

∂ϕ

∂δus
. (22)

Following Espinosa and Zavattieri [62], Sfantos and Aliabadi [69] used a potential of the form

ϕ(d) = δucr
n

∫ d

0
te(η)dη (23)

where d is the current effective opening displacement defined by Eq.(19) and

te(η) = Tmax
1 − d∗

d∗
η with d∗ = max

Hd

{d} ∈ [0, 1] (24)

where d∗ is a monotonically increasing parameter, given by the maximum value that the effective
opening displacement d reaches during the loading history Hd of the considered pair: it plays the
role of a state variable that accounts for the evolution of the degradation process and Eq.(24b) is
the kinetic relationship governing its evolution, see Eq.(21). For an undamaged pair d∗ = 0, while
d∗ = 1 for a complete failed pair: in this case the considered pair exits the cohesive zone and a
microcrack is introduced. In other words, d∗ is the variable that accounts for the accumulation of
damage for the node pair. It is worth noting that unloading and reloading take place in the range
0 ≤ d ≤ d∗, while loading implies d∗ = d. More precisely

d = d∗ and ḋ > 0 loading; 0 ≤ d ≤ d∗ and

ḋ < 0 unloading
ḋ > 0 reloading

(25)

where the overdot denotes the derivative with respect to a generic load factor λ, during the loading
history.
The cohesive tractions are calculated using Eqs.(22) with the potential defined by Eqs.(23-24)
and taking into account the definition of effective opening displacement, Eq.(19). The following
expressions are obtained in this case for the normal and tangential traction components

t̃i = αTmax
1 − d∗

d∗
δũi

δucr
s

i = 1, 2

t̃3 = Tmax
1 − d∗

d∗
δũ3

δucr
n

or


ts = αTmax

1 − d∗

d∗
δus

δucr
s

tn = Tmax
1 − d∗

d∗
δun

δucr
n

(26)
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where the relationship

α = β2 δu
cr
n

δucr
s

(27)

holds: this relationship is of particular relevance, as its enforcement guarantees the existence of
the cohesive potential (23), and then the independence of the cohesive fracture energy from the
opening path.
To fully understand this aspect, let us consider the opening of a cohesive surface along a direction
that forms a constant angle ϕ with the normal to the cohesive surface itself. In this case

δun = u cos(ϕ) δus = u sin(ϕ) (28)

where u is a loading parameter. It is easy to show that the work of separation is given by

G(ϕ) =
∫ ucr

0
tn(u)dδun + ts(u)dδus =

Tmax

2

cos2(ϕ)
δucr

n
+ α sin2(ϕ)

δucr
s(

cos(ϕ)
δucr

n

)2
+ β2

(
sin(ϕ)
δucr

s

)2 (29)

and, in particular, that

GI = G(0) =
1
2

Tmaxδucr
n GII = G(

π

2
) =

α

2β2 Tmaxδucr
s . (30)

It can be shown that, if the relationship (27) holds, then G(ϕ) = G(0) ∀ϕ ∈ [0, π/2] and, in
particular, GI = GII . In other words, if a potential traction-separation law is formulated, it is not
possible to distinguish energetically between pure mode I and pure mode II, as the fracture energy
is required to be independent from the fracture path. However, as pointed out by some authors
[92, 93], it is reasonable to assume that the work of decohesion should be path dependent, as the
energy dissipated in a fracture process depends on some microstructural details that inherently
make mode II different from mode I, at least at a macroscopic level. In the framework introduced
above, the fracture energy path-dependency can be achieved by simply discarding Eq.(27) and
assigning suitable independent values to the constants α and β: this corresponds to relaxing the
requirement of existence of a well defined cohesive potential; the traction-separation laws are
then directly given by Eqs.(26) and not derived from a given potential. Therefore, in this work,
the cohesive traction-separation laws are specified by Eqs.(26), where the constants α and β
are given independently from each other, but in such a way to ensure the desired GII/GI ratio
between mode II and mode I fracture energies: they are not required to fulfill Eq.(27). The laws
obtained in this way are similar to those presented by Snozzi and Molinari [93], who used the
constants in a slightly different way. For the case GII/GI = 2, Eq.(29) is plotted in Fig.(4), where
the energetic contribution from the opening term δun is distinguished from that coming from the
sliding term δus, for ϕ ∈ [0, π/2].
The traction-separation laws (26) are valid in all the loading cases, i.e. whether the considered

pair is in loading, unloading or reloading. During unloading and reloading d∗ remains constant,
its value being given by the higher effective opening displacement reached during the loading
history, before unloading took place; during unloading and reloading, the traction components
(26) become then linear with respect to the current value of the displacement jumps. Moreover,
Eqs.(26) express an isotropic cohesive law, as the cohesive tangential tractions depend on the
tangential displacement jumps according to the same law in any direction on the contact plane.
It is worth noting that the normal cohesive traction component tn is given by Eqs.(26) only when
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a normal opening displacement δun is present. The condition δun ≥ 0, that expresses the physical
impossibility of grain interpenetration, must always be verified. In the case of compressive
loading, the equation δun = 0 must be enforced, instead of Eq.(26); the pair moves into the
pure sliding loading mode and the normal traction component tn is provided by the solution of
the microstructural problem.
The normal and tangential components of the tractions-separation law are plotted in Fig.(5).

3.3.3. Interface failure: frictional contact analysis
Once d∗ = 1, the considered pair P leaves the damaged region and fails, forming a micro-

crack and entering the cracked zone:

d∗ = 1 ⇒ DR →P → FR (31)

Upon interface failure, the laws of frictional contact mechanics enter the formulation and govern
the evolution of the interface pair [94, 95, 96]. The Coulomb frictional law is implemented in
this work. Once a micro-crack has started, the two crack surfaces can be separated or in contact.
In the case of separation, the condition δun > 0 must always be satisfied, and the following
equations hold for the traction components

t̃i = 0 i = 1, 2, 3 or tn = 0, ts = 0. (32)

If the crack surfaces are in contact, then they can stick or slide. In the case of contact, the
condition tn ≤ 0 must always be satisfied, while the equation δun = 0 is directly enforced in the
system of equations, either in case of stick or slip.
If the surfaces are in contact and the condition |ts| < µ|tn| holds, then the pair is said to be in stick
status and the following equations hold:∆δũi = 0 i = 1, 2

δũ3 = 0
or equivalently

∆δus = 0
δun = 0

(33)

where the symbol ∆ denotes the increment of a quantity between load steps: no variation of the
displacement jump is allowed if the pair is in stick condition.
If the stick condition |ts| < µ|tn| cannot be satisfied, then the relationship |ts| = µ|tn| must be
enforced and the pair is said to be in slip status. In this case, the relative displacements δũ1 and
δũ2 can evolve and the following equations hold:

t̃1 + µ t̃3 cos(θ) = 0
t̃2 + µ t̃3 sin(θ) = 0

δũ3 = 0
(34)

where θ denotes the slip angle, defined in the plane {x̃1 x̃2} by tan(θ) = δũ2/δũ1: this angle is
not a priori known and its value must be computed iteratively in the solution process, as it will
be explained in the next section. From the above definition of slip angle and from Eqs.(34), it
is apparent that the two vectors δũs and t̃s should have the same direction in the contact plane.
However, since the equation tan(θ) = δũ2/δũ1 is not directly implemented into the system, this
requirement must be assessed once the numerical solution of the problem is available. Let us
define βs as the angle between δũs and t̃s on the contact plane. The slip condition is violated if
|βs| ≥ π/2, i.e. t̃s · δũs ≤ 0: if this happens, then the pair cannot be in slip and it is put in stick
status. On the other hand, if |βs| < π/2 but |βs| > 0, then the slip angle must be suitably adjusted.
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Figure 1: Voronoi tessellations generated with Voro++ [87]: a) 1000-grain 3D tessellation; b) 200-grain pseudo-3D
tessellation. Some transparency is given to the surface of the grains to give an insight into the complexity of the internal
structure.

Figure 2: Local reference system on a grain face: displacements and tractions of points belonging to the face F k
j are

expressed in the reference system {x̃1 x̃2 x̃3}kj .

Figure 3: Interface between the two contiguous grains Ga and Gb and opposite local reference systems attached to the
faces in contact.

Figure 4: Fracture energy for a decohesion process along a direction forming a constant angle ϕwith the direction normal
to the cohesive surface, in the case GII/GI = 2.

Figure 5: (a): Graphical representation of the normal and tangential cohesive traction-separation laws, tn(δun, δus) and
ts(δun, δus); (b): Intersections of the cohesive surfaces with the planes δus = const and δun = const are visualized.
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3.3.4. Grains interface under compressive-sliding load: cohesive-frictional laws
In the depicted framework, a particular aspect deserves some attention. As explained above,

when an interface between two grains fails, the cohesive laws no longer apply and the frictional
contact analysis is used instead. This on-off switch between cohesive and frictional contact laws
is acceptable in the case of truly mixed-mode loading, i.e. when a normal traction component
tn > 0 exists. However, when the interface is subjected to a compressive-sliding load, see Fig.(6),
the sudden transition between the two regimes can give raise to some physically inconsistent be-
havior as well as to some numerical problems. As pointed out by Snozzi and Molinari [93], this
aspect has often been overlooked.
To understand the issue, let us consider the interface between the two grains shown in Fig.(6a):
the two grains are subjected, in displacement control, to a compressive load λ∆v and to a sliding
load λ∆u, where λ denotes the load factor. The interface is initially undamaged and, as shown
in Fig.(6b), the aggregate is able to carry elastically a load until a cohesive process is started
at the interface; at this point, since a compressive load is present, the impenetrability is directly
enforced in the system, while the tangential components of tractions are given by the correspond-
ing term in Eqs.(26). As the interface damage grows, the load-carrying capability of the system
is progressively reduced: at this point, if the model implements a switch between cohesive and
friction laws, then the tangential cohesive tractions must go to zero at d∗ = 1, i.e. upon interface
failure, before the laws of contact mechanics can be applied. The trend of the tangential trac-
tion, in this case, is given by the lower (blue) curve of Fig.(6b). After interface failure, contact
mechanics apply and the contact algorithm correctly predicts a stick condition immediately after
failure, to avoid a sudden discontinuity of the tangential traction during the loading process, fol-
lowed, eventually, by the slip of the interface, for which tt = µ|tn|.
However, the prediction that, under this loading condition, the interface loses completely its
load-carrying capability, before retrieving some of it through the friction µ, appears slightly in-
consistent. Moreover, the presence of the cusp at the transition between cohesive and contact
state, and the possibility of a traction jump if the load factor is not correctly updated, is likely
to spark numerical instabilities, especially when multi-body frictional contact analysis is con-
sidered. To avoid such behavior, in this work, the presence of some friction is assumed during
the decohesion process, if it happens in compression: this corresponds to assuming a continuous
transition between cohesive and contact state.
The gradual transition to the contact state is achieved by introducing some frictional terms de-
pending on the damage level in the traction-separation laws. In this case, the tangential compo-
nents of traction are expressed by means of the following cohesive-frictional laws

t̃1 = αTmax
1 − d∗

d∗
δũ1

δucr
s
− χ(d∗)µ t̃3 cos(θ)

t̃2 = αTmax
1 − d∗

d∗
δũ2

δucr
s
− χ(d∗)µ t̃3 sin(θ)

(35)

where θ is the slip angle and χ(d∗) is a suitable function modelling the soft transition from zero
to full friction; in this work χ(d) is phenomenologically assumed to be

χ(d) =
1
2

{
1 + tanh

[
d − d̄

d(1 + ξ − d)

]}
(36)

where 0 < d̄ < 1 and 0 < ξ ≪ 1 are parameters that enable one to modify, to some extent, the
shape of the curve χ(d), see Fig.(7).
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If Eqs.(35)and Eq.(36) are implemented, the trend of the tangential tractions at the interface be-
tween the two grains shown in Fig.(6a) is given by the upper (red) curve in Fig.(6b). In the figure,
the value of the intergranular tangential traction is given as a function of the multiplicative load
factor λ and it is apparent how the introduction of the frictional terms smooths the transition to
the frictional contact, favoring a gradual evolution from cohesive debonding to frictional slip.
The grey area between the two curves in Fig.(6) represents the energy dissipated by the friction
during the decohesion process.

3.4. Numerical aspects: mesh requirements
The mesh of the polycrystalline microstructure is generated as explained in Appendix B.

However, some additional considerations are required and care must be taken in the mesh prepa-
ration to fulfill the conditions for element-size independency and reproducibility of the solution.
As investigated by Tomar et al. [97] and Espinosa and Zavattieri [63], and as reported by Sfantos
and Aliabadi [69], factors influencing the solution mesh independency and reproducibility are: a)
the initial macroscopic stiffness reduction resulting from the cohesive separation along the grain
boundary, when the initial slope of the cohesive law is finite; b) the characteristic element length
ξe, that must be fine enough to resolve the strain and stress distributions inside the cohesive zone.
In the proposed formulation, the initial stiffness of the cohesive law is infinite, as perfect bonding
between pair nodes is enforced directly in the system, Eq.(15), until the fulfillment of condition
(18) triggers the cohesive separation process: then the first factor does not affect the solution
process in the present case. The second factor is however very relevant and the condition

ξe ≪ LCZ (37)

must be fulfilled, where LCZ denotes the length of the cohesive zone, that must be estimated in
order to make Eq.(37) effective. An estimate of the cohesive zone size, for a linearly softening
cohesive law, as the one adopted in the present study, was provided by Rice [98] as

LCZ ≈
π

2

(
KIC

Tmax

)2

(38)

and it was used by Espinosa and Zavattieri in [63]; in the previous equation KIC is the material
fracture toughness in mode I, and Tmax is the threshold value entering condition (18), i.e. the
strength of the cohesive grain boundary under pure normal separation. Another estimate for
cohesive laws derived from a potential is given in [97] as

LCZ ≈
9 π
32

E
(1 − ν2)

ϕ0

T 2
max

(39)

where E is the material Young modulus, ν is the Poisson ratio and ϕ0 is the amount of work
required to separate completely a unit surface starting from undamaged state.

4. Micro-damage and micro-cracking tracking

The algorithm employed to track the evolution of micro-damage and micro-cracks along the
intergranular boundaries is described. Some details about the choice of the algorithm parameters
are given. The practical numerical implementation adopted in this work is given in Appendix C.
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4.1. Microstructural evolution algorithm
Given a polycrystalline aggregate and a consistent set of boundary conditions, the internal

evolution of the microstructure is determined by the increment of the external loads, whose
intensity can be generally expressed in terms of a load factor λ. The microstructural evolution is
tracked by solving the boundary value problem for a discrete set of values λk (k = 0, ...,Nλ)

A(Hk)Xk = Y(λk) (40)

where Hk symbolizes the internal state of the microstructure. Once the solution of the system
is obtained for λk, the load factor is incremented by a suitably chosen amount ∆λk and a new
solution of system (40) is sought for λk+1 = λk + ∆λk. It is worth emphasizing that, in Eq.(40),
solution Xk and the microstructural state Hk must be mutually consistent: this requires the nu-
merical solution to fulfill the interface conditions holding: pristine, cohesive or contact state.
This consideration is the basis of the solution strategy proposed next.

4.1.1. Load increment
Let us assume that a solution of the system (40) has been obtained for λk and that a solution

corresponding to λk+1 is sought. Once the increment ∆λk has been determined, the right-hand
side of the system is updated by determining Y(λk+1): if no interface pair has failed yet, this
step does not require any special consideration and Y(λk+1) is simply obtained by scaling Y(λk);
when micro-cracks are formed and the frictional contact analysis has started, if interface pairs in
contact-stick state exist, then the part of Y(λk) corresponding to the boundary integral equations
will be updated by simple scaling, while the part corresponding to the interface equations will be
kept constant. Upon update of the right-hand side, the new system is given by

A(H o
k+1)Xo

k+1 = Y(λk+1), (41)

where the matrix A(H o
k+1) = A(Hk) has not been updated yet, will be solved: this simply

involves the solution of a linear system and, if no failed pairs in contact-stick state exist, the
solution Xo

k can be found by simply scaling Xk. At this point an iteration is started with the
aim of finding the new system solution Xk+1 satisfying Eq.(40) for k + 1: in Eq.(41), H i

k+1 and
Xi

k+1 denote respectively the internal state and the solution at the i-th iteration of the (k+1)-th
increment.

4.1.2. Iterative search
The iterative search of the solution for the current load increment is carried forward until

convergence is reached. In general, at each iteration, some interface pairs are in the pristine state
IR, some are in the cohesive zone DR and others belong to the cracked interface FR. The
generic solution Xi

k+1 at the i − th iteration provides the complete set of interface displacement
jumps and tractions: the convergence of the iterative procedure is checked by assessing whether
any state violation exists for any interface pair, be it in the pristine state, in the cohesive zone or
in the failed region.

• The intact pairs are checked to assess whether the effective traction defined by Eq.(17) is
below the threshold value Tmax. A state violation occurs if Tmax is overcome: in this case,
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the displacement continuity equations do not hold anymore and the interface equations
corresponding to the considered pair in the coefficient matrix A(H i

k+1) must be updated by
implementing the cohesive laws (26) with an initial guess value d∗start of the damage.

• The damaged pairs are assessed by comparing the current value of the effective displace-
ment d i

k+1, Eq.(19), with both the value of the effective displacement computed at the
previous iteration d i−i

k+1 and the damage d∗k accumulated by the pair (here subscripts and
superscripts refer to the increment and iteration respectively). The assessment of viola-
tions for pairs in the damaged state is quite delicate, because different potential situations
might arise and must be appropriately addressed. A clear distinction must be initially
stated between the damage d∗k and the values d i

k+1 that are found during the iterations: the
damage expresses the state in which the considered pair is and can be numerically seen as
the convergence value of the series of values {d 1

k , ..., d
i
k ..., d

n
k } at the previous increment;

the values d i
k+1 are some attempt values that must be assessed until convergence is reached

and the state of the pair can be eventually updated with the new value d∗k+1.
Now, at the first iteration of the increment λk+1, the cohesive law of the considered pair is
implemented with d∗ = d∗k . When the iteration is performed, a new value of the effective
displacement d o

k+1 is obtained: if d o
k+1 > d∗k , then the pair is in loading state and its cohe-

sive law has to be updated assuming d o
k+1 as an attempt value for the damage in Eqs.(26); if

d o
k+1 ≤ d∗k , then the pair is either in unloading or reloading state and its cohesive law does

not need to be updated. Upon update of the matrix A, a new solution is computed and a
new value d 1

k+1 is provided for the considered pair: if it was in loading state, this value is
compared with d 0

k+1 and if |d 1
k+1 − d 0

k+1| > εd |d 0
k+1|, where εd is a previously set tolerance,

then the cohesive law is updated with the new value max(d 1
k+1, d

∗
k). The convergence for a

pair in loading state is reached when

|d i+1
k+1 − d i

k+1| ≤ εd |d i
k+1|; (42)

on the other hand, since unloading or reloading do not require the update of the cohesive
law, they do not affect the convergence.
It is worth noting that, if the considered damaged pair is subjected to a compressive load,
then the impenetrability condition δun = 0 is directly enforced in the system, together with
the Eqs.(35) expressing the cohesive-frictional law introduced in Section 3.3.4.

• Finally, the state of the pairs in the failed region is assessed. For a failed pair d∗ = 1 and
the frictional contact analysis started. The assessment is carried out by checking whether
any violation of the conditions holding for the assumed contact status exists. Different
cases can be met.

– If the pair is assumed to be in separation at the current iteration, which means that
Eqs.(32) are currently implemented in the matrix A(H i

k+1), then the value of δun is
checked, to detect any interpenetration: if δun < 0, then the separation condition
is violated and the contact state of the pair must be updated; in this specific case,
contact-stick state is assumed and the corresponding Eqs.(33) are implemented into
the system matrix.
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– If the pair is assumed to be in contact, either stick or slip, then the value of the nor-
mal traction tn is checked first: if tn > 0, then the contact assumption is violated
and separation must be enforced. If no contact mode violation is detected, then the
assessment is carried on, to check whether any stick or slip status violation exists. If
the pair is in stick status, then the condition |ts| < µ|tn| is checked and, if violated,
the pair is put in slip and Eqs.(34) are implemented with an initial guess value of the
slip angle θ = arctan(t̃2/t̃1) i

k+1. If the pair is assumed to be in slip status, then the
condition |β| < π/2 is checked, where β is the angle between δũs and t̃s in the contact
plane, as seen in Section (3.3.3). If a violation is detected, then the pair is put in
stick status; on the other hand, if |β| < π/2 but |β| > εβ, where εβ is a previously set
numerical tolerance, then the slip angle in Eqs.(34) must be adjusted. In this work,
the new slip angle is chosen as θ = (βt + βδu)/2, where βt = arctan(t̃2/t̃1) i

k+1 and
βδu = arctan(δũ2/δũ1) i

k+1 are the angles formed by the tangential traction and dis-
placement jump respectively with the axis x̃1.

The convergence is reached when no violations are detected for any interface pair and no equation
updates are then brought into the system matrix, so that A(H i

k+1) = A(H i+1
k+1 ). The system

solution Xk+1 is then determined and, if needed, another load increment can be applied to the
system, starting a new iterative search. The described solution procedure is illustrated in Fig.(8).

4.2. Parameters set up
As seen above, several different parameters enter the formulation: the load increment, ex-

pressed in terms of ∆λk; the initial guess value d∗start for the damage of an interface pair that has
just entered the cohesive zone; the tolerance εd used in the assessment of the iteration conver-
gence for the damaged pairs; the angle εβ, used to assess the fulfillment of the slip condition. To
make the analysis effective, both in terms of accuracy and performance, these parameters must
be carefully tuned.
The load increment ∆λk plays a crucial role in the algorithm for the analysis of the microstruc-
tural damage evolution. In principle, it should be chosen small enough to induce a state change in
a small number of interface pairs, so that few equations would need to be changed in the system
and few iterations would be needed to converge to a consistent solution. The choice of an incon-
sistently large load increment leads generally to an inconsistent solution, as the microstructural
evolution leading from the state Hk to the state Hk+1 is missed. However, an excessively small
load increment could make the analysis excessively time consuming and might produce a large
amount of not always useful information. Ideally, ∆λk should be selected considering the change
induced in a certain number of interface elements at a time, rather than nodes.
In this work ∆λk is chosen adaptively on the basis of the number of iterations Nk−1

iter needed to
reach convergence at the previous load increment. A relationship of the following form is imple-
mented

∆λk = f
 Nk−1

iter

Nmax

∆λk−1 (43)

where f
(
Nk−1

iter /Nmax

)
< 1 if Nk−1

iter /Nmax is closer to 1 and f
(
Nk−1

iter /Nmax

)
> 1 if Nk−1

iter /Nmax is closer
to 0. Moreover, to avoid pathological situations, the following constraint is always enforced

∆λmin ≤ ∆λk ≤ ∆λmax (44)
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where ∆λmin is chosen large enough to avoid the stagnation of the solution and ∆λmax is chosen
small enough to avoid missing important features of the solution.
The initial guess value d∗start for the damage of a pair just entered in the cohesive state must be
chosen small enough to avoid fictitious damage localization at the first damaged interfaces.
Also εd must be carefully chosen: on one hand, indeed, εd affects the accuracy of the intergran-
ular damage level estimation associated to a certain load factor; on the other hand, it has a direct
influence on the number of iterations required for the damage convergence of the cohesive pairs
(the lower the value of ε, the higher the number of iterations). The same considerations apply to
εβ.
In other words, in the set-up of the analysis, there is always a trade off between accuracy and
convergence rate, that must be taken into account. In the present study, after careful testing,
the following values have been selected for the mentioned parameters: d∗start ≈ 10−5 − 10−4,
εd = 10−4 − 10−3, εβ = 5◦.

5. Micro-damage and micro-cracking simulations

In this section the results of some numerical simulations are reported and discussed. All the
reported tests have been performed on the cx1 system of the High Performance Computing facil-
ities at Imperial College London.

5.1. Numerical estimation of the effective properties of SiC

Before simulating the micro-cracking initiation and evolution in polycrystalline aggregates,
the macroscopic effective properties of silicon carbide (SiC) are estimated.
The material properties’ estimation is based on the following steps: a) a certain number of dif-
ferent RVE realizations, each subjected to a suitable set of linearly independent boundary condi-
tions, is considered; b) the boundary value problem for each realization and each set of BCs is
solved with the proposed formulation, in the case of pristine interface (no intergranular damage);
c) the stress and strain volume averages for each realization and for each set of BCs are com-
puted through integrals extended to the RVE’s external surface only, then taking advantage of
the boundary element nature of the formulation itself; d) the apparent material constants for each
realization are estimated from the corresponding sets of volume averaged stresses and strains;e)
the effective properties are obtained as ensemble averages of the previously determined apparent
properties, taken over the considered number of different realizations with the same number of
grains. For further details the interested reader is referred to the works by Benedetti and Aliabadi
[70, 99].
The performed analysis takes into account the stochastic nature of the microstructure, in terms
of grain size, morphology and orientation. Nr = 100 realizations of aggregates with 150 grains
have been generated and analyzed. Each realization differs from the others in terms of both
geometry and crystallographic orientation. Given a polycrystalline realization, consisting of
Ng grains and subjected to a given set of consistent boundary conditions, since the material is
supposed to not develop microcracks, stress and strain volume averages can be used to extract the
apparent elastic modula, see for example [3, 76, 100]. Kinematic uniform boundary conditions,
i.e. linear displacement boundary conditions corresponding to prescribed macro-strains, have
been enforced on each simulated realization. Table 5.1 reports the elastic constants for hexagonal
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single crystal SiC, as measured by Arlt and Schodder [101]: these constants define the material
of the single grains, which are then given a random orientation in the 3D space. The values of the
effective elastic modula E and G for polycrystalline SiC have been reported by various authors,
see Lambrecht et al. [102] and references therein. In this study, the average values, calculated
over Nr = 100 realizations of aggregates with Ng = 150 grains, are E = 456 GPa and G = 193
GPa, which are in very good agreement with the values E = 448 GPa and G = 192 GPa, reported
by Carnahan [103], who used low porosity samples and extrapolated the values to zero porosity.
The average computed value of the Poisson ratio was ν = 0.181, close to the value ν = 0.168
yielded by Carnahan estimations.

C11 C12 C13 C33 C44 C66

502 95 96 565 169 203.5

Table 1: Elastic constants for hexagonal single-crystal SiC [GPa], from [101]. The Voigt notation is used.

5.2. Micro-cracking of pseudo-3D specimens under tensile load
Next, the intergranular micro-cracking of pseudo-3D (2D columnar) polycrystalline SiC

specimens subjected to tensile load is simulated. These tests have been performed to assess
the performance of the developed numerical scheme and to qualitatively compare the obtained
results with those reported by Sfantos and Aliabadi [69].
First, the 100-grain configuration shown in Fig.(9a) is simulated: it is worth noting that we are
dealing with a three-dimensional geometry obtained by extruding a two-dimensional tessella-
tion; the crystallographic orientation of the grains is however not restrained and remains fully
three-dimensional. The average grain size in the {x − y} plane is ASTM G = 10, so that the
grain average area is Āgr = 126 µm2 [104]. The overall specimen size is 2W × 2H × 2T , with

H = 2W, 4WH = NgĀgr and 2T =
√

Āgr. The elastic constants of the grains are given in Table
5.1; the macroscopic elastic modulus and Poisson ratio have been selected as E = 448 GPa and
ν = 0.168. The fracture toughness of SiC was assumed KIC = 3 MPa m1/2 throughout this study.
The interface cohesive-frictional properties for the pseudo-3D specimens under tensile load are
summarized in Table 2. It is worth noting that no parameter such as the displacement at the dam-
age initiation point is required in the formulation, as the damage is started only when the value of
the effective traction reaches the cohesive strength Tmax; in other words, the traction-separation
laws have infinite initial stiffness and the separation at damage initiation is zero. On the other
hand, given the fracture toughness KIC , the value of the critical displacement jump δucr

n can be
inferred considering the equations

GI =
(1 − ν2)K2

IC

E
=

1
2

Tmax δucr
n (45)

Tmax [MPa] α β GII/GI µ d̄Eq.(36) ξ

500 1
√

2 1 0.05 0.8 0

Table 2: Sets of cohesive-frictional parameters for the pseudo-3D micro-specimens subjected to tensile load.
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expressing the relationship between the work of separation GI and the fracture toughness KIC

in mode I, in the case of plain strain, and that between work of separation GI and the cohesive
parameters Tmax and δucr

n . It should be noted that the GI is given by the area under the traction-
separation curve tn(δun). Moreover, given the parameters α and β and the ratio GII/GI , δucr

s can
be inferred from Eqs.(30), that hold general validity.
Assuming a coordinate reference system centered at the center of symmetry of the specimen,
and with the axes aligned with the specimen edges, as shown in Fig.(9a), the applied boundary
conditions are

tx = ty = tz = 0
tx = ty = uz = 0

(x = ∓W),
(z = ∓T ),

tx = tz = 0, uy = 0
tx = tz = 0, uy = ∆U

(y = −H),
(y = +H).

(46)

The specimen is subjected to a uniform displacement ∆U applied over the surface y = H: ∆U
increases from zero up to the value that causes the complete failure of the specimen.
First, a set of tests has been carried out to assess the mesh independency of the proposed for-

mulation. The microstructure shown in Fig.(9a) has been discretized setting different values for
the mesh density parameter dm (see Appendix B): four different meshes, corresponding to the
values dm = 0.5, 1, 1.5, 2, have been prepared. The meshes are shown in Fig.(10) and their
main features are reported in Table 3. In the table, ζ represents a characteristic linear size for the
triangular boundary elements: from the reported values it is apparent that both ζavg ≪ LCZ and
ζmax ≪ LCZ are satisfied, so that, according to what has been discussed in Section 3.4, mesh
independency is expected. This result is interesting and it strictly holds in the sense shown in the
numerical test. However, mesh independency should always be tested and not taken for granted,
should the model be extended to more complex constitutive behaviors.

The simulated stress-strain curves for the four different meshes are reported in Fig.(11). As
a close examination of the zoomed region highlights, the maximum difference in the predicted
stress between the simulated curves, at a given level of strain, is less than 1%; on the other hand,
the maximum difference in the predicted failure strain, between the different meshes, is around
0.6%; moreover all the meshes predict the same failure conditions in terms of micro-cracking
patterns. It is worth noting that, for all the reported curves, the linear part corresponds to a mate-
rial with Young’s modulus E = 450,GPa, which is consistent with the value known for SiC and
with the value previously computed through numerical homogenization.

Fig.(9b) shows the micro-crack path for the analyzed microstructure: this has been plotted
processing the output from the numerical analysis of the finer mesh (dm = 2), but, as already

Mesh density - dm 0.5 1.0 1.5 2.0
Number of elements 2, 672 3, 730 7, 369 12, 428

Interface elements 632 826 1, 638 2, 752
ζmax [µm] 9.79 7.60 5.09 3.81
ζavg [µm] 5.68 5.18 3.83 2.99

DoFs 35, 496 48, 438 95, 805 161, 388
Average time per ∆λ 20s 44s 197s 1, 199s

Table 3: Some statistics about the analyzed meshes for the considered tessellation (number of grains Ng = 100; number
of grain interfaces Nint f = 262). ζ represents a characteristic linear size for the triangular boundary elements; ∆λ denotes
the load increment. Each test was performed on a single 12-core node of the cx1 HPC system at Imperial College London,
with 12-24 GBs of required virtual memory, depending on the system size.
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Figure 6: (a): Intergranular interface subjected to compressive-sliding load; (b): Tangential component of traction at the
interface, in the cases of cohesive-to-frictional and cohesive-frictional behavior; the grey area accounts for the amount
of energy dissipated by the friction during the decohesion process.

Figure 7: Trend of the function χ(d) used to model the soft transition between cohesive debonding and frictional contact,
for different values of the tuning parameters d̄ and ξ.

Figure 8: Flow chart of the proposed solution strategy.

Figure 9: (a): Schematic of the 100-grain pseudo-3D polycrystalline SiC specimen subjected to uniaxial tensile load; (b):
Micro-cracking pattern for the analyzed microstructure, obtained from the finer mesh (dm = 2). The two frames show the
interface damage level one step before and one step after the complete failure. The colour scale has been suitably tailored
so as to highlight the presence of little damage just before the complete cracking (for colour interpretation the reader is
referred to the electronic version of the paper). The strain levels ε corresponding to the frames are reported.

Figure 10: Microstructural meshes considered for the assessment of mesh independency of the method; the meshes have
been obtained setting different values of the mesh density parameter dm.

Figure 11: Simulated stress-strain curves produced by the four considered meshes for the analyzed 100-grain pseudo-3D
polycrystalline specimen; the value of the macroscopic stress component Σyy, obtained from averaging the stress tensor
over the microstructural volume, is plotted versus the nominal strain defined by ε = ∆U/2H.
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mentioned, it is the same as those obtained by all the other meshes. As expected, the crack path
is normal to the direction of the applied external load. It is worth noting that the failure presents
the features of a brittle micro-cracking process and only limited damage is accumulated at the
grain interfaces before the failure: almost all the external work is stored in the system as elastic
strain energy that is released at the moment of failure.
After the assessment of mesh independency, some other pseudo-3D random specimens subjected
to the same load conditions are simulated, to investigate the influence of the microstructure on
the micro-cracking process and on the emerging macroscopic stress-strain relationship. The
same interface properties as above are assumed. Fig.(12) shows the micro-crack patterns for five
different 100-grain microstructures with in-plane grain size ASTM G = 10, (Āgr = 126 µm2):
considering that no pre-existing cracks are included in the simulations, the obtained results, in
terms of micro-cracking patterns, are consistent with those reported by Sfantos and Aliabadi
[69].
The influence of the number of grains and of the grain size on the micro-cracking is also inves-

tigated. Fig.(13) shows the micro-cracking patterns for four 200-grain specimens with grain size
ASTM G = 10 (Āgr = 126 µm2) and four 200-grain specimens with grain size ASTM G = 12
(Āgr = 31.5 µm2). In terms of crack path, the same conclusions as those drawn for the previously
analyzed 100-grain specimens can be made. In particular, damage is initiated at interfaces lying
on planes normal to the direction of loading and only moderate amount of damage is accumulated
at these interfaces before the failure process is initiated. The rupture happens quite suddenly, as
it is typical in brittle processes.

Fig.(14) shows the macro stress-strain curves for the analyzed 100-grain and 200-grain spec-
imens. The analyzed ASTM G = 10 100-grain and 200-grain microstructures show analogous
macroscopic behavior and only moderate softening is observed at the macroscale. A slight dif-
ference in the macroscopic stress-strain curves appears between the ASTM G = 10 and G = 12
microstructures. In particular, the ASTM G = 12 specimens, comprised of smaller grains, ap-
pear slightly more compliant that the ASTM G = 10 specimens and show a more pronounced
softening behavior close to the critical strain: this is due to the higher surface/volume ratio of the
smaller grains, that implies a relatively higher energy dissipation during the damaging process
for the smaller grains, and then a less unstable propagation. In other words, during the load-
ing process, each grain stores a certain amount of elastic energy, that is subsequently released
and dissipated upon onset of intergranular damage. For smaller grains, a comparatively larger
interface per unit volume, with respect to larger grains, and then a more spread damage, can dis-
sipate, during the damaging process, the stored energy, so favoring a less unstable propagation. It
is worth stressing, however, that no grain-size effect is implied in terms of crack path in Fig.(13),
as all the considered 200-grain specimens differ from each other in terms of morphology and
crystallography, so that the crack path differences are only due to the specific features of each
specimen.
Finally, Table 4 reports some statistics about the analyzed microstructural meshes, in terms of

number of elements, number of interface elements, number of degrees of freedom and measured
average time per load increment.

5.3. Pseudo-3D specimens under compressive load

In this section, the micro-cracking of some pseudo-3D specimens subjected to unidirectional
compressive load is analyzed. The numerical compressive tests are noticeably more demanding
than the tensile ones, mainly because of the role played by the frictional contact analysis.
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First, to assess the formulation and its implementation, and to gain some insight into the behav-
ior of simple polycrystals subjected to a compressive load, a microstructure comprised of only
Ng = 20 SiC grains is considered, Fig.(15). The grains size is ASTM G = 10 (Āgr = 126 µm2),

while the specimen size is 2W × 2H × 2T with H/W = 3, 4WH = NgĀgr and 2T =
√

Āgr. The
specimen is subjected to a compressive load, in displacement control, acting along the height
H: the rigorous boundary conditions are obtained by inverting the sign of ∆U in Eqs.(46). The
properties of the cohesive interfaces are specified in Table 5. The parameters α and β have been
adjusted so to give more weight to the mode II failure, so that in pure mode II the damaging
process is activated when ts = Tmax/2, see Eq.(17). The effect of the friction on the emerging
behavior of the aggregate and on the micro-cracking patterns is investigated, by considering the
values µ = 0.0, 0.05, 0.1 and 0.2 for the friction coefficient.
Fig.(16) shows the averaged macroscopic stress-strain curves for the four tested values of fric-

tion: it is apparent how the friction influences the load-bearing capability of the specimen, espe-
cially after that micro-cracks have formed.
From this simple analysis it is possible to observe that: a) friction influences, to some extent,
the microscopic evolution of micro-cracks; b) once micro-cracks are formed, the friction affects
noticeably the macroscopic post-critical behavior of the aggregate. These simple observations
hold their validity also for microstructures comprised of more grains.

After this simple example, four different 100-grain pseudo-3D SiC polycrystals subjected
to compression, in displacement control, are considered. The considered grain size is ASTM
G = 12 (Āgr = 31.5 µm2) and µ = 0.2 in all the performed tests. For each microstructure, four
different sets of cohesive-frictional parameters are considered, to assess their influence on the
microscopic damaging and cracking processes, on the emerging aggregate response and also on
the capability of the developed formulation. The assumed sets of interface properties are given
in Table 6.

Fig.(17) shows the damage and crack patterns for the last computed load increment of each

Microstructure Nels Nint f DoFs T̄∆λ

Ng = 100

I 2, 786 657 36, 900 24s
II 2, 924 705 39, 006 27s
III 2, 521 604 33, 561 28s
IV 2, 829 667 37, 467 32s
V 2, 898 670 38, 142 24s

Ng = 200 I 5, 240 1, 233 69, 534 65s
II 5, 376 1, 324 72, 216 69s

ASTM G = 10 III 6, 097 1, 470 81, 333 129s
IV 5, 703 1, 372 76, 023 420s

Ng = 200 I 5, 347 1, 283 71, 217 180s
II 6, 001 1, 476 80, 577 202s

ASTM G = 12 III 6, 221 1, 550 83, 889 197s
IV 6, 019 1, 546 81, 999 307s

Table 4: Some statistics about the analyzed pseudo-3D microstructures. Nels - number of elements; Nint f - number of
interfaces; DoFs - number of degrees of freedom; T̄∆λ - average time per load increment. Tests performed on single
12-core nodes of the cx1 HPC system at Imperial College London, with 24 GBs of required virtual memory.
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Figure 12: Micro-damage and -cracking patterns for five different 100-grain random specimens with in-plane grain size
ASTM G = 10 subjected to the same tensile load as in Fig.(9) (please refer to the electronic version of the paper for
colour interpretation).

Figure 13: Micro-cracking patterns for the simulated 200-grain specimens subjected to tensile load. (a): grain size ASTM
G = 10; (b): ASTM G = 12. The strain levels ε of the last computed increment are indicated for each specimen. Please
refer to the electronic version of the paper for colour interpretation.

Figure 14: Macroscopic stress-strain curves for the 100- and 200-grain pseudo-3D microstructures shown in Figs.(12-13)
and subjected to tensile load. In each sub-plot the curves corresponding to the analyzed microstructures are reported from
left to right, so that the leftmost curve in the left plot corresponds to the 100-grain specimen marked as I in Fig.(12) and
so on. The relevant volume average stress component is plotted versus the corresponding nominal strain, as in Fig.(11).

Figure 15: Micro-cracking patterns for different values of the friction coefficient µ for the 20-grain SiC microstructure,
ASTM G = 10, subjected to compressive load. The microscopic crack patterns are shown in for the selected values of
nominal applied strain ε = 0.2%, 0.25% and at the last simulated strain for each value of friction.

Figure 16: Stress-strain curves for different values of the friction coefficient µ for the 20-grain SiC microstructure shown
in Fig.(15) and subjected a compressive load acting along the specimen longer side. The relevant volume average stress
component is plotted against the corresponding nominal strain.
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Tmax [MPa] α β GII/GI µ d̄Eq.(36) ξ

500 1/4 1/2 1 {0, 0.05, 0.1, 0.2} 0.8 0

Table 5: Sets of cohesive-frictional parameters for the 20-grain pseudo-3D micro-specimens subjected to compressive
load.

considered microstructure: each column corresponds to a microstructure while each row corre-
sponds to a set of interface parameters. The corresponding macroscopic stress-strain curves for
each microstructure and set of parameters are plotted in Fig.(18). It is observed that the damage
patterns match with those reported by Sfantos and Aliabadi for the purely two-dimensional case
[69].
To conclude these comments, it is worth noting how the frictional-cohesive terms influence the
microstructural failure patterns and then the emerging aggregate behavior: this can be inferred
from the comparison between the third and fourth rows in Fig.(17) and the corresponding stress-
strain curves in (18). These two sets of analysis differ only for the value of the parameter d̄
appearing in Eq.(36), that accounts for a higher or lower energy dissipation due to friction, dur-
ing the decohesion. On the other hand, the pre-critical behavior seems to depend mainly on the
value of the cohesive strength Tmax, as it can be inferred from the effect of the interface settings
B.

5.4. 3D specimens under tensile load
After tuning the method with the pseudo-three-dimensional analysis, the behavior of some

fully three-dimensional microstructures subjected to a unidirectional tensile load has been inves-
tigated. Four different specimens, comprised of Ng = 200 fully three-dimensional SiC grains,
have been tested. The grain size is ASTM G = 12 (calculated number of grains per mm3:
n/v = 4, 527 · 106 [104]). The specimens’ size is 2W × 2W × 2H with H/W = 2, their volume
is V = 8HW2 = NgV̄gr, where V̄gr is the estimated average grain volume. The mesh density is
specified by dm = 0.5, that already fulfills the requirements given in Section 3.4. The properties
of the interfaces are uniform and they are given in Table 7.

The specimens were subjected to a tensile uniform displacement applied over the end bases
and acting along the height direction, as it is shown in Fig.(21), while the lateral sides were not
constrained (zero tractions acting on their surface).
Fig.(19) shows the three-dimensional micro-cracking evolution for the four analyzed specimens.
It is apparent how, also in the fully three-dimensional case, the damage is accumulated on inter-
faces mainly normal to direction of the external applied load.

Settings Tmax [MPa] α β GII/GI d̄Eq.(36)

A 500 1/2 1 1/2 0.2
B 250 1/2 1 1/2 0.2
C 500 1/8 1/4 2 0.2
D 500 1/8 1/4 2 0.8

Table 6: Sets of cohesive-frictional parameters considered in the analysis of the 100-grain pseudo-3D micro-specimens
subjected to compressive loads.

28



However, it is observed that the three-dimensional geometry renders the aggregates much more
compliant than their pseudo-3D counterparts. This is evident from the analysis of the macro-
scopic stress-strain curves reported in Fig.(20), that show marked softening for all the analyzed
cases (it is worth noting that the properties of the interfaces have been kept the same as those of
the pseudo-3D tests).
Finally, the amplified deformed configuration of another three-dimensional specimen under ten-
sile load, with the same statistical features as the previous ones, is shown in Fig.(21).

Table 8 gives some information about the size of the microstructural meshes and their analysis
time.

5.5. 3D specimens under compressive load
To conclude, the compressive behavior of four random 200-grain SiC fully three-dimensional

specimens, with grain size ASTM G = 12, has been investigated. The same microstructures al-
ready considered for the tensile tests have been analyzed. For these tests, the interface properties
are given by in Table 9. Also here α and β have been chosen so to give more weight to the mode
II failure.
The macroscopic stress-strain curves for the considered specimens are given in Fig.(22) while

Fig.(23) highlights the intergranular damage at the last computed value of strain. It is apparent
that, in the case of compressive load, the damage is comparatively more widespread than in the
case of tensile load. The first interfaces that fail usually are inclined with respect to the direction
of loading, as already observed in the analogous pseudo-3D cases.
An amplified plot of the deformed-cracked configuration for the specimens II and IV, at the last
computed value of nominal strain, is given in Fig.(24).

6. Discussion and further developments

In this work a new computational model for the analysis of intergranular damage and failure
in three-dimensional polycrystalline aggregates has been developed. The performed numerical

Tmax [MPa] α β GII/GI µ d̄Eq.(36) ξ

500 1
√

2 1 0.05 0.8 0

Table 7: Sets of cohesive-frictional parameters for the 3D micro-specimens subjected to tensile load.

Specimen Nelements Ninter f aces DoFs T̄∆λ
I 17, 031 7, 709 222, 660 5, 130s
II 16, 525 7, 582 285, 201 7, 434s
III 16, 834 7, 652 289, 242 5, 599s
IV 16, 666 7, 587 286, 560 4, 551s

Table 8: Some statistics about the analyzed 3D microstructures subjected to tensile load. Nels - number of elements; Nint f
- number of interfaces; DoFs - number of degrees of freedom; T̄∆λ - average time per load increment. Tests performed
on single 12-core nodes of the cx1 HPC system at Imperial College London, with 48 GBs of required virtual memory.
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Figure 17: Micro-damaging and micro-cracking patterns for different values of the cohesive-frictional parameters for
four random 100-grain pseudo-3D polycrystals subjected to compressive load (please refer to the electronic version
of the paper for colour interpretation). The values of the nominal strain ε applied at the last computed increment are
indicated.

Figure 18: Macroscopic stress-strain curves for the four random 100-grain specimens subjected to compression, for the
considered different values of the cohesive-frictional parameters. The volume average stress component Σyy is plotted
against the nominal applied strain.

Figure 19: Micro-cracking patterns for four different random 200-grain (ASTM G = 12) 3D microstructures subjected
to tensile load. The values of the applied nominal strain ε are indicated. Each interface is assigned an RGB colour pro-
portional to its own damage level, and a transparency inversely proportional to the damage level itself; in this way, the
more an interface is damaged, the more it is visible, avoiding that heavily damaged or even failed interfaces are hidden
behind barely damaged blue interfaces. Please refer to the electronic version of the paper for colour interpretation.

Figure 20: Macroscopic stress-strain curves for the four considered random 200-grain ASTM G = 12 three-dimensional
microstructures subjected to tensile load. The volume average stress component Σzz is plotted against the nominal applied
strain.

Figure 21: Amplified plot of a stretched-cracked random 200-grain 3D specimen under tensile load. The frame is captured
upon failure and shows, from four different viewpoints, the propagation of a 3D crack, mainly normal to the direction of
the external load.

Figure 22: Macroscopic stress-strain curves for the four considered random ASTM G = 12 200-grain three-dimensional
microstructures subjected to compressive load. The volume average stress component Σzz is plotted against the nominal
applied strain ε.

Figure 23: Micro-cracking patterns at the last computed value of applied nominal strain ε for the four different random
200-grain three-dimensional microstructures subjected to compressive load. The same graphical strategy as that used for
the previous three-dimensional tensile tests has been used. Please refer to the electronic version of the paper for colour
interpretation.

Figure 24: Amplified plot of the two compressed-cracked random 3D specimens II and IV at the last computed value of
nominal strain ε indicated in Fig.(23). Views of the four sides are shown.

30



Tmax [MPa] α β GII/GI µ d̄Eq.(36) ξ

500 1/8 1/4 2 0.2 0.8 0

Table 9: Sets of cohesive-frictional parameters for the 3D micro-specimens subjected to compressive load.

tests have shown the potential of the proposed method. However, some aspects deserve further
consideration and some directions of further investigation may be discussed.
First of all, it should be noted that the present formulation is restricted to intergranular failure:
transgranular failure is not taken into account. This aspect is likely to be responsible for some in-
terlocking observed in the compressive tests. However, from the purely numerical point of view,
the presence of transgranular cracking could be taken into account in the presented framework by
using either a multi-region boundary element approach or a dual boundary element formulation
to model the existence of new transgranular crack surfaces [68]. The main difficulty in this con-
text would be the definition of physically based criteria to address the intergranular-transgranular
competition mechanism in a fully three-dimensional picture.
Regarding the aggregate morphology, although the use of Voronoi tessellations offers the mod-
elling simplification of flat grain boundaries, the formulation is not restrained to this simple case
and it could be readily extended to the analysis of microstructures with more complex grain mor-
phology, for example those generated through experimental reconstruction. Grain morphologies
like those considered by Simonovski and Cizelj [48, 49], obtained by X-ray diffraction contrast
tomography, could be modeled straightforwardly using linear or quadratic continuous triangular
or quadrangular boundary elements [68].
Anisotropic elasticity has been adopted as constitutive model for the grains. However, as men-
tioned in the Introduction, crystal plasticity might be considered in some applications, see for
example [49]. According to the crystal plasticity theory, in single crystals the plastic deforma-
tion occurs through simple shear on some specific slip planes. In general, in the framework of
Boundary Elements, plastic deformation can be accommodated by using either an initial strain or
stress approach [68]. However, this implies the introduction, in the boundary integral equations,
of some volume terms and then the need of a volume mesh. At the state of the art, however, it
is not clear to the authors if this would offer, in the present context, some advantage over more
common finite element formulations.
On the other hand, the presence of intergranular corrosion, can be readily included in the model.
According to [49], the cohesive properties of susceptible grain boundaries can be degraded to
model the action of some corrosive environment. These effects can be considered in the for-
mulation and the only concern is that the degradation should be introduced so to not upset the
numerical stability.
Given its nature, the model seems to be particularly suitable and very promising for the inves-
tigation of all the aspects related to the tailoring of the macroscopic material properties through
the modification of intergranular interface properties, in the sense Grain boundary engineering.
From this point of view, the use of cohesive models, in the context of the developed boundary
integral formulation, appears to provide a general framework, potentially able to include, with
some ease, other chemical-physical effects (e.g. the presence of segregates) in the modelling of
the crystal boundaries. In this context it is however crucial to assess the predictive capability of
the model through suitable experimental validation, especially now that the three-dimensional
microstructural characterization of materials is becoming technically and economically more af-
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fordable. It is equally important to develop suitable procedures for the measurement and or
estimation of the microstructural parameters involved in the model, e.g. the cohesive strength or
the critical displacement jumps.
The capability of modelling the nucleation and coalescence of cracks at the crystal level is an
important aspect for the multiscale analysis of materials. The nucleation of cracks at the macro-
scopic component level is usually modelled by using semi-empirical relationships. The availabil-
ity of a microstructural model allows one to get rid of the assumptions at the macro-scale, as the
cracks are initiated at the micro-scale and then transferred to the macro-scale when damage has
spread beyond a certain threshold. The conceptual development and numerical implementation
of such aspects, in the framework of a multiscale modelling approach to material degradation
and fracture of polycrystalline materials [35, 37, 38], will be the focus of further studies.
It is worth mentioning that, in a multiscale context, the proposed formulation can be used as
a microscale model to estimate material degradation or plastic deformation in a macroscale FE
model, according to what has been proposed in [35]. On the other hand, the intergranular crack
model developed here can certainly be used in a FEM, see again [49], although the introduction
of cohesive elements implies additional degrees of freedom, on the contrary of what happens
here, which precisely constitutes an advantage of the method.
In conclusion, some numerical/computational aspects deserve further study. Referring to the
compressive tests, see for example Fig.(18), it is worth observing that, to take the analysis be-
yond the critical points, it might be necessary to implement some numerical scheme to improve
the convergence of the analysis in the post-critical branch [105, 106], like for example general-
purpose arc-length procedures [107, 108] or some additional dissipative terms in the cohesive
laws [105].
Moreover, performing the numerical tests, it has been noticed that the memory required by the
solver PARDISO, see Appendix C, during the symbolic and numerical factorization phases, con-
stitutes a bottleneck of the numerical method. From this point of view, the development of spe-
cific iterative Krylov solvers, for sparse systems having the structure of system (11), would be a
remarkable achievement [109, 110]. Moreover, being the analysis of polycrystalline microstruc-
tures a large-scale problem, the consideration of special techniques, with the aim of enhancing
both the memory and time performance of the developed model, would be an interesting subject:
an example in this context could be given by the use of Hierarchical Matrices in conjunction with
iterative solvers [111, 112].

7. Conclusions

A new three-dimensional formulation for the analysis of intergranular degradation and failure
in polycrystalline materials has been developed. The polycrystalline microstructures have been
represented as three-dimensional Voronoi tessellations, able to retain the main morphological and
crystallographic features of polycrystalline aggregates. The micromechanical model is expressed
in terms of intergranular fields, namely displacement jumps and tractions. The nucleation and
evolution of intergranular damage has been followed using an extrinsic irreversible cohesive law
at the intergranular interfaces: this resulted particularly straightforward, being the formulation
itself expressed in terms of grain boundary variables. It has been shown how the used traction-
separation laws ensure the energetic path dependency of the decohesion process and are able to
deal with mixed-mode failures. Upon complete intergranular failure a frictional contact analy-
sis has been introduced to model the intergranular micro-cracking process, taking into account
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separation, contact and sliding between the micro-crack surfaces. A new cohesive-frictional law
has been used for smoothing the transition from the cohesive to the frictional regime, when the
failure happens in mode II under compressive load.
Several numerical tests, both on pseudo- and fully-three-dimensional polycrystalline aggregates,
have demonstrated the capability of the formulation to model the nucleation, evolution, coales-
cence of multiple damage and cracks. The influence of several intergranular parameters (co-
hesive strength, fracture toughness, friction) on the microcracking patterns and on the macro-
scopic response of the polycrystals has been demonstrated. It has been shown how the full
three-dimensionality of the grains can affect the macroscopic response of the aggregate, making
it relevantly different from the response of pseudo-3D aggregates with the same interface prop-
erties. The reported results have shown a good agreement with data available in the literature.
Overall, the performed tests have demonstrated the potentiality of the technique for the study of
the changes induced in macroscopic material properties by changes in the microstructural ma-
terial features. For its nature, the developed formulation appears particularly promising in the
framework of grain boundary engineering.
The analysis of degradation and failure in three-dimensional polycrystalline microstructures re-
mains a remarkable computational task. However, due to the advantage given by the need of
modelling only the grain boundaries, the computational effort for the developed formulation re-
mains relatively low.
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Appendix A. Anisotropic Fundamental solutions

The 3D fundamental solutions Ukp(x, y) in Eq.(4) are obtained solving

Γik(∇x)Ukp(x, y) = −δipδ(x − y) (A.1)

where Γik(∇x) = ci jkl ∂x j ∂xl, δip is the Kronecker delta and δ(x − y) is the Dirac delta. In general
Ui j can be expressed as

Ui j =
1

8π2r

∫ 2π

0
Γ−1

i j (ϕ)dϕ (A.2)

where r = ∥x − y∥, Γ(ϕ) = Γi j[z(ϕ)] = cik jlzk(ϕ)zl(ϕ) and z(ϕ) is the generic unit vector lying on a
plane normal to the direction defined by the unit vector b = (y − x)/∥(y − x)∥, expressed in terms
of the angle ϕ formed with a chosen reference direction on the same plane.
The traction Green’s functions Ti j can be conveniently expressed as

Ti j = ck jmp
∂Umi

∂xp
nk (A.3)

where nk are the components of the unit vector identifying the plane over which the tractions act.
The derivation and effective use of the anisotropic Green’s functions for the BEM has been the
subject of several investigations (see [90, 112] and references therein for further details).
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Appendix B. Grain boundary element discretization

The presented formulation only requires meshing of the grain surfaces. The adopted dis-
cretization strategy is detailed in [70]; however it is briefly reviewed here, to introduce the pa-
rameter dm recalled in the numerical experiments.
Each grain is represented as a convex polyhedron bounded by convex polygonal flat faces. These
are discretized into plane linear triangular elements, while linear discontinuous triangular ele-
ments are used for representing the unknown grain boundary fields. The actual mesh is created
using the mesh generator Triangle (http://www. cs.cmu.edu/~quake/triangle.html,
[113]), that provides 2D high-quality meshes of plane surfaces.
Since grain edges and faces present relevant scatter in terms of length and area, it is important
to ensure a suitable level of mesh homogeneity: to this end, a discretization parameter dm is
introduced, so that the generic edge of length Le is split into a number of segments

ns = round

(
dm

Le

L̄e

)
(B.1)

where L̄e denotes the average edge length and round(x) is the function returning the value of
the argument rounded to the integer closer to x itself (excluding zero). The parameter dm defines
the number of segments in which the average-length cell edge is split, and it is then a measure
of the mesh density. After edge splitting, the segment vertices are used as seeds for the face
triangulation. The procedure leads to the creation of satisfactorily homogeneous meshes.

Appendix C. System solution implementation

Regarding the numerical system solution, it is important to realize that the coefficient matrix
in Eq.(11) is highly sparse: for such reason, the use of specialized techniques is desirable, with
the aim of accelerating the solution with respect to general linear solvers. In this work the system
solution has been tackled by using the solver PARDISO (http://www.pardiso-project.org/;
[114, 115]), which is included in the Intel R⃝ Math Kernel Library. PARDISO is a general paral-
lel solver for the direct solution of unsymmetric and symmetric sparse linear systems on shared
memory multiprocessors. In the present study, it has been used both as an in-core solver, when
few grains have been considered, and as an out-of-core solver, when an higher number of grains
has been analyzed. The out-of-core option is usually slower than the in-core one, due to the need
of writing on and reading from disk.
PARDISO has been used to address the full incremental-iterative solution of the material degra-
dation process. As described in Section 4.1, during the microstructural evolution, some matrix
elements, initially corresponding to the coefficients of the interface compatibility equations, grad-
ually change, according to the degradation stages of the interface itself and, accordingly, system
(12) has to be solved several times. To accelerate the whole process, PARDISO has been used
combining both direct and iterative solution methods. This is achieved:

i) by retaining the same sparsity pattern for the evolving system matrix, throughout the entire
solution process, so to compute the symbolic factorization only once at the beginning of the
analysis and use it in all the subsequent solution steps;
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ii) by using the numerical LU factorization of the system matrix corresponding to a certain state
of the microstructure and directly computed by PARDISO for preconditioning the Krylow-
subspace iterative solution of a certain number of subsequent steps.

The last point is based on the observation that, if the changes in the system matrix are small, the
previously computed LU factorization is close to the factorization of the new system matrix, so
that it can be used for preconditioning the iterative solution of the new system itself. If the iter-
ation convergence is not reached, the solver automatically switches back to the direct numerical
factorization. This mixed direct-iterative solution strategy is switched on by suitably setting the
input parameter iparm(4) of PARDISO. The interested reader is referred to the PARDISO docu-
mentation for further details.
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