View Letter

Close

Date: To: cc: From:	03/14/2014 "Giuseppe A. Provenzano" giuseppe.provenzano@unipa.it rallo.giovanni@gmail.com "Journal of Irrigation & Drainage Engineering" asceirrigation@gmail.com
Subject:	Decision on Manuscript MS IRENG-6899
ACCEPT FI	NAL
Ref.: Ms. No. IRENG-6899 Discussion of "Laboratory and field calibration of the Diviner 2000 probe in two types of soil" by J. Haberland, PhD, R. Galvez, C. Kremer, PhD, and C. Carter. DOI: 10.1061/(ASCE)IR.1943- 4744.0000687 Ciavanni Ballo, PhD, Followship researchert, Ciavanno A, Provenzano, PhD, Associato, Professor	
Giovanni Railo, PhD, Fellowship researcher; Gluseppe A. Provenzano, PhD, Associate Professor	
Dear Prof. Provenzano,	
Your Discussion, listed above, has been accepted for publication in ASCE's Journal of Irrigation and Drainage Engineering.	
Your manuscript will now be forwarded to a Production Editor who will prepare it for publication. You will be notified of a publication date once your paper has been schedule for an issue.	
Thank you for submitting your work to ASCE's Journal of Irrigation and Drainage Engineering.	
Sincerely,	
Holly Koppel Peer Review Manager	

Close

rovided by Arc

View metadata, citation and similar papers at core.ac.uk

brought to you by TCORE

Journal of Irrigation and Drainage Engineering Discussion of "Laboratory and field calibration of the Diviner 2000 probe in two types of soil" by J. Haberland, PhD, R. Galvez, C. Kremer, PhD, and C. Carter. DOI: 10.1061/(ASCE)IR.1943-4744.0000687 --Manuscript Draft--

Manuscript Number:	IRENG-6899
Full Title:	Discussion of "Laboratory and field calibration of the Diviner 2000 probe in two types of soil" by J. Haberland, PhD, R. Galvez, C. Kremer, PhD, and C. Carter. DOI: 10.1061/(ASCE)IR.1943-4744.0000687
Manuscript Region of Origin:	ITALY
Article Type:	Discussion
Corresponding Author:	Giuseppe A. Provenzano, PhD, Associate Professor Università di Palermo Palermo, ITALY ITALY
Corresponding Author E-Mail:	giuseppe.provenzano@unipa.it
Order of Authors:	Giovanni Rallo, PhD, Fellowship researcher
	Giuseppe A. Provenzano, PhD, Associate Professor
Additional Information:	
Question	Response
Do your table titles/figure captions cite other sources? If you used a figure/table from another source, written permission for print and online use must be attached in PDF format. Permission letters must state that permission is granted in both forms of media. If you used data from another source to create your own figure/table, the data is adapted and therefore obtaining permission is not required.	Yes, Fig. 4a,b of the manuscript has been rearranged as fig.2 of this discussion, in order to correct some errors of the original

- 1
- 2 Discussion of "Laboratory and field calibration of the Diviner 2000 probe in two types of soil" by J.
- 3 Haberland, PhD, R. Galvez, C. Kremer, PhD, and C. Carter.
- 4 2014. J. Irrigation and Drainage Eng. ASCE. DOI: 10.1061/(ASCE)IR.1943-4744.0000687
- 5

6 Giovanni Rallo¹, PhD and Giuseppe Provenzano², PhD

7

⁸ ¹Dipartimento Scienze Agrarie e Forestali, Università degli Studi. Viale delle Scienze 12, 90128 Palermo,

9 Italy. <u>rallo.giovanni@gmail.com</u>

¹⁰ ²Dipartimento Scienze Agrarie e Forestali, Università degli Studi. Viale delle Scienze 12, 90128 Palermo,

- 11 Italy. <u>giuseppe.provenzano@unipa.it</u>
- 12

13 **Comments to the paper**

14 The authors deal with the quite interesting and actual problem of Diviner 2000 capacitance probe calibration 15 and present some field and laboratory data obtained on two different layers (0-0.26 cm and 0.26-0.50 cm) of 16 the same soil profile, characterized by different textural class. The importance of site-specific calibration of 17 sensors used to monitor soil or plant water status assumes a particular relevance in semi-arid environments 18 where the application of precision irrigation represents an appropriate management strategy aimed to achieve 19 high values of water use efficiency (Cammalleri et al., 2013). Moreover in clay soils, physical properties are 20 strongly influenced by soil water content (Provenzano et al., 2013), so that the correct measurement of this 21 variable plays a key role to increasing crop yield and preserving water. 22 However, these discussers would focus on some significant points to be corrected in the manuscript and

some others that AA. should have been specified in the methodology and considered in the final discussion,
 as following specified, for the benefit of potential readers.

The need to install adequately the access tube, aimed to ensure the contact between the tube and the surrounding soil, is not only to avoid preferential flow of water down the walls of the tube, as considered in the paper, but also to reduce air gap around the tube and to avoid rough measurements of scaled frequency, used to estimate soil water contents, whose values depend on the mutual proportion of soil, water and air in the soil volume investigated by the sensor.

30 With reference to the second part of eq. (2) it is necessary to precise that the function $\theta_w(SF)$ correctly 31 results:

32
$$\mathcal{P}_{w} = \sqrt[B]{\left(\frac{SF}{A}\right)}$$
(1)

33 or

$$34 \qquad \qquad \mathcal{P}_w = aSF^b \tag{1a}$$

35 in which θ_w is the volumetric soil water content, *SF* is the scaled frequency, $a = \left(\frac{1}{A}\right)^{\frac{1}{B}}$ and $b = \left(\frac{1}{B}\right)$ are

36 two empirical coefficients, generally used when the calibration equation is expressed in terms of $\theta_w(SF)$ 37 function.

Regarding the methodology, field calibration considered by the AA. followed the general procedure proposed by the manufacturer. When describing the related methodology, AA. should have been specified some soil physical parameters (texture, organic matter, bulk electrical conductivity, etc.) as well as the two depths, in each soil layer, at which they acquired the scaled frequency and then collected the undisturbed soil samples. Moreover, the dimension of the cylindrical samples, used to determine soil bulk density, should have been provided in the manuscript.

44 On the other hands, when referring to the laboratory calibration procedure, samples were prepared by using 45 sieved soil collected in the same layers where field calibration was carried out. After sieving at 5,0 mm and 46 air-dry the soil, three samples of not specified weight, corresponding to a volume of 20 l, were brought to 47 volumetric soil water contents of about 5%, 15% and 35% by adding different amounts of water and then 48 compacted in the plastic container, later on used for laboratory calibration of the sensor. Despite the similar 49 compaction method applied to fill all the containers, these discussers consider questionable the adopted 50 methodology, believing that soil should have been moistened only after filling the container and not before. 51 Actually, the different initial water content characterizing the soil used to fill the containers, could have 52 determined values of soil bulk density different between the samples, and also dissimilar from the actual 53 value measured in the field.

54 In fact, if considering the standard protocol of compaction ASTM D698 (2005), by using a Proctor hammer, 55 it is possible to achieve different values of bulk density depending on the water content of the sieved soil 56 used to fill the containers. Fig. 1a,b shows the values of bulk density obtained in laboratory by applying the 57 standard ASTM D698 protocol of compaction to two sieved soils, i.e. a sandy (PAR) and a clay loam (CAS), 58 prepared at different gravimetric soil water contents (personal unpublished data). As can be observed, in both 59 cases it is possible to detect an optimal value of gravimetric water content to which corresponds a maximum 60 soil bulk density. Of course, considering that the values of bulk density in the soil volume investigated by the 61 sensor, as well as the corresponding variability, were not provided in the manuscript, it is not possible to 62 quantify in which proportion this variable could be responsible of the observed differences between field and 63 laboratory calibration equations, whose coefficients are indicated in table 1 of the original paper.

64 Basically, soil bulk density must be essentially considered a source of uncertainty in estimation of volumetric 65 soil water contents, because it affects the soil dielectric permittivity (Gardner et al., 1998) and also because it 66 governs the relationship between gravimetric and volumetric soil water contents (Geesing et al., 2004).

In the following paragraph these discussers will present some unpublished experimental data, demonstrating
the effects of soil bulk density on the scaled frequency and consequently on the estimated values of
volumetric soil water content.

In addition, it is necessary to underline that the parameters *A* of the default calibration equation proposed by the manufacturer and indicated in the original table 1, must be corrected to 1.263 if soil water content is expressed in cm³/cm³; in fact, the value A=0.2746, obtained on different Australian soils (sands, sandy loams and organic potting), as specified in the Sentek Pty manual (2001), is referred to soil water content expresses in mm (Sentek Environmental Technologies, 2001) and therefore unit transformation must be considered to

compare the different calibration equations presented in the original table 1.

76 These discussers strongly believe that in fig. 4a,b, the experimental points and their variability should have 77 been indicated together with the regression functions, in order to recognize the dispersion characterizing the 78 measurements and also to identify the limits of validity of the proposed equations.

79 The following fig. 2, rearranged from fig. 4a,b to adjust the inexistent curves' knee showed in the original 80 version, also illustrates the dimensionally corrected default equation proposed by the manufacturer, whose 81 actual trend, as a consequence, induces to reconsider most of the results presented and discussed in the paper. 82 Moreover, with reference to the misleading figs. 5 and 6, in which it is not clear the meaning of the 83 represented continuous functions, AA. should have been represented the volumetric soil water contents 84 estimated with the different equations versus the corresponding measured in laboratory (fig. 5) or in the field 85 (fig. 6), together with the 1:1 best fitting line, in order to give a more comprehensible representation of the 86 observed differences.

The comment on the error of 176% for the highest soil water content (P3) determined according to field experiments in the upper clay loam horizon (probably referred to the original fig. 6a and not to fig. 5, as indicated), attributed to the circumstance "that was not possible to dry the soil sufficiently to obtain a good dispersion of points during the field calibration process", seems to be in contrast with the following sentence evoked by AA. in which, according to Vera et al. (2010), they declared that significant errors could occur when soil water content is estimated "in areas not accounted for during the calibration process".

Anyway, the difficulty to dry the soil below certain water content evidenced by AA., has been also observed
in field experiments carried out by these discussers, whose results have not been published yet.

95 In particular, field calibration of Diviner 2000 sensor was carried out in two layers (0-40 cm and 40-80 cm) 96 of the same soil profile, by acquiring measurements every 10 cm, from 5 cm to 75 cm depth, according to the 97 procedure suggested in the manufacturer's manual (Sentek Pty manual, 2001). Six 1.20 m long access tubes 98 were installed in order to explore different soil water status, i.e. wet (P1), moist (P2) and dry (P3), during 99 three different periods of the year, i.e. winter (P1), spring (P2), late summer (P3). According to USDA 100 textural soil classification, the upper layer is classified as clay-loam, with a sand, silt and clay content equal 101 to 42.4%, 18.9% and 38.7%, whereas the lower layer is sandy-clay with sand, silt and clay content equal to 102 45.3%, 18.0% and 36.7%, respectively.

Fig. 3a,b shows, for each considered soil layer, the experimental $SF(\theta_w)$ data pairs as well as experimental (dashed line) and manufacturer's (solid line) calibration equations. Standard deviations of scaled frequency and volumetric soil water content are also indicated. The former was obtained by considering two measurements acquired at each depth, whereas the latter was evaluated taking into account the values of θ_w 107 determined on three undisturbed soil samples (8.0 cm diameter, 5.0 cm high) collected at the different 108 depths. For each soil sample, the value of θ_w was obviously calculated multiplying the gravimetric water 109 content by the soil bulk density, ρ_b , evaluated on the same undisturbed sample.

110 As can be observed, if in the upper layer it was possible to explore a wide interval of volumetric soil water 111 contents, variable between 0.05 cm³/cm³ and 0.33 cm³/cm³, in the lower layer the variations of θ_w resulted 112 more limited and ranging between 0.20 cm³/cm³ and 0.31 cm³/cm³. Of course, the calibration equation

- 113 identified for the lower layer cannot be considered valid for values of volumetric soil water content lower
- than 0.20 cm³/cm³. Moreover, observing fig. 3 a,b it is also possible to notice the great variability of volumetric soil water contents measured at each depth of the soil profile, as a consequence of its spatial variability as well as of the different bulk density characterizing the collected soil samples.

117 For upper and lower layers, fig. 4a,b shows the soil bulk density measured in the field as a function of depth,

evidencing that at increasing depth, soil bulk density tends to rise and also that, for a fixed depth, the values of ρ_b are largely variable around their average value justifying, at least in part, the recognized variability of the measured volumetric soil water contents.

Finally, considering the quite high clay content characterizing either the soil investigated by these discussers than (probably) those examined in the original paper, another crucial aspect to be investigated should have been related to the shrinkage and swelling phenomena consequent to variations of soil water content that, depending on the clay mineralogy, could have affected both the original field and laboratory $\theta_w(SF)$ relationships.

126

127 Effect of soil bulk density on Scaled Frequency measured by Diviner 2000 probe

128 With the aim to evaluate the effect of soil bulk density on scaled frequency measured by Diviner 2000 probe, 129 experiments were carried out on different agricultural soils collected in western Sicily, two of which will be 130 presented in this discussion (a sandy soil, PAR and a clay loam soil, CAS). For each investigation site, the 131 collected soil was air-dried, sieved at 5 mm and then used to fill two plastic cylinders (diameter and height 132 equal to 25.0 cm), after placing in axial position a 30 cm long access tube. In order to achieve two quite 133 different values of bulk density, a preliminary analysis on soil compaction properties was carried out by 134 applying the standard D698 ASTM protocol (fig. 1a,b), so to assess the initial soil water content necessary to 135 reach a pre-fixed value of bulk density. Then, two samples were prepared: the first by using air-dried soil 136 (gravimetric water content $U \approx 0.05$) according to which a low bulk density was obtained (MIN), whereas the 137 second was initially moistened to the optimal water content, variable between soils, allowing to reach the 138 maximum bulk density (MAX). After filling the containers, soil was saturated and then the sensor calibration 139 procedure was applied following an air-drying process. For each soil water content from saturation to oven 140 dry, values of scaled frequency, sample weight and heights, the latter measured on eight points on the soil 141 surface, were registered. At the same time, the lateral contraction was determined with analysis of the images 142 captured on the soil surface. In this way it was possible to evaluate, at the end of the experiment, the 143 gravimetric water contents and the corresponding actual values of soil bulk density.

144 Fig. 5a,b shows for both the considered soils the measured scaled frequency as a function of gravimetric soil 145 water content, whereas fig. 5c,d illustrates the soil shrinkage characteristic curves, expressed in terms of 146 variations of soil bulk density with gravimetric soil water contents. In particular, for the sandy soil (PAR), 147 the values of bulk density are almost constant whatever is the gravimetric water content (rigid soil); on the 148 other hands both samples of clay loam soil (CAS) evidenced reductions of bulk density at increasing water 149 content even if, as visible, the extent of reductions is greater for sample with a lower bulk density (MIN). 150 This circumstance is a natural consequence of shrinking phenomena occurring in soils containing a certain 151 percentage of swelling clay.

Moreover, as can be observed in fig. 5a,b, for each gravimetric soil water content, greater the soil bulk density higher the scaled frequency measured by the probe. The diverse response of the sensor is an obvious consequence of the different contribute of soil, air and water to the soil dielectric permittivity.

When observing the graphs of fig. 6a,b, in which the values of scaled frequency are expressed against volumetric soil water content, it is possible to notice that for the sandy soil (PAR, fig. 6a) two quite different relationships $SF(\theta_w)$ can be identified, whereas for the clay loam soil (CAS, fig. 6b) a certain overlapping of the experimental points obtained in the two samples, as well as a lower variability of the $SF(\theta_w)$ relationships are visible for the higher water contents. This result is consequent to the compensative effect ascribable to the higher values of soil bulk density corresponding to the lower gravimetric water content, as determined according to the soil shrinkage characteristic.

162

163 **References**

- ASTM D698. 2005. Standard test methods for laboratory compaction characteristics of soil using standard
 effort (12400 ft-lbf/ft³(600 kN-m/m³)), *Annual Book of ASTM Standards*, 04.08, ASTM, West
 Conshohocken, PA, USA: 80-90.
- 167 Cammalleri, C., G. Rallo, C. Agnese, G. Ciraolo, M. Minacapilli, G. Provenzano. 2013. Combined use of
 168 eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an
 169 irrigated olive orchard. Agricultural Water Management, 120, 89-97.
- Gardner, C.M.K., T.J. Dean, J.D.Cooper. (1998). Soil water content measurement with a high-frequency
 capacitance sensor. Journal of Agricultural Engineering Research, 71, 395-403.
- Geesing D., M. Bachmaier, and U. Schmidhalter. 2004. Field calibration of a capacitance soil water probe in
 heterogeneous fields. Australian Journal of Soil Research, 42, 289-299.
- Provenzano G., Giordano G., Rallo G. 2013. Discussion of "Soil water retention characteristics of Vertisols
 and pedotransfer functions based on Nearest Neighbor and Neural Networks Approaches to estimate
 AWC". J. Irrigation and Drainage Engineering, 138(2), 177-184.
- Sentek Environmental Technologies. 2001. Calibration of the Sentek Pty Ltd Soil Moisture Sensors. Sentek
 Pty Ltd, Stepney, South Australia, 60.

179

FIGURE CAPTIONS

Fig. 1a,b – Values of bulk density obtained applying the standard D698 ASTM compaction protocol to a sieved sandy soil (a, PAR) and to a clay loam soil (b, CAS) prepared at different gravimetric soil water contents.

181 Fig. 2 – Relationships $SF(\theta_w)$ presented in fig 4a,b of original paper and corrected Diviner 2000 182 manufacturer's calibration equation

183

180

Fig. 3a, b – Comparison of field calibration equations in two layers (0-40 cm and 40-80 cm) of a Sicilian soil (CAS) with calibration curve provided by manufacturer.

184

Fig. 4a,b – Values of soil bulk density measured at the different depths, for layers 0-40 cm and 40-80 cm.

185

Fig. 5a,d - Experimental SF(U) and $\rho_b(U)$ data pairs and corresponding regression curves, obtained on samples prepared at different values of bulk density for a sandy (PAR) and a clay loam (CAS) soils

186

Fig. 6a,b - Experimental $SF(\theta_w)$ data pairs and corresponding regression curves, obtained on samples prepared at different values of bulk density for a sandy (PAR) and a clay loam (CAS) soils

187

188

Fig. 1a,b – Values of bulk density obtained applying the standard D698 ASTM compaction protocol to a sieved sandy soil (a, PAR) and to a clay loam soil (b, CAS) prepared at different gravimetric soil water contents.

Fig. 2 – Relationships $SF(\theta_w)$ presented in fig 4a,b of original paper and corrected Diviner 2000 manufacturer's calibration equation

Fig. 3a, b – Comparison of field calibration equations in two layers (0-40 cm and 40-80 cm) of a Sicilian soil (CAS) with calibration curve provided by manufacturer.

Fig. 4a,b – Values of soil bulk density measured at the different depths, for layers 0-40 cm and 40-80 cm.

Fig. 5a,d. Experimental SF(U) and $\rho_b(U)$ data pairs and corresponding regression curves, obtained on samples prepared at different values of bulk density for a sandy (PAR) and a clay loam (CAS) soils

Fig. 6a,b. Experimental $SF(\theta_w)$ data pairs and corresponding regression curves, obtained on samples prepared at different values of bulk density for a sandy (PAR) and a clay loam (CAS) soils