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Abstract: If Y1 ~ N(u,0%) and Ya ~ Exp(v), with Y; independent of Ya,
then their sum Y = Y7 + Y2 follows an Exponentially Modified Gaussian (EMG)
distribution. In many applications it is of interest to model the two components
separately, in order to investigate their (possibly) different important predictors.
We show how this can be done through a GAMLSS with EMG response, and
apply this separate regression modelling strategy to a dataset on lung function
variables from the SAPALDIA cohort study.
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1 Introduction

The sum of two independent r.v.’s, one Gaussian and one Exponential,
follows an Exponentially Modified Gaussian (EMG) distribution. Such a
distribution has found interesting applications in some specific areas: mod-
elling inter-mitotic time in genetics (Golubev, 2009), response times in
experimental psychology (Palmer et al., 2011), peaks in chromatography,
but seems to have received very little attention in biostatistics. We show
in this paper how to fit separate regression models to the two components
of an EMG response through a GAMLSS, and apply this separate regres-
sion modelling strategy to one of the lung function variables which arise in
spirometry.

2 The Exponentially Modified Gaussian distribution

If Yy ~ N (u,0?%) and Ya ~ Exp(v), where v = E(Y2), with Y; independent
of Y5, then their sum Y = Y; 4+ Y5 follows an Exponentially Modified
Gaussian (EMG) distribution, and one can then write Y ~ EMG(u, o, v).
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2 EMG response modelling

By convolution, the p.d.f. of Y ~ EMG(p, 0,v) can be shown to be:
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where erfc(z) = 1 —erf(z) = % f:o exp(—t?)dt is the complementary error
function. Exploiting the known relation: erfc(%) = 2®(—z), where ®(+)

is the Standard Normal distribution function, (1) can be written in the
following form, perhaps more familiar to statisticians:

_ 2 _
fY(y§MaU7V)=lljeXp('u y+a) (I)(y M_U> (2>

v 202 o v

This is the parameterisation used by the R library gamlss (Rigby and
Stasinopoulos, 2007) and adopted in this paper. The following expressions
for the first four moments can be easily derived:
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Our interest in the EMG distribution arose in the study of lung func-
tion variables, where it accommodates in a flexible way both the (pos-
itive) skewness and the ”peakedness” which characterise such variables.
This flexibility, along with the possibility of a mechanistic interpretation
of its derivation as the convolution of a Gaussian and an Exponential dis-
tribution, have motivated our preference for this distribution over other
well-fitting, but somewhat more complex and less interpretable, positively
skewed distributions, in analysing the dataset presented in Sec. 4.

3 Regression models for the Gaussian and
Exponential components of an EMG response

Suppose a response variable Y is known to be the sum of two unobserv-
able components Y7,Ys, which are of substantive interest, and that two
GLMs: M; : E[Y1] = hi(XB);VarlY1] = ;1 V(E[Y1]) and My : E[Y3] =
ho(Z~); Var[Ya] = ¢2V(E[Y3]) are set up for modelling the effects of ex-
planatory variables X and Z on the expected values of the two components;
the model matrices X and Z can be formed by the same, by partly different
or by completely separated explanatory variables.

Clearly, in general, if only the ”convoluted response variable” Y = Y; + Y5
is available, there will be serious problems of identifiability and estimability
of the parameters (3, ¢1) and (v, ¢2) in the two separate GLMs, depending
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on the degree of separation and orthogonality of X and Z. This difficulty
parallels the complexity of deconvolving the distribution of the sum of two
r.v.’s.

From this point of view, an EMG response Y is a fortunate exception. As
outlined above, the location parameter of the Gaussian component enters
only in the expression of E[Y], while, for fixed o, the higher moments
depend only on the location parameter v of the Exponential component.
This makes it possible to specify two separate regression models for the
vectors p and v, assuming o unknown but fixed:

y ~ EMG(/"HU?V) (3)
b= h(XP) (1)
v = h(Zv) 5)

and to consider (3), (4) and (5) as a GAMLSS with EMG response distri-
bution (Rigby, Stasinopoulos, 2005).

4 Application to respiratory physiology

SAPALDIA (Swiss Cohort Study on Air Pollution and Lung and Heart Dis-
eases In Adults) is a large population-based cohort study, initiated in 1991
in eight areas of Switzerland. Participants were between 18 and 60 years
old at recruitment. They were re-examined in 2002 and 2010/11. Besides
responding to a computer-based interview with detailed questions on res-
piratory health and allergies, lifestyle, socio-demographic characteristics,
home and workplace environment, study participants also underwent sev-
eral examinations, including lung function testing. Methodological details
are provided in Martin et al. (1997). SAPALDIA spirometry data have been
used to derive sex-, age- and height- based reference equations for lung
function variables in adults (Bréndli et al., 1996 and 2000). Since the focus
of these analyses was on modeling percentile functions, quantile regres-
sion methods were applied. Later, with the advent of GAMLSS modelling
and related software, it became possible to fit models with skewness and
kurtosis parameters. The Global Lung Function Initiative used this new
methodological framework to develop a global set of spirometric reference
equations for adults and children taking into account differences according
to geography and race (Cole et al., 2009, Quanjer et al., 2012).

Two fundamental outcome variables of spirometry (i.e., lung function test-
ing) are F'V C, the Forced Vital Capacity of the lung, and F EV;, the Forced
Expiratory Volume in the 1st second. We focus in this paper on the differ-
ence FEV,, = FVC — FEV,, where FFEV,; stands for ”Forced Expiratory
Volume after the 1st second”.

An extensive exploratory analysis on F'EV,; has shown a surprisingly good
fit of the EMG distribution to the observed data. It is not yet clear whether
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this reflects a precise causal mechanism, related to the physiology of res-
piration. In any case, it is of interest to try to find out the determinants
of the two components, the Gaussian and the Exponential, through the
approach outlined in Sec. 3.

For the purpose of illustration, we fitted the GAMLSS defined in (3),
(4) and (5) to the sub-sample of male non-smokers in the first (1991)
SAPALDIA survey; in keeping with the default options in gamlss, we chose
h, = identity and h, = log. The results of the final model, chosen through
a stepwise procedure based on AIC, are reported in Table 1. Inspection of
the table shows that the individual characteristics (Age, Height and BMI)
combine in different ways to determine the Gaussian and Exponential com-
ponents. In particular, BMI has a strong, both linear and quadratic, effect
on the Gaussian component, along with an interaction with Age, but no
significant effect on the Exponential component.

TABLE 1. Parameter estimates for the EMG model

Estimate Std. Error t value p-value

Regression model for the Gaussian component
Intercept  -13.2116 3.14420 -4.20  0.00002

Age 0.0503 0.00586 8.58  0.00000
Height 0.1118 0.03596 3.10  0.00189
BMI 0.1288 0.02031 6.34  0.00000
Age? -0.0001 0.00005 -3.42  0.00063
Height? -0.0002 0.00010 -2.69 0.00718
BMI? -0.0013 0.00042 -3.27  0.00105

Age:BMI -0.0010 0.00024 -4.29  0.00001

log() -1.231  0.02141

Regression model for the Exponential component
Intercept -5.8710 0.82903 -7.08  0.00000

Age -0.0368 0.01581 -2.33  0.01978
Height 0.0290 0.00430 6.74  0.00000
Age? 0.0005 0.00019 2.80  0.00500

An insightful way of presenting this model is to plot the two estimated
component densities for a subject with a given combination of explanatory
variables. As an example, in Figure 1 the plots on the same row have the
same combination of Age and Height (top row: Age=20 yrs., Height=175
cm.; bottom row: Age=60 yrs., Height= 195 cm.), and therefore they have
the same Exponential component. The left and right plot in each row dif-
fer only by BMI (left panel: BMI=24 kg/m?, right panel=48 kg/m?), and
therefore their comparison helps to visualise the role of BMI, which affects
only the Gaussian component. From inspection of these plots, it is evident
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how older and taller people have a ”flatter” (i.e. with larger mean) Expo-
nential component, and also a more marked effect of BMI on reducing the
mean of the Gaussian component.
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FIGURE 1. Estimated Gaussian and Exponential components for four exemplary
individuals

The interplay of Age, Height and BMI in determining the two component
distributions can be appreciated in Figure 2, where we report the estimated
Gaussian and Exponential components for the two ”extreme” individuals
(i.e. having the two largest and smallest combinations of estimates (fi, 7))
in our sample: in the left panel, a 51 years old man 197 cm. tall and with
BMI = 27.1 kg/m?; in the right panel, a 21 years old man, 164 cm. tall
and with BMI = 19.3 kg/m?.
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FIGURE 2. Estimated Gaussian and Exponential components for two ”extreme”
individuals

The combined effect of the three variables yields larger values of FEV,; in
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the older, taller and overweight subject in the left panel compared to the
younger, shorter and normal weight subject in the right panel: this is the
consequence of both the Exponential and the Gaussian components being
shifted to the right for the latter compared to the former. In inter%rgt‘i/ng

al

these findings, one should keep in mind that a large value of the
FEV;

ratio is an indicator of obstructed expiration.

References

Bréndli, O., Schindler, C., Kiinzli, N., et al. (1996). Lung function in healthy
never smoking adults: reference values and lower limits of normal of
a Swiss population. Thoraz, 51, 277—283.

Bréandli, O., Schindler, C., Leuenberger, P., et al. (2000). Re-estimated equa-
tions for 5th percentiles of lung function variables. Thoraz, 55, 173 —
174.

Cole, T.J., Stanojevic, S., Stocks, J., et al. (2009) Age- and size-related ref-
erence ranges: A case study of spirometry through childhood and
adulthood. Statistics in Medicine, 28, 880 —898.

Golubev, A. (2009). Exponentially Modified Gaussian (EMG) relevance to
distributions related to cell proliferation and differentiation. Journal
of Theoretical Biology, 6, 15—51.

Martin, B.W., Ackermann-Liebrich U.; Leuenberger, P., et al. (1997). SAPAL-
DIA: Methods and participation in the cross-sectional part of the
Swiss Study on Air Pollution and Lung Diseases in Adults. Sozial-
und Prdventivmedizin, 42, 67 —84.

Palmer, E.M., Horowitz Todd, S., Torralba, A. et al. (2011). What are the
shapes of response time distributions in visual search? Journal of Ez-
perimental Psychology, 37, 58—T71.

Quanjer, P.H., Stanojevic, S., Cole, T.J., et al., (2012) Multi-ethnic refer-
ence values for spirometry for the 3-95-yr age range: the global lung
function 2012 equations. Furopean Respiratory Journal, 40, 1324 —
1343.

Rigby, R. A. and Stasinopoulos, D. M. (2005). Generalized additive mod-
els for location, scale and shape, (with discussion). Applied Statistics,
54, 507 —554.

Stasinopoulos, D. M. and Rigby, R. A. (2007). Generalized additive mod-
els for location scale and shape (GAMLSS) in R. Journal of Statistical
Software, 23, 1—-46.



