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Abstract

Dietary restriction extends longevity in organisms ranging from bacteria to mice and protects primates from a variety of
diseases, but the contribution of each dietary component to aging is poorly understood. Here we demonstrate that glucose
and specific amino acids promote stress sensitization and aging through the differential activation of the Ras/cAMP/PKA,
PKH1/2 and Tor/S6K pathways. Whereas glucose sensitized cells through a Ras-dependent mechanism, threonine and valine
promoted cellular sensitization and aging primarily by activating the Tor/S6K pathway and serine promoted sensitization via
PDK1 orthologs Pkh1/2. Serine, threonine and valine activated a signaling network in which Sch9 integrates TORC1 and Pkh
signaling via phosphorylation of threonines 570 and 737 and promoted intracellular relocalization and transcriptional
inhibition of the stress resistance protein kinase Rim15. Because of the conserved pro-aging role of nutrient and growth
signaling pathways in higher eukaryotes, these results raise the possibility that similar mechanisms contribute to aging in
mammals.
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Introduction

Calorie restriction (CR), which usually refers to a 20–40%

reduction in calorie intake, can effectively prolong life span in

taxonomically diverse organisms ranging from yeasts to mammals

[1]. It is also known that selective restriction of carbohydrates or

proteins, as well as alternate day fasting without an overall

restriction of calories, can also extend longevity [2–3], suggesting

that reduced levels of specific macronutrients in the diet (Dietary

Restriction, which also includes CR), can achieve at least some of

the effects of CR [3]. On the other hand, studies on model

organisms focusing on genes and pathways involved in aging have

identified Ras, the yeast ortholog of S6 kinase, Sch9 and the target

of Rapamycin (TOR) as key regulators of longevity and stress

resistance [4–5]. However, although the stress resistance genes as

well as the transcription factors Msn2, Msn4, and Gis1 play key

roles in the effects of CR on life span extension [6], the connection

between the availability of each component of the diet, stress

resistance and aging genes has remained only partially understood

[7]. Depletion of glucose, the best characterized nutrient, causes

calorie restriction-associated phenotypes including life span

extension [8–9] while its addition to starved yeast cells alters the

expression of almost one third of the yeast transcriptome [10–11].

These effects are largely due to altered activity of the protein

kinase A (PKA) through Ras-cAMP and Sch9-dependent

pathways [12–13]. Regarding the other macronutrients, many

genes have been identified for their role as sensors and transporters

for nutrients different from glucose [14–19], but little is known

about the molecular cascades activated by specific nutrients. In

yeast, amino acid scarcity increases replicative life span [20]

possibly by affecting protein synthesis [21]. In flies and rodents,

changes in amino acid or dietary composition can have profound

effects on life span [22–26] and in human cell cultures the

availability of amino acids affects gene expression profiles [27–29],

but the effect of each amino acid on aging is largely unknown.

Evidence based on the effect of amino acid withdrawal and

repletion points to the TORC1 complex as a major amino acids

transducer in mammalian cells [30–31]. In CHO-IR mammalian

cells, amino acid withdrawal results in the selective inhibition of

S6K1 and dephosphorylation of 4E-BP, rendering these targets

unresponsive to insulin [32]. On the contrary, amino acids

replenishment or just the addition of leucine and arginine, in the

absence of serum or insulin, restores 4E-BP phosphorylation,

S6K1 activity and insulin sensitivity [32].

The AGC kinase Sch9 (ortholog of the mammalian S6 and

possibly AKT kinases) has been reported to be a major target of

the activated TORC1 complex [33]. The latter phosphorylates

Sch9 at multiple residues within the hydrophobic motif (HM)

whereas the Sch9 T loop is the target of the Phosphoinositide

Dependent protein Kinase 1 (PDK1) orthologs Pkh1–3 [34–35]:
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the main downstream effectors of the PI3kinase that in yeast are

activated by sphingolipids [36–37]. It has therefore been suggested

that Sch9 integrates nutrient signals coming from Tor1 with stress

signals coming from sphingolipids [35,38]. Interestingly, a physical

interaction between the general amino acid permease (Gap1) and

three components (Pis1, Lip1, Tsc13) of the sphingolipids

biosynthetic pathway has recently been demonstrated [39] raising

the possibility that sphingolipids metabolism may be affected by

amino acids availability. However, increasing evidences suggest

that few molecular switches may integrate all nutrient signals.

Flo11, one of the genes activated by the lack of nitrogen [40], is

also affected by PKA activation state [41] integrating nitrogen

signaling and glucose signaling. Other reports have related the

activity of the General Amino-acids Permease (GAP1) to the PKA

activation state [42–43] and even though they reached conflicting

conclusions, both suggest a dependency of the amino acid

transport system on the PKA activation state, thus connecting

amino acid to glucose response. Pkh1–3 phosphorylate both PKA

catalytic subunit and Sch9 T loop, linking sphingolipids to glucose

signaling [34]. Moreover, Bcy1, the regulatory subunit of the

PKA, is modulated by cAMP concentration, which transduces

glucose availability, but is also phosphorylated by TORC1 [44].

Here, we investigated the effect of media composition on aging

and stress resistance and identified the connection between specific

nutrient and the well-known and conserved pro- and anti-aging

genes.

Results

Dextrose and amino acids act on separate pathways
Although nutrient-dependent pathways in Saccharomyces cerevisiae

have been studied extensively [21,45–48], the role of each nutrient

on cellular protection and aging is poorly understood. Because our

previous studies and those of many other laboratories indicated

that resistance to oxidative stress is tightly linked to longevity, we

developed a protocol to measure oxidative stress resistance

variations in post-diauxic yeast cells exposed to various nutrient

mixtures (nutrient response assay, figure S1, see materials and

methods section for details).

Experiments were performed using the DBY746 laboratory wild

type yeast strain (carrying the Leucine, Histidine, Tryptophan and

Uracil auxotrophies; see table S1 for the list of strains used and for

the complete relevant genotype) and repeated with the corre-

sponding isogenic prototrophic yeast strain, as well as with a

natural yeast strain commonly used by winemaking industries.

In agreement with previous observations [49–50], we found

increased stress resistance by reduction of dextrose concentration

from 2% to 0.5% both in auxotrophic and in prototrophic

DBY746 and in winemaking yeast (Figure 1a and S2b, S3a) and

synergistic effects of carbohydrates and all amino acids addition on

cellular sensitization to either peroxide treatment or heat shock

(Figure 1a S2a, b and S3a). To rule out the possibility that the

effect of amino acids on stress resistance was merely due to pH

changes, experiments were repeated at pH 3.7 and 6. Essentially

the same results were obtained (Figure S2b, c). In addition, all the

experiments were performed in non-limiting conditions for

nitrogen source to separate the effects of limited nitrogen source

from that of amino acid restriction.

To avoid the possibility that liquid cultures, such as those used

in standard chronological life span assay, may lead to toxic levels

of certain metabolites (e.g. acetic acid and ethanol [51–52]) or that

regrowth phenotype may affect the interpretation of the results, we

repeated the experiments using in situ chronological life span, in

which about 200 cells are maintained isolated from others on a

plate containing 2% glucose [53]. This assay confirmed the strong

association between stress resistance and life span measurements

(Figure 1b). In fact, consistently with the stress resistance assay, the

presence of the complete amino acids mixtures significantly

shortened the life span of wild type yeasts with respect to a

medium containing only the essential amino acids.

To identify the downstream effectors of glucose- and amino

acids-dependent sensitization, we monitored stress resistance in

isogenic yeast strains lacking key mediators of nutrients signaling:

(the RAS2 and/or SCH9 genes) in the presence of different nutrient

mixtures (Figure 1c). Both gene products are known to modulate

PKA activity, a known stress response inhibitor, by different

means. Ras2 is essential for glucose-dependent PKA activation in

nutrient starved yeast cells (Figure 1c), while Sch9 phosphorylates

the PKA regulatory subunit in response to Tor1 activation [44].

Notably, the latter has been implicated in dextrose, nitrogen and

amino acid metabolism in different organisms [54]. Our results

(Figure 1c) confirm previous observations [17] on the ability of

amino acids to increase stress sensitivity in glucose-derepressed

cells. In addition, we confirmed the major role of Ras2 in glucose

response and the role of Sch9 as a major amino-acid response

transducer. It must be noted that pure amino acid treatment, even

for prolonged time (24 h, data not shown), was completely

ineffective in sensitizing cells to peroxide treatment in wild type,

ras2D, sch9Dor ras2Dsch9D genetic backgrounds (Figure 1c). These

experiments confirmed previous results [15], but also provide new

insights suggesting that amino acids and dextrose act on separate

pathways and that glucose de-repression is necessary for amino

acids-dependent cell sensitization.

Tor1 and Pkh1/2 converge on Sch9
Considering the central role of the AGC kinase Sch9 in amino

acid response, stress resistance and aging, we studied its

connection with upstream kinases in an attempt to identify the

mechanisms linking specific nutrients to Sch9. AGC kinases are

regulated by a general scheme mainly based on the phosphory-

lation of two amino acid residues which in yeast Sch9 are

threonine 570 (located within the T loop) and threonine 737

(located within the hydrophobic motif, HM, Figure 2a). Phos-

phorylation of these residues is accomplished by specific kinases

[55–59]. In yeast, the PDK1 orthologs Pkh1/2 phosphorylates the

Author Summary

Calorie restriction (CR), but also the restriction of specific
components of the diet, has been known for decades to
affect longevity. However, the understanding of how each
component of the macronutrients affects longevity and
stress resistance is poorly understood, in part because of
the complexity of many of the model organisms studied.
Here we studied how each amino acid and glucose
cooperate to activate cell sensitizing pathways and
promote aging. We identified specific amino acids in the
diet that affect cellular protection and aging, describe how
different pathways mediate these pro-aging effects,
describe the effect of glucose and specific amino acids
on the levels/activity of stress resistance kinases and
transcription factors, and identify specific nutrient deple-
tions capable of increasing longevity and stress resistance.
Because of the conserved pro-aging role of orthologs of
many of the genes in the signaling network described in
this paper, these results are likely to serve as a foundation
for the elucidation of similar nutrient-dependent pro-aging
mechanisms in mammals.

Amino Acid Signals Converge on Sch9

PLOS Genetics | www.plosgenetics.org 2 February 2014 | Volume 10 | Issue 2 | e1004113



T-loop T570, while the TORC1 complex phosphorylates the HM

T737 (Figure 2a) [60–61]. Western blots using an anti-P570

confirmed the disappearance of the Sch9 immuno-reactive band

in protein extracts from strains with deficiencies in both Pkhs

(Pkh1ts, pkh2D, see Figure 2b) (antibody specificity was confirmed

using the T570A mutant (Figure 2b)), thus confirming previous

observations obtained using the Pkhs inhibitor drug myriocin or

mutants with impaired sphingolipid biosynthesis (Lcb1 mutants)

[35]. Site directed mutagenesis, leading to T570A and T737A

amino acid substitutions, which abolish T-loop and HM

phosphorylation sites, respectively, resulted in increased stress

resistance and longevity (Figure 2c, d). Surprisingly, the compar-

ison of the relative effect of the two amino acidic substitutions

T570A and T737A uncovered a more important role for the

Pkh1/2 T-loop phosphorylation site in stress resistance and aging.

T570A increased longevity and stress resistance to an extent

similar to that caused by SCH9 deletion (Figure 2c,d) whereas the

T737A substitution only caused a partial increase in stress

resistance and longevity. Cells, with impaired Pkh function,

showed increased survival in both the DBY746 and the W303

genetic backgrounds (Figure 2e, S3b). Consistent with this result,

resistance to multiple stresses, in both genetic backgrounds,

increased when Pkh1/2 function was reduced (Figure 2e, S3c).

These results confirmed the role of sphingolipid metabolism on

stress resistance and longevity [35]. We then evaluated the stress

resistance of DBY746 yeast cells bearing the allele coding for the

sch9-T570A or the sch9-T737A in response to different nutrient

mixtures (Figure 2f). The results point to a critical role for Sch9 as

an integration point of Pkhs- and Tor-mediated amino acid

responses (Figure 2f). In addition, the comparison of mutations

within the T-loop and the HM domains points to the T-loop and

its activators Pkh1–2 as a major pro-aging amino-acid response

pathway.

Specific amino acids decrease stress resistance by
different pathways

To understand the connection between specific amino acids and

Sch9 activation by phosphorylation of the T-loop and HM

domain, we measured stress resistance in wild type yeast cells

treated with mixtures containing minimal medium plus one single

non-essential amino acid. The result, shown in Figure 3a,

identified the amino acids serine, threonine and valine as the

most effective cell-sensitizing amino acids. Previous studies, based

on survival in media lacking specific substances, identified

glutamic acid as a pro-aging amino acid [38,62–63] whereas

methionine has been described as a pro-aging amino acid in other

eukaryotic systems [23,64–65].

We then tested the ability of combinations between the

identified amino acids to increase stress sensitivity. The results

confirmed the stress enhancing capability of serine, threonine and

valine and to a lesser extent of glutamic acid and methionine

(Figure S4a). Since Pkhs, the kinases known to phosphorylate the

T-loop of the Sch9 protein, can be inhibited by the drug myriocin,

which blocks sphingosine biosynthesis [66], we compared single

amino acid-dependent stress sensitization in the presence/absence

of myriocin. Surprisingly, the drug rescued serine sensitization but

had no effect on methionine/threonine/valine treatment

(Figure 3b). The involvement of the Pkh sphingolipid pathway in

serine response was confirmed by a dose-response assay with

increasing myriocin concentration at various serine levels

(Figure 3c). The results confirmed the myriocin-dependent rescue

of the stress resistance, even at very high serine concentrations

(56). The dependency of serine sensitization on Pkhs function was

further confirmed by assessing modulation of serine sensitization in

the presence/absence of functional Pkh alleles (Figure S4b). In

addition, overexpression of the human ortholog of the Pkhs

kinases, PDK1, increased serine sensitivity suggesting the existence

of a conserved role of PDK orthologs in lower and higher

eukaryotes (Figure S4c). Chronological life span assay confirmed

that serine is a pro-aging amino acid since serine supplementation,

at the standard concentration, significantly shortened the life span

Figure 1. Dextrose and amino acids act on separate pathways.
(A) Stress resistance (hydrogen peroxide treatment) of stationary phase
laboratory and prototrophic wild type DBY746 yeast strain and
winemaking yeast after short time nutrient replenishment (nutrient
response assay, see figure S1 for a complete experimental scheme and
materials and methods section for details). All mixtures added
contained the basic SD components (Yeast nitrogen base, ammonium
sulfate and phosphate). ‘‘Auxo AA’’ refers to a nutrient mixture
containing the organic compounds required to compensate the wild
type DBY746 auxothrophies (histidine, leucine and tryptophan and the
nucleotide uracil) while all the other amino acids are missing. ‘‘all AA’’
refers to the complete SDC medium therefore containing all the amino
acids (for a complete description see table S2). Dextrose concentration
was added as specified. (B) In situ chronological life span (58) of wild
type DBY746 in the presence of all or only the auxotrophic (auxo) amino
acids (see above and table S2). The data represent the mean 6 standard
error of five different experiments. P values were evaluated by 2-tailed
T-test for groups with unequal variants. *, p = 0.2; **, p,0.05; ***, p,
0.005. (C) Stress resistance (hydrogen peroxide treatment) after the
addition of the indicated different nutrients mixtures (nutrient response
assay, see figure S1 for a complete experimental scheme) using the
indicated isogenic derivatives of the DBY746 yeast strain.* The wild type
strain was grown for three days, all the other strains were grown for 1
day only.
doi:10.1371/journal.pgen.1004113.g001

Amino Acid Signals Converge on Sch9

PLOS Genetics | www.plosgenetics.org 3 February 2014 | Volume 10 | Issue 2 | e1004113



of wild type yeast strains (Figure 3d). Finally, western blot analysis

using the anti phosphothreonine 570 Sch9 specific antibody,

confirmed that serine addition was capable of increasing the

phosphorylated moiety of the threonine 570 amino acid residue

(Figure 3e). In addition, removal of serine from the amino acid

mixture was sufficient to significantly decrease the P570 level,

pointing to serine as the major amino acid regulator of Sch9T570

phosphorylation (Figure 3e). The possibility that the amino acid

administration influences the amount of Sch9 protein rather than

its phosphorylation status was ruled out by tagging the Sch9

protein with the hemoagglutinin epitope and using a commercial

anti-HA antibody to monitor the amount of the Sch9 protein in

the various conditions (Figure 3e).

Threonine and valine activate Tor/S6K-dependent pro-
aging signaling

To understand whether Tor1 may serve as the link between the

other pro-aging amino acids, Sch9 activation and cellular

sensitization, we examined the effect of the three amino acids,

identified as the most effective in stress sensitization (Figure 3a), in

the presence or absence of the TORC1 drug inhibitor rapamycin.

Rapamycin was capable of suppressing the sensitization caused by

Figure 2. Role of Sch9 activation state in survival, stress resistance and amino acids response. (A) Activation scheme of Sch9 kinase. (B)
Western blot of whole protein extract from the indicated W303 isogenic derivatives grown to exponential phase. T570A refers to protein extract from
the strain carrying the SCH9 allele coding for the amino acid substitution T570A. Anti-SCH9 P570 was used as a primary antibody. (C) Stress resistance
(hydrogen peroxide treatment) of the indicated DBY746 isogenic derivatives grown for 24 h (Day1) or 72 h (Day3) in complete synthetic medium
(SDC, all the amino acids supplied), the asterisks followed by a number refer to two different isolates with the same relevant genotype. (D)
Chronological life span of the same group of strains. (E) Peroxide (H2O2) and heat shock (55uC) resistance of wild type DBY746 and of the isogenic
indicated derivatives strains cultured to day 2 (upper panel). Chronological life spans of the same group of strains (lower panel). All the cultures, after
two days of growth at 30uC, were transferred at 35uC to inactivate the Pkh1 thermo sensitive allele as previously described [86]. Experiments were
performed in triplicate. Standard errors bars are shown. P values were evaluated by 2 tailed T-test for groups with unequal variants. *, p,0.02; **, p,
0.005. (F) Nutrient response assay (hydrogen peroxide treatment after nutrient addition, see figure S1 for the experimental scheme) of strains
(DBY746 derivatives) bearing different SCH9 alleles. T570A and T737A refer to the amino acid substitutions coded by the mutated alleles.
doi:10.1371/journal.pgen.1004113.g002

Amino Acid Signals Converge on Sch9
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threonine and valine, but was completely ineffective in suppressing

the serine-dependent effects (Figure 4a) in a pH-independent

manner (Figure S5a, b). In addition, treatment with different

nutrient mixtures, in the presence/absence of rapamycin,

suggested that TORC1 has a negligible role in dextrose–

dependent sensitization and confirmed its capability in suppressing

threonine and valine (MTV)-dependent sensitization (Figure 4b).

Chronological lifespan, obtained in the presence of minimal

medium supplemented with either threonine or valine at the

standard concentration, confirmed the pro-aging role of these

amino acids (Figure 4c). On the other hand, incubation of yeast

with standard synthetic medium, restricted (1:10 of the standard

concentration) for only one of the identified pro-aging amino

acids, was sufficient to increase the life span and to reduce the rate

of spontaneous point mutations (Figure 4 d, e). Finally, the

insertion of the point mutation T737A within the hydrophobic

motif of the Sch9 protein kinase was capable to abolish the

sensitization to oxidative stress due to threonine or valine

administration while was ineffective against serine administration

(Figure 4f). These results reveal the connection between specific

amino acids and two different amino acid-dependent pro-aging

pathways: the Tor1-dependent one and the newly discovered

Pkhs-dependent one [35], both converging on Sch9 but on two

different phosphorylation sites. Notably, we also demonstrate that

restriction of specific non-essential amino acids increases life span

and decreases the mutation rate.

Specific amino acids cause Rim15 repression
To understand the connection between specific amino acids and

aging, we investigated the localization of the protein kinase Rim15

in response to the presence of the key pro-aging amino acids.

Rim15 is a serine/threonine protein kinase whose function is

Figure 3. Role of single amino acids in stress sensitization. (A) Nutrient response assay (hydrogen peroxide treatment after nutrient addition)
using cultures of stationary phase (two days of growth) wild type DBY746 strain (see figure S1 for the experimental scheme). Synthetic medium with
dextrose and only the organic compounds necessary to compensate the auxothrophies (leucine, histidine, tryptophan and uracil) were added to
‘auxo’ sample. The other samples were added with the same mixture plus the single indicated non-essential amino acid. After hydrogen peroxide
treatment, a small aliquot from each sample was plated on rich (YPD) medium and colony forming units (CFU) counted after 2 days. The CFU number
obtained with the ‘auxo’ medium was the highest and was used as a reference (100%) for all the other samples. The latters were expressed as (CFU/
CFU(auxo))*100. The data represent the mean 6 standard errors of five independent experiments. Statistical significance was evaluated by 2-tailed T-
test for groups with unequal variants. *, p,0.05; **, p,0.02; ***, p,0.001. Amino acids are indicated using the single letter code. (B) Nutrient
response assay (hydrogen peroxide treatment after nutrient addition) using the wild type strain DBY746 (see figure S1 for the experimental scheme)
combining the addition of the auxo mixture (see the legend to the figure 1A for details) plus the indicated amino acid in the presence/absence of the
Pkhs inhibitor myriocin. (C) Dose-response nutrient response assay (hydrogen peroxide treatment after nutrient addition) using the wild type DBY746
strain (see figure S1 for the experimental scheme) obtained combining the addition of the auxo mixture (see A for details) plus different serine
concentration with increasing amount of the Pkhs inhibitor myriocin. (D) Chronological life span of the DBY746 yeast strain grown with the auxo
medium (see legend to figure 3A for a complete description of this medium) in the absence (auxo AA) or in the presence (auxo AA+S) of the standard
concentration of the amino acid serine. P values were evaluated by 2 tailed T-test for groups with unequal variants. *, p,0.002. (E) Effect of serine
presence on Sch9 threonine 570 phosphorylation. Upper panel: Western blot of whole protein extracts from wild type yeast stained with a specific
anti-P570 antibody. Cells (exponential phase) were grown in the presence of the auxo mixture (Auxo AA) (see legend of figure 1A for a complete
description), plus the standard concentration of serine (Auxo AA+S), with the complete amino acid mixture (All AA) and with the complete amino acid
mixture lacking only the serine amino acid (All AA-S; standard concentration of amino acids are indicated in table S2). Lower panel: wild type (W303)
strain, HA tagged on SCH9 gene was treated in the same conditions as the upper panel and stained with an anti-HA primary antibody.
doi:10.1371/journal.pgen.1004113.g003

Amino Acid Signals Converge on Sch9
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central in G0 arrest [67] and in cellular aging [6,68]. Tor1, Sch9

and PKA control its cellular localization and activity [69].

Observing the fluorescence obtained using a plasmid coding for

Rim15-GFP fusion protein, we first confirmed the role of the Sch9

protein kinase in Rim15 cellular localization. In fact, while wild

type cells localize Rim15 outside the nucleus in log phase cultures

and after nutrients addition to stationary phase cultures, the lack of

SCH9 caused Rim15 nuclear localization in day 2 yeast cells

(Figure 5b) and after nutrient re-feeding (Figure S6c). In addition,

wild type post-diauxic yeast cells (day 2) were exposed to nutrient

Figure 4. Role of Tor/S6K in amino acid response. (A) Nutrient response assay (hydrogen peroxide treatment after nutrient addition) using the
wild type DBY746 strain (see figure S1 for the experimental scheme) combining the addition of the auxo mixture (see the legend to the figure 1A for
details) plus the indicated amino acid with the presence/absence of the Tor-inhibiting drug rapamycin or with the Pkhs-inhibiting drug myriocin. (B)
Nutrient response assay (hydrogen peroxide treatment after nutrient addition) of the DBY746 yeast strain with/out rapamycin after the addition of
the indicated mixture of nutrients (see the legend to the figure 1A for details). The components of the synthetic medium were added to all samples.
2% Dextrose was added were indicated. Auxo refers to the addition of all the organic compounds necessary to compensate the DBY746
auxothrophies (leucine, histidine, tryptophan and uracil) while auxo+MTV also contained the amino acids methionine, threonine and valine. (C)
Viability of the wild type DBY746 yeast strain grown in the presence of the auxo mixture (auxo, see the legend to the figure 1A for a complete
description of this medium) or in the presence of auxo mixture plus the amino acid threonine or valine (auxo+T, auxo+V respectively). Experiments
were done in triplicate and mean values are represented with standard errors. P values were evaluated by 2 tailed T-test for groups with unequal
variants. *, p,0.1; **, p,0.005. (D and E) Chronological life span and mutation frequency of DBY746 wild type strain, grown in complete medium
(SDC) or in SDC with reduced concentration of serine, threonine or valine (0.16, 1:10 of the standard concentration, see table S2 for a definition of the
standard concentration used). Experiments were done in triplicate and mean values are represented with standard errors. P values were evaluated by
2 tailed T-test for groups with unequal variants. *, p,0.1; **, p,0.04; ***, p,0.02. (F) Nutrient response assay (hydrogen peroxide treatment after
nutrient addition) using cultures of stationary phase (two days of growth) wild type DBY746 strain and of the isogenic derivative carrying the Sch9
allele coding for the amino acid substitution T737A (see figure S1 for the experimental scheme). Synthetic medium with dextrose and only the
organic compounds necessary to compensate the auxothrophies (leucine, histidine, tryptophan and uracil) were added to ‘auxo’ sample. The other
samples were added with the same mixture plus the single indicated non-essential amino acid. After hydrogen peroxide treatment, a small aliquot
from each sample was plated on rich (YPD) medium and colony forming units (CFU) counted after 2 days. The CFU number obtained with the ‘auxo’
medium was used as a reference (100%) for all the other samples. The latters were expressed as (CFU/CFU(auxo))*100. *, p,0.1; **, p,0.02; ***, p,
0.001 comparing each value against the corresponding (strain specific) ‘‘auxo’’ value.
doi:10.1371/journal.pgen.1004113.g004

Amino Acid Signals Converge on Sch9
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re-feeding and Rim15-GFP fluorescence was monitored overtime.

We observed an initial re-localization (appearance of the granules)

followed by a time-dependent decrease (2–6 hrs interval) of the

Rim15-GFP fluorescence (Figure 5a upper panel) but only with

wild type Sch9 protein (Figure S6c). To characterize the nature of

the granules, appearing after nutrient re-feeding, we co-expressed,

in wild type cells, the plasmid coding for Rim15-GFP fusion

protein together with the plasmid coding for the Pab1-RFP fusion

protein, the latter being a known marker for stress granules [70].

Fluorescence analysis, 2 hours after nutrient replenishment in day

2 cultures, showed co-localization of the two fusion proteins

indicating Rim15 localizes within stress granules after nutrients

supplementation (Figure 5c). To determine if the Rim15-GFP

disappearance, observed after longer nutrient incubation, was due

to increased protein degradation or silenced transcription, we

performed quantitative PCR of Rim15 transcript on RNA

extracts, obtained at different time points, after nutrient replen-

ishment. The results confirmed the role of reduced RNA levels in

Rim15 activity regulation (Figure 5d). We then monitored if the

addition of the identified pro-aging amino acids was sufficient to

obtain Rim15 cellular re-localization. Addition of single amino

acids to the otherwise minimal medium revealed the central role of

threonine, serine and valine in activating the Rim15 re-localiza-

tion pathway (Figure 5a lower panel) but only in glucose de-

repressed cells (not shown), thus suggesting that the Tor1 and Pkh

pathways may directly or indirectly regulate Rim15 protein

activity. On the other hand Rim15 is reported to activate stress

resistance transcription factors Msn2/4 and Gis1. It is known that

Msn2/4 transcription factors bind to the STRE (STress Respon-

sive Elements) motif contained in the promoter of stress responsive

genes [71–73] whereas Gis1 transcription factor binds to the PDS

(Post Diauxic Shift) motif contained in the promoter of several

genes activated at this metabolic transition [74–76]. We tested the

effect of nutrients on isogenic yeast strain carrying single, double

or triple deletions of these transcription factors (Figure 6a). Our

experiments revealed a central role for Rim15 and Msn2/4 but a

much more modest effect of the deletion of Gis1 transcription

factors alone on the glucose- and amino acids-dependent stress

sensitization (Figure 6a). However, the unexpected high stress

resistance and STRE element activation in the gis1D strain is likely

due to a compensatory Msn2/4 activation in the presence of a gis1

null allele. In fact, the Msn2/4-dependent STRE/beta galactosi-

dase activity was increased in the gis1D null cells (Figure S6a) but

deletion of both Msn2/4 and Gis1 caused a sensitization similar to

that observed in rim15 deletion mutants (Figure 6a). Quantitative

PCR of the prototype stress response gene SOD2 confirmed the

role of amino acid administration in controlling stress response

gene expression but only in the presence of the Rim15 protein

kinase (Figure 6b). Beta-galactosidase assay using PDS (Gis1-

dependent) or STRE (Msn2/4) gene reporters in various nutrient

conditions indicated the contribution of amino acids to inhibition

of both STRE and PDS-dependent gene transcription (Figure 6c).

The usage of single, as well as, mixtures of the most sensitizing

amino acids confirmed the role of serine and threonine/valine

dependent pathways in regulating mainly PDS-driven gene

expression (Figure 6c).

Discussion

The understanding of the mechanisms linking DR to its anti-

aging effects in higher eukaryotes has been hindered by their

complexity. S. cerevisiae provides a very simple organism in which

the effect of each major pro-aging nutrient can be dissected. In the

present work we describe the cooperation between glucose and the

amino acids threonine, valine and serine, in sensitizing yeast cells

to stress and promoting aging via two major pathways. These

results enhance our understanding of previously poorly understood

roles and interactions between specific nutrients to promote aging

but also point to specific amino acids and their effect on different

pathways previously established to cause aging. By contrast, the

effect of methionine restriction in extending the life span of fruit

flies [23] and rodents [77–80] does not appear to be as important

for the protection of yeast cells. We also show a less potent than

serine, valine and threonine but detectable role of glutamate in

increasing stress sensitivity in agreement with data on the ability of

its deficiency to extend yeast survival [62–63].

Our genetic and biochemical analysis revealed that the yeast

amino acid response relies on at least two different pathways: the

well-characterized TORC1-S6K pathway, which has been

described as an integrator of different nutrient and energy signals

in organisms including humans [81–82] and the sphingolipid-

dependent Pkh1/2 pathway, also shown to promote aging in yeast

(Figure 7) [35]. Threonine and valine activated the TORC1

pathway and promoted cellular sensitization that could be

reversed by the well-established anti-aging drug rapamycin,

whereas serine specifically activated Pkhs and promoted cellular

sensitization by a mechanism, which could be reversed by the Pkh

inhibitor myriocin. Considering that L-serine is the substrate of the

serine palmitoyltransferase, the a-oxamine synthase enzyme that

catalyzes the condensation reaction of L-serine and palmitoyl-CoA

to form 3-ketodihydrosphingosine, we propose that serine may

activate Pkh by enhancing the first and rate-determining step of

the sphingolipid biosynthesis pathway [83]. Thus, serine admin-

istration may be equivalent to enhance sphingolipid biosynthesis,

which is known to activate Pkhs and promote aging [35]. This

hypothesis is supported by the overlap between the treatment with

the sphingolipid biosynthesis inhibitor myriocin and Pkhs impair-

ment.

Our analyses demonstrate that Sch9 plays a critical role in these

nutrient response mechanisms since it integrates signals from the

two pathways adapting its phosphorylation status and activity

accordingly. This may explain the dominant role of the Tor/Sch9

pathway in promoting aging in yeast and possibly in higher

eukaryotes. Rim15 subcellular localization also primarily relied on

specific amino acid availability (threonine, serine and valine).

Thus, although activated Rim15 is clearly central in nutrient-

dependent cellular protection, its regulation by amino acids

appears to be complex and to depend on both the Pkh and Tor/

S6K pathways. In agreement with our hypothesis partial depletion

of each of the amino acids described in this work was capable of

increasing the life span. As expected from our previous studies,

transcription factors Msn2/4 and Gis1 are downstream mediators

of the anti-aging effects of Rim15 (Figure 6).

In summary, these results shed new light on a nutrient response

network in which different genes are linked to specific components

of the diet. Because orthologs of many genes in this network are

known to affect aging in higher eukaryotes, these results are likely

to point to similar mechanisms in mammalian cells.

Materials and Methods

Strains, media and plasmids
Strains and plasmids used in this study are listed in table S1.

Gene Knockouts were generated by one-step gene disruption [84].

The sch9T570A and sch9T737A mutants were constructed using

plasmids PFR82 and pAM202 (kindly provided by Dr. Thorner,

University of California, Berkeley [57]) by homologous integration

at the SCH9 locus.

Amino Acid Signals Converge on Sch9
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Cells were grown in YPD (1% yeast extract, 2% peptone, 2%

glucose), minimal medium SDC (0.17% yeast nitrogen base, 0.5%

ammonium sulfate, 0.08% amino acids, pH 6) or selective media,

with appropriate amino acids content (see table S2 for a complete

list) to maintain selection for plasmids, containing 2% glucose as

carbon source. Cells were grown at 30uC.

Chronological life span and mutation frequency assay
Overnight SDC cultures were diluted (1:10) into flasks covered

with aluminum foil caps with fresh SDC medium to a final volume

of 10 ml (with a flask to culture ratio of 5:1) and kept at 30 uC with

shaking (200 rpm) to ensure proper aeration. This dilution time

point was considered day 0. Every other day, aliquots from the

Figure 6. Amino acids affect stress response genes in a Rim15-dependent way. (A) Nutrient response assay of DBY746 (WT) and of the
isogenic derivatives involved in stress response gene transcription. Auxo means the addition of the organic compounds necessary to compensate
auxotrophies. (B) DBY746 bearing a wild type (WT) or a null (rim15D) RIM15 allele were grown until day 3, then switched into fresh synthetic medium
containing only ‘auxo’ amino acids or ‘all’ amino acids (for a detailed description of auxo mixture see the legend to the figure 1A); after 4 hours RNA
was extracted and retro transcribed as reported in materials and methods section; quantitative RT-PCR was performed using SOD2 specific primers
and gene expression levels were normalized using ACT1 as an internal control. The bar chart shows SOD2 expression level after SDC incubation with
respect to SOD2 expression after incubation only with L, H, W as amino acids source. The data represent the mean 6 standard errors of three different
experiments. (C) Beta galactosidase assay of PDS and STRE reporters. Post-diauxic yeast cell (about 108 cells at day 2 in liquid culture) were exposed to
nutrients (4 hrs with the indicated mixtures). Cells were then disrupted and beta galactosidase activity was measured. The activity obtained with
medium containing only the amino acids necessary to compensate strain auxotrophies (auxo) was referred to as 100% activity. Statistical significance
was evaluated by 2-tailed T-test for groups with unequal variants. Data shown are mean and standard deviation of three independent samples
assayed. * , p,0.5; **, p,0.05; ***, p,0.01.
doi:10.1371/journal.pgen.1004113.g006

Figure 5. Amino acids affect Rim15 activity. (A) Wild type DBY746, was transformed with a plasmid coding for the Rim15-GFP fusion protein,
after two days of growth the exhausted medium was replaced (upper panel) with fresh synthetic medium lacking all the amino acids (dextrose) or
with the complete medium (SDC), pictures were taken after the indicated time. In the lower panel the fresh medium contained also compounds
necessary to compensate the auxothrophies (the amino acids L, H, W and the nucleotide Uracil) plus the indicated amino acid (pictures were taken
after two hours of incubation). (B) Wild type (Wt) and sch9D mutants (sch9D) were transformed with a plasmid coding for the Rim15-GFP fusion
protein. After two days of growth wild type cells were transferred onto fresh medium while sch9D cells were left in the exhausted medium. GFP
fluorescence or DAPI staining were observed after 2 additional hours in the aforementioned medium. (C) Wild type DBY746 strain, transformed with
Rim15-GFP and Pab1-RFP expressing plasmids was grown to the post-diauxic phase (two days of growth) and then transferred onto fresh complete
SDC medium, fluorescence was observed after two hours of incubation. (D) Rim15 mRNA level fluctuation in response to nutrients addition. mRNA
obtained from stationary phase DBY746 cell culture (T = 0) or from the same culture but collected after 1, 2 or 4 hours after the switch to fresh SDC
was subjected to Real Time PCR with Rim15 specific oligonucleotides. The amount of mRNA used for each PCR was normalized using the actin (ACT1)
transcript levels as an internal control. The expression level of Rim15 before the medium switch (T = 0), which was the highest, was used as a
reference point (100% of expression). The expression at the others time points was calculated using the formula [expr level(T = 1, 2, 4)/expr level
(T = 0)] * 100.
doi:10.1371/journal.pgen.1004113.g005
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culture were properly diluted and plated onto YPD plates. The

YPD plates were incubated at 30 uC for 2–3 days. Viability was

assessed by Colony Forming Unit (CFUs) count. The CFUs

obtained at day 2 were considered to be the initial survival (100%).

In situ viability was done as previously reported [53]. Briefly,

aliquots of a two days old liquid culture of a trp- strain are plated on

many plates of synthetic medium containing the indicated mixture

of amino acids but lacking tryptophan. Plates are incubated at 30 uC
and no growth is observed due to the lack of tryptophan. Every two

days, plates are supplemented with the appropriate amount of

tryptophan and put back in the incubator where cells start now

dividing. Colony forming units are registered after two more days of

incubation and scored as the percentage of CFU with respect to

CFU at day 2, the latter considered as 100% of survival.

Mutation frequency was evaluated, as previously described [53],

by monitoring the percentage of cells that become resistant to

canavanine treatment during chronological life span experiment.

Stress resistance assay
Heat shock resistance was measured by spotting serial dilutions

of cells removed from SDC cultures onto YPD plates and

incubating at either 55 uC (heat-shocked) or 30 uC (control) for

60 minutes to 120 minutes. After the heat-shock, plates were

transferred to 30 uC and incubated for 2–3 days.

For oxidative stress resistance assays, aliquots of cells were

diluted in K-phosphate buffer 0.1M, pH 6, and treated with

different concentrations of hydrogen peroxide for 30 minutes.

Serially diluted cells were then spotted onto YPD plates and

incubated at 30 uC for 2–3 days.

Nutrient response assay
Overnight SDC cultures were diluted 1:10 into fresh SDC

medium and were maintained at 30uC with shaking until day 2 or

3 of growth, then cultures were disposed into 24-multiwell plates

and centrifuged at 3500 rcf for 20 minutes, pellets were re-

suspended into different fresh media, that contained different mix

of amino acids and/or different glucose concentrations, cells were

incubated at 30uC shaking for 4 hours (amino acids used for the

mixes and their concentrations are listed in table S2). After

incubation cells were pelleted and re-suspended in K-phosphate

buffer 0.1M, pH 6 and treated with hydrogen peroxide for

30 minutes. Cells from each well were then spotted onto YPD

plates and incubated at 30 uC for 2–3 days (for a scheme of the

nutrient response assay see fig. S1).

Protein isolation
Protein extract were prepared by glass-bead disruption in a protein

extraction buffer (50 mM MES KOH pH 6.2, 0.05 mM EDTA,

0.1 mM MgCl2, 0.5 mM DTT, 16Protease inhibitor mix (Sigma),

1 mM PMSF, 25 mM NaF, 10 mM NaN3, 10 mM sodium beta-

glycero-phosphate, 10 mM Na2H2P2O7). The lysate was spun down

at 5000 rpm for 15 minutes and the supernatant tested. Protein

concentrations were determined using Bradford Assay.

Immunological analysis
Proteins were separated by SDS-PAGE [85]. Resolved proteins

on gels were transferred onto nitrocellulose membrane (Schleicher

& Schuell) using 192 mM glycine, 25 mM Tris, 20% methanol in

a Mini Trans-Blot Electrophoretic Transfer Cell (Biorad). Blots

were then blocked with 1% bovine serum albumin (BSA) in

20 mM Tris, 0.5M NaCl, pH 7.5 (TBS), washed in TBS with the

addition of 0.05% Tween-20 (TBST) and incubated over night

with primary antibody. Membranes were washed in TBST and

incubated for 2 hours with secondary antibody (AP or HRP

conjugated), then washed in TBS and labeled with BCIP/NTB or

chemiluminescent ECL liquid substrate system (Promega and

Invitrogen respectively).

The primary antibodies used were: anti-BCY1 (goat polyclonal,

Bcy1 [yN19] sc-6765, Santa Cruz Biotechnology), anti-HA (mouse

monoclonal, HA probe sc-7392 Santa Cruz Biotechnology), anti-

Sch9P570 (a kind gift of Robby Loewith).

GFP and RFP microscopies
Cells expressing Rim15-green and/or Pab1-red fluorescent

fusion proteins were grown to stationary phase, treated with

different nutrients mixtures for various times, then cells were used

for fluorescence microscopy directly without fixation.

Nuclei were stained with 0.5 ug/ml of Hoechst 33342

(Invitrogen) for 15 minutes before cells were watched. Cells were

viewed with an Olympus BX50 fluorescence microscope using the

appropriate filters.

RNA extraction and quantitative PCR assay
Total RNA was isolated using RiboPure- Yeast kit (Ambion)

according to the kit’s instructions. RNA was treated with RNase-

free DNase I (Promega) to remove contamination of genomic

DNA. 0.5 mg of total RNA was reverse transcribed into cDNA

using ImProm-II Reverse Transcriptase (Promega) with sequence

specific primers (ACT1, GAATCCAAAACAATACCAGTAG;

SOD2, AGCTGCTAATTTAACCAAGAAG; RIM15, TTATC-

GTACTTTCATCGTCAC). Quantitative PCR experiments

were performed on StepOne Real-Time PCR instrument (Applied

Biosystems) using Fast SYBR Green Master Mix (Applied

Figure 7. Scheme of the nutrient pathways. Schematic diagram of
how specific nutrient activates the known pro-aging pathways, the
central role of Sch9 and Rim15 is shown.
doi:10.1371/journal.pgen.1004113.g007
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Biosystems) and the gene specific primers: ACT1, fw-

TCGTGCTGTCTTCCCATCTATC and rev-GTAGAAGG-

TATGATGCCAGATC; SOD2, fw-CTCCGGTCAAATCAAC-

GAAT and rev-CCTTGGCCAGAAGATCTGAG; RIM15, fw-

GGAGCTGGAACTGGACGGCAAG and rev-AGCATGTC-

TGTGGCCTTTTGAA. Thermo-cycling conditions were as

follows: 95 uC for 20 seconds followed by 40 cycles of 95 uC for

3 seconds and 60 uC for 30 seconds. Relative gene expression was

calculated using the 22DDCT method and normalized to ACT1

mRNA levels.

Beta galactosidase assay
Cell pellet from 1 ml of culture was lysed with low salt buffer

(50 mM Tris pH 7.5, 0.16 protease inhibitor cocktail (Sigma),

100 mM NaCl, 2 mM EDTA, 2 mM EGTA, 50 mM NaF). The

protein concentration of the lysate was determined by Bradford

assay. 55 ml of appropriately diluted samples of lysate was mixed

with 85 ml of substrate solution (1.1 mg/ml ONPG in 60 mM

Na2HPO4, 40 mMNaH2PO4, 10 mM KCl, 1 mM MgSO4,

50 mM 2-mercaptoethanol, pH 7.0). Absorbance at 420 nm was

read every 5 minutes until 30 minutes after the initiation of

reaction. Percentage of activity at every condition was determined

respect of a control condition fixed as 100% of activity. Statistical

significance was evaluated by 2 tailed T-test for groups with unequal

variants, control versus individually all the others conditions.

Supporting Information

Figure S1 Nutrient response assay. Flowchart of the protocol

used to assess the effect of single as well as mixture of nutrients

addition on stress resistance at stationary phase.

(TIF)

Figure S2 Acidification doesn’t affect amino acid sensitivity. (A)

Heat shock resistance of DBY746 wild type yeast strain grown to

day 2 after a 4 hour pulse with a media containing 2% dextrose,

all nitrogen source and either the amino acids necessary to

compensate DBY746 auxotrophies (auxo) or the media with the

complete mixture of amino acids (all). (B) Nutrient response assay

in the presence of either the amino acids necessary to compensate

DBY 746 auxotrophies (auxo) or the complete mixture of amino

acids (all) at different percentages of dextrose at pH 6 and 3.7. (C)

Nutrient response assay of prototrophic DBY746 yeast strain at

pH 6 and 3.7 with different nutrient mixtures. Auxo indicates the

addition of the compounds necessary to compensate the

auxothrophies, all indicate the addition of the complete amino

acid mixtures and auxo+S refers to the addition of the auxo

mixture plus the amino acid serine at the standard concentration

(for the list of the amino acid concentration used see table S2).

(TIFF)

Figure S3 Dextrose concentration affects stress sensitivity in

cooperation with amino acids in a Ras2-dependent fashion. (A)

Nutrient response assay of two commonly used yeast wild type

strains (w303-1A and DBY746) with increasing dextrose concen-

trations with the compounds necessary to compensate auxotrophies

(auxo) or with the complete mixture of amino acids (all). Viability (B)

of wild type W303 and of the indicated isogenic derivative. Viability

from day 2 was switched to 35 C to inactivate the Pkh1-thermo

sensitive allele. Stress (H2O2) and heat shock (55uC) resistance (C) of

wild type W303 and pkh1ts/pkh2D isogenic derivative strains.

(TIF)

Figure S4 (A) Effect of amino acid mixtures on nutrient response.

Amino acids are indicated with the single letter code. (B) Nutrient

response assay of yeast cells expressing a thermo sensitive Pkh1 allele

and a null Pkh2 allele and the corresponding strain co-transformed

with Pkh1 and Pkh2 overexpression plasmids (PKH1/PKH2). (C)

Nutrient response assay of DBY746 strain (wt), with the

overexpression of mammalian ortholog of Pkhs (PDK1) or with

the overexpression of Sch9 (SCH9).

(TIF)

Figure S5 Rapamycin and myriocin treatments affect different

amino acid signals. (A) Nutrient response assay in the presence of

the Tor inhibitor Rapamicin (Rapa) at two different concentra-

tions or with the same concentration of the solvent used to

solubilize Rapamycin (DMSO). (B) Rapamycin versus Myriocin

(Mirio) effect on nutrient response.

(TIFF)

Figure S6 (A) STRE LacZ activity of the indicated isogenic

strains. Experiments were performed in triplicate. Standard errors

bars are shown. P values were evaluated by 2 tailed T-test for

groups with unequal variants. * p = 0.1; **p,0.01. (B) Western

blot using a commercially available anti Bcy1 antibody. Whole

extract of the indicated strains in log phase (DBY746 genetic

background) were used. (C) Fluorescence of sch9D strain carrying

the Rim15-GFP fusion protein. Cells were grown to stationary

phase, the exhausted medium was changed with fresh SDC

medium, the fluorescence was measured after the indicated time.

(TIFF)

Table S1 Yeast strains and plasmids used in this study. All the

strains used in this study along with relevant genotype, reference

and figure(s) where they appear are indicated.

(DOC)

Table S2 Composition of the medium used in all experiments

except where otherwise specified. Synthetic complete glucose

medium, SDC was modified with 4-fold excess of histidine,

leucine, tryptophan, and uracil to compensate the auxotrophy of

the DBY746 strain. pH was adjusted to 6.0 with NaOH.

(DOCX)
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