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Abstract A unified approach was taken to the design of wind-turbine blades for multiMW 
machines up to 10 MW. Using input from standard existing machines, three baseline versions 
were designed. Then - after up-scaling - using the aero-elastic code FLEX5 a typical extreme 
load case was selected. As a result, weights seem to increase more than might be expected by 
an empirical law deduced from statistical data. However, some further investigations are 
needed, e. g. buckling and fatigue analyses. The authors regard the method developed here as a 
useful approach for pre-design investigation. One important aspect seems to be the need for 
high-quality GRPs, with admissible strength of more than 120 MPa. 

1.  Introduction  
Wind turbine power is increasing steadily [1]. Offshore sites further than 10 km from the coast have to 
be planned with turbine sizes larger than the currently available 2 to 3 MW machines. Several 5-6 MW 
prototypes exist, having blades based on older technologies [2, 3] with lengths up to 61.5 m. Some of 
these have been tested offshore. Nevertheless new studies are under way [4] for which rated power 
output of 10 to 20 MW is the design goal, the most prominent of these being the DOWEC [5] and 
UPWIND-project [6]. 

This study focuses on the design of a rotor blade for an offshore wind turbine with an installed 
power exceeding 5 MW to 10 MW, using a traditional approach used in local industry. 

We beghin with an examination of a baseline 5MW blade mounted on a state-of-the-art multiMW 
wind-turbine. Typical wind loads, together with annual yield are simulated with the load case 
simulation software FLEX5 and stresses as well as weights are determined by a beam-element code. 
Tis results in up-scaled blades for 8 and 10 MW machines.  

Results for annual yield and weights are reported by applying the procedure from the guidelines of 
Germanischer Lloyd Wind Energy (GL) [7]. 

2.  Aerodynamic Design  

2.1.  Starting conditions 
For the initial designs data such as the hub radius and the initial positioning of the various sections are 
adapted from existing turbines here. DU and NACA636xx airfoils were used.  

Due to erosion problems the maximum tip speed is assumed to be to 80 m/s. The design tip speed 
ratio is deduced from the maximum wind speed operating at the optimum tip speed ratio and the 
maximum tip speed.  

The Science of Making Torque from Wind IOP Publishing
Journal of Physics: Conference Series 75 (2007) 012002 doi:10.1088/1742-6596/75/1/012002

c© 2007 IOP Publishing Ltd 1



 
 
 
 
 
 

To avoid resonance problems the natural frequencies of the rotor blade are designed to be out of a 
±10% deviation from the exciting rotor frequencies 1p, 3p and 6p. 

2.2.  Approach  
The chord and twist distributions are calculated using a method of Wilson and Lissaman [8] which 
combines blade element momentum theory and a vortex theory for small perturbations. Prandtl’s tip 
loss correction is applied. For a given radial section with known lift (cl) and drag (cd) coefficients, the 
local angle of attack θ which maximizes the power coefficient is given by 

⎥
⎦

⎤
⎢
⎣

⎡
−−= ))(tan(

l

d
opt c

c
aFaaFMax θθ ,    (1) 

where F is the tip loss correction factor and a the axial induction factor. Three boundary conditions 
apply for the radius r of the section, the axial induction factor a and the radial induction factor a′ . B 
denotes the number of blades, c the chord length and R the rotor radius. 
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The set of equations (1) to (5) is solved by a double integration. The power coefficient is obtained 

by applying the following equation for a given tip speed ratio λ. 

∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= −− rr

c
c

aFaFRc
l

d
p dtan)1(8 232 θλ    (6) 

2.3.  Advanced aerodynamic methods 
In 2.2 the basic inputs are the 2D polars usually deduced from measurements [9]. In this and related 
publications it was shown that the effect of Re on lift-to-drag ratio (L/D) is relatively small, so it was 
decided to use the same polars as for the 1-3 MW-class. 

Three dimensional CFD is used for detailed investigation of parts of the wing close to the nose and 
tail. Most codes, however, do not have a transition prediction method, and transition determines the 
extent of laminar flow on a wing. A long run of laminar flow on a section is desirable to give high lift 
to drag ratios. In addition to the usual 2D eN-method, which looks for instabilities of the (2D) laminar 
boundary layer due to Tollmien-Schlichting (TS) waves, in 3D flow, the so called Cross-Flow (CF) 
instabilities can occur [10]. Rotating flows clearly show these patterns even if fully attached, so this 
method is more accurate for investigating blade aerodynamics as it includes more physical 
phenomena.  

Since the transition behavior of the boundary layer influences drag losses it is intended to estimate 
turbine power output with respect to the flow regime. 
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3.  Load case calculation  

3.1.  Simulation Model 
The load case calculations are performed with the widely-used FLEX5 software which is based on the 
blade element momentum theory in the time domain.  

The blade data is determined by the aerodynamic and structural design. The initial stiffness and 
mass distributions are estimated from data for existing wind turbines. A power curve for the inverter 
has been adapted for each blade design. Data for other components of the turbine are taken from an 
existing smaller turbine that has been scaled up. Parameters for other components have been changed 
only in order to avoid possible resonance problems.  

3.2.  Load Cases and Evaluation 
The turbine is simulated with external conditions for type class I according to IEC 61400-1 (ed.2) and 
the guidelines of the GL respectively [11]. For an offshore site the category for lower turbulence 
intensity values (category C) has been selected. Wave loads are not considered as they are highly 
dependent on the foundation and tower which would be different for an up-scaled case. 

Apart from external conditions, simulations depend on turbine-specific parameters. The loads due 
to starting and stopping depend on the operation system. Gusts and operation faults lead to loads 
dependent on the control system. In order to focus on the blade design only two groups of load cases 
are considered, 24 load cases from 2 to 25 m/s wind speed at operating conditions (DLC1.1) and one 
load case at parking condition with the extreme wind speed model (DLC6.1).  

Extreme loads are obtained by selecting minimum and maximum values of the simulated time 
series at two specific radial stations. Preliminary calculations showed critical areas at the blade root 
and at 0.3 × blade radius. For structural analysis these values are used together with appropriate time 
equivalent loads. Fatigue loads have not yet been investigated. 

The energy yield is again calculated by simulation of operating conditions according to DLC1.1 but 
with reduced turbulence intensities and reduced oblique inflow angles. The calculated power 
performances are weighted with a Weibull wind distribution. The parameters A=11.2 m/s and k=2.26 
are taken from two years of measurements on the research platform FINO 1 (Jan 04 to Dec 2005) [12]. 

4.  Structural Design 

4.1.  Approach 
This calculation uses a right-handed coordinate system with the z-axis along the pitch-axis and the 
origin located at the center of the blade root, according to the chord coordinate system of GL Wind 
[7]. 

The scaling law is applied using the same tip-speed-ratio, airfoil section, number of blades, 
material and geometric similarity. 
This leads to following formulas [13] for both values of the total gravity force G and the aerodynamic 
force A with respect to the radii R: 
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Bending stresses σA of aerodynamic forces are scaled with the power of 0, whereas the bending 

stresses σG due to gravity are scaled with the power of 1: 
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It is obvious that with growing blade length the blade mass becomes the critical factor for the 
maximum size of the blade.  
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For each cross-section defined in the structural model for the blade, the global center of area, the 
geometrical moment of inertia, the section modulus and the first order moment are determined. 

Discrete forces and moments for the 21 sections are passed directly from the Flex Program. A total 
equivalent distributed load is created from the FLEX data. The overall bending moments and shear 
forces for the airfoil are determined by integrating this distributed load. It should be noted that for the 
purposes of the calculation all forces and moments are resolved along the appropriate axes.  

According to GL the maximum shear stress for GRP shall not exceed τmax = 7 MPa. The authors 
have specified the maximum bending stress to be σmax = 120 MPa. 

4.2.  Calculation 
The basis of this calculation is a simplified beam theory model. Each cross-section is therefore divided 
into three basic geometrical shapes, a rectangle representing the box spar, a half ellipsoid and a 
triangle representing the leading and trailing edges respectively. To simplify the calculations a 
symmetrical cross section is assumed. The spar is linearly tapered from the blade root to the tip. All 
applied loads are transformed along the appropriate axes to find the appropriate stresses along these 
axes. Then the stress formulas become 
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The stress σ is dependent on the bending moments M, the moments of inertia I, and the various 
local distances. The shear force Q, the first order area-moment S and the moment of inertia give the 
shear flux. The shear-stress τ is the quotient of the shear flux and thickness t. 
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Figure 1. Bending stress σ and shear stress τ are related to  

the bending moments M and shear forces Q. 
Bredt’s formulas are used for the calculation of the torsional shear stress. For simplicity, the airfoil 

is considered to be a thin-walled single-celled closed frame. The lowest natural frequencies are 
calculated using the vibration theory of beams. 

4.3.  Optimization 
At this point in the optimization process, the material thickness of the airfoil shell, the web and the 
flange of each cross section is altered iteratively using the extreme values of all load cases. This is 
assumed to assure sufficient strength for minimum weight.  

The resulting blade design is used for a load case calculation. Stresses and natural frequencies are 
analyzed for these extreme loads. The cycle is repeated until stiffness and mass distributions converge.  

The Science of Making Torque from Wind IOP Publishing
Journal of Physics: Conference Series 75 (2007) 012002 doi:10.1088/1742-6596/75/1/012002

4



 
 
 
 
 
 

5.  Results  
The first aerodynamic design results in an unrealistic rotor blade shape with high chord values for the 
inner sections and discontinuities at defining airfoil sections. Version A is obtained from smoothed 
twist and chord distributions (figure 2). This new shape gives a smaller blade area. As a consequence 
the optimum tip speed ratio is increased (figure 3).  
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Figure 2. Rotor blade shape for the different versions. 
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Figure 3. Power coefficient cp and tip speed ratio for different versions. 

As the turbine will operate with a limited tip speed ratio, two versions are created by modifying he 
chord length. Hence, versions B and C of the rotor blade show increased chord length and decreased 
optimum tip speed ratios. 
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Table 1. Versions of the 5MW, 116m rotor blade 
 Version A Version B Version C 
Optimum tip speed ratio 8.8 8.4 8.0 
Mass (t) 20.6 20.7 16.3 
Natural frequency flapwise (Hz) 0.96 0.89 1.14 
Difference to 6p excitation (%) -27 -33 -13 
Natural frequency edgewise (Hz) 1.59 1.44 1.78 
Difference to 6p excitation (%) +21 +10 +35 
Annual energy yield (106 kWh) 22.1 23.1 23.7 
Maximum tip displacement (m) 5.4 5.7 3.5 

 
The limitation of the edgewise frequency led to a relatively heavy Version B. Its weight could 

possibly reduced by a more detailed structural design. A small blade area results in lower aerodynamic 
loads while idling in extreme wind conditions. On the other hand small chord lengths require larger 
wall thicknesses of the inner structure. The optimal compromise has not been determined in this study 
so far. Version B alone was to give scaled to a rotor blade of 73m and 82m radius and optimized 
weight. 

Table 2. Comparison of scaled rotor blades 
Rotor blade radius 58m 

(Version B) 
73m (scaled) 82m (scaled) 

Turbine power (MW) 5.0 8.0 10.0 
Natural frequency flapwise (Hz) 0.89 0.75 0.67 
Difference to 6p excitation (%) -33 -29 -28 
Natural frequency edgewise (Hz) 1.44 1.16 1.03 
Difference to 6p excitation (%) +10 +11 +10 
Mass (t) 20.7 40.9 54.7 
Maximum tip displacement (m) 5.7 6.4 7.5 

 
Figure 4 shows the blade mass in comparison to some existing rotor blades [14]. Additionally, an 

empirical power law with an exponent of 1.9 is deduced.  
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Figure 4. Comparison of rotor blade weights for different rotor radii 

The Science of Making Torque from Wind IOP Publishing
Journal of Physics: Conference Series 75 (2007) 012002 doi:10.1088/1742-6596/75/1/012002

6



 
 
 
 
 
 

The 58 m blade is close to the empirical trend line. The masses of the 73 m and 82 m rotor blades 
increase with an exponent of 2.5. Due to slight modifications in the mass distributions, this is less than 
the theoretical value of 3. 

On the basis of these theoretical scaling laws, geometrically similar scaling results in a linear 
growth of the bending stresses due to gravity whereas the stresses due to aerodynamic and centrifugal 
forces will remain constant. The calculated gravity-induced flapwise bending stresses normalized by 
the stress limit σmax are shown in figure 5. These ratios have been calculated for a horizontal rotor 
blade with a pitch of 90°. These values remain below the theoretical linear increase with respect to the 
radius (7% for 73m, and 9% for 82m radius). This is due to slight modifications of the mass 
distribution in order to minimize the total blade mass.  
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Figure 5.  Ratio of flapwise bending stresses due to gravity and stress limit σmax  

plotted against relative rotor radius for different rotor blade sizes  
Gravity induced edgewise stresses have been calculated for a horizontal rotor blade with a pitch of 

0°. These values range from 0.28 to 0.35 at the blade root. Assuming a linear growth, gravity-induced 
stresses would exceed the aerodynamic stresses at the blade root only for rotor radii beyond 
approximately 100 m.  

6.  Conclusions 
In spite of some structurally simplified model the weight for the 5MW rotor blade is a fairly good 
estimation of existing rotor blades. The linear growth in weight with respect to the radius could be 
slightly reduced by a modification of the mass distributions.  

The domination of gravity-induced stresses is expected at the blade root for rotor radii beyond 
approximately 100 m. For larger rotor blades another structural design and materials with higher 
admissible strength would be needed. 

 

7.  Future Work  
So far, the airfoil section has been treated as a thin-walled single-celled frame. It became obvioushat in 
the course of this study that the sections should be treated as multi-cellular objects. The currently 
numeric analysis serves mainly for the preliminary design of the model. For a more accurate analysis 
the generation of an FE model is indispensable. This FE model is the next step in the study and will be 
used to determine the buckling behavior of the whole airfoil and to give an improved analysis of 
natural frequencies. 
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Together with an advanced load evaluation procedure these calculations will form the basis for the 
fatigue calculations necessary for further investigations of large rotor blades. 

Furthermore, a detailed elaboration of the glass-fiber-reinforced laminate composition will be 
performed as so far neither the laminate nor a foam inlay have been considered duringr strength and 
weight calculations. The final task is to further develop the design and construction of the airfoil-hub 
fairing and to integrate this into the overall design process. 
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