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Abstract. We consider classical and quantum systems of charge carriers which are confined
by a three-dimensional harmonic potential. Thermodynamic functions are determined, and the
transition to an unconfined system is discussed.

1. Introduction
The investigation of spatially confined particles in a trap, is of current interest. Especially the
formation of lattice structures of charge carriers, such as ions in Penning traps, e.g. [1], electrons
in quantum dots [2] and of dust particles is investigated both experimentally and theoretically
in various laboratories [1]-[9]. The formation of different types of clusters was investigated,
e.g., in [10]. The goal of this paper is to give some survey over the existing theoretical and
thermodynamical concepts to be applied in in further investigations.

We will, in particular, consider the total energy of systems of charged particles in a trap.
The latter is assumed to be realized by a parabolic potential and confines the particles and
replaces the role of a neutralizing background which otherwise is necessary to compensate the
repulsive forces between the charged particles. We consider, e.g., a one component plasma
(OCP). The consideration of effective potentials and the transition to macroscopic systems, i.e.,
to homogeneous systems, is of interest. In [11], a two–dimensional Yukawa fluid was investigated.
For theoretical concepts such as improved screening see [3] and [12].

2. Total Energy
In contrast to [6], where there are considered classical plasmas only, we deal also with quantum
statistical expressions for the total energy of a system of charge carriers. In particular, we have
an ideal part E0, containing the kinetic energy and the potential energy due to an external field
ΦR (first line of Eq.(1)), a contribution which corresponds to the self–consistent field and the
corresponding exchange part (second line of (1), there, however without exchange). The latter
contributions are referred to as Hartree and Hartree–Fock terms EH and EHF , respectively.
The most interesting contribution is the correlation energy Ecorr (third line of (1)) mediated by
the Coulomb interaction between the charged particles. Then, the total (classical) energy of the
system is given by (see [6])

ER =
3
2
NkBT +

∫
dr1n(r1)eΦR(r1)
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+
1
2

∫
dr1dr2n(r1)n(r2)e2G(r1|r2)

+
1
2

∫
dr1dr2n(r1)n(r2)g(r1, r2)e2G(r1|r2) . (1)

In general, the Green’s function G(r1|r2) may account for boundary conditions[6]; in the
following, it is replaced by 1

|r1−r2| . A shorthand notation of Eq. (1) reads

ER = E0 + EH + EHF + Ecorr . (2)

Each of the terms of (2) depends on the trap potential. We assume the trap potential to be
given by

U = eΦR(r) = cr2 . (3)

The inhomogeneity caused by the trap is assumed to be represented by the single-particle
distribution. This is the case, if the correlation function g changes at smaller scales in space
than the single particle distribution n(r) does, see the (classical) discussion near Eq. (4.61) in
Ref.[6]. Eventually, a gradient expansion with respect to the coordinates has to be performed
r1, r2 → r1−r2,

1
2(r1+r2). In a first step, the two–particle distribution function F is represented

by
F12(r1, r2) = n(r1)n(r2)[1 + g12(r1 − r2)] ,

where the correlation function g depends on the difference variables only. Otherwise one has to
solve the equation for g more rigorously; see [6], p.131, and [13] for discussion. It is necessary
to consider the second equation of the BBGKY hierarchy; see the first equation of the hierarchy
Eq. (4.54) in [6].

The total energy of interacting particles in an external potential was given in a quantum
statistical formulation in several monographs, see, e.g., [14], [15]- [16]. The contributions
determined essentially by the Coulomb potential are represented in terms of Feynman diagrams
which are given in Fig. 1. Here, the full lines mean propagators of single particles in an external

+ +

Figure 1. Lowest order terms

potential, the dashed lines are the bare two particle interaction, e.g., the Coulomb potential,
and the wavy lines are screened potentials, which are, e.g., of Debye or of Yukawa type.

2.1. Noninteracting particles in a trap
To start, we consider the energy of particles in the trap without Coulomb interaction between
the particles ([16], Eq.(3.222)).
In this case, the mean potential energy reads

〈V (R)〉 = ±i
∑
a

∑
σ

∫
dp

(2π)3
dω

2π

ω − p2

2ma

2
G<

a (pσω,R) . (4)

In the following we will drop the spin variable σ. We use the relevant correlation function which
is given by the Kadanoff-Baym ansatz ([14], Eq.(9.12))

G<
a (pω,R) = 2πδ

(
ω − p2

2ma
− cR2

)
fa(p,R) . (5)
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The integration over p may be performed in the non-degenerate case with

fa(p,R) = exp

[
−β

(
p2

2ma
− μa + cR2

)]
, (6)

where β = 1/kBT . We get for the potential energy of particles located at R

〈V (R)〉 =
∑
a

na
cR2

2
e−βcR2

.

Taking the average over R, we arrive at

〈V 〉 =
∫

dR 〈V (R)〉 =
∑
a

3
4

(
π

c

)3/2

naβ
−5/2 . (7)

Instead of the constant c, we will now introduce the volume of the trap. We introduce the
effective extension Rtrap of the trap

Rtrap =
∫

dr re−βcr2∫
dr e−βcr2 = 2

(
1

πcβ

)1/2

, (8)

yielding the effective volume of the trap

Vtrap =
4π

3
R3

trap =
32
3

(
1

πcβ

)3/2

, (9)

with the result for the potential energy

〈V 〉
N

=
9π2

128
kBT . (10)

We now consider the quantum case. N noninteracting particles correspond to N three-
dimensional quantum-mechanical harmonic oscillators in the potential m

2 ω2r2 which is related
to the above trap potential U (3) by c = m

2 ω2 ([17], Example 8.1, [18]). For such a system, we
write the sum of states for one three-dimensional harmonic oscillator

Z(T, V, 1) =
∑

nx,ny ,nz

exp
[
−βh̄ω

(
3
2

+ nx + ny + nz

)]
=

∑
ν

1
2
(ν+1)(ν+2) exp

[
−βh̄ω

(
3
2

+ ν

)]
.

Here the latter expression accounts for the degeneracy of the eigen values. With
∑∞

ν=0 eαν =
1/(1 − eα) and

∑∞
ν=0 ντeαν = ∂τ

∂ατ

∑∞
ν=0 eαν we get

Z(T, V, 1) =
e−

3
2
βh̄ω

(1 − e−βh̄ω)3
.

For N non-interacting three–dimensional oscillators we arrive at

Z(T, V, 1) =
e−

3N
2

βh̄ω

(1 − e−βh̄ω)3N
,

from which the free energy follows as

F = −kBT lnZ =
3N

2
h̄ω + 3NkBT ln

[
1 − e−βh̄ω

]
.
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With the entropy given by S = −∂F
∂T |V,T , the internal energy follows according to U = F − TS

U = Nh̄ω

[
3
2

+
3

eβh̄ω − 1

]
. (11)

At high temperatures, i.e. for βh̄ω → 0, we have

U = 3NkBT , (12)

whereas for low temperatures, i.e. for βh̄ω → ∞, we get the zero point energies

U =
3N

2
h̄ω . (13)

A detailed discussion shows that, for T = 0, the energy per particle (11) scales with the density
like

U

N
=

3h̄ω

2
=

3h̄

2
An2/3 , (14)

where A is a constant.

2.2. Self consistent field and exchange
Next we consider the Hartree (mean field) and the Hartree–Fock (exchange) terms.

2.2.1. Hartree energy We restrict ourselves to the equilibrium case. For the discussion of
non-equilibrium properties, we refer to [19]. The Hartree term is written in terms of Green’s
functions

〈V 〉H = −1
2

∑
ab

∑
σ

∫
δ(t1, t1′)Vab(12)Ga(1′1+)Gb(22+)d1′d2 . (15)

Fourier transformation or Fourier series, respectively, with respect to the difference variables
leads to

〈V 〉H = −1
2

∑
ab

∑
σ

∫
dr1dr2Vab(r1 − r2)

1
(−iβ)2

∑
ν′

∑
ν′′

∫
dk′dk′′

(2π)6
Ga(k′zν′ , r1)Gb(k′′zν′′ , r2) . (16)

For the Fourier coefficients Ga(kzν , r) we use Eq. (9-31) of [14] and assume a spatial gradient
approximation to be applicable

G(p, z; R) = [z − (p2/2m) − U(R) − Σ(p, z; R)]−1 . (17)

In our approximation, we consider the first order with respect to the potential, i.e., the Hartree
self energy Σ is taken to be independent of U , and thus equals zero, where a neutralizing
background is assumed, see below. The summation over ν is carried out using the residuum
theorem and gives

〈V 〉H =
1
2

∑
ab

(2sa + 1)(2sb + 1)
∫

dr1dr2

∫
dk′dk′′

(2π6
Vab(r1 − r2)fa(k′, r1)fb(k′′, r2) . (18)

In the non-degenerate case, we use (6) instead of the Fermi functions. Now the momentum
integration may be carried out, and we apply

na =
(2sa + 1)

Λ3
a

eβμa , Λa =
h

(2πmakBT )1/2
.
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In this approximation, we may as well start from the classical level, i.e., from the second integral
of formula (1)

〈V 〉H =
(AN)2

2
e2

∫
dr1dr2

e−βc(r2
1+r2

2)

|r1 − r2| , (19)

with the result
〈V 〉H

N
=

√
2

32
π3 ne2

2
kBT

c
. (20)

The trap parameter c is of the dimension energy/length2. The result (20) confirms the fact
that the Hartree energy diverges for c → 0. In the homogeneous case, this divergence has to be
removed by a compensating background.

2.2.2. Exchange For electrons at low temperatures, the exchange energy

〈V 〉HF =
1
2

∑
ab

δab

∑
σ

∫
d1d1̄Vab(11̄)Ga(11̄)Gb(1̄1+) (21)

is of the same order as the direct term. One has to be careful in performing the time integrations;
according to Eq. (12-25) in [14] we have, after taking the non-degenerate limit,

〈V 〉HF = −1
2

∑
a

(2sa + 1)
∫

dRa

∫
dkdl
(2π)6

4πe2

l2

× exp

(
− βk2

2ma
+ βμa − βcR2

a

)
exp

(
−β(k − l)2

2ma
+ βμa − βcR2

a

)
, (22)

where the integrations over the momenta can be carried out yielding

〈V 〉HF = −1
2

∑
a

2πz2
ae2λ2

aa

2sa + 1

∫
dRae

−2βcR2
a , (23)

and the integral over Ra gives ( π
2βc)

3/2. If one again introduces the volume of the system (9),
one gets a non–diverging result, in particular also for c → 0, in agreement with earlier work [15].

2.3. Correlation Energy
2.3.1. Born approximation for a confined system We restrict ourselves to the Born
approximation, i.e., only the terms up to the order V 2

coul are taken into account. In order
to avoid divergencies, one of the potentials has to be a screened one (see e.g., [15]). Exchange
contributions of this order are not considered, and the direct (D) contribution of the order e4,
D4, reads

〈V 〉D4 = − i

2

∑
ab

∑
σ

∫
V s

ab(12)Vba(2̄1̄)G0
b(2̄2)G0

b(22̄)G0
a(11̄)G0

a(1̄1)d1d2d1̄d2̄ .

(24)

The analytical evaluation of Eq.(24) is possible in the non-degenerate case [15] for particles in
an infinite volume (i.e., without trap). The degenerate case without trap has to be dealt with
numerically [20], only the case T = 0 is known analytically (Gell-Mann & Brueckner, see, e.g.,
[20]). The quantum case for particles in a trap cannot be evaluated analytically.
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Here we consider the classical limit of the correlation energy in Born approximation (24) in
the presence of the trap. Manipulations along the lines given above, e.g., for the Hartree case,
lead to the classical expression for an OCP (after spin summation)

〈V 〉D4 =
β

2

∫
dr1dr2n(r1)n(r2)

e2

r1 − r2
e−κ(r1−r2) e2

r1 − r2
. (25)

This is the third integral of Eq. (1) in the lowest order in the interaction. It becomes, using the
convolution theorem,

〈V 〉D4 = −N2A2e4

2kBT

∫
dk3

(2π)3

(
π

βc

)3

exp

(
− k2

3

2βc

)
8π

k3
arctan

k3

κ
, (26)

where we used the Fourier transform

1
r2

exp(−κr)|FT → 8π

k
arctan

k

κ

and obtain the final result

〈V 〉D4 = −2βN2A2e4 π3

(βc)2

[
1 − Φ

(
κ√
2βc

)]
exp

(
κ2

2βc

)
. (27)

The expression (27) is of the dimension energy as it should: A has the dimension 1/Volume, and
βc has the dimension length−2.
The main ingredient of this equation is the function Φc(κRtrap) (34) which is discussed below
and displayed in Fig. 2. We underline that this result is finite even for an unscreened plasma,
κ → 0, however only in the presence of the trap. The limit of an unconfined system, c → 0, is
more difficult to discuss. We may introduce the volume of the trap (9) into (27) and arrive at

〈V 〉D4

N
= −2βne4 ×

(
3
32

√
π(βc)3/2

)
× π3

(βc)2

[
1 − Φ

(
κ√
2βc

)]
exp

(
κ2

2βc

)
. (28)

For large c (narrow trap), we find

〈V 〉D4

N
= −3π7/2

16
ne4

kBT

(
kBT

c

)1/2

. (29)

Besides the case of finite c, also the limiting case c = 0 is of interest. The numerical discussion
of the relevant function is displayed in Fig. 2.

2.3.2. Transition to a Homogeneous System (c = 0) Starting from Eq. (25) with screening, we
obtain

〈V 〉D4 |c=0 = −N2A2e4

2kBT

∫
dr1dr2

e−κ|r1−r2|

|r1 − r2|2 . (30)

A coordinate transformation leads to (V denotes the Volume)

= −V N2A2e4

2kBT

∫ ∞

0
4πe−κrdr = −V N2A2e4

2kBT

4π

κ
, (31)

where κ2 = 4πne2

kBT and

〈V 〉D4 |c=0 = −kBTV
κ3

8π

N2A2

n2
, (32)
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i.e. we recover the well-known result for the potential energy with N2A2

n2 = 1.
If we try to linearize in c, we expect to obtain a correction to (30)

〈V 〉D4 |c=0 =
N2A2e4βc

2kBT

∫
dr1dr2(r2

1 + r2
2)

exp[−κ|r1 − r2|]
|r1 − r2|2 , (33)

which, however, is a divergent result. As a consequence, an expansion with respect to c is not
possible. On the other hand, of course the homogeneous limit of Eq. (27) should exist and give
(32) for small c. To discuss the small c case analytically, we use the asymptotic representation
for the error function Φ which reads

Φ(x) = 1 − e−x2

x
√

π

(
1 − 1

2x2
+

3
4x4

∓ · · ·
)

.

The asymptotic expression

x
√

πex2
[1 − Φ(x)] = 1 − 1

2x2
+

3
4x4

∓ · · ·

tends to unity for x → ∞. From (27), we then get the expected 1/κ dependence like in (32) if
we numerically discuss the function

Φc(κRtrap) = κ

(
π

2βc

)1/2 [
1 − Φ

(
κ√
2βc

)]
exp

(
κ2

2βc

)
, (34)

which approaches unity for small c, see Fig. 2. For small βc or large R, one should use the
asymptotic expression.
Therefore the quantity

x2 =
3
2

Vcoul(r̄)
Φ̄R

=
κ2

2βc

is an additional parameter for inhomogeneous systems.
The remaining pre-factor is then essentially 1/[κ(βc)3/2]. (βc)−3/2 plays the role of the volume V
occurring in (31); there we have V/κ. The quantity (βc)−3/2 has to be connected to (4π/3)R3

trap.

2.3.3. Debye limiting law and nonlinear effects The case of high temperatures and low densities
leads to the Debye limiting law. The case of low densities and low temperatures is of interest,
too. (Low temperatures and high densities correspond to the Gell-Mann Brueckner case).

Here, we consider the classical case. Then an appropriate approximation for the two–particle
distribution function reads

fab(r) = exp

[
− e2

kBT

e−κr

r

]
, (35)

and the correlation energy becomes

V =
1
2

∑
ab

Nanb

∫
Vab(r) [fab(r) − 1] dr . (36)

On the other hand, the familiar Debye limiting law expression follows from (36) with the
linearized exponential of (35)

Vlim = −1
2

∑
ab

Nanb

∫
Vab(r)

e2

kBTr
e−κrdr , (37)
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Figure 2. Trap function (34) and asymptote (diverging for small abscissa). Rtrap = 2/(πcβ)1/2

with the known result

Vlim = −kBTV
κ3

8π
. (38)

The ratio V/Vlim ((36) vs. (38)) is displayed in Fig. 3. Furthermore, to extend this to particles
in a trap, one would additionally need to include macroscopic space dependence via the single
particle distributions like in (25).

The above result is closely connected to the question of nonlinear screening [12], [21], [22]
which is expected to be of relevance in particular in dusty plasmas containing highly charged
particles. This will be discussed elsewhere.

-4 -2 0 2 4 6
log10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
/V

lim

Figure 3. Ratio of the low–density/low–temperature correlation energy (36) to the Debye limit
(38) as a function of the dimensionless parameter β = ryd/kBT , κ = 0.1
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3. Effects of Strong Correlations. Improved pair distribution function
So far, correlation effects were discussed only in the Born approximation which is valid for weak

coupling, i.e. Γ =
(

4πn
3

)1/3
l, where l is the Landau length, l = e2/kBT . A more rigorous

inclusion of higher order correlations is possible via HNC schemes which will be considered in
this section.

Up to now, the macroscopic inhomogeneity is only accounted for by the single particle
distribution function. In this section, we will only consider two–particle quantities. Macroscopic
and microscopic space dependence enter the binary density operator F12 via the expression [13]
F12(R, r) = f1(R)f2(R)[1 + g12(R, r)] with g12 denoting the pair correlation function which is
related to the pair distribution function by f12 = 1 + g12. We assume in the following that
there are two well separated length scales such that g12 does not depend on the center of mass
coordinate R = (r1 + r2)/2, i.e. g12 = g12(r). This means we separate the spatial dependencies
corresponding to the macro scale [R which is set by the external potential U(R)] and a micro
scale [relative coordinates r; this scale is determined by the range of the interaction potential and
enters the pair correlation g12(r)]. This is, in particular, justified in the frequently encountered
situation where the trap dimension is large compared to the correlation or screening lengths,
Rtrap � rcorr, see also [19].

Another important quantity characterizing the binary correlations is the static structure
factor S(k) (n is the density) which follows from the pair correlation function by

S(k) = 1 + n

∫
drg(r)e−ikr .

We go beyond the Born (Debye) approximation by calculating the binary distribution function
using HNC (hyper netted chain) techniques which is expected to be valid up to about Γ = 100.
In the HNC, screening is produced automatically, and quantum effects may also be accounted
for in lowest order, see discussion below.

3.1. Thermodynamics
For the determination of thermodynamic functions, we follow the idea outlined in [23]. If the
pair distribution function fab is known the mean value of the correlation energy Ecorr is given
by

Ecorr =
1
2

∑
ab

naNb

∫
Vabgabdr . (39)

Note that in quantum system, there is a (small) difference between potential and correlation
energy due to correlation effects in the quantum kinetic energy, see [24].

In (39), Vab has to be the bare Coulomb potential. Screening effects enter only via fab, e.g.
[25]. Thermodynamic functions such as the free energy may then be determined by a charging
procedure.

3.2. Pair Distribution of an OCP via HNC
Now we determine the pair distribution for the case of an OCP, generalizations to multi-
component systems are straightforward. We will discuss the two–particle correlations in the
approximation of a homogeneous system. For such a system, the binary distribution function
f(r12) is determined by the following scheme:

g(r12) = f(r12) − 1
f(r12) = exp [−βφ(r12) + S(r12)]
S = N + E → N
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g(r12) = X(r12) + N(r12)

N(r12) = n

∫
X(r13)g(r23)dr3

g(r12) = X(r12) + n

∫
X(r13)g(r23)dr3 . (40)

Here, X(r12) is the direct correlation function, N(r12) represents node diagrams, whereas
bridge diagrams E(r12) are neglected in HNC. As the system is isotropic and assumed to be
locally homogeneous (the dependence on the center of mass coordinate was neglected), we use
r12 → r12 = |r1 − r2|.

The equations may be rearranged to give

N(r12) = n

∫
[g(r13) − N(r3)]g(r32)dr3 . (41)

This integral is of convolution type and is thus, after Fourier transformation, written in algebraic
shape

N(k) =
ng2(k)

1 + ng(k)
. (42)

The relation (42) can be taken as the starting point of an iteration scheme, beginning with
f0
12(r) = exp[−βΦ12(r)] = g0

12(r)+1, which is Fourier transformed and used in (42). Then N(k)
is determined, after Fourier transformation, yielding an improved g, etc.

There exists another iteration scheme which starts from the version

g(r12) = X(r12) + n

∫
X(r13)g(r32)dr3 , (43)

and Fourier transformation leads to

N(k) =
nX2(k)

1 − nX(k)
. (44)

In this case, the iteration scheme starts with X0(r) = exp[−βΦ(r)] − 1. Then again a Fourier
transformation is performed and the result is inserted into Eq. (44). Back transformation gives
the next iteration step. According to some experience, the convergence of the scheme (43, 44)
is better than that of (41, 42).

We give an example for a Yukawa–type potential and show the binary distribution function
for two sets of parameters in Fig. 4 whereas the corresponding structure factors are shown in
Fig. 5. Finally, in our approximation, the result for the binary density operator F12 depends also
on the macroscopic inhomogeneity which is accounted for by multiplying the pair distribution
function f12 by the single particle distributions, i.e. by the factor exp(−const[|r2 + r1|2]).

3.3. Generalization to Quantum Systems
We discuss the possibility to include quantum effects via effective potentials. Now one has to
choose the potential Φ to be used in the HNC procedure such that it includes, at short distances,
quantum effects. A suitable approximation is to use the sum of the direct Kelbg potential [26]
and an exchange term (46).

Quantum effects produce short range corrections to the (binary) distribution function which
may be expressed in terms of an additional short range correction V ′

ab(r) to the Coulomb potential
Vab(r) and may be written using the (two–particle) Slater sum Sab(r) which was computed in
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Figure 4. Radial distributions for a repulsive Yukawa potential with κ = 1.5: curves with
maxima correspond to f12(r), the monotonic curves are the start solutions of the iteration. Full
line: 1/(kBT ) = 25, and density n = 0.5; circles: 1/(kBT ) = 100, n = 0.02. Atomic units are
used.

Refs. [26]–[27] to give results for the effective potential. The direct potential was determined in
[26]. The screened version of the direct potential reads [28, 29]

V Kelbg,sc
ab (r) =

eaebπ
1/2rD

2λab

1
r

[
exp

(
− r

rD
+

λ2
ab

4r2
D

){
Φ

(
r

λab
− λab

2rD

)
+ 2Φ

(
λab

2rD

)
− 1

}

+ exp

(
r

rD
+

λ2
ab

4r2
D

) {
1 − Φ

(
r

λab
+

λab

2rD

)} ]
(45)

where λab = h̄/(2mabkBT )1/2, mab = mamb/(ma + mb). A simple exchange approximation is
the term without interaction only, namely

V exch
ab (r) =

δab

2sa + 1
kBT exp (−r2/λ2

ab) . (46)

Alternatively, one can treat strongly correlated Coulomb systems via first principle numerical
simulations such as Molecular Dynamics or Monte Carlo. This has been done also for quantum
systems using effective quantum potentials. Here also improved Kelbg potentials are available
which are applicable to situations of strong coupling, see e.g. [30, 31, 32, 33] and references
therein.

4. Equilibrium BBGKY-Hierarchy and Simple Solutions
The first two equations of the equilibrium BBGKY-hierarchy read, for the single particle
distribution unction (qi denote particle coordinates),

kBT
∂F1

∂q1
+ F1

∂U1

∂q1
+ n

∫
dq2

∂U12

∂q1
F12(q1q2) = 0 (47)
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and for the two–particle distribution function

kBT
∂

∂q1
F12(q1q2) + F12

∂

∂q1
(U12 + U1 + U2) + n

∫
∂

∂q1
U13(q1q3)F123(q1 · · ·q3)dq3 = 0 . (48)

Correlation functions are defined as

F12 = F1F2 + g12 ,

F123 = F1F2F3 + F1g23 + F2g31 + F3g12 + g123 . (49)

4.1. Approximate solutions of the hierarchy.
Now we discuss a number of important approximations.

1) From (47), we get the simplest approximation by neglecting the integral term

F1(q1) = const1 exp {−βU1(q1)} . (50)

So far, interactions were completely neglected, and (50) gives the spatial distribution of
noninteracting particles in the trap.

2) In a next approximation, we simplify the integral term of (47) according to the first line
of Eq. (49) and neglect correlations, g12,

n

∫
dq2

∂U12

∂q1
F1F2 = nF1

∂

∂q1

∫
dq2 F2U12,

resulting in the Hartree (mean field) approximation,

F1 = const2 exp
{
−β

(
U1 + n

∫
U12F2dq2

)}
, (51)
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where the particles move in an effective potential. This equation may be solved by successive
iterations starting with (50) for F2 under the integral.

3) We now consider Eq. (48). Neglecting the integral term, we get

F12 = const3 exp {−β (U12 + U1 + U2)} , (52)

which describes the two-particle distribution in binary collision approximation, however,
screening is not included.

4) Further we consider Eq. (48) including the integral term, but omitting the three-particle
correlations, g123 = 0

kBT
∂

∂q1
F12(q1q2) + F12

∂

∂q1
(U12 + U1 + U2)

+n

∫
dq3

∂

∂q1
U13(q1q3)(F1F2F3 + F1g23 + F2g31 + F3g12) = 0 . (53)

In the integral term, only the contribution from F1g23 is finite, the other terms vanish, with the
result

kBT
∂

∂q1
{F1F2 + g12(q1q2)} + (F1F2 + g12)

∂

∂q1
(U12 + U1 + U2)

+nF1
∂

∂q1

∫
dq3 U13(q1q3)g23(q2q3) = 0 . (54)

In order to derive an analytical solution including screening effects, we neglect the correlation
function g12 in the second parenthesis on the left. This corresponds to the neglect of ladder type
diagrams [13]. We introduce relative and center of mass coordinates,

q1 − q2 = q q1 + q2 = 2R ,

and assume weak inhomogeneity, such that F (q1) ≈ F (R), U(q1) ≈ U(R), therefore ∂
∂q(F1F2) ≈

0, and ∂
∂q(U1 + U2) ≈ 0. Further we use that U12 depends only on the relative coordinate and

assume that ∂
∂Rg12(q;R) 
 ∂

∂qg12(q;R), Then we write, explicitly indicating species

∂

∂q
gab(q;R) +

1
kBT

Fa(R)Fb(R)
∂

∂q
Uab(q)

+
∑

c

nc

kBT
Fa(R)

∂

∂q1

∫
dq3 Uac(q1 − q3)gbc[q2 − q3; (q2 + q3)/2] = 0 . (55)

Now let us assume Uab to be the Coulomb potential. We apply ∂
∂q1

to Eq. (55) and recall the
Green function of the Poisson equation

ΔqU = −4πeaebδ(|q1 − q2|) ,

allowing us to transform Eq. (55) to

Δqgab(q;R) =
4πeaeb

kBT
FaFbδ(r) + Fa(R)

∑
c

4πnceaec

kBT
gbc(q;R) , (56)

where r ≡ |q1 − q2|). We introduce the ansatz

gab(q;R) =
1

kBT
eaebg(r)Fa(R)Fb(R)
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in Eq. (56) and obtain

Δg(r) = 4πδ(r) +
∑

c

4πnce
2
c

kBT
Fc(R)g(r) . (57)

For r �= 0, we get
Δg(r) = κ2g(r) (58)

with

κ2(R) =
∑

c

4πnce
2
c

kBT
Fc(R) . (59)

The solution is

g(r) = −A
e−κr

r
,

where the constant A is determined from the condition∑
b

nbebFb(R)
∫

dr gab(r) = ea

with the result A = 1. Thus, in this approximation, the full pair correlation function is given by

gab(r;R) = −Fa(R)Fb(R)
eaeb

kBT

e−κ(R)r

r
, (60)

i.e. we have obtained the Debye pair correlation function in local approximation which contains
a space-dependent screening constant κ.

4.2. Screening and short range forces
We assume that the single particle distributions occur only as pre-factors and in κ like in (59).
We follow the papers [34], [35] and write for the pair distribution function which now includes
ladder type contributions and, in addition short range contributions and screening corrections.

Fab(r;R) = Fa(R)Fb(R) exp{−βVab − βV ′
ab}

[
1 +

∑
c

nc

∫
· · ·

]
. (61)

Here, Vab is the Coulomb potential, and V ′
ab is an additional short range potential, e.g., the hard

sphere potential or the Kelbg-potential, but not the Debye or the Yukawa potential. However,
(61) leads to divergent results for large distances between the particles a and b. Therefore,
according to Schmitz [35], the Coulomb potential is iteratively replaced by a screened potential.
This is performed as follows. We use the alternative definition for the distribution function and
get from (55) after integration over q1 with Uab now being the Coulomb potential Vab

gab(q1q2)
1

kBT
Vab +

∑
c

nc

kBT
Fc

∫
Vac(q1q3)gbc(q2q3)dq3 = 0 . (62)

The equation (62) is the famous screening equation having a solution of the type (60). The idea
of Schmitz was to eliminate the Coulomb potential from (61) using Eq. (62). The result is (now
the relative variables are r and r3)

Fab(r;R) = Fa(R)Fb(R) exp{gab − βV ′
ab}

{
1 +

∑
c

nc

∫
dr3

×[Φacgbc + Φbcgac + Φabgbc] + · · ·
}

, (63)

where Φab(r) = exp(gab − βV ′
ab) − 1 − gab, see also Ref. [36].
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4.3. Thermodynamics from the Pair Distribution Function
The excess free energy is given in terms of Fab via the charging procedure

F − F id =
1
2

∑
ab

∫ 1

0

dλ

λ

{
Vab(r) + V ′

ab

}
Fab(r, R; λ)drdR. (64)

We omit the details of the calculations and arrive at

F − F id = −kBT
∑
ab

∫
dRFa(R)Fb(R)

{
1
4

κ3

12π
+

π

3
nanb

(
eaeb

kBT

)3

ln(κRab)

+2πnanbR
3
abK0(ξab) + O(n3/2 lnn)

}
. (65)

Here we used ξab = −eaeb/(D0kBTRab), where Rab is the hard-sphere contact distance. In
Eq. (65), there is an implicit R-dependence via κ, and we introduced the virial function, K0(ξ),
which is given by

K0(ξ) =
1
6
ξ3

[
Ei(ξ) − ln |3ξ| − 2C +

11
6

]
− 1

6
eξ(2 + ξ + ξ2)

= −1
3
− 1

2
ξ − 1

2
ξ2 − 1

6
ξ3(C + ln 3) +

∞∑
m=4

ξm

m!(m − 3)
, (66)

with Ei denoting the exponential-integral-function, and C = 0.5772 is Euler’s constant. This
result is applicable for large e2, but for small densities.
As an example, we give two values: K0(10) = .3756 ∗ 104, K0(−10) = .4537 ∗ 103. The function
with the positive argument corresponds to an attractive interaction leading to association (i.e. to
bound states). It is one order of magnitude larger than the function with the negative argument,
which is related to the repulsive case. For very large (positive) ξab = ξ, we have:

F − F id = −kBT

∫
dRF1F2

{
κ3

12π
+ 4πn2R3

0

1
ξ
eξ + · · ·

}
. (67)

Here, for all species, the same hard sphere radius Rab = R0 was used, for simplicity. From the
free energy (65) or (67), respectively, any thermodynamic function may be determined.

A detailed discussion of thermodynamic functions and especially of the transition from
mesoscopic clusters to macroscopic systems is given in Ref. [37], in this volume.

5. Conclusion
In summary, the aim of this paper was to briefly review certain theoretical techniques which can
be used to describe many particle systems spatially confined in a trap. The main assumption in
all derivations was a separation of length scales: we assumed that there are two well separated
length scales, namely the extension Rtrap of the trap and the correlation length rcorr of the
interacting particles. We assumed that Rtrap � rcorr. This is frequently the case, in particular,
for a large trap, for high density or short range interactions. This allowed us to use the local
approximation for the many-particle distribution functions, where R enters the homogeneous
equations as a parameter. Of course, in general, this distinction is not possible, and one can go
beyond the local approximation by performing gradient expansions.

A particular case where it might be necessary to go beyond the local approximation are finite
systems containing only several (up to a few thousand) particles. Also, the transition from a
mesoscopic to a macroscopic system [37] has to be considered more carefully. Nevertheless, the
theoretical schemes given in this paper should be useful for future work on trapped charged
particles in general and dusty plasmas in particular.
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