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Abstract. Finite systems of charge carriers confined by a harmonic trap are considered. The
onion shell model for Coulomb clusters is analyzed and an improved model is proposed which
is able to more accurately reproduce the results of numerical experiments. The ground state
energy is determined, and the transition to an infinite system is discussed.

1. Introduction
The investigation of particles in a trap is of high current interest in many fields. Examples
are bose condensates of alkali metals, electrons in quantum confined semiconductor structures,
e.g. [1, 2], ions in Penning and Paul traps, e.g. [3] and dusty plasmas, for an overview see
e.g. [4, 5, 6, 7, 8]. Intense studies of trapped strongly correlated ions were performed in
the last two decades of the previous century demonstrating, in particular the possibility of
three-dimensional Coulomb crystals [9, 10, 11]. In parallel, a large number of theoretical and
numerical investigations of Coulomb crystals was performed over the last 15 years, see e.g.
[12, 13, 14, 15, 16, 17, 18] and references therein.

Meanwhile the experimental methods in many fields have improved essentially allowing to
investigate in detail the structure of three-dimensional plasma crystals. Three-dimensional
spherical dust crystals were recently observed at room temperature [19], and it was shown
by computer simulations that their structure is very well explained by a statically screened
Coulomb repulsion together with a constant parabolic confinement [20], in contrast to alternative
theoretical models [21, 22].

These strongly correlated charged particle systems are a new and intesting kind of plasmas far
outside the “normal” parameter range. Here many questions are still open. For completeness,
we mention our recent theoretical investigations of the Coulomb crystallization conditions in a
two-component plasma [23] and our analysis of macroscopic charged particle systems in traps,
see Ref. [24] in this volume.

In this paper we will consider finite (mesoscopic) charged particle systems in a trap. In
particular we will analyze the total energy. The trap is assumed to be realized by a parabolic
potential and confines the particles thereby taking over the role of a neutralizing background
which otherwise is needed to compensate the repulsive forces of the charged particles. We
consider, thus, a true one component plasma (OCP) in a trap in contrast to the OCP (or
jellium) model. Further, we discuss the transition to a macroscopic system.
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2. Total Energy
The statistical expression for the total energy of a system of charge carriers is given by Eq. (1)
and consists of three parts, e.g. [8]: the first is an ideal part (i.e. a contribution without
correlations between the charged particles), E0, first line of Eq. (1)). Second, a contribution
which corresponds to the self–consistent field and [to be complemented, in a quantum system,
by the corresponding exchange part], second line of (1), which is referred to as Hartree and
Hartree–Fock terms EH and EHF , respectively. The third and most interesting contribution
is the correlation energy, third line of (1), mediated by the Coulomb interaction between the
charged particles, denoted by Ecorr.

ER =
3
2
NkBT +

∫
dr1n(r1)eΦR(r1)

+
1
2

∫
dr1dr2n(r1)n(r2)e2G(r1|r2)

+
1
2

∫
dr1dr2n(r1)n(r2)g12(r1, r2)e2G(r1|r2) , (1)

where G(r1|r2) is the Green’s function which may account for boundary conditions [8] which,
in the following, will be replaced by 1

|r1−r2| . Each of the terms of Eq. (1) depends on the trap
potential which we will assume the to be given by

U = eΦR(r) = cr2 . (2)

The inhomogeneity caused by the trap, in principle, affects all statistical quantities of the plasma,
including the single particle distribution (density) n(r) and the the two–particle distribution
function F12 or two-particle correlation function g12. In case of a weakly inhomogeneous system,
these space dependencies can be simplified by a gradient expansion. To this end, one introduces
center of mass and relative coordinates, r1, r2 → r1 − r2,

1
2(R = r1 + r2). Weak inhomogeneity

then means that the relative and center of mass coordinates decouple, i.e. the pair correlation
function g12 changes on much smaller scales in space than the single particle distribution n(r)
does, see our discussion in Ref. [24]. Then F12 is represented by

F12(r1, r2) = n(r1)n(r2)[1 + g12(r1 − r2);R] ,

where the correlation function g12 depends on the difference variables only, accept for a possible
weak (parametric) dependence on R. This is the local approximation. Otherwise one has to
perform a gradient expansion and solve the equation for g12, i.e. the second equation of the
BBGKY hierarchy [24] more rigorously; see [8], p.131, for a discussion. We mention that the
total energy of interacting quantum particles in an external potential was given in a quantum
statistical formulation in several monographs, see, e.g., [25], [26]-[28].

The aim of this paper is to investigate some aspects of the space dependence of the
thermodynamic quantities for the case of a finite (mesoscopic) system in a spherically symmetric
parabolic trap. We will concentrate on the ground state, which is characterized by a shell
structure. Here comparisons are possible with MD simulations and with experiments. Also, we
consider different versions of analytical onion shell models of such mesoscopic clusters. Finally,
we discuss the transition to a macroscopic system.

3. Shell models for the Ground State of Finite Systems
3.1. Ion sphere models of Hasse/Avilov and Tsuruta/Ichimaru
For the discussion of Coulomb clusters, Ichimaru and Tsuruta [13], Hasse and Avilov [12]
and others introduced the onion shell model of Coulomb clusters of particles with charge
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Ze. The energy of such clusters having shells is usually discussed on the basis of the Hartree
approximation only which, in an infinite system, is divergent and has to be compensated by a
neutralizing background. On the other hand, if there is a confining trap, there is no divergency,
and no compensation is required.

The formula proposed by Tsuruta and Ichimaru reads [13] (energy per particle in units Ze2/a)

Emodel(N)
N(Ze)2/a

= 21/3
L∑

ν=1

Nν

Nxν

⎛
⎝Nν −√

Nν

2
+

1
2
x3

ν +
∑
μ<ν

Nμ + ζ

⎞
⎠ − 9

10
N2/3 , (3)

where the dimensionless shell radii are xν = Rν/a. The quantity ζ = 0; 1 accounts for the
possibility of zero or one particle being located exactly in the center, and the x2

ν–term represents
the potential energy of a compensating homogeneous background. The latter term originates
from assuming a spherically symmetric background charge distribution which produces (inside
the sphere) a parabolic potential.

On the other hand, the formula given by Hasse and Avilov is [12]

εCoul + εconf =
L∑

ν=1

⎛
⎝ Nν

NRν

Nν

2
+

1
2N

NνR
2
ν +

∑
μ<ν

NνNμ

NRν

⎞
⎠ . (4)

In Eqs. (3,4), the sum over μ represents the interaction of the particles in shell ν with those
located on the shells inside the shell ν. This means, shell ν is assumed to be well separated from
the other shells.

Shell models are based on formulae for charged spheres and spherical capacitors which we,
therefore, briefly summarize, see also Ref. [33]. For example, a homogeneously charged sphere
of radius a and total charge q, has the potential energy

Esphere =
3
5

q2

a
. (5)

If the charge is homogeneously distributed over the surface of a sphere, we have (spherical
capacitor)

Esurface =
1
2

q2

a
. (6)

Further, the electrostatic potential outside a charged sphere or surface at a distance r from its
center is that of an equivalent point charge located in the center

φpoint(r) =
q

r
. (7)

Next, if the total charge q of the sphere or of the spherical shell surface is made of N discrete
elementary point charges, q = Ne, the expressions (5, 6) are modified to

Esphere(N) =
3
5

N(N − 1)e2

a
. (8)

and for the surface case (spherical capacitor)

Esurface(N) =
1
2

N(N − 1)e2

a
. (9)

This is readily derived by counting the number of pair interactions. For example, Eq. (9) follows
directly from Eq. (7): each of the N charges contributes an interaction energy e × φpoint(a)
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where φpoint originates from the remaining N − 1 charges, and the factor 1/2 accounts for the
double counting in the choice of pairs.

Shell models assume that all particles are located on concentric spherical layers of zero
thickness and are thus directly related to the surface expressions (6,9) and (7). The exact
discrete N particle system is thus mapped onto a system with homogeneous charge distribution.
The only thing left to do is to count the number of pair interactions inside each shell and
between shells which are given, respectively, by the first and third terms in the models (3)
and (4). The intershell interaction depends on the charge inside a given radius, cf. Eq. (7),
whereas the intrashell contributions should, according to Eq. (9), contain factors of the type
Nν(Nν − 1)/2 [the correction −1 is missing in the model (4)]. Comparison with the statistical
energy expression (1) reveals that these intrashell and intershell terms correspond to the mean
field (Hartree) contributions.

However, this simple counting argument neglects correlations in the intrashell distribution of
the particles, i.e. the fact that the distribution of N − 1 particles on a given shell in the exact
system is not homogeneous, but disturbed by the N−th particle. Therefore, for a physically
more accurate treatment of the interaction of charges inside the surface of a shell, the authors of
Ref. [13] took into account that each of the Nν particles on shell ν occupies a finite area of the size
Aν,p = 4πR2

ν/Nν which cannot be occupied by other particles. This leads to a reduction of the
intrashell interaction because each particle interacts with a charged surface of an area reduced
by Aν,p which gives rise to the square root term in the model(3). [This particular expression
appears if the interaction energy of a sphere with area Aν,p (i.e. with radius Rν/

√
Nν) with

all particles on the shell is subtracted, which is more an “educated guess” than a derivation].
Comparison with Eq. (1) reveals that this square root term corresponds to correlations (beyond
Hartree-Fock), i.e. to the last term in Eq. (1). It turns out that these correlation contributions
which are missing in the model (4) are essential for an adequate shell model.

3.2. Improved shell model
In fact, the approximation for the correlations used in Eq. (3) is also only qualitatively correct.
This is readily seen on the example of 2 particles (they occupy a single “shell” of radius a).
Model (4) yields the Coulomb energy εH

Coul = N2
ν e2/2a = 2e2/a with Nν = 2. In contrast, the

exact Coulomb energy is of course εexact
Coul = e2/2a because in the ground state the two particles

are located opposite to each other, each at a distance a from the trap center (total distance 2a).
The energy based on the correct pair counting, Eq. (9), is ε

Eq.(9)
Coul = e2/a, i.e. it is a factor 2

better than the model (4), but still a factor 2 wrong. This discrepancy arises from the model
assumption of homogeneous charge distribution along the shell which is in this case, obviously,
very far from the true location of the two particles. This difference is a clear effect of spatial
correlations which become particularly obvious in this example. Interestingly, the model (3)
performs much better giving εI

Coul = e2/2a× 2(2−√
2), which is wrong only by a factor 1.1716.

Now, we can turn the problem around: we can force exact agreement with a slight modification
of model (3) by introducing an additional parameter ε in front of the square root, resulting in
intrashell terms of the form Nν(Nν − ε

√
Nν)/2. Thus, our improved shell model becomes

Emodel(N)
N(Ze)2/a

= 21/3
L∑

ν=1

Nν

Nxν

⎛
⎝

⎡
⎣Nν − ε

√
Nν

2
+

∑
μ<ν

Nμ + ζ

⎤
⎦ +

1
2
x3

ν

⎞
⎠ − 9

10
N2/3 , (10)

where, for simplicity, we assume that ε is the same for all shells.
For the present case of 2 particles, we obtain ε(2) = 3/(2

√
2) ≈ 1.06066. As we will see

below, this slight modification of model (3) works not only for 2 particles but for arbitrary
particle numbers. Of course, ε depends on N but very weakly. For example, for N = 3, the
exact ground state result is reproduced with the choice ε(3) =

√
3 − 2/3 ≈ 1.0654, and for
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N = 4, one finds ε(4) = 2 − (3/2)3/2/2 ≈ 1.08144. As a final example, we give the exact value
for N = 6: ε(6) = 11/2

√
6 − 2/

√
3 ≈ 1.09067. More values will be obtained numerically by

comparison to the MD results, cf. Tab. 1. Interestingly, for large N the correlation parameter
ε approaches a value of approximately 1.104 which allows to accurately reproduce the exact
ground state energy. The reason for this surprisingly good behavior is that the functional form
of the correlation term (the square root behavior) is an excellent approximation, although a
satisfactory derivation is still missing.

4. Evaluation of the Shell Models
The practical value of the shell models is that they reduce many-body problem to a much less
complex problem. Whereas the exact ground state requires the knowledge of the positions of
all particles, in the shell models the number of free parameters is drastically reduced: one has
to determine the number of shells, their populations Nν and their radii Rν . In addition, in the
models (3) and (10) the parameter ζ has to be determined and, in the case of the improved
model (10), also ε. This can be done for example with the help of a variational procedure. We
now turn to the evaluation of the different models starting with the model (3).

4.1. Evaluation of the Shell Model (3)
We look for the lowest energy value of (3) by varying the occupation numbers N1 · · ·NL and the
radii x1 · · ·xL under the condition

∑
ν Nν = N . This means, we have, for a given number N , to

find the number of shells L and their radii xν and occupation numbers Nν .
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Figure 1. Shell occupation numbers from the Tsuruta & Ichimaru scheme Eq. (3) over N2/3

We begin the procedure by first assuming the occupation numbers Nν of each shell ν given
such that N =

∑L
ν Nν . Then the radii of the shells xν follow from the condition ∂E/∂xν = 0

what gives the formula for the radii under the assumption that the occupation numbers are
known. We have to determine ∂E/∂xν from (3) and obtain

xν =

⎛
⎝Nν − N

1/2
ν

2
+

∑
μ<ν

Nμ + ζ

⎞
⎠

1/3

1
21/3

. (11)
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Now we have to perform a variation of the occupation numbers such that the minimum energy
is found.

In principle, one has to vary any Nν from 0 to N . In practice, it is sufficient to vary the
Nν around some guess, e.g., Nν = Nguess

ν − 5 · · ·Nguess
ν + 5. In the case of three shells, an

independent variation is necessary for two shells only, so that we have to determine the energy,
in our example, for 11 × 11 combinations and to select the lowest energy value, provided the
range of variation around our guess includes the position of the minimum. For small particle
numbers, the onsets of new shells are well known, see e.g. [17, 23] and the cited references: in a
system with pure Coulomb interaction, the second shell starts at N = 13, the third from N = 58
(except for N = 60), the fourth shell starts at N = 155 and the fifth at N = 311 and so on.
However, this procuedure works also if the number of shells is not known a priori. Then one
has to vary both the occupation numbers and the number of shells in order to arrive at the well
defined energy minimum.

The results of the evaluation are given in the following figures. First, we observe that the shell
occupation numbers tend to a linear behavior as function of N2/3, see Fig. 1, see also Ref. [23].
In Fig. 7, we show this again in a different scaling: for large N the normalized energy divided
by N2/3 tends to a constant. At the same time, the radius of the cluster tends to a N1/3-
dependence [23] which is also observed in the experiments with Coulomb balls [23] although
there the interaction is statically screened (Yukawa). It turns out that this average scaling
of the shell populations and radii (in units of the average distance) is insensitive to the pair
interaction. On the other hand, the absolute values of the shell populations do depend on the
interaction.

This scaling behavior means that the total energy, for large N , behaves like N5/3, as can be
seen directly from the model (3). It is interesting to note that this behavior is rather universal:
it is also found for N harmonic oscillators at T = 0 [24] as well as for the energy of an ideal
degenerate Fermi system. We will consider the behavior or a Fermi gas, including correlation
effects later in the final section 5.

In the following Tab. 1, some results for the evaluation of Eq.(3) are given in the respective
first of the three lines given for any N. For the second (and third) lines with ε > 1 see next
section. MD means the results from Molecular Dynamics calculations, [17], [30].

4.2. Evaluation of the improved Onion Shell Model (10)
We now consider the modified shell model (10) which includes an improved treatment of
intrashell correlations by means of the additional parameter ε. We will compare the shell model
results for different values of ε to MD simulations which will allow us to determine the optimal
value of ε

We have to proceed in the same manner as before. For given occupation numbers, we
determine the equations for the radii of the shells from the derivatives of (10), namely

xν =

⎛
⎝Nν − εN

1/2
ν

2
+

∑
μ<ν

Nμ + ζ

⎞
⎠

1/3

1
21/3

. (12)

Another possible modification is the application of a Yukawa type potential

1
xν

→ exp(−yxν)
xν

instead of the Coulomb potential. This potential is useful for complex systems where the
screening exponent of the Yukawa potential models the influence of the surrounding medium
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Table 1. Ground state energies, shell occupation numbers and radii for different N . First lines
of the triples (quadruples): ε = 1, model (3). Second (and third) lines: ε values and Eε according
to Eq. (10) such that Eε ≥ EMD. First two lines of the triples: Variation of both numbers of
shells and respective occupation numbers. Lines labelled “MD” contain data from Refs. [17, 30]

N ε E/N occupation radii
5 1.000 2.344764 5 0.8840
5 1.077 2.246348 5 0.8653
5 MD 2.245187 5 0.865
10 1.000 4.288995 10 1.1957
10 1.088 4.165116 10 1.1782
10 MD 4.164990 10 1.178
20 1.000 7.372128 19/1 1.6083
20 1.095 7.249317 19/1 1.5948
20 MD 7.247181 19/1 1.594
30 1.000 9.969195 26/4 1.9332 0.7937
30 1.098 9.840117 26/4 1.9220 0.7668
30 MD 9.838964 26/4 1.919 0.796
40 1.000 12.282618 33/7 2.1767 1.0286
40 1.100 12.150509 34/6 2.1469 0.9384
40 MD 12.150162 34/6 2.145 0.954
50 1.000 14.410196 39/11 2.3921 1.2430
50 1.100 14.277020 41/9 2.3506 1.1253
50 MD 14.275728 41/9 2.349 1.137
60 1.000 16.395254 45/14/1 2.5749 1.4525
60 1.102 16.263771 46/13/1 2.5525 1.4021
60 MD 16.263707 48/12/0 2.523 1.275
160 1.000 32.436654 97/47/15/1 3.7630 2.6224 1.4860
160 1.101 32.305332 101/46/12/1 3.7321 2.5269 1.3657
160 MD 32.300404 102/45/12/1 3.7238 2.5161 1.3833
190 1.000 36.494440 111/57/20/2 4.0128 2.8587 1.6964 0.5271
190 1.100 36.361797 115/55/18/2 3.9858 2.7897 1.6303 0.4807
190 MD 36.356674 115/56/18/1 3.98 2.78 1.58 0.004
225 1.000 40.965789 126/67/27/5 4.2762 3.1313 1.9959 0.8840
225 1.103 40.828812 132/67/24/2 4.2419 3.0181 1.7809 0.4791
225 MD 40.827824 130/67/24/4 4.25 3.05 1.89 0.82
300 1.000 49.834161 156/90/42/12 4.7604 3.6121 2.4596 1.2874
300 1.104 49.695530 164/90/38/8 4.7246 3.5001 2.2765 1.0683
300 MD 49.695467 160/91/40/9 4.73 3.53 2.34 1.15
311 1.000 51.069141 159/92/44/14/2 4.8288 3.6987 2.5884 1.5275 0.5271
311 1.105 50.931072 167/93/40/9/2 4.7940 3.5852 2.3958 1.3428 0.4781
311 MD 50.929803 166/89/43/12/1 4.81 3.61 2.40 1.40 0.08
503 1.000 70.736162 227/146/82/37/10/1 5.7588 4.6179 3.4825 2.3650 1.3024
503 1.104 70.597836 240/148/79/31/5/0 5.7207 4.5002 3.28026 2.0577 0.8585
503 1.105 70.596483 240/148/79/31/5/0 5.7207 4.5002 3.2802 2.0576 0.8582
503 MD 70.596901 238/147/80/32/6 5.72 4.52 3.32 2.12 0.98
561 1.000 76.148171 246/161/94/45/14/1 5.9914 4.8499 3.7102 2.5749 1.4525
561 1.105 76.009222 259/163/90/39/9/1 5.9562 4.7433 3.5404 2.3528 1.2431
561 MD 76.008582 257/161/88/42/12/1 5.957 4.760 3.680 2.501 1.402 0.09
565 1.000 76.514372 248/162/95/45/14/1 6.0052 4.8603 3.7160 2.5749 1.4525
565 1.105 76.375380 260/165/91/39/9/1 5.9725 4.7578 3.5467 2.3528 1.2431
565 MD 76.374771 258/162/89/43/12/1 5.973 4.780 3.740 2.510 1.404 0.12
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Table 2. Continuation of Tab. 1

N ε E/N occupation radii
570 1.000 76.970909 249/163/96/46/15/1 6.0258 4.8848 3.7456 2.6112 1.4860
570 1.104 76.833220 262/166/92/40/9/1 5.9910 4.7760 3.5761 2.3665 1.2433
570 MD 76.831249 258/166/90/43/12/1 5.997 4.810 3.760 2.260 1.400 0.03
585 1.000 78.332588 254/167/99/48/16/1 6.0823 4.9395 3.7974 2.6575 1.5182
585 1.104 78.194768 267/170/95/42/10/1 6.0481 4.8331 3.6231 2.4222 1.2860
585 MD 78.193046 264/170/93/45/12/1 6.0507 4.840 3.670 2.533 1.398 0.07
634 1.000 82.702137 270/180/109/55/19/1 6.2606 5.1127 3.9608 2.7976 1.6083
634 1.104 82.563811 283/183/105/48/14/1 6.2283 5.0135 3.8011 2.6005 1.4369
634 MD 82.562428 280/177/109/52/15/1 6.232 5.040 3.892 2.682 1.497 0.02
888 1.000 103.777149 342/241/157/91/43/13/1 7.0732 5.9332 4.7931 3.6559 2.5256 1.4175
888 1.104 103.638856 363/248/154/83/34/6/0 7.0338 5.8103 4.5879 3.3689 2.1465 0.9374
888 MD 103.637266 358/248/148/86/39/9 7.040 5.832 4.50 3.50 2.315 1.160
923 1.000 106.512044 353/249/163/96/46/15/1 7.1696 6.0258 4.8848 3.7456 2.6112 1.4860
923 1.104 106.373748 373/256/161/88/37/8/0 7.1329 5.9115 4.6913 3.4735 2.2618 1.0683
923 MD 106.371894 366/253/161/88/42/12/1 7.141 5.952 4.770 3.720 2.70 1.401
1024 1.000 114.217520 382/273/183/110/56/19/1 7.4387 6.2880 5.1345 3.9764 2.8075 1.6083
1024 1.104 114.079094 401/280/180/102/47/13/1 7.4060 6.1874 4.9704 3.7613 2.5641 1.4018
1024 MD 114.077248 392/275/183/107/51/15/1 7.415 6.230 5.180 3.990 2.674 1.499
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Figure 2. Numbers of particles on the shells and energy in ryd (full line) for N = 190 as a
function of the correlation factor ε

on the two–particle interaction, e.g., in a dusty plasma [15] and for Coulomb balls [23] and will
be discussed elsewhere. In general, i.e., for other than Coulomb potentials, the radii have to be
determined numerically from the zeroes of the derivative of the total energy (10), i.e. of

R(xν) = − 1
x2

ν

⎡
⎣Nν − ε

√
Nν

2
+

∑
μ<ν

Nμ + ζ

⎤
⎦ + xν = 0 . (13)
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Table 3. Energies, shell occupation numbers and radii for N = 160 for different ε values.
Comparison with Ref. [17] (denoted “LKB05”)

ε E/N occupation radii
1.000 32.436654 97/47/15/1 3.7630 2.6224 1.4860
1.030 32.397552 98/47/14/1 3.7551 2.5954 1.4480
1.060 32.358222 100/46/13/1 3.7408 2.5562 1.4085
1.080 32.331799 100/46/13/1 3.7396 2.5544 1.4055
1.100 32.305332 101/46/12/1 3.7321 2.5269 1.3657
1.104 32.300008 101/46/12/1 3.7319 2.5265 1.3651
1.105 32.298677 101/46/12/1 3.7318 2.5264 1.3649
1.110 32.292021 101/46/12/1 3.7315 2.5260 1.3641
1.120 32.278707 101/46/12/1 3.7309 2.5251 1.3626

LKB05 32.300404 102/45/12/1 3.7238 2.5161 1.3833

The procedure is performed according to an iteration of

x(1)
ν = x(0)

ν − Rν(x
(0)
ν )

R′
ν(x

(0)
ν )

. (14)

Here, R′(xν) is the partial derivative of R(xν) with respect to xν . In Eq. (10), the xν- dependence
was not changed, so that we could immediately use Eq. (11).

In the following figures and tables, we give some numerical results. In Figs. 2 and 3, we see
for the example of N = 190 that the occupation numbers and the shell radii vary considerably
with ε, while the energy is changed only slightly. A numerical example is given in Tab. 2 for
N = 160. In Tab.2, also the corresponding MD result is indicated. From Tab. 3 we see, in
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Figure 3. Shell radii in units of aB for N = 190 as a function of the correlation factor ε

particular, that we get agreement with the MD data for ε–values around 1.1. On the other hand,
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the energy keeps decreasing with ε without bound which is unphysical. Therefore, values of ε
leading to ground state energies lower than the (exact) MD results are unphysical and will be
excluded.

We follow two strategies:
1.) For N given, the minimum energy is determined from (10) by variation of the occupation
numbers and thus of the radii for epsilon as a given parameter. The results of this scheme are
presented in Tab. 2 and in Figs. 2 and 3. Then the parameter ε may be varied such that the
MD energies are met. Some results are collected in Tab. 1; here the respective results of the
second lines for any N were determined such that Eε ≥ EMD, where the MD results are given
in the respective third lines.

The scheme described so far exhibits discrepancies between occupation numbers and radii.
Therefore we also consider a second approach:
2.) We take the occupation numbers from MD, determine the energy according to Eq.(10) and
find such ε values which give energies as close as possible to those from MD (see the respective
third lines in table 1).

In Tab. 4 we see an excellent agreement between energies, occupation numbers and radii for
ε = 1.104 for several larger clusters. We give some comparison to the numerical results given in
[17] and [30].

1.0 1.02 1.04 1.06 1.08 1.1
-0.02
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0.14

E
-E

M
D

Figure 4. Eε−EMD over ε for various N. From below: N=5 (line with asterisks), N=4 (circles),
10 (asterisks), 60 (full line), N=160 (line with circles)
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Figure 5. Deviation of Tsuruta/Ichimaru shell model energy from MD data (circles) and
optimal value of ε − 1 (asterisks) vs. N

Table 4. Energies, occupation numbers and radii for different N and for fitted ε values (to MD
energies) and given occupation numbers taken from MD. Application of Eq.(10) for given Nν

(second lines). Comparison with MD results from Refs. [17] and [30] (first lines)

N ε E/N occupation radii
225 MD 40.827824 130/67/24/4 4.25 3.05 1.89 0.82
225 1.104 40.828006 like in MD 4.2516 3.0542 1.8803 0.7651
300 MD 49.695467 160/91/40/9 4.73 3.53 2.34 1.15
300 1.104 49.695782 like in MD 4.7401 3.5467 2.3364 1.1245
503 MD 70.596901 238/147/80/32/6 5.72 4.52 3.32 2.12 0.98
503 1.104 70.597914 like in MD 5.7260 4.5209 3.3181 2.1133 0.9374

5. Discussion. Transition to a macroscopic plasma
5.1. Quality of the shell models
We first briefly discuss the quality of the shell models compared to the simulation results. The
model (4) has the worst behavior which is due to the complecte neglect of intrashell correlation
effects. Inclusion of these effects by the model of Tsuruta and Ichimaru, Eq. (3) significantly
improves the quality. Comparison with the MD data, cf. Tab. 1, shows that the ground state
energy is quite accurate: the relative error decreases from about 5% for N = 5 to about 0.3%
for N = 160. Although this seems to be satisfactory, one has to keep in mind that these systems
possess many metastable states which are energetically close to the ground state, see e.g. Ref.
[17]. In fact, the deviations in energy of the model are sufficient to systematically miss the
correct ground states starting approximately at N = 40. Also, the shell radii are systematically
too large, indicating an overestimate of the Coulomb repulsion.

On the other hand, the improved shell model (10) shows in fact a much better behavior.
Even for larger clusters, the shell radii and populations are much closer to the simulation results
than in the model (3). This indicates that the increased correlation induced reduction of the
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interparticle repulsion achieved with the parameter ε is physically relevant. The results show
that best agreement with the simulations is reached for values of the correlation parameter ε
close to 1. With increasing N , the optimal values approaches 1.104. We, therefore, expect that
this value should have relevance also for a macroscopic plasma which we discuss below. On
the other hand, from a practical stand point we may use the shell model (10) with the fixed
parameter ε = 1.104 to predict the ground state configuration of large clusters in the range from
several thousands to hundred thousands where exact simulations are extremely costly, e.g. [14].
These data are also expected to be valuable for comparison with experimental results in dusty
plasmas and trapped ion systems, although for the first case one still needs to extend the model
to Yukawa systems.

5.2. Shell models and relation to macroscopic plasmas
We now compare the shell model results to available analytical formulas for a macroscopic
homogeneous one-component Fermi system, i.e. in the absence of any confinement field (but
with a compensating homogeneous background). Here, results for a classical OCP and for a
degenerate quantum Fermi system are available which we briefly review. In particular, we
consider weak coupling results (Debye approximation) for finite temperatures of kBT/ryd = 1
and kBT/ryd = 0.01, and also the zero temperature results due to Gell-Mann and Brueckner
and Carr and Maradudin, respectively. At very high densities, i.e. at high degeneracy, the
dependence on the temperature vanishes.

First, in the weakly coupled non-degenerate case, i.e., at low densities and high temperatures,
the internal energy is approximated by the Debye law with κ2 = 4πne2

kBT ,

E

N
− 3

2
kBT = −kBT

κ3

12πn
= −2

3

(
8πn

kBT

)1/2

= −2
3
κ ,

where the second and third r.h.s. expressions are given in Heaviside–units (2me = e2/2 = h̄ = 1):
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log10n(aB
-3
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Figure 6. Energy in the Debye approximation (circles), left curve: kBT = 0.01ryd, right curve:
kBT = 1ryd, in the Gell-Mann–Brueckner/Carr–Maradudin approximation (15) – full line, and
in the Wigner approximation (16) – crosses.
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Figure 7. Normalized ground state energy vs. particle number according to the Tsurutra
& Ichimaru scheme Eq. (3)(circles) and the degenerate OCP–model in two approximations
according to (15): Asterisks- first three r.h.s terms, full line- full expression. Enlarged views are
given in the subsequent figures

Secondly, the highly degenerate expression for the energy can be approximated by the
following expressions, according to [35], [36] (for an overview see, e.g. [26], [28])

E

N
=

2.21
r2
s

− 0.916
rs

+ 0.0622 ln rs − 0.096 + 0.018rs ln rs , (15)

where rs is the Brueckner parameter (the quantum Coulomb coupling parameter) which is the
ratio of the mean interparticle distance d and the Bohr radius aB, rs = d

aB
, and we use the

hydrogen Bohr radius aB = 0.529 × 10−8cm below and d = ( 3
4πn)1/3.

Finally, the Wigner lattice result for an OCP at zero temperature is characterized by the
energy

EWigner − Eid

N
= −1.792

rs
. (16)

The shell model results presented in Figs. 7 and 8 shows a similar shape as the formula (15).
This fact is underlined by the explicit comparison with the Wigner result (16), as well as with
the Hartree Fock energy

UHF

N
= −0.916

rs
. (17)

The corresponding classical T = 0 result was derived by DeWitt, Slattery & Doolen [37], [38];
see also [39] and is given by

Ecc = −kBTNion × 0.89752Γ . (18)

Here the only relevant parameter is the nonideality parameter (classical Coulomb coupling

parameter) given by Γ = (Ze)2

kBT

(
4πNe
3ZV

)1/3
. For large Γ–values, we have to take the Wigner

result. Not that all three expressions, Eqs. (16), (17), and (18), which are corrections to the
ideal energy (which scales like N1/3), behave like N1/3. The next order would be the logarithm,
see e.g. expression (15).
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Figure 8. Same as Fig. 7, zooming into the energy scale. Approximations according to (15),
asterisks- first three r.h.s terms, full line- full expression. In addition- squares according to the
fit formula (19)

We now try to fit the results of the shell model to the known analytical schemes using the
above asymptotics for large N . We, therefor, write the energy at T = 0 in the following form

E

N
= AN2/3 − BN1/3 − C lnN . (19)

A first fit to the shell results for N = 500 and N = 1415 leads to the coefficients

B/A = 0.7381 , C/A = −0.4977 .

The results according to the (19) are indicated by squares in Fig. 8. If we assume the coefficient
A to be that of the degenerate electron gas, as in Eq. (15), the result for B/A corresponds to
B = 1.6312 close to the Wigner result of BW = 1.792. As is obvious from Fig. 8, the agreement is
very good for N ≥ 400, whereas for smaller N the shell model (and exact) behavior is different.
This trend is not surpising since the analytical asymptotics, and thus the fit ((19)) are valid
only for large N .

A further improved ansatz would be

E/N = AN2/3 − BN1/3 − C lnN − D + FN−1/3 lnN + GN−1/3 + · · · .

However, here we restrict ourselves to the first four terms,

E

N
= AN2/3 − BN1/3 − C ln N − D . (20)

A fit to the results of the shell model (3) using the three points N = 500, 900, 1415 leads to

B/A = 1.0242 , C/A = −1.4026 , D/A = 3.3524 ,

and the insertion into (20) leads to the data marked by diamonds in Fig. 9.
An alternative choice of the three points N = 4, 100, 1415 might be expected to reproduce the
small N behavior and yields

B/A = 0.6786 , C/A = −0.4869 , D/A = 0.5898 .
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Figure 9. Tsuruta & Ichimaru scheme- circles. Diamonds and triangles- fit according to (20)

This approximation is shown by the triangles in Fig 9. For the same reason as noted above,
this kind of fit applied to higher N–values is more reasonable. Then, there is a discrepancy in
Figs. 8,9 for small N (only).

Finally, we perform a fit of the type (20) to the MD data for clusters with N up to 1024.
The result is displayed in Fig. 10. Triangles correspond to a fit to N = 5, 160, 1024, (giving
B/A = 0.6586, C/A = −0.4612, D/A = 0.6219) whereas the diamonds represent the fit to
N = 503, 888, 1024, (B/A = 1.077, C/A = −1.599, D/A = 4.289)
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Figure 10. MD data- crosses. Diamonds and triangles- fit according to (20): triangles- fit to
N = 5, 160, 1024; diamonds- fit to N = 503, 888, 1024

Finally, we note that there are no reliable results yet in the thermodynamic limit in the
intermediate density and temperature range. Here one has to rely on first principle computer
simulations, such as quantum Monte Carlo results, see, e.g., [40]-[44].
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