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Quinoa is a pseudocereal originating from the Andean regions. Despite quinoa’s long
cultivation history, genetic analysis of this crop is still in its infancy. We aimed to localize
quantitative trait loci (QTL) contributing to the phenotypic variation of agronomically
important traits. We crossed the Chilean accession PI-614889 and the Peruvian
accession CHEN-109, which depicted significant differences in days to flowering, days
to maturity, plant height, panicle length, and thousand kernel weight (TKW), saponin
content, and mildew susceptibility. We observed sizeable phenotypic variation across
F2 plants and F3 families grown in the greenhouse and the field, respectively. We used
Skim-seq to genotype the F2 population and constructed a high-density genetic map
with 133,923 single nucleotide polymorphism (SNPs). Fifteen QTL were found for ten
traits. Two significant QTL, common in F2 and F3 generations, depicted pleiotropy for
days to flowering, plant height, and TKW. The pleiotropic QTL harbored several putative
candidate genes involved in photoperiod response and flowering time regulation. This
study presents the first high-density genetic map of quinoa that incorporates QTL for
several important agronomical traits. The pleiotropic loci can facilitate marker-assisted
selection in quinoa breeding programs.

Keywords: quantitative trait loci, low-depth sequencing, high-density genetic linkage map, biparental mapping
population, phenotypic variation

INTRODUCTION

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal native to the Andean region of South
America. It is an allotetraploid species (2n = 4x = 36), with a genome size of 1.45–1.50 Gb
(Jarvis et al., 2017). Quinoa is characterized by its broad genetic variation and adaptation to
biotic and abiotic stresses. It exhibits resistance to insects and diseases and tolerance to frost,
drought, and salinity. Furthermore, quinoa seeds have outstanding physicochemical, nutritional,
and functional properties for human consumption. They have high protein content and are gluten-
free. Lysine and eight of the other essential amino acids are present in quinoa seeds in balanced
amounts (Melini and Melini, 2021). This crop is considered “functional food” because it contributes
to human nutrition while lowering the risk of heart, kidney, and liver diseases (Ali, 2019).
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The physicochemical properties of quinoa seeds allow the
manufacture of processed food, such as puffed quinoa, noodles,
and ready-to-eat products (Angeli et al., 2020). Due to these
unique qualities, quinoa is considered an option to improve
world food security (Alandia et al., 2021).

Quinoa cultivation has transcended continental boundaries
and it is present in Europe, Africa, and Asia (Alandia et al., 2020).
However, substantial breeding efforts are still needed to explore
all quinoa qualities and to expand its cultivation worldwide.
Quinoa breeding aims for short, non-branching plants with a
compact panicle, as well as increased tolerance to abiotic and
biotic stresses. Nevertheless, the main breeding objective in
quinoa remains to be the development of high-yielding varieties
and, in temperate regions and high latitudes of Europe, North
America, and China, the adaptation to long-day conditions
(Murphy et al., 2018; Patiranage et al., 2021). Thus, for breeding
quinoa, a better understanding of the molecular regulation of
flowering time and day-length responsiveness is essential since
yield potential and local adaptation are largely determined by
these processes.

In spite of being a domesticated crop, quinoa has not yet
reached its full potential but molecular and genetic technologies
may help change this situation (Alandia et al., 2021). In this
scenario, quantitative trait loci (QTL) mapping is useful to
understand the genetic basis of quantitative traits. The use of
sequencing technologies and computational analysis has made
QTL detection easier. In skim sequencing (Skim-seq), genomes
are sequenced at low coverage and sequence variants are called
after mapping to a reference genome. Later, imputation is
performed based on genetic linkage. Due to the large size of
linkage blocks, Skim-seq is a suitable method for genotyping F2
and F3 segregating populations (Golicz et al., 2015; Kumar et al.,
2021).

To date, only a few C. quinoa linkage maps are available.
The first quinoa linkage map was constructed using 216 SSR
(simple sequence repeats) markers using a recombinant inbred
line (RIL) population. The map consisted of 38 linkage groups
(LGs) covering 913 cM (Jarvis et al., 2008). Another linkage
map contained 14,178 single nucleotide polymorphism (SNPs)
(KASPar genotyping) mapped in two RIL populations. This
map consisted of 29 LGs spanning 1,404 cM (Maughan et al.,
2012). A recent linkage map by Jarvis et al. (2017) combined
the map from Maughan et al. (2012) with two new linkage
maps. The resulting map contains 6,403 markers on 18 LGs
spanning 2,034 centimorgans (cM). A few studies have attempted
to identify loci for agronomically important traits in quinoa so
far. Cervantes and van Loo (2017) identified QTL for color,
flowering time, and yield-related traits using an F2 population of
94 individuals from a cross between “Carina Red” (bitter, dark
seed) and “Atlas” (non-bitter EU variety). They used a linkage
map constructed with 1,076 SNPs and localized two major QTL,
one for days to floral bud appearance on chromosome Cq6B,
and another one for seed characters on chromosome Cq2B. In
addition, a recent genome-wide association study with 2.9 million
markers uncovered significant marker-trait associations for days
to flowering, days to maturity, plant height, and panicle length on
chromosome Cq2A (Patirange et al., 2020).

In this study, we aimed to create a high-density linkage map
and localize QTL for agronomically important traits. A high-
density linkage map was constructed with an F2 population
from a cross between a Chilean and a Peruvian accession.
Agronomic traits were assessed in the F2 population and the
F3 generation derived thereof. We mapped a number of highly
significant QTL and we identified candidate genes within the
QTL confidence intervals. Molecular markers tightly linked to
the QTL can be helpful for marker-assisted selection in quinoa
breeding programs.

MATERIALS AND METHODS

Plant Material and Growth Conditions
The Chilean quinoa accession PI-614889 (female parent; seed
code 171115) was crossed with the Peruvian inbred line CHEN-
109 (male parent, seed code 170876) by applying hot water
emasculation (Emrani et al., 2020). The F1 plant was selfed to give
rise to the F2 population (seed code: 190031). The F3 population
(seed codes: 191203-191562) consisting of 334 families, was
produced by selfing F2 plants (Supplementary Table 1). A total
number of 336 F2 individuals and 10 plants of each parent
were grown in square pots (13 × 13 × 13 cm3) from March to
October 2019 in a greenhouse under long-day conditions in Kiel,
Germany (Supplementary Figure 1). Seeds were harvested from
August to October 2019. Three hundred thirty-four F3 families
and their parental lines were mechanically sown in a plant-to-
row scheme in the field in 2020 (10.0◦E 54.3◦N, Achterwehr,
Germany). One hundred fifty seeds were sown in two-meter
single rows (1 cm sowing depth) with 50 cm spacing between
rows under a complete randomized block design with two blocks.
Mechanical weeding was carried out 4 weeks after sowing using
a row crop cultivator and hand weeding was performed 5 and
7 weeks after sowing. Thinning was performed 6 weeks after
sowing, aiming at 20 plants per row distanced at 10 cm.

Phenotypic Evaluation
The following traits were assessed in both populations: days to
flowering (DTF), days to maturity (DTM), plant height (PH),
panicle length (PL), panicle density (PD), saponin content (SC),
and thousand kernel weight (TKW). We followed the protocols
described by Jarvis et al. (2017) for saponin measurement and
those described by Stanschewski et al. (2021) for the other
traits with minor modifications as described in Supplementary
Table 2. Mildew susceptibility (MS) was recorded only in the
F3 population in the field, while seed weight per plant (SW)
and seed number per plant (SN) were recorded only in the
F2 population. In the F2 trial, 336 individual plants and 10
plants of each parental line were phenotyped. In the field,
10 plants per block and family and the parental lines were
phenotyped (a total of 6,720 plants). Plants with significant
biotic stress damage in the field (e.g., insect damage) were
excluded from phenotyping (Supplementary Table 1). We
carried out phenotyping at different Biologische Bundesanstalt,
Bundessortenamt, and Chemical Industry (BBCH) stages, which
are one of the most widespread scales used to identify the
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phenological development stages of a plant and were defined
for quinoa by Sosa-Zuniga et al. (2017). Additionally, to verify
genetic segregation in the F2 generation, we phenotyped red axil
pigmentation in all 336 individuals.

Heritability Estimates and Statistical
Analysis
The phenotypic (VP), genotypic (VG), environmental variances
(VE), and the broad sense heritabilities (h2) were estimated using
F3 data (Falconer, 1996). The heritability values were classified
as low (below 30%), medium (30–60%), and high (above 60%)
as suggested by Johnson et al. (1955). Genotypic coefficients
of variation (GCV), phenotypic coefficients of variation (PCV),
environmental coefficients of variation (ECV), and genetic
advance with a selection intensity of 5% (GA) were calculated
as described by Singh and Chaudhary (1977). In addition,
phenotypic correlation coefficients (Pearson’s r) of quantitative
traits within and between the F2 and F3 populations were
estimated using the phenotypic value of each F2 plant and the
average value of each F3 family.

DNA Isolation and Polymerase Chain
Reaction
In order to verify genetic segregation by molecular marker
analysis, leaf genomic DNA was isolated from 48 F2 plants and
194 F3 plants by the standard CTAB method (Porebski et al.,
1997). We used the InDel marker JASS5 (Fw: AGCCATTG
CACTATGCCCTCTC; Rv: TGGCCCAACACCTAAGTGACG)
(Zhang et al., 2017). Polymerase chain reaction (PCR) and
agarose gel electrophoresis were carried out following the details
presented in Supplementary Table 3.

For whole-genome sequencing, we sampled young leaves from
336 F2 plants at BBCH 22 and freeze-dried them. We extracted
DNA from these samples by a modified protocol of the Genomic
Micro AX Blood Gravity kit (A&A Biotechnology, Gdansk,
Poland). We verified the quality of the isolated DNA by agarose
gel electrophoresis (0.8%, 60 V, 60 min).

Whole-Genome Sequencing and
Bioinformatics
Whole-genome sequencing libraries were constructed using the
protocol of Baym et al. (2015) and normalized for equimolarity
using a BioTec Synergy HTC multimode plate reader. The library
was sequenced by Illumina NovaSeq PE150. We aimed to ∼1×

coverage per sample of whole-genome sequences of the F2
individuals (Skim-seq). The genome sequences of both parents,
CHEN-109 and PI-614889, were already available with a coverage
of 7.45× and 8.00×, respectively (Patirange et al., 2020). We
trimmed raw reads with Trim_galore v 0.6.4 (parameters -q 30 –
fastqc –paired) (Krueger, 2015), sorted and indexed them with
SAMTOOLS 1.10 (Li et al., 2009), and deduplicated them with
MarkDuplicates (parameter REMOVE_DUPLICATES = TRUE
tool of PICARD v2.21.9) (Broad-Institute, 2019). Quality control
was done with FastQC (v0.11.9) and MultiQC (v1.9) (Ewels et al.,
2016) by removing reads containing N > 10% (N represents
the percentage of the nucleotides that cannot be determined)

and a quality base filter of Qscore = 5 (over 50% of the total
base). We mapped the reads to the Quinoa Reference Genome
QQ74_V2 (CoGe Genome ID: id60716). We called variants using
HaplotypeCaller (v4.1.8.1) in -ERC GVCF mode (Poplin et al.,
2017). Markers were named as “chromosome number_physical
position” (e.g., chr12_ 2345937). We kept only homozygous loci
within each parent and considered only SNPs with a minimum
base quality of 30 (minQ = 30) and minor allele frequency (maf):
0.1. Then, we imputed the missing data by FSFHap from TASSEL
(v.5.2.64) (maf: 0.1 MaxMissing: 0.8; Window: 50) (Swarts et al.,
2014). To verify imputation accuracy, we generated data sets in
which SNPs with a minimum read depth of eight (minDP = 8)
were masked. We generated six data sets, one per chromosome:
Cq1A, Cq1B, Cq2A, Cq2B, Cq3A, and Cq3B. Then, we imputed
the masked data sets using FSFHap with the same parameters as
described previously. We evaluated the imputation accuracy by
genotype concordance between the masked-and-imputed SNPs
and the original genotypes. Genotype concordance was evaluated
by SnpSift (v.5.1) (Ruden et al., 2012) and reported as percentage
of similarities between masked and original genotypes.

After imputation, we applied the following filters: min-
alleles: 2; max-alleles: 2 max-missing: 0.3; maf: 0.1. Finally, we
transformed the data to a parent-based format (.abh) by using the
GenosToABH plugin from TASSEL (v.5.2.64), using the codes A:
male parent, B: female parent, H: heterozygous. We performed
quality control of the imputed data in.abh format by segregation
distortion and percentage of missing data (ABHgenotypeR v.1.0.1
R package) (Furuta et al., 2017). The bioinformatics pipeline is
illustrated in Supplementary Figure 2A.

Linkage Map Construction
First, we performed final filtering of the F2 population
(Supplementary Figure 2B). We excluded F2 plants with more
than 30% missing data. Only markers present in more than
302 F2 plants and fitting a 1:2:1 (α = 0.05) segregation ratio
were used for linkage studies. We also excluded “identical”
individuals with >95% sequence similarity. Then, we constructed
the genetic map by MSTMap (Wu et al., 2008) with the
following parameters: Kosambi function, cut-off p-value = 1e-
09, no_map_dist: 15, no_map_size: 2, missing_threshold: 0.1.
Markers with an estimated genetic distance ≤ 1.00E-04 cM were
clustered into bins. Finally, we performed several analyses for
quality control of our genetic map. To begin with, we checked
segregation distortion and estimated the number of crossovers
and double-crossover following the guidelines given by Broman
(2010). In addition, we analyzed parental allele frequencies and
collinearity of our linkage map with the physical map. Moreover,
we used a heatmap of our linkage map to look for switched alleles.
We used LinkageMapViewR (v.2.1.2), ASMapR (v.1.0-4), and
R/qtl (v.1.46-2) for quality control of the genetic map (Broman
et al., 2003; Taylor and Butler, 2017; Ouellette et al., 2018).

Quantitative Trait Loci Mapping and
Pleiotropy Analysis
We carried out QTL mapping by composite interval mapping
using the software package R/qtl (v.1.46-2) (Haley-Knott with
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forward selection to three markers and a window size of 10 cM)
(Broman and Sen, 2009). The threshold for the logarithm of odds
(LOD) for a significant QTL declaration was calculated by 1,000
permutations of the genome-wide maximum LOD. The 95th and
99th percentile of this distribution were used as the genome-
wide LOD thresholds (5 and 1% LOD thresholds). The confidence
intervals were calculated using the 95% Bayes credible interval
method. QTL effects were calculated with the nearest markers
as the phenotypic differences between marker genotypes. The
percentage of phenotypic variation explained by each QTL (R2)
was estimated by “drop-one-QTL-at-a-time” analysis. A simple
additive model for multiple QTL was generated for each trait
using the multiple imputation method and the Haley-Knott
regression. When a putative pleiotropy was observed, it was
confirmed by the qtlpvl R package (v.0.1-2), and a multiple
trait QTL analysis was performed (Tian et al., 2016). After
confirmation of pleiotropy, pleiotropic sites were analyzed as
single multitrait QTL (scanone.mvn) to obtain Bayes intervals
and R2 values.

Epistasis Analysis
A genome-wide epistasis analysis was performed to describe
how alleles influence each other. For this purpose, we used
the cape R package (v.3.1.0) (Tyler et al., 2013). To facilitate
the analysis in terms of computational time, the software
decomposed the phenotypes matrix into eigentraits (ET) by
singular value decomposition (SVD). Then, we selected the two
ET capturing the highest total variance among the traits to
perform a pairwise scan of the variants (SNPs). From this scan,
the software found interactions between alleles (epistasis), and
the epistatic models were combined across ET to find allelic
effects on the phenotypes included in the ET. Positive and
negative allelic effects refer to the reparametrized coefficient
(either < 0 or > 0) from the pairwise regression as described by
Tyler et al. (2013). Ultimately, the results of this analysis describe
how alleles influence each other, in terms of enhancement
(positive coefficient) and suppression (negative coefficient), as
well as how gene variants influence phenotypes. The results
of this analysis were plotted as heatmaps. ET contribution to
the phenotypes was estimated for all bins of our genetic map,
and heatmaps were constructed with 1,000 randomly selected
markers. Effect calculations were performed in reference to the
female parent (PI-614889) allele.

Candidate Gene Identification and
Haplotype Analyses
We retrieved annotated genes from the reference genome within
the regions of the confidence intervals of each QTL to explore
possible candidate genes (.gff from QQ74_V2; CoGe Genome
ID: id60716). We selected preliminary candidate genes using
the UniProt Knowledgebase database (UniProtKB). A gene
was considered a candidate when a related function to the
identified QTL was already described in other plant species.
Then, we searched for variants (SNPs and InDels) within the
parental sequences. From this search, we kept homozygous
genes and gave preference to those variants with a putative

effect on the function of the encoded protein. Following, we
evaluated the haplotype of the selected variants in the F2
population, as follows: we clustered the phenotypes according
to the corresponding genotype at the variant site; later, we
performed t-tests (α = 0.05) to compare DTF, PH, and TKW
among the created clusters. To further evaluate the phenotypic
effect of the variants, we used whole-genome sequencing and
phenotypic data of 310 quinoa accessions grown in a 2-year
experiment in Kiel, Germany. This dataset comprises 2.9 million
high confidence SNP and 414,891 InDel loci (Patirange et al.,
2020). We followed the same procedure as for the haplotype
evaluation in the F2 population. We assigned letters for each
allele to describe the genotypes (e.g., A1A1 homozygous, A1A2
heterozygous). A complete description of the nomenclature is
given in Supplementary Table 4.

RESULTS

Segregation and Phenotypic Analysis of
F2 and F3 Populations
We verified the expected 1:2:1 genetic segregation in the F2
population by two approaches: phenotyping of the red axil
pigmentation (complete dominance of red color over green
color) (Simmonds, 1971) and molecular marker analysis. We
phenotyped red axil pigmentation in all 336 F2 individuals
while genotyping was carried out for 48 individuals. Likewise,
the expected segregation in the F3 generation (3:2:3) was
verified by molecular markers. One hundred ninety-four
plants were genotyped from 20 randomly selected F3 families
(Supplementary Table 5 and Supplementary Figure 3).

Both populations, F2 and F3, exhibited a vast phenotypic
variation under field and greenhouse conditions (Supplementary
Figure 4). Moreover, substantial transgressive segregation was
found for all traits (Table 1). The highest transgression
percentage was found for TKW in the F2 generation. On the other
hand, heritabilities ranged between 38.02 and 91.06% with TKW
exhibiting the highest heritability value (91.06%). Besides, DTF,
DTM, PD, and MS showed high heritability (79.77–82.99%) while
PH and PL exhibited moderate heritability (38.44 and 38.02%,
respectively) (Table 2). Importantly, only 34.9% of the plants
reached maturity before harvesting in the field (October 2020),
resulting in fewer plants being phenotyped for DTM in the F3
population (Supplementary Table 1).

Then, we calculated correlations between all evaluated traits
within years. The highest correlation was found between DTF and
PH (Pearson’s r in F2: 0.69; Pearson’s r in F3: 0.63) (Figure 1).
Both traits, PH and DTF, were significantly correlated with
DTM. Furthermore, DTF showed a high negative correlation
with TKW (F2 and F3) and with SN and SW (only F2). In
general, taller plants flowered later, reached maturity later, and
depicted a reduction in the yield traits values, while shorter
plants flowered earlier, reached maturity earlier, and showed
higher values for the yield-related traits. Additionally, significant
correlations for DTF, DTM, PH, PD, and PL between the F2
plants grown under greenhouse conditions and their F3 progenies
were calculated, with the highest values for DTF (0.73) and PH
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TABLE 1 | Results from the quinoa populations grown in the greenhouse (F2) and the field (F3) and their parental lines.

Character Population/parent Mean Minimum Maximum Transgression (%)

DTF CHEN-109 2019: 61 ± 2a
− − −

2020: 72 ± 3a

PI-614889 2019: 76 ± 1b
− − −

2020: 96 ± 4b

F2 69 ± 5 55 87 29.17

F3 82 ± 9 67 77 14.63

DTM CHEN-109 2019: 177 ± 7b
− − −

2020: NA

PI-614889 2019: 110 ± 2a
− − −

2020: 129 ± 4

F2 137 ± 14 110 194 11.91

F3 152 ± 9 123 165 NA

PH (cm) CHEN-109 2019: 151.40 ± 7.06b
− − −

2020: 164.74 ± 27.56b

PI-614889 2019: 83.90 ± 6.00a
− − −

2020: 137.11 ± 13.98a

F2 136.3 ± 20.63 83.00 193.00 22.02

F3 163.14 ± 27.85 50.00 265.00 66.49

PL (cm) CHEN-109 2019: 37.20 ± 4.32b
− − −

2020: 32.37 ± 6.74a

PI-614889 2019: 16.30 ± 2.49a
− − −

2020: 29.47 ± 9.41a

F2 24.07 ± 6.14 14.00 50.00 8.33

F3 32.85 ± 10.4 10.00 80.00 76.31

PD CHEN-109 2019: 3.00 ± 0.00a
− − −

2020: 1.05 ± 0.23a

PI-614889 2019: 5.00 ± 0.00b
− − −

2020: 2.68 ± 0.58b

F2 3.61 ± 1.49 1 7 14.88

F3 2.49 ± 1.05 1 5 77.17

TKW (g) CHEN-109 2019: 2.00 ± 0.14b
− − −

2020: 1.52 ± 0.06b

PI-614889 2019: 2.44 ± 0.31a
− − −

2020: 2.64 ± 0.03a

F2 2.75 ± 0.49 1.18 3.91 77.97

F3 2.62 ± 0.29 1.58 3.45 48.17

SW (g) CHEN-109 2019: 1.07 ± 0.26b
− − −

PI-614889 2019: 5.90 ± 0.88a
− − −

F2 4.10 ± 1.48 0.06 7.22 13.29

SN CHEN-109 2019: 633 ± 161b
− − −

PI-614889 2019: 2,432 ± 328a
− − −

F2 1469 ± 471 51 3,251 6.25

SC CHEN-109 2019: 6.84 ± 0.20b
− − −

2020: 6.5 ± 2.12b

PI-614889 2019: 3.20 ± 1.09a
− − −

2020: 2.00 ± 0.00a

F2 5.68 ± 4.22 2.00 24.00 47.02

F3 12.61 ± 8.28 2.00 30.00 57.97

MS CHEN-109 2020: 2.95 ± 0.23b
− − −

PI-614889 2020: 2 ± 0.64a
− − −

F3 2.34 ± 0.69 1 3 59.42

DTF, days to flowering; DTM, days to maturity; PH, plant height; PL, panicle length; PD, panicle density; TKW, thousand kernel weight; SW, seed weight per plant; SN,
seed number per plant; SC, Saponin content; MS, Mildew susceptibility. NA, data not available due to late-maturity genotype. Different letters a,b Indicate significant
differences between parental lines in each year (F2:2019; F3:2020) (t-test, α = 0.05).

Frontiers in Plant Science | www.frontiersin.org 5 June 2022 | Volume 13 | Article 916067

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-916067 June 23, 2022 Time: 11:19 # 6

Maldonado-Taipe et al. QTL Mapping in Quinoa

FIGURE 1 | Correlation between phenotypic traits measured in the F2 and F3 populations. (A) Pearson’s r correlations between F2 and F3 populations.
(B) Correlations between nine traits measured in the F2 population (C) Correlations between eight traits measured in the F3 population. In panels (B,C), bivariate
scatter plots are shown below the diagonal, histograms on the diagonal, and the Pearson correlation above the diagonal. DTF, days to flowering; DTM, days to
maturity; PH, plant height; PL, panicle length; PD, panicle density; TKW, thousand kernel weight; SW, seed weight per plant; SN, seed number per plant; MS,
Mildew susceptibility; SC, saponin content. Correlations significance at α < 0.05 = ***, α < 0.01 = **, α < 0.001 = * levels.
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TABLE 2 | Statistical parameters calculated for eight phenotypic characters
measured in the F3 population.

Parameter DTF DTM PH PL PD MS TKW SC

VP 72.54 81.01 775.68 108.15 1.10 0.48 0.02 8.28

VG 60.20 64.62 298.20 41.11 0.90 0.40 0.02 7.22

VE 12.34 16.39 477.49 67.03 0.20 0.08 0.002 1.06

PCV (%) 10.34 5.94 17.07 31.66 42.06 41.67 5.70 22.81

GCV (%) 9.42 5.30 10.59 19.52 38.12 37.93 5.44 21.30

ECV (%) 4.26 2.67 13.39 24.93 17.78 17.26 1.70 8.16

h2 (%) 82.99 79.77 38.44 38.02 82.14 82.85 91.06 87.19

GA (%) 17.68 9.76 13.52 24.79 71.16 71.12 10.70 40.97

VP, phenotypic variance; VG, genotypic variance; VE , environmental variance; PCV,
phenotypic coefficient of variation; GCV, genotypic coefficient of variation; ECV,
environmental coefficient of variation; h2, broad-sense heritability; GA, genetic
advance; DTF, days to flowering; DTM, days to maturity; PH, plant height; PL,
panicle length; PD, panicle density; TKW, thousand kernel weight; SC, saponin
content; MS, Mildew susceptibility.

(0.66). Surprisingly, SC showed a low correlation between years
(Pearson’s r: 0.17).

Sequencing the F2 Population Revealed
Millions of Single Nucleotide
Polymorphism
We sequenced the genomes of 336 F2 plants, the parents of
the F3 families grown in the field (accession numbers1: from
SRR18906894 to SRR18907229). Skim-Seq by Illumina NovaSeq
PE150 resulted in a total data output of 4.98 million raw PE reads
on average per individual (∼1.07× coverage). All reads passed the
quality base filter requirement (Qscore = 5), and 0.0053% of the
raw data were removed due to a high number of nucleotides that
could not be determined (N > 10%).

Seventeen million SNPs were obtained after mapping and
variant calling (Supplementary Figure 5). First, these SNPs were
filtered by maf: 0.1 and minQ30, producing a data set of four
million high-quality SNPs with a high percentage of missing
data (∼86%) (Supplementary Figure 6). After imputation, the
proportion of missing data was reduced from ∼86.0 to ∼11.0%.
Imputation accuracy, evaluated by genotype concordance
between original and masked-and-imputed genotypes, varied
from 99.69 to 99.95% (99.85% in average) (Supplementary
Table 6). Following the next filtering steps, we obtained a set
of 249,744 high-quality biallelic SNPs with 4.2% missing data,
21.2% homozygous markers for the male parent allele, 26.5%
homozygous markers for the female parent allele, and 52.3%
heterozygous markers (Figure 2). We used this set of markers for
genetic map construction.

Construction of a High-Density Linkage
Map
Ahead of genetic map construction, the F2 population sequences
were cleaned anew based on our quality criteria. Two plants were
removed due to >30% missing data (Supplementary Figure 7A),
and 15,933 markers were removed because they were missing

1https://www.ncbi.nlm.nih.gov/bioproject/PRJNA830312

from >10% of the population (Supplementary Figure 7B).
Another 99,898 markers were removed because they did not
segregate in the expected 1:2:1 manner. No plants had to be
removed due to high (>95%) sequence similarity to another
F2 plant (Supplementary Figure 7C). As outcome of our final
filtering, 334 F2 plants were used to construct a genetic map
with 133,913 markers, resulting in an average density of one
marker per ∼8.97 Kb. The resulting genetic map consists of
21 linkage groups (LG), with the chromosomes 5B, 6B, and 8B
split into two LGs each (Table 3 and Supplementary Figure 7).
Moreover, the linkage map has an average density of ∼88
markers per cM, where one cM corresponds to ca. 0.83 Mb
(Supplementary Figure 9). For further steps, we created 5,218
bins where the markers with a genetic distance ≤ 1.00E-04 cM
were clustered into.

To continue, we carried out several quality control analyses
on the genetic map. First, we checked the number of single and
double crossovers per plant, which ranged from 10 to 105 and
0 to 9, respectively (Supplementary Figure 10A). We did not
find any outlier plants depicting a significantly higher number
of crossovers and double crossovers than the ones observed
for the population, which would have indicated potential
genotyping errors (Supplementary Figure 10B). Second, we
analyzed the collinearity of our genetic map with the physical
map from the reference genome sequence V2 and observed
high collinearity. We observed major gaps at the centromeres
(up to ∼33 cM) and an inversion at LG 7 (Figure 3 and
Supplementary Figure 8). Third, we investigated switched alleles
by a heatmap (Figure 4). We did not find switched alleles, which
would be indicated by pairs of markers with low LOD scores
and low recombination fractions. Moreover, we inspected the
parental allele frequencies in each linkage group, which were
as expected: 0.25 for CHEN-109 genotype, 0.25 for PI-614889
genotype, and 0.5 heterozygous genotypes (Supplementary
Figure 11).

Quantitative Trait Loci Mapping,
Pleiotropic Loci Identification, and
Epistasis Calculation
We mapped QTL for ten agronomically important traits using
phenotypic data of 334 F2 plants and 328 F3 families, which had
passed our quality check (Supplementary Data Sheet 2). Fifteen
QTL were identified, ranging from one to three QTL per trait
(Table 4). We found pleiotropy at seven QTL, which were named
with the prefix “pleio” (Figure 5 and Supplementary Figure 12).
Two QTL (pleio4.1 and pleio14.1) were in common between
F2 and F3, whereas six and eight QTL were found only in F2
or F3 populations, respectively. Together, pleio4.1 and pleio14.1
explained 22.01% of the phenotypic variation for TKW, PH, and
DTF, being this the strongest effect observed among all QTL.
pleio20.1 and pleio4.1 showed the highest additive and dominance
effect, respectively.

We performed a genome-wide epistasis analysis to investigate
how alleles influence each other in terms of enhancement and
suppression and also examined how different alleles of genes
influence phenotypes (DTF, PH, and TKW). As the first step of
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FIGURE 2 | Frequency distribution of the homozygous genotype from the parent CHEN-109, the homozygous genotype from the parent PI-614889, and
heterozygous genotype, for each of the F2 individuals.

this epistasis analysis, the phenotype matrix was decomposed
by singular value decomposition (SVD) into eigentraits (ET).
Two ET captured 69.00 and 21.00% of the total variance
among DTF, PH, and TKW and were selected to perform a
pairwise scan of the SNPs (Figure 6A). Then, we constructed a
heatmap where 46,52% of the alleles at the genome level had a
minor simultaneous effect (>-1 or <1) on DTF, PH and TKW.
Moreover, alleles located within the pleiotropic region pleio4.1
showed 252 significant interactions with other alleles in all LGs,
except for LGs 14, 15, and 18. Interestingly, we found that 96.82%
of the alleles located within pleio4.1 (source 4 in Figure 6B)
had suppressive interaction with other alleles at the genome
level (reparametrized coefficient < 0). Moreover, while PI-614889
alleles at pleio4.1 (source 4 in Figure 6B) had a negative effect on
DTF and PH and a positive effect on TKW, PI-614889 alleles at
pleio14.1 (source 14 in Figure 6B) had a positive effect on DTF
and PH and a negative effect on TKW. Positive and negative SNP
effects refer to the reparametrized coefficient (either < 0 or > 0)
from the pairwise regression as described by Tyler et al. (2013).

Identification of Putative Candidate
Genes Controlling Agronomically
Important Traits
We searched for candidate genes within the confidence intervals
of all QTL. We reasoned that trait-related SNPs could be found

within or close to the genes contributing to quantitative variation
(quantitative trait genes, QTG). Altogether, 1,874 genes were
found within non-overlapping confidence intervals of fifteen
QTL (Supplementary Table 7). Nevertheless, we focused on the
QTL pleio4.1 and pleio14.1 because of their pleiotropic effects
on multiple traits and because they were common in F2 and
F3 populations. Accordingly, the QTL pleio4.1 and pleio14.1
contributed to the phenotypic variation of three traits: DTF,
PH, and TKW, and 282 genes were identified within their
confidence intervals.

Among the 282 genes described above, we found 41 genes
with a previously described function related to flowering-time,
photoperiod, and yield regulation in other plant species. Later,
we compared the sequences of these genes between both parents
of the population (Supplementary Table 8). From all the SNPs
and InDels that differed between the parents for the selected
genes, we chose those that were homozygous for each parent
and had a putative effect on the function of the encoded
protein. From 83 selected variants, we could only identify seven
SNPs in the sequencing data of the F2 population. To assess
the possible effects of the variants, we grouped the F3 plants
according to the corresponding F2 genotype at the variant locus
and performed t-tests (α = 0.05) to compare DTF, PH, and
TKW between the groups. As result, none of the analyzed
variants explained the phenotypic variance observed for DTF,
PH, and TKW (Supplementary Figure 13). Afterward, we used
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TABLE 3 | Summary statistics of the quinoa linkage map based on F2 plants derived from a cross between CHEN-109 and PI-614889.

Chromosome Size (Mb) Linkage group Size (cM) No. of markers No. of bins

Cq1A 57.13 1 82.3 11,679 323

Cq1B 71.68 2 79.9 2,377 180

Cq2A 53.75 3 87.3 11,397 310

Cq2B 73.59 4 110.4 5,637 340

Cq3A 57.38 5 97.5 8,827 349

Cq3B 72.83 6 77.5 8,770 253

Cq4A 59.38 7 114.3 9,473 380

Cq4B 71.74 8 94.3 9,634 360

Cq5A 64.66 9 90.8 10,824 323

Cq5B 78.03 10 22.4 1,162 103

11 32.3 2,405 120

Cq6A 66.92 12 116.6 5,559 317

Cq6B 87.28 13 24.1 1,923 119

14 25.3 873 109

Cq7A 57.68 15 51.9 3,879 205

Cq7B 75.96 16 91.2 9,004 273

Cq8A 59.27 17 104.1 12,687 502

Cq8B 75.04 18 7.00 570 42

19 46.5 1,636 117

Cq9A 54.51 20 83.5 8,551 228

Cq9B 63.80 21 80.9 7,046 265

Total 1,200.71 − 1,520.1 133,913 5,218

The physical size of each chromosome was taken from the reference genome QQ_74 (CoGe Genome ID: id60716).

available whole-genome sequencing and phenotypic data of a
quinoa diversity set (310 quinoa accessions grown in a 2-year
experiment in Kiel, Germany) (Patirange et al., 2020) to perform
the same analysis. Namely, we grouped the diversity set based
on the genotypes of the F2 parents (either CHEN-109 or PI-
614889) at the variant locus and performed t-tests (α = 0.05)
to compare DTF, PH, and TKW among the created groups. As
result, we observed several significant phenotypic differences for
PH and/or TKW and/or DTF when we grouped the quinoa
diversity set based on the genotypes of our female and male
parents (Supplementary Figure 14). Interestingly, while most
of the investigated variants explained the phenotypic variation
in one or two of the phenotypes (either PH, TKW, or DTF),
only four variants within three genes explained the phenotypic
variation of the three traits, simultaneously. These variants were:
a missense SNP at TSL-KINASE INTERACTING PROTEIN 1
(TKI1), a frameshift variant and a disruptive in-frame deletion at
DNA (CYTOSINE-5)-METHYLTRANSFERASE 1 (MET1b), and
a disruptive in-frame insertion at RICESLEEPER3 (Figure 7).
Compellingly, TKI1, MET1b and RICESLEEPER3’s functions are
related to growth alterations, flowering delay and pleiotropic
effects in the model plant Arabidopsis (Roe et al., 1993; Kakutani
et al., 1996; Soppe et al., 2000; Saze et al., 2003; Ehsan et al., 2004;
Bundock and Hooykaas, 2005; Knip et al., 2012). In the quinoa
diversity set, accessions that carried the PI-614889 genotype
(N1N1) at the missense SNP of TKI1 (chr12_81633685) flowered
earlier, were shorter and showed higher TKW values than those
carrying the CHEN-109 (N2N2) genotype. Accessions carrying
the deletion and the frameshift variant in MET1b (CHEN-109

genotype) flowered later, were taller and had lower TKW values
than those accessions without the deletion and the frameshift
variant (PI-614889 genotype). A similar scenario was observed
for the disruptive in-frame insertion at RICESLEEPER3, where
the accessions carrying the insertion (CHEN-109 genotype) had
higher values of DTF, PH, and lower TKW values (Figure 7).

DISCUSSION

We exploited the recent advances in sequencing technologies
and computational analysis methods to localize QTL for
agronomically important traits in quinoa. A high-density
genetic map was constructed with a segregating F2 population,
and 15 QTL were mapped with phenotypic data from
two segregating generations. Candidate genes underlying the
quantitative variation were identified within the QTL.

We calculated broad-sense heritabilities and genetic advance
(GA) with a selection intensity of 5%, which resulted in moderate
to high across all traits (excluding days to maturity). Interestingly,
the high heritability coupled with high GA observed for days
to flowering, panicle density, and saponin content indicates
that selection may be more effective for these traits. Moreover,
previous studies reported heritability values for days to flowering
of 70.1% (2-year experiment with five quinoa genotypes) (Al-
Naggar et al., 2017) and 91.0% (quinoa diversity set phenotyped
for 2 years) (Patirange et al., 2020). The same studies calculated
heritabilities of 89.7% for TKW and 68.0% for panicle density.
Thus, the stated values in our study are in accordance with
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FIGURE 3 | Collinearity between the linkage map constructed in this study and the physical map from the reference genome QQ74_V2 (CoGe Genome ID: id60716).
The graphs were constructed with 133,913 non-binned markers.
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FIGURE 4 | Heatmap of pairwise recombination fractions and LOD scores based on 5,219 bins. Estimated recombination fractions between binned markers are
shown above the diagonal and LOD scores below the diagonal. Red colors indicate closely linked binned markers (high LOD score and low recombination fraction),
whereas, blue colors indicate non-linked binned markers (low LOD score and high recombination fraction). A LOD score of 50 corresponds to a recombination
fraction of zero. Grid lines divide the binned markers by linkage groups (vertically) and by chromosomes (horizontally).

previous reports. Nevertheless, Al-Naggar et al. (2017) and
Patirange et al. (2020) reported values of 85.0 and 60.7% for
plant height. Differently, in our study, the traits plant height
and panicle length showed moderate heritability, both with
values of around 38%. A possible explanation is that the male
parent showed a wide range and large variability in plant height,
resulting in lower estimates of heritability.

Our study considered Skim-seq as a genome complexity-
reduction method for constructing a genetic map for quinoa.
In our hands, genotyping by Skim-seq was effective for QTL
mapping and could be applied for a minor crop like quinoa,
for which available resources and commercial interest are
currently limited (Böndel and Schmid, 2021). We showed, by
several quality controls, that the challenge of calling high-quality
heterozygous SNP at low sequencing coverage (∼1.07×) could
be overcome by modifications to conventional bioinformatic
pipelines and imputation. Moreover, our results showed that
whole-genome sequencing with coverage as low as ∼1.0×

would be sufficient for QTL mapping. QTL mapping using
whole-genome low-coverage sequencing has been successfully
applied in chickpea and tobacco. In these studies, RILs and
backcross populations were sequenced with depths from ca.
0.75 to 1.0×, and the number of markers for mapping ranged
from ∼4,000 to ∼53,000 (Kale et al., 2015; Tong et al., 2021).
Although Skim-seq was sufficient for constructing a high-density

genetic map, there are limitations to this method. First, there
are no tools available for the accurate imputation of InDels
in F2 populations of polyploid crops. Thus, further uses of
our genotypic data are restricted only to SNPs. The second
important drawback of this approach is that the centromeric
regions cannot be accurately sequenced due to their repetitive
nature. However, these problems might be addressed soon by
the development of more sophisticated bioinformatics tools for
imputation (Jordan et al., 2022).

We found large gaps between adjacent markers in several
linkage groups (up to ∼33 cM). Based on collinearity with
the physical map, we determined that most of the gaps
corresponded to centromeric regions (Figure 3). The genetic
map of quinoa published by Jarvis et al. (2017), which served
to produce the reference genome, is similar in this regard
because it contained major gaps (up to ∼29 cM). It is
possible that the existence of repetitive sequences in these
regions complicate the identification of markers at these sites
because of poor sequencing quality (Heitkam et al., 2020).
Repeats have always presented technical challenges for short-
read sequencing technologies (Zhao et al., 2021). Consequently,
recombination fraction calculations would be affected by the
lack of markers at the centromere, and fragmentation of
chromosomes into two linkage groups could be expected.
Furthermore, it has been suggested that the removal of highly
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TABLE 4 | Summary statistics of quantitative trait loci (QTL) mapping with the F2 population and 328 F3 families.

Trait Population QTL
name

Confidence
Interval (cM)

Flanking markers LG Chr R2 (%) p-value Effecta No. of
genesb

QTL Trait Additive Dominant

DTF, PH, TKW F2 and F3 pleio4.1 69.10–64.44 chr4_53552445,
chr4_50421644

4 Cq2B 10.55 22.01 3.68E-03 −7.17 8.74 104

pleio14.1 8.95–16.00 chr12_80422064,
chr12_82045210

14 Cq6B 6.52 3.68E-03 6.73 −3.17 178

PH, PL, PD F3 pleio20.1 10.39–22.00 chr17_46536722,
chr17_38090534

20 Cq9A 10.86 10.86 6.47E-09 −9.13 −3.25 660

DTF, PH, PD, TKW pleio4.2 69.00–64.59 chr4_53811433,
chr4_50411615

4 Cq2B 12.44 12.44 3.43E-10 −6.79 7.68 110

DTM dtm3.1 35.64–43.00 chr3_17349205,
chr3_37087692

3 Cq2A 8.73 8.73 3.42E-05 −0.58 0.32 470

MS ms4.1 1.68–7.00 chr4_69599485,
chr4_66031413

4 Cq2B 0.38 0.43 0.264 −0.17 0.11 410

ms5.1 70.00–76.69 chr5_14713288,
chr5_9505959

5 Cq3A 0.06 0.955 −0.22 0.10 407

PD pd16.1 42.32–44.72 chr14_18518421,
chr14_17111206

16 Cq7B 10.80 20.44 1.99E-15 −0.28 0.03 47

DTF, DTM, PH, PL,
SW, SN, TKW

F2 pleio4.3 59.62–62.00 chr4_53467737, chr4_
50761666

4 Cq2B 16.21 16.21 1.78E-13 −3.21 0.41 88

DTF, PH, PD, SW pleio7.1 5.32–20.00 chr7_2959770,
chr7_3472874

7 Cq4A 10.97 10.97 5.02E-09 −2.31 −1.31 56

SN sn6.1 35.89–37.54 chr6_12791379,
chr6_23647528

6 Cq3B 2.77 5.46 0.010 1.02 0.15 313

TKW tkw17.1 18.98–23.78 chr15_48085872,
chr15_45144697

17 Cq8A 4.02 8.14 0.001 −0.96 −1.01 156

Saponin sap10.1 0.00–2.63 chr10_9590242,
chr10_8685894

10 Cq5B 6.60 21.98 3.68E-03 −1.51 −0.69 80

sap13.1 14.61–20.93 chr12_ 5194791, chr12_
2345937

13 Cq6B 9.31 3.68E-03 −1.39 −1.68 262

sap17.1 2.25–10.21 chr15_57094405,
chr15_52868334

17 Cq8A 6.63 3.68E-03 −1.43 0.60 365

The trait acronyms are explained in the methods section. LG, linkage group; Chr, chromosome; R2, estimated percentage of the phenotypic variance explained by the QTL.
aRelative to the PI-614889 allele. bGenes within the confidence interval.

distorted SNPs or bins during the construction of genetic maps
is responsible for fragmentation of the chromosomes (Gong
et al., 2020). This was also found in wheat, where a recent
ultra-dense genetic map yielded 25 linkage groups for the
21 chromosomes of this crop (Langlands-Perry et al., 2021).
Importantly, although the chromosomes in our linkage map
are fragmented into subgroups, this does not restrict the use
of our linkage map, whose quality was verified by several
independent controls.

Using Skim-seq and phenotyping, we mapped 15 QTL for
ten different traits with a wide range of explained phenotypic
variation (from 0.43% for MS to 22.01% for PH, DTF, and
TKW) and a wide range of the contribution of individual QTL
to the total phenotypic variation (from 0.06 to 16.21%). QTL
explaining the total phenotypic variance are unreachable because
variation in quantitative traits is affected by many small-effect
QTL (often undetectable) with additive and dominance effects,
and QTL-QTL interactions. Importantly, in our study, the use
of families in the F3 generation allowed plants of the same
family to be considered as replicates, allowing measurement

of environmental variances and thus, significantly increasing
the power and precision of QTL detection. Accordingly, the
accuracy of our QTL analysis is supported by the QTL sap10.1,
found for saponin content. This QTL, which was previously
reported in other studies (Jarvis et al., 2017; Patirange et al.,
2020), harbors a TRITERPENE SAPONIN BIOSYNTHESIS
ACTIVATING REGULATOR 2 (TSAR2) basic helix–loop–helix
(bHLH) transcription factor, which likely controls the production
of anti-nutritional triterpenoid saponins in quinoa seeds.
However, no QTL was found for saponin content in the F3
generation. This might be due to the method, which was used to
phenotype saponin content in this generation. We bulked seeds
from ten plants in the field corresponding to one F3 family.
From these bulks, we took samples of 20 seeds for saponin
analysis. Thus, bulked samples of 20 seeds might not have been
true representatives of thousands of seeds from an F3 family.
Moreover, the relatively low correlation coefficient between the
saponin content measured in F2 and F3 generations might be also
a result of the low efficiency of this method for measuring the
saponin content in the F3 population. We suggest measuring the
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FIGURE 5 | Comparative QTL analysis to detect pleiotropic QTL. Two tests were performed: (A) one vs. two QTL and (B) one vs. “n” QTL. Tests were performed
considering the traits involved in the QTL found in common for F2 and F3 populations (top graphs: pleio4.1; bottom graphs: pleio14.1). The black curve is the LOD
score curve for the single-QTL model, with the estimated QTL location indicated by a black triangle. The blue and pink curves are profile LOD score curves for the for
the two-QTL model. Dots indicate the LOD score for the traits considering a single-QTL model.

saponin content separately in multiple single plants of every F3
family to obtain more accurate values for this trait in F3.

We consider the common QTL among F2 and F3 populations,
which depicted pleiotropy, as the most relevant QTL in our
study. These QTL, explaining the phenotypic variation of days
to flowering, plant height, and TKW, were located at Cq2B and
Cq6B. In contrast, a putative pleiotropic locus controlling days
to flowering, days to maturity, plant height, and panicle length
was found at Cq2A by Patirange et al. (2020). The different
outcomes might respond to the different type of population that
was used in our study as compared to Patirange et al. (2020).
Accordingly, we could expect different alleles segregating in our
biallelic F2 population than the ones studied by Patirange et al.
(2020), who used a quinoa diversity set comprising more than 300
accessions. Furthermore, we found a strong correlation between
days to flowering, plant height, and TKW (Figure 1), which were
the traits implicated in pleiotropy. This reinforces their QTL
co-localization at Cq2B and Cq6B. Similar correlations, where
quinoa plants flowering earlier are shorter and depict higher
yield-related traits have been observed by Patirange et al. (2020)
and Manjarres-Hernández et al. (2021).

We reported additive and dominance effects in a wide range
of values, where the highest additive effect was observed for
pleio20.1 (-9.13), a QTL explaining the phenotypic variation of
plant height, panicle length, and panicle density, and the highest
dominant effect was reported for pleio4.1 (8.74). However, these
results solely show the effects of single loci. Since quantitative
variation in phenotypes results from highly complex networks
and epistasis, we aimed to investigate the allele effects (relative
to the PI-614889 allele) at genome-wide level on days to
flowering, plant height, and TKW. We observed that nearly half
of the studied alleles had a minor simultaneous effect on these
three phenotypes; thus, confirming the nature of these traits
as quantitative. From this analysis, we could also corroborate
that pleio4.1 and pleio14.1 are major QTL, which themselves
explain 10.55 and 6.52% of the phenotypic variance, respectively.
Moreover, while PI-614889 alleles at pleio4.1 had a negative
effect on DTF and PH and a positive effect on TKW, PI-614889
alleles at pleio14.1 had a positive effect on DTF and PH and
a negative effect on TKW. This is correlated with the additive
effects calculated for the markers with the highest LOD score
within each QTL (Table 4). The observed contrasting effects
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FIGURE 6 | Genome-wide epistasis analysis and effects of alleles at genome level on days to flowering (DTF), plant height (PH), and thousand kernel weight (TKW).
(A) Decomposition of phenotypes into eigentraits (ET). Colors of the heatmap correspond to the global variance fraction of each ET. (B) Heatmap showing
interactions between all pairs of alleles at genome level, resulting from a pairscan analysis. Every allele was assigned as “source” and “target” for the pairscan
analysis. To the right of the heatmap, the interaction of every allele (assigned as source) on the phenotypes involved in the pleiotropy is shown. The heatmap scale
represents the reparametrized coefficient calculated by the software and might be interpreted as the direction of the allelic effect. Gray dots show marker pairs that
were not included in the pairwise scan due to complete linkage. Numbers at the x and y axes in white and gray boxes correspond to linkage groups.

of PI-614889 alleles at pleio4.1 and pleio14.1 would probably
complicate breeding processes, whose aim is to reduce days to
flowering and plant height and increase TKW, simultaneously
(Murphy et al., 2018; Patiranage et al., 2021). In a broader sense,
our results from the genome-wide epistasis analysis revealed the

complexity of the regulation of days to flowering, plant height,
and TKW in quinoa, which was expected given the intricated
processes, such as DNA methylation, histone modification, and
non-coding RNA-associated gene silencing, which underlie these
traits (Pandey et al., 2021).
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FIGURE 7 | Evaluation of variant haplotypes using available whole-genome sequencing and phenotypic data of 310 quinoa accessions. Phenotypic effects of four
haplotype variations within three candidate genes are shown: TSL-KINASE INTERACTING PROTEIN 1 (TKI1) (SNP: chr12_81633685), DNA
(CYTOSINE-5)-METHYLTRANSFERASE 1 (MET1ba) (frameshift variant chr4_56534732), MET1bb (disruptive inframe deletion chr4_56534915), and RICESLEEPER3
(disruptive_inframe_insertion chr4_55091902). The variants genotypes correspond to, for instance, N1N1 (our homozygous parent PI-614889), N1N2 (heterozygous),
N2N2 (our homozygous parent CHEN-109) and are described in Supplementary Table 4. Significant differences between genotypes are shown by asterisks (t-test,
α < 0.05 = ***, α < 0.01 = **, α < 0.001 = *). Phenotypic data of different years are shown in different colors. DTF: days to flowering, TKW: thousand kernel weight.

A search for candidate genes within the confidence intervals
of the QTL was performed. We reasoned that trait-related SNPs
could be found within the genes contributing to quantitative
variation. Within the 15 different QTL described in our study, we
found homologs of known flowering time (HEADING DATE 3A,
WRKY TRANSCRIPTION FACTOR 13, FLOWERING LOCUS
D), plant architecture (APETALA2-1), and yield-related (SMALL
BASIC INTRINSIC 1-2, SWEET) genes from other species (He
et al., 2003; Yuan et al., 2014; Patil et al., 2015; Wang et al.,
2015; Li et al., 2016; Ma et al., 2017). Besides, we identified
FLOWERING LOCUS T (CqFT2A) within pleio7.1, a QTL
found in the F2 population, exclusively. Although FT genes

are described in studies related to flowering time regulation in
quinoa and C. rubrum, no flowering-time function has been
specified particularly for the CqFT2A paralog (Štorchová, 2020;
Patiranage et al., 2021). To continue toward the identification
of candidate genes, we mainly focused on the two pleiotropic
QTL detected in F2 and F3 populations and identified putative
candidate genes based on their known functions in flowering time
and yield regulation in other species. Then, we investigated the
effect of different sequence variants in these genes in a quinoa
diversity set. As outcome and even though non-related accessions
could have different haplotypes although they possess the same
SNP or InDel in the candidate gene, we found several sequence
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variants that significantly explained the phenotypic variation
of PH and/or TKW and/or DTF in the quinoa diversity set.
Hence, the genes containing these variants (either SNP or InDel)
might be interesting candidates for further studies. Among
these genes, we found that sequence variation at TSL-KINASE
INTERACTING PROTEIN 1 (TKI1) had significant simultaneous
effects on days to flowering, plant height, and TKW, which
were the phenotypes whose variation was partly explained by
the QTL pleio14.1 in our study. In Arabidopsis, TKI1 interacts
with TOUSLED (TSL) and TSL loss of function mutations
has pleiotropic effects on both leaf and flower development.
Loss of TSL function also affects flowering time since it is
required in the floral meristem for the correct initiation of
floral organ primordia (Roe et al., 1993; Ehsan et al., 2004).
Therefore, it is tempting to speculate that TKI1 is involved
in the regulation of the flowering time, flower development,
and consequently, seed set in quinoa. Moreover, we found that
sequence variations at MET1b and RICESLEEPER3 have similar
simultaneous effects on days to flowering, plant height, and
TKW, as observed for the variant at TKI1. In Arabidopsis,
MET1 homozygous mutants displayed late-flowering phenotypes
caused by ectopic expression of FLOWERING WAGENINGEN
(FWA), a regulator of flowering time. Hypomethylation, which
correlates with the mentioned late-flowering phenotypes, is
often accompanied by other developmental alterations (Kakutani
et al., 1996; Soppe et al., 2000; Saze et al., 2003). Furthermore,
DAYSLEEPER. DAYSLEEPER, the Arabidopsis homolog of
RICESLEEPER3, encodes for a transposase-like protein essential
for plant growth and development. Moreover, loss of function
mutants of DAYSLEEPER showed retarded growth and delayed
flowering (Bundock and Hooykaas, 2005; Knip et al., 2012).
Importantly, the evidence of the role of these genes in the
regulation of different biological processes is given for the model
plant Arabidopsis while the observed pleiotropic regulation
of days to flowering, plant height, and TKW in our study
might be controlled by quinoa-specific genes. Hence, if TKI1,
MET1, and RICESLEEPER3 have the same function in quinoa
can only be verified by further investigations. A first step
toward elucidating the molecular mechanism governed by these
genes might be expression analysis, for instance. Furthermore,
haplotype analyses may focus on the up- and downstream
regulatory regions of the most relevant candidate genes in our
study. Besides, despite of the lack of reliable transformation
protocols for quinoa, screening mutants and assessing their
phenotypic effects seems to be another feasible approach for
determining the function of these genes. Moreover, a recent
study offers perspectives for functional studies in quinoa using
virus-induced gene silencing (VIGS) (Ogata et al., 2021).

On the other hand, molecular markers linked to the
pleiotropic QTL identified in the current study can be directly

used in quinoa breeding programs for the simultaneous selection
of different traits. Moreover, the provided information about
QTL effects could guide breeders toward the selection of early,
short, and high-yielding quinoa genotypes. Future work may
address fine mapping of the interesting pleiotropic regions and
characterization of candidate genes. Overall, the results presented
in this study will help provide a framework for future research on
the molecular mechanisms of flowering and other agronomically
important traits and facilitate marker-assisted selection in quinoa
breeding programs.
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