
 
 

DOTTORATO DI RICERCA IN INGEGNERIA INFORMATICA 
 
 

DIPARTIMENTO DI INGEGNERIA INFORMATICA 

 
Tesi di Dottorato di Ricerca in Ingegneria Informatica – XXII Ciclo 

SSD: ING-INF/05 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR 
BIOINFORMATICS. EXTRACTION OF PROTEIN COMPLEXES 

FROM A 
PROTEIN-PROTEIN INTERACTION NETWORK: A CASE STUDY. 

 
 
 
 
 
 
 
 
 

Tutor 
Ch.mo Prof. Salvatore Gaglio 

Candidato 
Ing. Antonino Fiannaca

 
 
 
Coordinatore 
Ch.mo Prof. Salvatore Gaglio 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53290804?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Development of a Decision Support System for

Bioinformatics. Extraction of Protein

Complexes from a Protein-Protein Interaction

Network: a case study.

Antonino Fiannaca

Department of Computer Science (DINFO)

University of Palermo

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

February 15, 2011



Abstract

Decision Support Systems and Workflow Management Systems have

become essential tools for some business and scientific field. This

thesis propose a new hybrid architecture for problem solving exper-

tise and decision-making process, that aims to support high-quality

research in the field of bioinformatics and system biology.

The first part of the dissertation introduces the project to which be-

long this thesis work, i.e. the “Bioinformatics Organized Resources -

an Intelligent System” (BORIS ) project of the ICAR-CNR; the main

goal of BORIS is to provide an helpful and effective support to re-

searchers or experimentalist, that have no familiarity with tools and

techniques to solve computational problems in bioinformatics and sys-

tem biology.

In the second part of the thesis, the proposed hybrid architecture is

described in detail; it introduces a three-dimensional space for the

BORIS system, where the viewpoints of declarative, procedural and

process approaches are considered. Using the proposed architecture,

the system is able to help the experimentalist choosing, for a given

problem, the right tool at the right moment, to generate a navigable

Workflow at different abstraction layers, extending current workflow

management systems and to free the user from implementation details,

assisting him in the correct configuration of algorithms/services.

A case study about extraction of protein complexes from protein-

protein interaction networks is presented, in order to show how the

system faces a problem and how it interacts with the user.
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1

Introduction

In recent years, the science of bioinformatics is increasingly being used to improve

the quality of life as we know it. Bioinformatics has developed out of the need to

understand the code of life, DNA, that is the basic molecule of life and directly

controls the fundamental biology of life. DNA codes for genes which, in turn,

code for proteins which determine the biological makeup of humans or any living

organism.

The ultimate goal of bioinformatics is to uncover the wealth of biological

information hidden in the continuous growing amount of sequence, structure,

literature and other biological data, such as proteomic sequences and structures

or protein-protein interaction data, in order to obtain a clearer insight into the

fundamental biology of organisms. For this reasons, continued development of

new databases, new methodologies and analytical tools is critical for the health-

related quality of life.

1.1 Motivation and Goals

Researchers in bioinformatics aim at applying well established artificial intelli-

gence approaches and machine learning algorithms to biological issues, in order

to discover and explain biological phenomena in silico, rather than in vitro, help-

ing this way the experimentalists in their activities.

Up to the present, several methodologies have been developed for each biolog-

ical issue, and a lot of tools or online services have been proposed for implement-
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1.1 Motivation and Goals

ing these methodologies. For instance, the prediction of the three-dimensional

structure of a protein from its amminoacid sequence has been faced with more

than 70 softwares citecasp. Obviously each technique has its proper indications,

advantages, and disadvantages.

Another approach in bioinformatics aims to develop decision support systems

that can help the experimentalists to find, among all the available techniques,

the better solution to solve a biological problem; this way users can handle the

growing amount of available data in a simple way.

This PhD thesis introduces a new hybrid architecture that integrates not only

a decision support system for bioinformatics, but also a workflow management

system that is able to set and run a set of algorithms suggested by the system,

assisting the user during the whole biological process, from input data to final

results.

The proposed architecture exploits three different perspective:

1. It shows how to achieve a specific result for an input problem at different

abstraction layer, dealing with the direct execution of each task and sub-

task.

2. It decides about what to do with the knowledge of the system, using strate-

gies and heuristics in the knowledge base to generate some consistent mod-

els.

3. It allows reconfiguration of each selected tool or service, selecting alterna-

tive paths or restart the workflow from a process selected by the user and

tracing step by step, the workflow evolution of the system.

The basic idea of the system is, then, to provide to the researcher, or experimen-

talist, not only the tools able to resolve a problem, but also the knowledge used

in order to justify the choice of those specific tools and strategies. This way, the

user can see behind the workflow of operation what is the conceptual scheme at

the basis of the simple succession of tasks.

The proposed system is integrated in a project belonging to the research work

order “Analisi intelligente dei dati per la bioinformatica” of the CNR, called

2



1.2 Background

“Bioinformatics Organized Resources - an Intelligent System” (BORIS). This

project aims to help biological researchers that are not bioinformatician and,

consequently, are not able to handle available bioinformatics tools. The basic

idea is to separate the user from the details of the tools or the on-line services

used in research work, in analysis of biological data and to build a cognitive path

that takes the user from raw data to knowledge and helps him to navigate this

path.

1.2 Background

The system proposed in this Ph.D. work, aims to improves classical concept of

DSS in many ways. First of all, during the execution of an experiment, it traces

its evolution by using a workflow of the decisions, enabling this way the pos-

sibility for the user to do backtracking in order to change previous decisions.

Furthermore it is possible to save the whole workflow and results for sharing and

reusing them. When the system suggests a list of suitable strategies or algo-

rithms, it presents, for each of them, a brief description, a series of pros and cons

and bibliographic references. Moreover our system not only offers support giving

advices and recommendations, but it helps the user in the proper configuration

and running of the strategies or algorithms selected during the decision making

process. This last features moves our systems towards modern Workflow Man-

agement Systems (WFMS) (33) which provide a simple way to build and run a

custom experiment using the most common bioinformatics resources, like online

databases, software and algorithms. WFMS, however, do not interact with the

user, do not have a knowledge base, nor makes decision like KDSS: for this reason

our system represents an ideal merging point between classical DSS and emerging

WFMS.

1.2.1 Decision Support Systems

Decision Support Systems (DSS) have been created and investigated more than 35

years ago; the developments of DSS begun with building model-oriented DSS in

the late 1960s, where the computing systems to help in decision-making process

3



1.2 Background

were known as management decision systems (MDS), continuing with theory

developments in the 1970s and the implementation of financial planning systems

in the early and mid 80s. The implementation of the web-based DSS started in the

mid-1990s, with the specification of HTML 2.0, the expansion of the World Wide

Web in companies, and the introduction of hand held computing. Today, the Web

2.0 technologies, mobile-integrated communication and computing devices, and

improved software development tools have revolutionized DSS user interfaces.

Due to its different application areas, there are several definitions of DDS,

one of the earlier was introduced by Gorry and Scott-Morton (7), that claim a

DDS, “an interacting computer-based system that helps the decision maker in

the use of data and models in the solution of unstructured problems”. Of course,

the DSS will collect and analyse the data and then present it in a way that

can be interpreted ny humans. Some DSS come very close to acting as artificial

intelligent agents. DSS applications are not single information resources, but the

combination of integrated resources working together (8).

Some of the main features of a DSS are:

• to incorporates both data and models;

• to learn through the composition of models;

• to improve the effectiveness of decisions, not the efficiency with which de-

cisions are being;

• to assist decision-makers in decision processes in unstructured or semi-

structured environments;

• to support and do not replace user judgment;

• to provides a fast response to unexpected situations, caused by changed

conditions, by means of the ability to try several different strategies under

different configurations;

Although the user interface (UI) is not in the previous list, it holds a crucial

aspect of DSSs. Systems with user interfaces that are cumbersome or unclear

or that require unusual skills to be understood, are rarely useful and accepted
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1.2 Background

in practice and could lead the user to a wrong interpretation of results. On the

contrary, UI should play a tutoring role, teaching to users how the DSS reasons

about domain model, improving their own thinking. A good user interface to

DSSs have to support model construction and model analysis, reasoning about

the problem structure in addition to numerical calculations and both choice and

optimization of decision variables.

Generally there are two main approaches (9) to supporting decision making

in DSS, according to the quality of human intuitive reasoning strategies, imple-

menting the expertise of DSSs. The first aims at building support procedures

or systems that imitate human experts. This category contains expert systems,

that are computer programs based on rules elicited from human domain experts.

These systems can supporting decision making in the same way human experts

can do. They are based on intuitive human reasoning and lack soundness and

formal guarantees with respect to the theoretical reliability of their results. The

cons of the expert system approach is that along with imitating human thinking

and its efficient heuristic principles, they also imitate its undesirable aws (10).

The second approach is oriented to the application of formal methods; in fact, it

is based on the assumption that the most reliable method of dealing with complex

decisions is through a small set of normatively sound principles of how decisions

should be made. This point of view makes these systems philosophically distinct

from those based on ad hoc heuristic artificial intelligence methods, such as rule-

based systems. According to the second approach, the goal of a DSS is to support

unaided human intuition, just as the goal of using a calculator is to aid human’s

limited capacity for mental arithmetic.

In the following a category of DSSs based on expert system is reported.

Knowledge-driven DSS (KDSS) are person-computer systems with specialized

problem-solving expertise (22). KDSS are composed by three components (23):

• the knowledge (stored as rules, frames, or probabilities) of relations among

problems and indicators related to a particular topic or domain,

• the “Skill” or methods for solving some of the problems

• the capability of give the reasoning behind a conclusion it has reached.

5
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In general, a knowledge-driven DSS suggests or recommends actions to targeted

users. This type of DSS has specialized problem-solving expertise relevant to a

specific narrow task.

KDSS have been most applied in diagnosis in various clinical domains. The so

called Clinical DSS (CDSS) (24), typically integrates a medical knowledge base,

patient data and an inference engine in order to provide medical recommendations

about specific cases. CDSSs form a significant part of the field of clinical knowl-

edge management technologies, since they can support the clinical process and

use of knowledge from diagnosis and investigation keeping patients on research

and chemotherapy protocols, tracking orders, referrals follow-up, and preventive

care. Moreover they are responsible of medical treatment plan processes, pro-

moting use of best practices, condition-specific guidelines, and population-based

management (11).

MYCIN (25) was a rule-based expert system designed to diagnose and recom-

mend treatment for certain blood infections (antimicrobial selection for patients

with bacteremia or meningitis). It was later extended to handle other infectious

diseases. Clinical knowledge in MYCIN is represented as a set of IF-THEN rules

with certainty factors attached to diagnoses, that use a basic backward chaining

reasoning strategy. MYCIN was developed in the mid-1970s by Ted Shortliffe

and colleagues at Stanford University. It is probably the most famous early ex-

pert system, described as ”the first convincing demonstration of the power of the

rule-based approach in the development of robust clinical decision-support sys-

tems” (26). An extended version of this DSS, EMYCIN (Essential MYCIN), was

developed at Stanford in 1980 and was used to build diagnostic rule-based expert

systems such as PUFF, a system designed to interpret pulmonary function tests

for patients with lung disease.

A rule-based medical expert system for oncology protocol management, called

ONCOCIN (27), was developed at Stanford University. It was designed in order to

assist physicians with the treatment of cancer patients receiving chemotherapy.

ONCOCIN was one of the first DSS which attempted to model decisions and

sequencing actions over time, exploiting a customized flowchart language, in fact

it used an application area where the history of past events and the duration of

actions are important.

6



1.2 Background

Another CSS was developed in Italy, as a joint effort among companies, uni-

versity and regional government agencies. This project, known as Kon3 (28), is

oriented to the development of technologies for a sharable knowledge based on

Clinical Practice Guidelines at a reasonable cost and effort, and in a form that can

be integrated gracefully and supportively into the clinicians workflow via func-

tions of the local clinical information system. the knowledge base of KON3 is

composed by guideline and semantic information representation, whose ontology

is based on Knowledge representation about patients data, oncology taxonomy

(Breast Cancer) and guidelines model.

Other currently used CDSS are: ATHENA (29), implementing guidelines for

hypertension using Stanford Medical Informatics EON architecture (30); LISA

(31) that is a clinical information system for supporting collaborative care in the

management of children with Acute Lymphoblastic Leukaemia (ALL); Thera-

pyEdge (32) that is a web-enabled decision support system for the treatment of

HIV.

1.2.2 Workflow Management Systems

Workflow Management Systems (WFMS) are computer systems that allow orga-

nizations to define and control the various activities associated with a business

process. Most WFMSs allow the opportunity to measure and analyze the exe-

cution of the process so that continuous improvements can be made, either in

short-term (e.g., the reallocation of tasks to balance the workload at any point

in time) or long-term (e.g., redefining portions of the workflow process to avoid

bottlenecks in the future).

In this way, they can define a proper workflow for for each type of jobs or

processes, according to user needs. WFMSs also integrate with other systems

in order to provide a process structure which employs a number of independent

systems, organizing resources and documents from diverse sources like document

management systems, production applications, etc. That all can be integrated

because Workflow Management Systems manage the dependencies required for

the completion of each task.

7



1.2 Background

The most of Workflow Management Systems, including the one presented in

this PhD work, have Some typical features (34):

• A tool for the process definition: it is a graphical or textual tool for defining

the business process, according to user needs and computer application.

• The Simulation/Prototyping/Piloting process: it is possible to simulate or

create prototype and/or pilot versions of a particular workflow, in order to

try and test a process.

• Initiation and Control of tasks: the business process is initiated and each re-

source is scheduled and/or engaged to complete each activity as the process

progresses.

• Invocation of applications able to view and manipulate data: all the doc-

uments, including temporary outputs can be invoked to allow workers to

create, update, and view processed data in real time.

• Print a Worklists: WFMSs can allow each user to identify their current

tasks, anticipating or estimating the workload, that can be visualized as

well.

• Automation of task: Computerized tasks can be automatically invoked.

This might include such things as letter writing, email notices, or execution

of production applications. Task automation often requires customization

of the basic workflow product.

• Tracking and Logging of Activities: all the Information about each task can

be logged, in order to let user able to later analyze the process and check

the results of certain tasks.

For these reasons, WFMS benefits including the opportunity to improve both

the underlying business process and the existing organizational structure, since all

the activity steps, roles, and rules are built into the system and less intervention

needed to manage the business process. In addiction, they allow for the separation

of information technology from workflow management, integrating the business

process directly under the control of the system users.
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1.3 Dissertation outline

The most used and famous WFMS for bioinformatics is Taverna (35), an ap-

plication tool that has been created by the myGrid team and funded through the

OMII-UK, an open-source organization that empowers the UK research commu-

nity. Taverna is able to automatically integrate tools an databases available both

locally and on the web in order to build workflows of complex tasks; to run the

workflows and to show results in different formats. It allows for the automation

of experimental methods through the use of a number of different (local or re-

mote) services from a very diverse set of domains (from biology, chemistry and

medicine to music, meteorology and social sciences), managing more than 3500

services such as remote resources and analysis tools, Web and grid services. The

system works by means of a GUI that integrate a graphical workflow designer with

drag and drop workflow components, that is available as a desktop Workbench,

Server, through a portal or on a cloud.

A WFMS created for bioinformatics, known as Bioinformatics Workflow En-

actment Portal (BioWEP) (36), was developed by Italian National Institute for

Cancer Research Genoa (IST). This portal is a web-based client application that

allows the user to search and run a predefined set of workflows, already tested,

validated and annotated. It is oriented to the simplify access for all researchers,

supporting the selection and execution of predefined workflows, obtained by an

exhaustive set of biomedical databases.

Another web-based system for bionformatics built upon an agent oriented

middleware architecture is BioWMS (38); application domain features are em-

bedded inside the agents knowledge and proactiveness and mobility inside the

agent behaviour. Since agents are workflow executors, the resulting workflow

engine is a multi-agent system typically open, flexible, and adaptative.

1.3 Dissertation outline

The rest of the thesis will be organized as follows:

In Chapter 2 BORIS project the research work order related to this thesis,

will be introduced. The proposed hybrid architecture for DSS is introduced in

Chapter 3. Chapter 4 contains an application scenario related to the protein

complex extraction in PPI Networks. In Chapter 5 a brief explanation of all

9



1.3 Dissertation outline

tools and methods used in order to develop the proposed system will be provided.

Appendix A reports some information about the BORIS user interface.
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2

Bioinformatics Organized

Resources - an Intelligent System

This Chapter introduces the BORIS project, acronym for “Bioinformatics Or-

ganized Resources - an Intelligent System”, that is the framework which this

PhD work has been developed for. It is a project belonging to the research

group “Analisi intelligente dei dati per la bioinformatica”, related to the project

“Bioinformatica” of the CNR. The BORIS project manager is Dr. A. Urso, CNR

researcher at ICAR-CNR of Palermo.

2.1 BORIS Project

The aim of BORIS project is to provide an helpful and effective support to re-

searchers or experimentalists, that have to solve problems in the field of system

biology, such as the prediction of protein structures, the design of gene regulatory

network, the extraction of protein complexes, and so on.

Since several biological researchers are not bioinformatician, that is they are

not able to handle available bioinformatics tools, the basic idea of BORIS project

is to separate the user from the details of the tools or the on-line services used

in research work, in analysis of biological data and to build a cognitive path that

takes the user from raw data to knowledge and helps him to navigate this path.

Moreover, the system have to provide to the users not only the tools able to

resolve a problem, but also the knowledge used in order to justify the choice of
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2.2 BORIS Guideline

those specific tools and strategies. Another feature of the BORIS project is the

use of a knowledge, that is the heuristics and strategies that can be extracted

from bioinformatics papers and experiments representing the expertise on the

application domain. Finally, all the tools/services and heuristics/strategies must

be easy-to-use, as well as each operation must be traceable, through a workflow

with expertise that shows succession of tasks and the conceptual scheme at the

basis of that workflow.

2.2 BORIS Guideline

Some guidelines of the whole project have been provided in order to define the

features of the system.

In the following there is a list of technical specifications that have to be im-

plemented in BORIS project development.

• The system is based on a decision support system, with a rule-based expert

system engine.

• The system application domain is the bioinformatics field, including all the

-omics science.

• The system help the experimentalist suggesting, for a given problem, the

right tool at the right moment.

• The system generate a navigable interactive workflow, that is visualized at

different abstraction layers.

• The system free the user from implementation details and assists him in the

correct configuration of algorithms/services, allow users to define different

workflows for different types of jobs or processes.

These guideline indicates that the system not only have to propose the tools

able to resolve a problem, but also the knowledge used in order to justify the

choice of those specific tools and strategies. Since the system must be able to

handle tools/services and to interface their inputs, outputs and parameters, and
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it must manages and defines a series of tasks within an organization to produce

a final outcome, then BORIS can be seen as a crossover between classical deci-

sion support systems (DSS) and the most recent workflow management systems

(WFMS).

2.3 BORIS software architecture

The software architecture of BORIS is arranged in a three layer structure. As

shown in Figure 2.1, the architecture is inspired by its main goal: separate the

researcher from the tools in order to let him focus on the problem.

Many times biology researchers do not have a precise idea of the flow of task

that they need to reach a goal and just want to explore many available options;

in the same way, they are not interested in algorithm details or in web services

configurations. For this reason, this architecture sets these objects in the “Object

Layer”: the system decides how to use them in order to accomplish the users goal.

The components of the Object Layer are not part of the system and can change in

time, in fact an algorithm can be substituted by a more efficient one, a web service

can be unavailable. Of course they can communicate with the system, according

to technical specifications, by means of a protocol that ensure inputs/outputs of

each tool/web service can interact with the rest of the system.

The Object Layer is accessed by the “Controller Layer” that is the system

core. In this layer it is contained the “Reasoner” and the “Knowledge Base” of

the system: the former decides which operations to perform on the basis of the

available knowledge and the users request. The knowledge is organized by means

of an ontology, that encapsulates all the informations, called facts, encoding the

expertise of the system about a biological application domain. The main idea at

the basis of the BORIS ontology is shown in Figure 2.2. It is composed by three

main sub-tree:

• the Domain, that is the application field, the data we want to analyse.

• the Tasks, that represent what we can do according to the domain.
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2.3 BORIS software architecture

Figure 2.1: BORIS Software Architecture. It is composed by three layer: the
interface, the controller and the object one.

• the Tools, i.e. what are the instruments, algorithms and services we can

use to accomplish the tasks.

Using these definitions, the only relationships are then between elements of

the Tasks class and the Domain on one hand; elements of the Tasks class and
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Tools on the other one. Furthermore possible changes in one or more of the three

main classes do not affect the rest of the ontology, since it is enough modifying

or adding the relationships.

Figure 2.2: BORIS Ontology is composed by three sub-tree: Domain, Tasks and
Tools.

The domain of BORIS ontology, according to bioinformatics topics classifica-

tion in (16), is divided into four classes of problems:

1. Structure Prediction :

The structure of a protein represents a key feature in its functionality (17).

Unfortunately, the prediction of 2D and 3D structures is an NP hard prob-

lem in general, because most of the proteins are composed by thousands of

atoms and bounds and the number of potential structures is very large. For

this reason, in order to approximate the real structure of a protein, several

optimization techniques based on machine learning approaches have been

implemented and a competition, aiming at improving prediction techniques

in the years, has been instituted;

2. Function Prediction :

The prediction of protein function is a challenge at the proteomics scale. Al-

though many individual proteins have a known sequence and structure, their

functions are currently unknown. In particular, a single protein can express

different function according to some environmental parameters, therefore
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it is not enough to identify which proteins are responsible for diseases or

are advised for medical treatments, if the specific functions are unknowns.

Approaches to the function prediction are based on different techniques

(19): some of these are related to protein sequence and structure, the other

ones use protein-protein interaction patterns and correlations between oc-

currences of related proteins in different organisms.

3. Location Prediction :

The prediction of protein localization aims at determining localization sites

of unknown proteins in a cell. By means of this study, it is possible to

cope with problems like genome annotation, protein function prediction,

and drug discovery. The location of protein into the cell can be calculated

through experimental approaches (20), but they are time and cost consum-

ing, thus a computational technique able to screen possible candidates for

further analyses, appears a desirable solution.

4. Protein Annotation :

A correct organization of available databases and technical information on

proteins form the raw material prevents a misleading interpretation of ele-

ments. A critical phase in this process is a correct annotation of properties

and main features of proteins. This step is based on the classification of sci-

entific texts and the information extraction in the biological domain (18),

and it copes with the identification problems. In the biological field the

nomenclature is highly variable and ambiguous, especially for protein name

identification, where both the use of phenotypical descriptions and the gene

homonym/alias management have influenced the nomenclature.

Facts are given a rigorous and organized structure by means of the ontology of

concepts (41). Apart from the facts, the Knowledge Base also has a set of rules,

in the typical form IF <precondition> THEN <action>. The rules, acting on

facts, have to be considered as the coding for heuristics, guidelines and strategies

adopted by an expert of the domain. Both facts and rules can be provided by one

or more experts of the domain or can be extracted from bioinformatics papers,

experimental papers and, in case, from domain experts. These rules also describe
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2.3 BORIS software architecture

which are the conditions that should be satisfied in order to run a specific task or

algorithm present in the Object Layer: in other words rules code the strategies

and heuristics that the system can provide to the user.

In the Controller layer there is also the executor module that is the part of the

Controller Layer that runs the tools in the Object Level according to the input

data. The executor is controlled by the Reasoner and updates the Knowledge

Base with the intermediate results, moreover it will send the final results to the

user. The user looks at the system operation using the GUI and the wrapper

that are in the “Interface Layer”. The wrapper is the module that manages the

communication between the executor in the Controller Layer and and the GUI

that is the last interface level.

The user interacts with the GUI that sends message to the wrapper, the

wrapper formats this messages in the right way for the executor module, and sends

query to the reasoner. This allows to easily change the GUI without interferences

to the other parts of the system.

The inference mechanism related to a running process in Boris, is performed

by a continuous loop reported in Fig. 2.3. As previously said, the engine of

Boris is a rule-based expert system, that exploit the expertise for the problem

solving process; for this reason, the Knowledge Base plays a fundamental role in

the inference mechanism, together with the Executor. Inside the Executor there

are two phases: Planning and Execution; both of them contains some processes

of rule engine. In fact, Planning phase concerns the activation of a list of rules,

that satisfy some criteria involved with Input phase, and takes care of conflicts

resolution, in the event that more than a strategy could satisfy the same problem.

Otherwise, Execution phase is responsible for rules firing, when an active rule is

ready to run, and for tools activation, when an instance of a tool/service should

be produced. During this phase, the Knowledge Base can be update, according

to inference engine results. Finally the user can evaluate the result of input query

in the Outputs phase, interacting with Boris and producing a new Input for the

inference mechanism that, in turns, will generate a Knowledge Base update.
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Figure 2.3: Boris Inference Mechanism. The expert system exploits a rule-based
engine.

2.4 Contribution to BORIS

Management of the previous software architecture requires a solid Decision Sup-

port System that can help a bioinformatics researchers to deal with the plenty

of tools and services currently available. Main guidelines of BORIS project are

oriented to design and implementation of a system that should propose different

strategies according to the selected experiment, the type of input data and other

user’s requirements; moreover it has to provide and run all the instruments nec-

essary to execute the proposed strategies. In this context, BORIS system follows

a new paradigm: it uses a declarative approach for deciding “what to do”; a

procedural approach for realizing “how to do” something and a process approach

to manage a workflow of operation.

The contribution of this Ph.D. thesis consists, according to guidelines of Boris

Project, in doing an hybrid architecture (declarative/procedural/process) for the

DSS, that is able to:
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1. Easily handle the management of the strategies/heuristics, exploiting the

rule-based engine of the system to provide a valid support to the user, also

during the configuration of each available tool/service;

2. Provide an overview of software development along different abstraction

layers, from the main goal to the implementation (object layer), in order

to give to the user a decomposition in sub-systems and some different per-

spectives of the problem;

3. Trace a workflow of all the operations during the experiment, ensuring

the navigability of all procedures, so that this workflow can be saved and

eventually shared with other users.

This hybrid architecture will be introduced in next section. A case study will be

discussed in section 4, where the problem of protein complex extraction from a

protein-protein interaction network is faced.

Identification and extraction of protein complexes represents an hard task for

machine learning algorithms (21), because uncertain information about intercon-

nection and functionality of each protein could lead to erroneous interpretation.

Moreover several tools have been developed in order to preprocessing a protein

networks, as well as to extract protein complexes with a biological significance.

The proposed system will give decision support in the choice of the proper

strategies and tools and will help the user both in the configuration and running

of selected instruments. In addiction, during the description of the experiment,

the status of the system will be shown and the decision making process will be

explained.
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3

Architecture of Decision Support

System

In this Chapter the major contribution of this PhD thesis work is presented. The

new hybrid architecture has been designed in order to include some features of

three different approaches: the procedural, the declarative and the process one.

This way the proposed system takes advantages of both decision support systems

and workflow management systems.

3.1 Hybrid Architecture

There are two main approaches for making the architecture of a decision support

system, in fact they can be represented procedurally or declaratively.

Architectures with declarative representations have knowledge in a format

that may be manipulated decomposed and analyzed by its reasoners, i.e the

knowledge about a domain is intricate with the control of reasoning process, and

thus is implicitly represented. Architectures with procedural representations en-

code how to achieve a particular result, i.e. the knowledge is explicitly represented

and separated from the reasoning procedures.

In artificial intelligence, the procedural knowledge is often represented as

finite-state machine or computer program, whereas an AI system based on declar-

ative knowledge is typically based on a domain-independent planning algorithm

that indicate how to use the system skills to reach a goals.
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Examples of procedural processes in AI are:

• The Subsumption Architecture by (44) that is a reactive robot architecture

arranged in order to decompose complicated intelligent behaviour into many

simple behaviour modules that implement a particular goal of the agent.

• The Procedural Reasoning System (PRS) (45), that is a framework for

constructing real-time reasoning systems that can perform complex tasks

in dynamic environments using the Belief-Desire-Intention software model.

• Some programming languages as C, Java, Perl and JavaScript, that declare

the control flow.

• Some procedural programs as the Linux Kernel or the Apache Server.

Examples of declarative processes in AI are:

• Dynamic Control Architecture by (46), where the agent acts in a complex

dynamic environment, having only an unstructurated and broken knowledge

about this environment.

• Homer by (47) implements a robot submarine that is designed to act, reason

and reflect on its experience: it can plan how to achieve its instructions,

modifying its plans as required during execution.

• Some programming languages as SQL, YACC and markup languages such

as HTML, that contain the logic of a computation without describing its

control flow.

• Some functional languages as Prolog and Lisp.

In the table 3.1 some characteristics of declarative vs procedural approach are re-

ported. This table clearly shows some advantages/disadvantages of these knowl-

edge representation techniques.

The proposed system aims at integrate both points of view, in order to merge

their advantages, offering to the user an exploration of the space of the problem,
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Table 3.1: Comparison between Declarative and Procedural approaches in artifi-
cial intelligence and programming.

DECLARATIVE PROCEDURAL

APPROACH APPROACH

The representation of knowledge

about objects, events and their

relationships and states is static.

All the control information neces-

sary to use the knowledge is em-

bedded in the knowledge itself.

It defines the rules about “what

to do” with knowledge and not

how to do it.

It encodes “how to achieve” a

specific result, requiring an inter-

preter to follow instructions spec-

ified in knowledge.

It is slow, because the system re-

quires code interpretation.

It is fast to use, because all the

processes have a direct execution.

The system transparency is im-

proved, easing system gover-

nance.

It works as a black box and could

be hard to debug.

The system is data-oriented. The system is process-oriented.

Turn out to be easy to update

the system representation, facili-

tating system maintenance;

It is easy to write, because the

knowledge is defined step by step

in an explicit way.

as exhaustive as possible. Sometimes, whether represented knowledge is viewed

as declarative or procedural is not an intrinsic property of the knowledge base,

but is a function of what is allowed to read from it (42). For example, if produc-

tion systems may view themselves, then they are declarative, otherwise they are

procedural.

According to the coexistence between these two knowledge representation re-
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lated to the user point of view, the proposed architecture use both declarative

and procedural approaches at different times, taking advantage of their different

advantages.

In the past, a similar approach was adopted by (43), on the design of the

ATLANTIS architecture for mobile robots. Based on the observation that an

environment can be investigate at different levels, that require some proper mech-

anisms for dealing with them. For example the planning could be important in

a level, whereas a quick reaction might be critical for the life of the robot in the

other levels. For this reason author defined two different layer for its robot: the

control layer, that uses a procedural knowledge, and the deliberative layer, that

uses a declarative knowledge.

The hybrid architecture for the decision support system developed in this PhD

thesis, according to the software architecture of the BORIS project (see section

2.3), not only aims to exploit both declarative and procedural approaches, but

integrate also another approach from workflow management systems, i.e. the

process approach.

The term “process approach” is inherited by business process management,

that is a collection of structured activities (or tasks) that produce a specific service

or product (or a goal) for a particular typology of customers. Usually, it can be

visualized with a flowchart as a sequence of activities or a workflow of tasks.

Therefore, the process approach is a management strategy where managers

supervise the interaction between these processes, and the inputs and outputs

that glue these processes together. Each process is an integrated set of activities

that uses resources to transform inputs into outputs or, in other words, a sys-

tem exists whenever several processes are interconnected using such input-output

relationships.

This point of view is used by several WFMS platforms (37), where the process

model describes the behavioral aspect of a workflow specification, such as the pro-

cess evolution from its initial state to one of its final states. The elementary unit

of the workflow created with the proposed system is the task, that is interrelated

via connectors, such as join and split elements. Then there are subprocesses that

allow the modularization of each generated workflow in terms of self-contained

activity fragments, according to strategies/heuristics taken into account.
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3.1.1 DSS space

As stated in the previous section, the hybrid system introduced in this PhD thesis

collects at the same time three different knowledge representation: declarative,

procedural and process approaches.

The coexistence of these different approaches to the same architecture is guar-

anteed by assuming a working space that is arranged in a three dimensions space,

where each axis represents one of the previously cited approaches. When the sys-

tem runs, a point inside the DSS space will identify the state of the system,

whereas the projection of this point over each axis, will indicate the contribution

of each approach.

As depicted in the figure 3.1, the axes of hybrid architecture are respectively:

Abstraction Layer, Decision Making Level and Workflow Timeline.

In the following some characteristics of each axis:

Abstraction Layer Axis (based on Procedural Approach):

• It shows “how to achieve” a specific result for an input problem at different

abstraction layer .

• It builds a workflow of operations, dealing with the direct execution of each

task and sub-task.

• It runs all the algorithms and services, taking care of the management and

organization of issues related to inputs-outputs interface.

Decision Making Level Axis (based on Declarative Approach):

• It decides about “what to do” with the DSS knowledge, according to rule-

based engine.

• It works with unstructured data.

• It uses strategies and heuristics in the knowledge base to generate some

consistent models, for the problem solving process.

• It manages all decision making steps.
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3.1 Hybrid Architecture

Figure 3.1: Space of Decision Support System. The hybrid architecture intro-
duces tree point of view for the problem, i.e. abstraction layers ((based on Pro-
cedural Approach), decision making levels (based on Declarative Approach) and
workflow timeline (based on Process Approach).

Workflow Timeline Axis (based on Process Approach):

• It allows reconfiguration of each selected tool or service, with back-tracking

feature.

• It allows to select alternative paths or restart the workflow from a process

selected by the user.

• It collects all the intermediate results, saving the process representation of

the problem.

• It traces, step by step, the workflow evolution of the system.

All these axes represent discrete values; in facts, a problem can be represented

at the highest abstraction layer, at the lowest abstraction layer or at some in-

termediate abstraction layers. In the same way, a workflow is done by means of
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some discrete steps, according to tools executions. As will be explained later,

also the Decision Making Axis represents discrete value, because it depicts the

successions of each transitions of decision making steps of the system; in other

words, for each decision step the system reach a new state.

3.2 Decision Making Activity

The development of reasoning systems is an important area of research in Artifi-

cial Intelligence. This PhD work uses a procedural reasoning system that have to

operate with BORIS software architecture described in section 2.3. The decision-

making capabilities of the system indicated how the system integrates both a

directed reasoning according to user request, and the ability to takes account of

available resources and knowledge.

As defined by (49), “Decision making is the study of identifying and choosing

alternatives based on the values and preferences of the decision maker. Making a

decision implies that there are alternative choices to be considered, and in such

a case we want not only to identify as many of these alternatives as possible but

to choose the one that best fits with our goals, objectives, desires, values, and so

on.”.

According to the guideline suggested by (50), the decision making process

used in this PhD work is composed by the following steps, reported in the figure

3.2:

1. Problem identification:

When the system receives the user request, it has to first identify the root

causes and then produce a problem statement (also in case of complex

decision problems) that describes both the initial conditions and the desired

conditions.

2. Requirement setting:

The system has to analyse all the constraints describing the set of the

admissible solutions to the problem detected in step 1, i.e. for any possible
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solution it has to decide unambiguously whether a strategy is acceptable or

not.

3. Alternatives identification:

Alternatives strategies or heuristics offering different approaches for finding

a solution have to be evaluated by the system, in order to better match

with the user desired goal and the boundary conditions.

4. Attributes definition:

It is necessary to define discriminating criteria to measure how well each al-

ternative achieves the goal or almost a sub-goal. According to (50), criteria

should be able to discriminate among the alternatives and to support the

comparison of the performance of the alternatives, complete, operational

and meaningful.

5. Decision-making tool selection:

Although it could exist several tools for solving a decision problem, the se-

lection of the appropriate tool depends on the concrete decision problem, as

well as some characteristics of a tool (requirement of additional resources,

computational complexity) or computing power. The selected tool is pro-

posed to user with a list of pros and cons.

6. Alternative tools evaluation:

Since more than a tool can satisfy discriminating criteria, the system must

show to the user a set of the most promising alternative tools/services, once

again with a list of pros and cons for each tool/service. In complex prob-

lems, the proposed alternatives may also call the attention of the user, that

could add further goals or requirements to the decision model.

The decision-making activity of the system is organized in functional modules;

a representation of these module is depicted in figure 3.3. Each module has its

own knowledge and skills, takes care of a specific part of the reasoning process

and is responsible for making decisions about a well defined task. Typically, this
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Figure 3.2: Decision Making Activity. The closed loop runs during all the decision
making activity, in order to solve tasks and sub-tasks.

knowledge is unstructured or semi-structured, because information retrieved by

different sources is often ambiguous or incomplete. Also included in each module

are strategies and/or heuristics, as well as all the rules that are required by the

rule-based engine for developing reasoning on the specific task.

In addiction, there are some modules containing also a subset of rules that are

able to launch tools and services responsible for the implementation of a specific

methodology. Directives contained in these rules are able to suggest to the user

the most suitable tool, among a collection of similar tools.

3.2.1 Meta Reasoning Tree

Since several problems are very wide, the management of these problems could

be hard and, consequently, some large decision modules are needed. For this

reason, it is convenient to split problems into sub-problems, building a hierarchy

of modules and sub-modules, containing tasks that are able to model only simple
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Figure 3.3: Decision-Making Modules. Each module contains all the strategies
and/or heuristics for a well defined task. In addiction some modules are also
responsible for the management of directives related to tools and services.

issues. The data structure used to link tasks (modules) is the hierarchal tree.

The tree allows to represent relationship among problem and sub-problem in a

suitable way, with respect to the logical organization adopted in decision making

process. In particular, the depth of a node with respect to the root node in the

tree is arranged according to the meta levels adopted by the system during the

reasoning activity.

By means of the decision making axis of the DSS tree-dimensional space, the

user can navigate through the hierarchy of the entire reasoning tree for exploring

sub-modules in different meta-levels; this way, user can see in a glass-box the rules

behind the reasoning of the system. User can also interact with the system in

order to learn about strategies and heuristics leading the decision making activity

in figure 3.2. As a meta-meta-level can control a meta-level in a process of rea-

soning about reasoning itself, in the same way a module can operate a reasoning

over a child module (that lie in a deeper position on the tree), demanding some

operation to him.

A representation of the decision making tree is reported in figure 3.4; it con-

tains three meta-reasoning levels, arranged according to the previous cited idea.

Of course, each child is able to solve a specific task that its parent can only pro-

31

3_architecture/figures/modules.eps


3.2 Decision Making Activity

Figure 3.4: Meta reasoning tree. Decision making modules are distributed into
some different meta-reasoning levels, according to problem/sub-problem hierarchy.

pose to solve, without having the knowledge about it. Communication between

decision modules is managed from parent to child, in facts the parent module

A can give focus to child module A.1 in order to request the solution about a

specific sub-problem and, in turn, the module A.1 can give focus to its child A.1.1

to solve a sub-sub-problem.

All the modules lying at lowest meta-reasoning level (i.e. modules at Meta-

Level X.Y.Z in the figure 3.4) contains rules that are responsible for management

of tools and services, because they are “nearest” to the execution layer of workflow

process; this way the system can suggest what are the most suitable algorithms,

assisting the user in their proper configuration.

Of course, also the other modules could contain some directives for tool/service

execution; for example, it can happen when the system request an input data

analysis, that is necessary to make a decision at highest MRL.

3.2.2 From Meta Reasoning Tree to DSS Space

This subsection aims to project the representation of meta-reasoning levels from

the hierarchical tree to a new dynamic treemap, reported in the following. The in-

troduced representation allows to integrate all the MRLs into the tree-dimensional

space of hybrid architecture proposed in this work.
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3.2.2.1 Dynamic Treemap Representation

Treemap was first designed by Shneiderman (52) during the 1990s, in order to

producing a compact visualization of directory tree structures in hard disks. It

is a two-dimensional space-filling approach to the visualization of hierarchical

information structures, obtained by means of a set of boxes representing nodes

of tree: individual nodes within their bounding boxes determines the content

information statically presented in a treemap. It is very effective in showing

attributes of leaf nodes using size and color coding, providing an overall view of

the entire hierarchy and making the navigation of large hierarchies much easier. In

general, treemap enables users to compare nodes and sub-trees even at varying

depth in the tree, and help them to detect mutually related properties among

nodes.

Treemap is able to depict both the organization of information associated with

the hierarchy, and the content information associated with each box.

Use of treemap representation fixes some disadvantages related to the pre-

vious used representation; the main disadvantages of using the hierarchical tree

representation is the lack of content information. In facts, each node has only

a simple text label. Additional information, such as the duration of a decision

making module with respect to the time line of a workflow, can not be depicted

into the decision making tree. In the same manner, no information about which

abstraction layers are used when a module is running can be shown using the

hierarchical tree representation.

The treemap visualization technique adopted in this work makes use of the

system 3D-space, in order to map the full hierarchy onto a rectangular region in

a space-filling manner. For the proposed hybrid architecture, a 3D treemap for

MRL browsing that can show overlapping between modules has been introduced.

In addiction some functionalities related to time line execution have been inte-

grated. In facts, a sort of Dynamic Treemap has been introduced, where each box

representing a module has a width related to its duration inside the execution of

working process and an height related to the number of different abstraction lay-

ers it take in account during the task processing. The representation of decision
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making modules inside the Dynamic Treemap, follows the workflow generation

step-by-step and it is time-dependent (from which the term “dynamic”).

An example of the dynamic treemap representation, used in this PhD work,

is shown in the bottom of the figure 3.5. The meaning of this figure is described

in the following.

3.2.2.2 Communication among Decision Making Modules

Decision modules are represented into the introduced 3D space by means of the

previously cited dynamic treemap. This solution integrates all the information

about the interaction among modules as well as the relationship among meta-

reasoning level. In addiction, this representation assures an appropriate user

interaction, providing all the features available for the exploration of the hybrid

architecture space.

Figure 3.5 shows an example of the communication among modules during

the decision-making process, through different meta-levels. The top of the figure

reports a tree where each node represents a module, where parent-child relations

are oriented from the highest MRL to the lowest MRL. The root of the tree is

the reasoner having the main directives for the resolution of a selected problem.

Each module can have n children: therefore each module in meta-reasoning

level A can make a decision according to its own proper knowledge about the

problem and, moreover, it can assign a task to another child module at lower

meta-level reasoner, that has further and more specific information about the task

solving the sub-problem: the “give focus” line between modules is highlighted in

the figure with an oriented arrow. Accoring to the reasoning process, all the

arrows pointing to modules lying at lower MRL (parent to child) correspond to

assignment of a sub-task, whereas all the arrows pointing to modules lying at

higher MRL (child to parent) represent a return of focus that confirm the child

module has solved the sub-task. The number near to the arrow represents the

order of focus transactions: the entire example in the figure is composed by four

sequential steps. During this process, each parent module stays awake until all

of its children are running, because it has to supervise and process the stack of

results.
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Figure 3.5: From meta reasoning tree to hybrid architecture space. Decision
making modules are represented by means of a dynamic treemap.

The bottom of the figure 3.5 reports the dynamic treemap representation of

the reasoning process, created inside the 3D space of DSS. This figure join the

treemap representation with the workflow timeline: in this manner the user can

take into account, at every moment of the workflow evolution, the active decision

making modules. The dynamic tree is built step-by-step from the right to the

left (according to workflow timeline axis orientation); boxes representing modules

used during the experiment appear when these are active and they are bounded

when the module give focus back to the parent. A parent will grow up under all

its children boxes, because it will manage their results; for example, the module

Ain the figure, will wait for the conclusion of the task solved by the module
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Figure 3.6: Representation of a simple sequence of algorithms. The workflow is
projected into the 3D space; no information about abstraction layer is reported,
because only the object layer of the system is considered.

A.2.1. Bounding boxes representing modules at different meta-reasoning levels

are overlapped according to the decision making axis, that takes into account

the depth of meta levels, from highest MRL to the lowest MRL. The projection

of the dynamic tree over the abstraction layer axis will be discussed in the next

subsection. In order to solve a specific request, the module A at meta-reasoning

level X is enabled: At step 1 it call module A.1 to solve a sub-task. At step 2

the module A.1 has completed its reasoning and give focus back to the parent

module. At step 3 the module A call the module A.2 to solve another sub-task.

At step 4 the module A.2 have not enough knowledge about the sub-task and

send a sub-request to the module A.2.1 at MRL X.Y.Z to resolve a sub-sub-task.

3.3 Workflow Generation

Workflow generation starts from the results of the decision making process pro-

duced by the rule-based engine, where main goal, sub-tasks, business processes

and internal/external tools are specified. They are responsible both to define all

the aspects of a process that are relevant to controlling and coordinating the exe-

cution of the tasks have been executed and to provide all the information needed

for design and implement the final process.

In general, the obtained workflow is a collection of tasks organized to accom-

plish some business process. A task is performed by one or more softwares (e.g.

preprocessing tools), or by means the human interaction (e.g., providing input
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commands), or a combination of these. In addition the workflow defines the order

of task invocation, task synchronization, and information flow (dataflow).

In figure 3.6 a simple workflow inside the system space is shown. For the sake

of simplicity, the abstraction layer axis is not depicted in this figure: only the

object layer is reported. The proposed hybrid architecture supports the evolution,

replacement, and addition of workflow applications, as well as the re-engineering

of system components and processes; in facts, users can interact with the system

modifying the sequence of tools, changing algorithms and/or parameters and

exploring decision making modules responsible for suggestion of strategies.

The figure also shows that, in order to resolve a required task, more than

an algorithm could be managed by the same decision module; for example, tree

algorithms (here called Algo 1, Algo 2 and Algo 3) have been executed under

the supervision of the module A.1, before this one can resolve its sub-task and,

then, give focus back to parent module A.

3.4 Abstraction Layer

The proposed DSS faces each user query at different abstraction layers, according

to its complexity. In facts, it shows several views of a problem: from the top

abstraction layer (i.e. the problem itself) to the bottom abstraction layer, the

object layer (i.e. the workflow of tool/service instances).

Figure 3.7 shows how meta-reasoning levels, abstraction layers and workflow

timeline interacts each other during the building of a generic workflow. Rea-

soning starts with the reasoning of module A at highest abstraction layer that

manages the different tasks needed to fulfill the users request, identified as the

“Global Task”. The set of tasks is arranged according to the hierarchy of prob-

lems and sub-problems of minor complexity, and at the lowest abstraction layer

there are the specific algorithms and/or services that will be run in order to

solve a general complex problem. At each intermediate abstraction layer, it is

possible to see the same problem faced at the higher abstraction layer split in

operational tasks, that have been detected by the reasoning process as candidate

for solving a sub-problem; in other words, decision making modules suggest some

strategies/heuristics for problem solving, proposing a sequence of tasks that are
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Figure 3.7: An overview of the DSS 3D space. There is a workflow for each
abstraction layer, according to the user’s point of view.

visualized at one or more abstraction layers. At the lowest abstraction layer, the

system shows all the suggested algorithms and services to run, assisting the user

in their proper configuration.

The module A at the highest MRL is the main module, responsible for the

supervision of the entire process. Following the time axis, it gives the focus to

meta level A.1, which proposes, through its facts and rules, to launch Task A.1

and Task A.2 done by means of Algo 1 and Algo 2 (for Task A.1), and Algo 3

(for Task A.2). After that, the focus goes back to module A that pass it to

module A.2 and so on. This type of multi-layer workflow representation is the

actual output of our system.
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4

Case Study: Protein Complex

Extraction from Protein-Protein

Interaction Networks.

This Chapter contains a case study about extraction of protein complexes from

protein-protein interaction networks. A complete analysis of the biological issue

is done by means of the BORIS system, in order to show both how the hybrid

architecture faces a problem and how the software implementation interacts with

the user.

4.1 Biological Problem

Proteins represent the working molecules of a cell, but to fully understand cell

machinery, studying the functions of proteins is not enough. The biological ac-

tivity of a cell is not defined by the proteins functions per se (4), what it is really

important is the interactions among proteins.

A group of proteins that interact in order to regulate and support each other

for specific biological activities is called a protein complex. Protein complexes

are one of the functional modules of the cell, an example of this protein function

modules are RNA-polymerase and DNA-polymerase.

The concerted action of different functional modules is responsible of major

biological mechanisms of a cellular process such as DNA transcription, transla-
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tion, cell cycle control, and so on. Since a protein could have several binding

sites, each protein can belong to more than one complex and exhibit more than

one functionality. The basic element of these modules is the protein-protein inter-

action (PPI ). The figure 4.1 shows the relationship between the protein-protein

interaction network for the bacterium Mycoplasma pneumoniae and a whole-cell

tomogram. In the network are highlighted five large complexes and the lines that

show where some of these structures can be found in the tomogram. For exam-

ple ATP synthase still need to be located. The tomogram was kindly provided

by A. Frangakis (European Molecular Biology Laboratory (EMBL), Heidelberg,

Germany).

4.2 Bioinformatics Approach

A large amounts of PPI data have been identified for different biological species

by using high throughput proteomic technologies. Of course experimentalists can

take advantage of using different online databases containing a list of PPIs for

each species (DIP (1), MIPS (2), etc..), but unfortunately available datasets are

still incomplete and contain non-specific (false positive) interactions (3), in fact

only a few of interactions have been verified with small scale experiments (in

vitro) as real interaction with an emerging function.

Usually, in bioinformatics a collection of these interactions is modelled as

a directed graph, the protein-protein interaction network (PPIN ), where nodes

represent proteins and edges represent pairwise interactions: it allows us to exploit

graph theory methods and solutions.

The task of exploiting biologically relevant modules in PPINs represent an ac-

tive research area in bioinformatics, not only for cell understanding, but also for

new drugs developing; for example, several authors, as (5), are studying the mech-

anisms that regulate the evolutionary crossroads of p53 complex, responsible for

different aspects of animal life, in developing human cancer cells. Then, identify-

ing protein complexes with emerging function turns into extracting sub-networks

with some emerging properties. Because of the importance of isolating func-

tionally coordinated interactions, a lot of models, algorithms and strategies have

been introduced to extract interesting PPI subnetwork (soft-clustering, greedy
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Figure 4.1: Cell tomogram. This figure shows five large complexes inside the PPI
network and the corresponding location in the cell tomogram. Figure by Aloy et
al. Nature Reviews Molecular Cell Biology 7, 188197 (March 2006).
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heuristics, probabilistic approaches, etc..), but each of them has proper pros and

cons.

Since PPI dataset preprocessing plays a prominent role in PPI Network analy-

sis, several authors aim to increase the reliability of these data. Some preprocess-

ing strategies are aimed to eliminate false positive interactions (FP) from dataset

obtained by online DBs. For example (53) notices that the interactions not part

of dense subnetworks, are more likely to be interactions that are do not exist. To

identify these false positives, he combined two topological metrics named Cluster

Coefficient(54) and Centrality(55). Also (56) uses the same algorithms, but he

adopted a different methodology, integrating individual topological measures into

a combined measure by computing their geometrical mean. A different approach

to improve the quality of PPI datasets is adopted by (57), that attempts to detect

those interactions that are missed by large-scale experiments or, in other words,

he points to predict false negative using a topological analysis.

After having analysed some preprocessing techniques, it is possible to focus

on the main goal, that is finding meaningful groups of biological units. A number

of approaches have been proposed to solve the protein complex prediction prob-

lem,and a lot of them are based on clustering. A well know algorithm introduced

by (58), the Molecular Complex Detection Algorithm (MCODE ), makes use of

local graph properties and is aimed at finding densely connected regions in protein

interaction networks. Another algorithm based on local search is the Restricted

Neighbourhood Search Clustering Algorithm (RNSC ) developed by (59). This

algorithm searches for a low-cost clustering by first composing an initial random

clustering, then reducing the clustering cost by a near-optimal strategy. A dif-

ferent strategy is adopted by the Markov Clustering Algorithm (MCL)(60), that

divides the graph by means of flow simulation. In facts, it separates the graph

into different segments, with an iteration of simulated random walks within a

graph.

4.2.1 Graph-based methods for analysing PPI networks

Usually cellular networks can be modelled by mathematical graphs G(V, E), using

nodes v ∈ V to represent cellular components, and edges e ∈ E to represent their
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various types of interactions. In particular, protein-protein interaction networks

are conveniently represented as undirected graphs (61), where the nodes are pro-

teins and two nodes are connected by an undirected edge if the corresponding

proteins physically bind.

The representation of complex PPI networks as undirected graphs make it

possible to systematically investigate the topology and function of these networks

using well-understood graph-theoretical methods that can be used to predict the

structural and dynamical properties of the underlying network. Such predictions

can help at lower complexity level (local properties), to understand new biolog-

ical hypotheses regarding both the unexplored PPIs of the network (edges of

the graph) and the function of some proteins that are testable with subsequent

experimentation. Moreover, at higher complexity level (global properties), math-

ematical modelling also enables an iterative process of sub-network reconstruction

and complex detection, where model simulations and predictions are closely cou-

pled with new experiments chosen systematically to maximize their information

content for subsequent model adjustments (62). Thus, the most general level of

network analysis comes from global network measures, used for characterizing

and comparing the configuration of the nodes and their connecting edges. The

most known global property of a PPI network is related to its topology, in fact

the most of biological networks have several nodes with only a few connections

and few nodes highly connected; this property is called scale-free topology and

it is characterized by a power-law degree distribution that decays slower than

exponential. Others topological measures in proteomics are employed such as the

Degree Distribution (the degree of a node is the number of edges it participates in)

and the Clustering Coefficient (the number of edges connecting the neighbours

of the node divided by the maximum number of such edges), the Betweenness

Centrality (a measure of the centrality of a node and its influence over data flows

in the network), the Closeness Centrality (a measure of the closeness of a node,

on average, to all the other nodes): in fact they can efficiently capture the cellular

network organization.
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4.2.2 Algorithms and Tools for Complex Extraction

4.2.2.1 MCODE Algorihtm

The Molecular Complex Detection (MCODE) is a graph theoretic clustering al-

gorithm that detects densely connected regions in large PPI networks, in order to

detect molecular complexes. This algorithm was created in 2003 and thenceforth

it has been setting the benchmark for complex detection in PPI Networks. It is

based on vertex weighting by local neighborhood density and outward traversal

from a locally dense seed protein to isolate the dense regions according to given

parameters. Moreover it allows fine-tuning of clusters of interest without consid-

ering the rest of the network and allows examination of cluster interconnectivity,

which is relevant for protein networks.

The MCODE algorithm operates in three stages: (1) vertex weighting, (2)

complex prediction and (3) optionally postprocessing by means of certain con-

nectivity criteria. For this algorithm, the PPI Network will be modelled as a

undirected graph, where vertices are molecules and edges are molecular interac-

tions; this graph representation allows to apply some graph theoretic methods in

order to aid in analysis and solve biological problems. In facts, MCODE exploits

a vertex-weighting scheme based on the clustering coefficient to find locally dense

regions of a graph and a density measure based on the connectivity level of a

graph.

During the first stage, all vertices are weights with their local network density

according to properties of the vertex neighborhood. The second stage is the

core of the algorithm: it takes as input the previously modified vertex weighted

graph, seeds a complex with the highest weighted vertex and recursively includes

vertices in the complex whose weight is above a given threshold depending on a

given percentage away from the weight of the seed vertex. This process identifies

densest regions of the network; obviously the threshold parameter defines the

density of the resulting complex. The last stage basically deletes complexes that

do not contain at least a graph of a given minimum degree. Moreover, two

optional filters are included, such as ’fluff’ option (increasing the size of the

complex) and ’haircut’ option (removing the vertices that are singly connected

to the core complex). If both options are specified, fluff is run first, then haircut.
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4.2.2.2 RNSC Algorihtm

The Restricted Neighborhood Search Clustering algorithm (RNSC) partitions

the PPI network into clusters based on a cost function that is assigned to each

partitioning.

The algorithm is a cost-based local search algorithm, based loosely on the

tabu search meta-heuristic (Glover, 1989). In this case, the clustering is equiv-

alent to a partitioning of the network into some sets of proteins. The RNSC

efficiently searches the space of partitions and assign a cost of each set of pro-

teins. The algorithm searches using a simple integer-valued cost function as a

preprocessor before it searches using a more expressive real-valued cost function.

Usually, the algorithm is initialized with random values and it searches for a low-

cost clustering by first composing an initial random clustering, then iteratively

moving one protein from one cluster to another in a randomized fashion in order

to improve the clusterings cost and reach a near-optimal amount. To avoid local

minima, the algorithm uses diversification and multiple experiments, that shuffle

the clustering by occasionally dispersing the contents of a cluster at random, pre-

venting any possible cycling back to the previously explored partitioning. Notice

that, since the RNSC is randomized, different runs on the same input data will

result in different clusterings. Three additional criteria are used to achieve high

accuracy in predicting protein complexes, i.e. a maximum P-value for functional

homogeneity, a minimum density and a minimum size.

4.2.2.3 MCL Algorihtm

The Markov Cluster algorithm (MCL) is a fast and scalable unsupervised cluster

algorithm for PPI networks based on simulation of stochastic flow in graphs.

The algorithm simulates a flow process alternating two simple algebraic op-

erations on matrices; the structure of each cluster is bootstrapped via a flow

process that is inherently affected by any cluster structure present and the basic

algorithm does not include some procedural instructions for assembling, joining,

or splitting of protein groups. MCL is composed by two steps: the first step is

the expansion, which coincides with normal matrix multiplication: it models the

spreading out of flow, becoming more homogeneous; the second step is inflation,
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which is mathematically speaking a Hadamard power followed by a diagonal scal-

ing, such that the resulting matrix is stochastic again, i.e. the matrix elements on

each column correspond to probability values. The MCL process causes flow to

spread out within natural clusters and evaporate in different clusters. The only

algorithm parameter is the inflation; it models the contraction of flow, becoming

thicker in regions of higher current and thinner in regions of lower current. By

varying this parameter, clusterings on different scales of granularity can be found.

In the Markov Cluster algorithm, the number of clusters can not be specified in

advance.

4.2.2.4 Cytoscape Tool

Cytoscape is an open source bioinformatics software platform for the visualization

and analysis of biological network data. Cytoscape core distribution provides a

basic set of features for automated graph layout, integrating network data with

other data such as expression data and functional annotations, and setting visual

attributes according to node or edge attributes, establishing a powerful visual

mappings across these data. This tool is widely used in PPI Network analysis,

because it can visualize the topological relationship among the protein clusters

(or complexes) in the model of global interaction network, revealing which of the

clusters is highly connected to other clusters.

4.3 Experimental Dataset

In our experiments, among different available on-line databases of PPIs network,

we use the Database of Interacting Proteins (DIP). The input dataset used in

this scenario is a subset of Saccharomyces cerevisiae PPI-Network composed by

34 proteins and 90 interactions, as shown in Table 4.3. This table reports a list

of 90 PPIs: for each PPI is shown the uniprotKB ID of the first protein, the

uniprotKB ID of the second protein and the PID ID of the interaction between

the previous pair of proteins. We chose this very simple dataset because it has

been well studied by (66, 67) with small scale experiments (in vitro) at biological
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Figure 4.2: Projection of the system state over the hybrid architecture space at
the first step of the protein complex extraction scenario.

interaction level. DIP also provides a subset of PPIs curated manually by experts,

that are called core PPIs.

4.4 System Running

The experiment related to this scenario begins when the user asks the system to

extract protein complexes from a PPI-Network and inserts the chosen dataset:

from now on, for each decision step the system reach a new state.

At this moment, the experiment is projected into the BORIS 3D space, as

depicted in figure 4.2. The transitions from start position (when the system

state is at the point 0,0,0) to the current system state are highlighted in the

figure 4.2 with black arrows. The three axes representing the projection of the

experiment on the hybrid system, are configured as following: the projection

of the current state to the abstraction layer axis reaches the highest level of

abstraction, because the system get an overview to the “main goal”, i.e. the

protein complex extraction; the projection of the current state to the workflow

timeline axis is in resting position, because no process was developed and no task

was carried out; the projection of the current state to the decision making axis
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reach the highest meta-reasoning level, according to the decision making tree in

figure 4.3.

This figure shows decision making modules responsible for the specific prob-

lem; the sub-tree obtained by the entire BORIS knowledge base is arranged in

two meta-reasoning level, meta-reasoning level A (MRL A in the figure) and

meta-reasoning level A.1 (MRL A.1 in the figure) and it contain the following

modules:

• Complex Extraction, the parent module that gives directives to two chil-

dren modules at the bottom, that could be activate in order to deal with

more specific tasks;

• Complex Preprocessing, the child module that contains the reasoning

about strategies and tools able to face the PPI Network preprocessing phase;

• Complex Clustering, the child module in charge of the decision-making

activity regarding clustering strategies and tools.

In the figure are reported also some of activation rules (in the form of ”Object,

Attribute, Value”) belonging to the Complex Extraction module that are respon-

sible for giving focus to children module, i.e. these rules aim at shifting the

reasoning process to a lower meta-reasoning level.

In the bottom of the figure 4.3 is reported the related treemap representation,

where it is possible to see how the parent module includes its children modules,

as well as the reasoning at higher level contains the reasoning at lower level;

the system exploits these rules to suggest user which strategy could be adopted.

Finally, some guidelines have been extracted from papers cited in section 4.2,

translated into rules and placed into the appropriate module.

At the beginning of the experiment, Complex Extraction module is active:

the job of this module is to analyse input data, in order to get the properties

and parameters necessary to activate the proper rules; in this simple scenario, we

take into account only a few of input features.

First of all, the system compare the PPIs of dataset with a list of core inter-

actions, provided by DIP for the Saccharomyces cerevisiae species. In this case
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Figure 4.3: Decision making modules responsible for the protein complex problem
and related treemap representation. Some transitions for the activation of child
modules are reported.

67 of 90 interactions are reliable, because they are manually curated. Then the

system creates the undirected graph, the PPIN, and checks if resulting network

is scale-free, that is if its degree distribution follows a power law, at least asymp-

totically. In this scenario the PPIN is not scale-free. Since several authors(68)
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demonstrate that most networks within the cell approximate a scale-free topol-

ogy, then some of our PPIs (edges of the network) could be false positives or

new PPIs could be not revealed (false negatives) when DIP dataset was created.

For this reason, a rule that propose PPIN preprocessing, in order to change the

geometry of the network, is activated.

When the user follows the system advice, according to previous rule, the PPI

Complex Extraction module gives focus to the child module Complex Preprocess-

ing at lower meta-reasoning level, in order to deal with preprocessing task.

According to the analysis phase, the system knows the PPIN contains about

74% of core-interactions. Since has been estimated that approximately half the in-

teractions obtained from high-throughput proteomic techniques may be false pos-

itives (69, 70, 71), the rule suggesting to find and delete false positive PPIs is not

activated; in fact, cutting edges of PPIN could implicate some core-interactions

are deleted and moving core-interactions is lethal for biological networks. For

this reason, the rule suggesting to add new PPIs is activated.

When the user agrees to the advice, the system looking for tools implementing

this strategy. In this simple scenario, the knowledge-base contains only a tool

that can find and add some false negatives in PPIN: the Detect Defective Cliques

algorithm, created by (57). When the user accepts to run the proposed algorithm,

then the system informs that this algorithm requires, as input parameter, the

number of common interactions between two defective cliques, and suggests to

user a considerable value for the experiment.

When the user accepts the proposed value, the system executes the algo-

rithm, that finds a new potential FN interaction between the proteins P60010

and P33338. At this moment, the PPIN is composed by 34 proteins and 91 in-

teractions; the user could either continuing the experiment or executing another

preprocessing tool (in cascade or restarting the preprocessing phase).

A virtual caption of the system at this moment is shown in figure 4.4. In

the top of this figure it is possible to see the tree-dimensional space of hybrid

system and the decision making module tree. The projection of the system state

on the decision making axis shows that the notch is slided up, with respect to

figure 4.2, to indicates the system will make reasoning at MRL A.1, in particular

the complex preprocessing module is the active one. The red notch that identify
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Figure 4.4: Case study at the preprocessing phase. The projection of the state
of system over the tree axis is reported, the active module is highlighted and the
multi-level workflow representing the system output is shown.

the abstraction level is gone to the lowest layer, i.e. the object layer. Finally

the workflow timeline get a step ahead, because an instance of Detect Defective

Clique tool has been executed. On the top-right of the figure, the active module,

responsible for strategies and tools related to complex preprocessing is highlighted

with blue color.

In the bottom of the figure is reported a part of the BORIS GUI (see Ap-
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pendix A) that shows the workflow of the experiment. As explained in section

3, the workflow is projected inside the BORIS 3D-space; the executed process

is developed on tree different abstraction layers: at the highest layer that is the

main goal (Complex Clustering); at the intermediate abstraction layer that is

the complex preprocessing sub-goal (to add False Negatives) and at the lowest

abstraction layer, the object layer that is the instance of executed tool (detect

defective cliques). In this caption, there are also decision making modules used

till now. The Complex Extraction module, the biggest red box, contains the

whole experiment, while the Complex Preprocessing box has been activated only

for the task related to strategies and execution of the network preprocessing.

If the user wants to try another solution before continuing the experiment

and does not want to accept the system advices, he could choose follow the

strategy to find and delete false positive PPIs. In this case, the system saves

results obtained so far and proposes to run one of those algorithms that satisfy

the selected strategy. The user selects the Betweenness Centrality algorithm from

among three different tools available into the knowledge-base, because the system

indicated this is the algorithm with the lowest computational cost. The result of

Betweenness Centrality algorithm is a PPIN with 34 proteins, 88 interactions and

65 core-interactions; then the system advices the user to change strategy and/or

modify parameters because 2 core-interaction has been deleted.

Figure 4.5 shows the workflow the system built so far. In the figure it is

possible to see how PPI Complex Extraction module contains all the workflow

elements; it supervise the main problem at highest abstraction layer, giving the

other directives to Complex Preprocessing module. The latter is responsible of

some strategies for verifying and purifying the network and have knowledge about

tools used for data manipulation. At intermediate abstraction layer, the child

module contains the strategies used in this experiment: in facts the user tried

first to add new PPIs and then to delete false positive PPIs; obviously, both

these strategies have the same PPIN as input, according to the user choices. The

instance of tools used for processing data are shown at lower abstraction layer

and their order in the figure follows the implementation timeline.

Notice that some numbers with a yellow background are highlighted in the

workflow panel. They represent the available paths the workflow management

52



4.4 System Running

Figure 4.5: Selection of the preprocessing tool. After the execution of tree differ-
ent tools, the system proposes to the user the available outputs for data analysis.

system integrated in hybrid architecture offers to the user, that agree with the

tree decision states showed in the BORIS 3D-space. In facts, in this scenario, the

user can choose among three pathway: he could accept the system advice and

continue the workflow elaboration from the output number 2 (defined as “Path 2”

in the BORIS 3D-space); he could refuse the system advise and select the output

number 3 (defined as “Path 2” in the BORIS 3D-space); he could refuse the main

suggestion, i.e. the preprocessing strategy, by-passing the complex preprocessing
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module and continuing the workflow elaboration from the the output number 1,

i.e. the input file (defined as “Path 1” in the BORIS 3D-space);

When the user chooses the appropriate output to continue the experiment,

the PPI Complex Extraction module knows the data input has been preprocessed

and gives focus to the child Complex Clustering. Also the latter module knows

the preprocessing phase is done, thus it uses this information for suggesting an

appropriate clustering strategy. The authors (56, 72) demonstrated MCODE

is sensitive to noise in the PPIN and the preprocessing phase can increase the

algorithm performance. Other authors (63, 64) notice that MCL and RNSC

work almost in the same manner in terms of precision and recall, whether PPIN

are noisy or purified. Moreover MCODE algorithm has been widely used with

protein-protein interaction networks belonging to the species Saccharomyces cere-

visiae, so that the system can suggests standard parameters for this species. For

these reasons, the system proposes to use the aforementioned algorithm, based

on the local search analysis, for clustering. When the user accepts the advice

and confirm proposed parameters, the system runs the MCODE algorithm. Now

the user can either ending the experiment or executing another clustering tool,

having as input PPIN the output of the preprocessing phase. If the user wants to

try another tool, he can consider descriptions, pros and cons that are available for

each strategy and algorithm contained into the system. In this case, he notices

that MCL algorithm is described as the faster than the other algorithms and,

moreover, it does not appear so bad with dense graphs; then, the user chooses to

run MCL algorithm, based on the flow simulation analysis.

All the information about cited algorithms (i.e. MCODE, RNSC and MCL)

are included in knowledge base and represented as facts; each suggestion is ob-

tained by means of some rules. A comparative schema among the three algorithms

is reported in the table 4.1, in order to highlight some their characteristics.

Features reported in the first column, have been obtained by means of scientific

papers and humane expertise and represents some discriminant features that has

been used in order to generate some rules that will be, eventually, selected by

the rule-based engine. Notice that some boundary conditions could imply the

activation of more than one rule that satisfy the user request: in these cases, the
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Table 4.1: Some features of the three protein complex prediction algorithms:
RNSC, MCODE and MCL.

Comparative table among RNSC, MCODE and MCL

RNSC MCODE MCL

Use Local search approach Yes Yes No

Support multiple assignment of protein No Yes No

Support weighted edge No No Yes

Use a fast and scalable algorithm No No Yes

Is suitable for sparse graph Yes Yes No

High sensibility to FP & FN PPIs No Yes Yes

... ... ... ...

rule-based engine is responsible to compare all the active rules and, then, the one

with higher priority is executed before the other.

The final workflow is shown in Fig. 4.6. At the intermediate abstraction

layer are depicted all the strategies within the boundaries of their respective

decision modules, whereas at the lowest abstraction layer there are all the tools

implemented in this scenario. The above picture shows also the BORIS 3D-space;

once again it is possible to notice that both the red notch of the abstraction axis

is located in the lower position, since the MCL algorithm has been just executed

and the active decision module is the “Complex Clustering” module. For the next

step, the selection of clustering strategy, the behavior of the system is similar to

the preprocessing phase, in fact the user could choose between two clustering

algorithms.

Before concluding the experiment, the system proposes to visualize the out-

puts of MCODE and MCL algorithms with the well know Cytoscape tool (73).

Visualization of clustering results, obtained through Cytoscape, are shown in Fig.

4.7. Finally, the user can choose between two outputs shown in Table 4.2, ac-

cording to its knowledge about the protein complex domain and/or using external

evaluation parameters.
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Output 1

DDC preprocessing + MCODE Clustering

Cluster Proteins

1 P33338, Q12446, P32793

2 Q12134, P15891, P53933, P39743, P60010, P32793

3 P48562, Q06648, P19073

Output 2

DDC preprocessing + MCL Clustering

Cluster Proteins

1 P53933, P32944, P38274

2 P60010, P17555, P40450, P41832, Q03048, P38793,

P46680

3 P15891, P48232, Q12270, P32790, Q12134, P33338,

P39743, P32793, P25343, Q12168, P38266, P47129,

P40325, Q06604, P38837

4 P13517, Q06648

5 Q06440, Q03088

Table 4.2: System outputs. The implemented workflow gives 2 outputs: the
former with 3 complexes and the latter with 5 complexes.
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Figure 4.6: Workflow of the whole experiment. The system shows in a tree-like
structure all the strategies and algorithms have been used, according to abstraction
layers.
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(a) MCODE Clustering. Parameters: K-Core=2, Degree Cut-Off=2,
Node Score Cut-Off=0.2, Haircut= NO, Fluff= NO, Include Loops= NO

(b) MCL Clustering. Parameter: Inflation (Cluster Granularity)= 2.0

Figure 4.7: Clustering visualization with Cytoscape tool. In the top, the result
of MCODE clustering (3 protein complexes); in the bottom, the result of MCL
clustering (5 protein complexes).
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# Protein A Protein B PPI ID # Protein A Protein B PPI ID

1 P60010 P15891 DIP-10439E 46 Q12168 P39743 DIP-3900E

3 P48562 P15891 DIP-3499E 48 P25343 P39743 DIP-1780E

4 P32790 P15891 DIP-2452E 49 P39743 P39743 DIP-3901E

5 P17555 P15891 DIP-1139E 50 P33338 P39743 DIP-10013E

6 Q12134 P15891 DIP-3500E 51 P38266 P39743 DIP-3902E

7 P60010 P60010 DIP-1145E 52 P40325 P39743 DIP-3903E

8 P41832 P60010 DIP-1155E 53 P47129 P39743 DIP-3904E

9 Q03048 P60010 DIP-1157E 54 Q06604 P39743 DIP-10016E

10 Q12446 P60010 DIP-1158E 55 P32793 P39743 DIP-10017E

11 P07274 P60010 DIP-1143E 56 P53933 P32790 DIP-10020E

12 P33338 P60010 DIP-1175E 57 P39743 P32790 DIP-10011E

13 P60010 P46680 DIP-1140E 58 P17555 P32790 DIP-10018E

14 P17555 P46680 DIP-3502E 59 P40325 P32790 DIP-10019E

15 P38274 P53933 DIP-3683E 60 Q12134 P32790 DIP-11232E

16 P39743 P53933 DIP-3907E 61 Q06604 P32790 DIP-3964E

17 P33338 P53933 DIP-3966E 62 P15891 P33338 DIP-2453E

18 P32793 P53933 DIP-11282E 63 P48562 P33338 DIP-3965E

19 P19073 P41832 DIP-1154E 64 P33338 P33338 DIP-3144E

20 P13517 P28495 DIP-3546E 65 P60010 P17555 DIP-1144E

21 Q06648 P28495 DIP-3547E 66 Q03048 P17555 DIP-11822E

22 P48562 P19073 DIP-2580E 67 P39743 P17555 DIP-3029E

23 Q06648 P19073 DIP-2583E 68 P17555 P17555 DIP-1177E

24 Q06648 P48562 DIP-3639E 69 P38793 P17555 DIP-4014E

25 P46680 Q03048 DIP-1346E 70 Q06440 Q03088 DIP-3603E

26 P53933 Q03048 DIP-14613E 71 P53933 P32944 DIP-4050E

27 Q12446 Q03048 DIP-1161E 72 P40325 P40325 DIP-2272E

28 P53933 Q06440 DIP-3604E 73 P32793 P40325 DIP-2243E

29 Q03048 Q06440 DIP-11816E 74 Q12446 P38837 DIP-3700E

30 Q06440 Q06440 DIP-4127E 75 P47129 P47129 DIP-4186E

31 P38274 P38274 DIP-9812E 76 P32793 P47129 DIP-11280E

32 P32944 P38274 DIP-7787E 77 P39743 P48232 DIP-3906E

33 P13517 Q12446 DIP-1160E 78 P39743 Q12134 DIP-10015E

34 Q12446 Q12446 DIP-11092E 79 P33338 Q12134 DIP-3967E

35 P39743 Q12446 DIP-3699E 80 Q12134 Q12134 DIP-6160E

36 P32790 Q12446 DIP-1162E 81 P32793 Q12134 DIP-11283E

37 P33338 Q12446 DIP-15438E 82 Q12446 Q12270 DIP-3702E

38 P32793 Q12446 DIP-11095E 83 P32790 Q12270 DIP-11231E

39 P41832 P07274 DIP-1164E 84 P28495 Q06604 DIP-9981E

40 P40450 P07274 DIP-1166E 85 P32793 Q06604 DIP-11285E

41 P17555 P07274 DIP-3762E 86 P15891 P32793 DIP-11370E

42 P53933 P25343 DIP-4047E 87 Q12168 P32793 DIP-11277E

43 Q12446 P25343 DIP-4048E 88 P32790 P32793 DIP-2242E

44 P38266 P25343 DIP-1781E 89 P33338 P32793 DIP-3968E

45 P15891 P39743 DIP-1138E 90 Q12270 P32793 DIP-11284E

Table 4.3: There are 90 PPIs among 34 Proteins for the species Saccharomyces
cerevisiae. Each row contains two PPIs. For each PPI is shown the first protein
uniprotKB ID, the second protein uniprotKB ID and the interaction PID ID be-
tween the previous pair of proteins. The complete set of PPIs for this species is
available in Scere20081014.txt file, provided by PID online database(1).
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5

Materials & Methods

BORIS implementation is based on Java technology. The Java programming

language is a high-level object-oriented language used in every major industry

segment; it has a presence in a wide range of devices, computers, and networks.

Grace to its features, such as platform and location independence, portability,

OS independence, Java represents a good support for this project work.

The rest of this section aims to describe briefly the tools used to develop

BORIS: Jess, the rule-based engine, used to menage the knowledge base; Protege,

the powerful ontology editor, used for modeling the knowledge base; JGraphX

library, used for generate and visualize an interactive workflow; Eclipse Platform,

the integrated development environment that allows to bind all these technology

in an embedded Java environment.

Figure 5.1 shows the relations between adopted technologies: Java, Jess and

Protege. In addiction, the JGraphX library is highlighted, because it is respon-

sible of visualization and user interaction of process workflow.

5.1 Jess: the Rule Engine for the Java Platform

The BORIS DDS implements a Rule-Based system to manage the knowledge-

base. The rule based engine adopted is Jess (77), the Rule Engine for the Java

Platform. Jess supports the BORIS declarative approach, acting at the Decision

Making level in the tree-dimensional space. A declarative approach is well suited

above all for solving problems without a clear algorithm solution, like for instance
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Figure 5.1: BORIS implementation. The main programming language is Java;
the other languages, such as Jess and Protege, are also based on Java.

classification, prediction, diagnosis that have some heuristics or guidelines rather

than a predefined set of instructions.

A Rule-Based system can be defined as an intelligent system that is able to

make inferences from a set of initial knowledge, called facts, by means of rules,

representing reasoning activity. Rules are organized according to the paradigm

predicate-action or premises-conclusion; they code typically the expertise, the

skill and the heuristics typical of human experts.

Both the BORIS framework and Jess are written totally in Java: for this

reason they can be easily integrated. Jess inference engine uses RETE algorithm

(78) as pattern matcher. The agenda works with two different conflict resolution

strategies: depth and breadth. With depth strategy, the default one, the most

recent activated rules are fired first; with breadth strategy, rules are fired accord-
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ing to their activation order: this way the most activated rules fire last. In both

strategies firing order can be modified changing rules priority.

As well as the decision making process, Jess’ working memory can be organized

into modules: each module has its own set of facts and rules. Only one module

a time can be active, or in other words can have the “focus”, and only the rules

belonging to the active module can be fired. Each module can receive the focus

from a “parent” module, when a shift action is fired. The entire mechanism is

managed by a stack, with the active module on the top and the other modules

below, according to the order of the shift of focus. This way, when a module

ends its job, the focus is automatically returned to last active module. For these

reasons, each decision module of hybrid architecture is implemented as a Jess

module, where all the strategies and the heuristics related to a specific tasks, are

coded as facts and the reasoning about the problem domain is coded as rules.

Using Jess, it is possible to implement the different meta-level reasoners through

a set of decision-making modules. For example, high level decision modules make

a reason at meta-levels, with a set of rules for deciding what are the main phases

to solve a request, and then it give the focus to lower level decision modules that

is responsible to select and suggest a specific strategy.

5.1.1 Architecture of Jess

Main components of Jess are the Knowledge-Base (KB) and the inference engine.

KB contains both the pieces of information, called facts, and some constraints

on the values of facts’ attributes. Facts can be seen as tables in a relational

database, where each element has a set of attributes and relationships with other

elements of the database; the set of all facts is also known as working memory.

The inference engine is made of three elements:

1. The Pattern Matcher is an algorithm that is able to check the KB and

realize what are the rules that can be activated according to the content of

working memory. It is important to remember that activated rules are not

immediately executed, or “fired”.
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2. The Agenda contains all activated rules. It is responsible for the scheduling

of the rules to be fired. The agenda can resolve execution conflicts, that

means it can decide in which order rules activated at the same time should

be fired, using a conflict strategy.

3. The Execution Engine can actually execute the right part of the rules.

This way it can produce new knowledge, in the sense of new facts to be

added to the KB; moreover, it can invoke other programming languages

that define what happen when that rule fires; it can call external algorithm

and tools whose results can, at last, update the KB.

The architecture of a typical rule-based system is shows in figure 5.2. The Jess

inference engine works in a reasoning loop; first of all, the pattern matcher checks

Figure 5.2: Jess Architecture is based on the architecture of a typical rule-based
system.
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the KB for activated rules and stores them into the agenda; then the agenda

decides the firing scheduling of the rules; finally the execution engine runs the

right part of rules, obtaining eventually new information that updates KB and

that can trigger the activation of other rules. The cycle restarts until the working

memory is empty.

5.2 Protege Ontology Editor

The BORIS knowledge base have been modeled using one of the largest adopted

tool for building ontologies, that is Protege’ (74, 75).

Proteg is useful for represent the knowledge used by the proposed architecture,

because it implements a methodology for creating ontologies based on declarative

knowledge representation systems.

There are several features that distinguish Protg from other knowledge base

editing tools. In the following a list of some characteristics:

• It has an intuitive and easy-to-use graphical user interface.

• It is scalable, in facts Proteg’s database back-end loads frames only on

demand and uses caching to free up memory when needed.

• It has an extensible plug-in architecture. For example some plug-ins tailored

for a some domain and task are implemented, such as small user-interface

components or custom back-end plug-ins that use storage mechanisms of

the host system.

The figure 5.3 shows a Proteg view of ontology representation of the BORIS

knowledge base related to the protein complex extraction. In this figure it is pos-

sible to see the three main branch of the ontology for PPI analysis: Proteomics

(Domain), Graph Analysis (Tool) and Protein Complex Extraction (Task).

The last one contains information (facts and rules) about the decision making

module “Complex Extraction” representing the root (at the highest meta-level)

in decision making tree used into the section 4.
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Figure 5.3: Proteg representation of the BORIS knowledge base related to PPI
analysis. The tree main concepts for this scenario are: “Graph Analysis”, “Pro-
teomic” and “Complex Extraction”.

5.3 JGraphX Library

JGraphX is the Java Swing library version of mxGraph (82), a product family of

libraries, written in a variety of technologies, that provide features aimed at appli-

cations that display interactive diagrams and graphs. Development of JGraphX

began as the diploma thesis of Gaudenz Alder at the Swiss Federal Institute of

Technology, Zurich and it became a privately owned company in the U.K. in 2000

by David Benson.

The core client functionality of JGraphX is a Java compilable library that

describes, displays and interacts with diagrams as part of your larger Java Swing
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application. JGraphX is primarily designed for use in a desktop environment,

although Java does have web enabling features making it possible to deploy

JGraphX in web environment.

Among the amount of applications provided by this library, the most impor-

tant for the implementation of BORIS hybrid architecture are the functionality

related to process diagrams, workflow visualization and flowcharts; in facts the

main scope of JGraphX library is its visualization functionality and the interac-

tion with the graph model through the web application GUI. JGraphX supports

dragging and cloning cells, re-sizing and re-shaping, connecting and disconnect-

ing, drag and dropping from external sources, editing cell labels in-place and so

on.

The figure 5.4 shows an example of JGraphX visualization.

Figure 5.4: JGraphX: an example of the workflow layout. Figure from “JGraphX
User Manual. Copyright (c) David Benson, Gaudenz Alder 2006-2010.”

5.4 Eclipse Platform

Eclipse is a multi-platform of software development that is mainly composed by

an integrated development environment (a small run-time kernel) and an exten-

sible plug-in system (83). The Eclipse Project was originally created by IBM

in November 2001 and in January 2004 was created the Eclipse Foundation, an

independent not-for-profit corporation that permise the foundation of an open
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source community, whose projects are focused on building an open development

platform comprised of extensible frameworks, tools and runtimes for building,

deploying and managing software across the life-cycle.

The most of the environment is written in Java and, at the beginning, it

allowed to develop applications in Java, subsequently by means of various plug-

ins, other programming languages have been included. Eclipse integrates the

Eclipse Modeling Framework (EMF), that is a modeling framework and code

generation facility for building tools and other applications based on a structured

data model.

The most important thing for this work is there are, among all the available

plug-ins, two environment that integrate the afore mentionate tools, i.e. the Jess

Developer’s Environment (JessDE) and the Protege Frame Editor. By means of

these plug-ins, the BORIS hybrid architecture has been provided by the knowl-

edge base and the decision making modules.
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Conclusions and Future Works

In this PhD thesis a new hybrid architecture for decision support system in bioin-

formatics has been introduced, the presented work has been developed as a part

of the “Bioinformatics Organized Resources - an Intelligent System” (BORIS)

project, belonging to the research group “Bioinformatica” of the CNR.

The proposed hybrid architecture has been designed in order to include some

features of three different approaches (procedural, declarative and process ap-

proach): this way the system can offer to the user different viewpoints on the

same problem. In facts, a new 3D-space for decision support systems has been

defined, composed by abstraction layer axis, decision making axis and work-

flow timeline axis: the overall vision of the problem, in terms of abstraction of

tasks/sub-tasks, decision-making process and the workflow building, makes the

proposed system an ideal joint between classical decision support systems and

more recent work?ow management systems.

The major advantages of this work are the capability of facing a problem at

different abstraction layers and reasoning levels, handling a workflow management

with expertise that execute tools/services and exploiting a modular organization

for strategies/heuristics.

In addiction a novel approach for the extraction of protein complexes (respon-

sible for many biological mechanism of a cellular process) based on the proposed

DSS has been presented. With a knowledge base created by more than 50 sci-

entific papers about protein-protein interaction network, the system is able to
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suggest the most useful strategies and algorithms that are suitable for the prob-

lem and, moreover, helps him providing the description, pros and cons of each

available technique for the complex clustering problem. Finally the system also

runs the selected tools, showing intermediate results and, eventually, suggesting

to the user what are appropriate values of parameters for the specific situation.

During the experiment the system builds a workflow of executed operations in

real-time, allowing the user to see what operations are being executed, having

the chance of backtracking for exploring alternative paths.

The next step of the entire BORS project will be the migration of the system

from the desktop platform to a web based client application.

This way, it will be available to the whole bioinformatics community, that

could both use the system and improve its performance and features; in facts

new knowledge could be introduced by enabled user in order to increase the

capability of the system in terms of both strategies and tools. For this reasons,

the hybrid architecture will be provided with formal guidelines that will allow

developers to organize its problem in different abstraction layers and to structure

the knowledge about the specific problem into a set of decision making modules

that will be located into proper meta-reasoning levels. Moreover, all the new

implemented decision modules could be integrate with old available modules,

such as a node in the reasoning tree.

Make the hybrid architecture able to handle the new knowledge and expertise

in a very simple way is a main goal of next BORIS generation.
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Appendix A

7.1 BORIS User Interface

The software interface between the DSS and the user represents a critical point

that often determines whether an application will be successful or will be hard

to use.

Sever authors, among which (23, 51), have examined the characteristics that

make a GUI the winning horse of a DSS. According to guidelines suggested to

previous authors, the BORIS GUI is provided by an aesthetic and minimalist

interface design in order to reduce information load. It has a layout balanced and

proportional to the information it can visualize about the decision making process

and workflow management. In addiction the UI offers informative feedback about

system status, allowing the user both to understand control mechanisms behind

the process flow and to extend its expertise about a problem.

The GUI also offers the possibility to load and save generated workflow, in

order to allow the user to solve a problem at different moments or to exploit a

previously done project as reference for further analysis and reporting.

A caption of the BORIS GUI during the execution of an experiment is reported

in figure 7.1. The GUI is composed by four main components:

• Profile Panel

• Workflow Panel
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• Strategy Panel

• System Log Panel

The functionality of each component is analyzed in the following subsections.

Figure 7.1: An overview of the entire program. It is composed by four main
panels: user can interact with all of them.

7.1.1 Profile Panel

The panel, locate in the top of the figure 7.1, allows the user to choose one of

available profiles that will be taken into account during decision making process.

It provide an accelerator for users, in facts setting of user profile imply that the

user can reduce the number of interactions and to increase the pace of interaction.

71

10_appendixA/figures/overview.eps


7.1 BORIS User Interface

This way the system can respond to the differing needs of its users, speeding up

the interaction for the expert user.

A list of available profiles, considered by the system in the choice of strategies

and tools for the selected problem, is shown in the following:

1. Quick Analysis: the system aims to select tools with a low computational

complexity algorithm;

2. Deep Analysis: the system prefers the most accurate tools, without time

or resources constraints;

3. Low resources: the system prefers tools that require low resources to run.

4. Only local services: the system prefers the execution of local tools and

software.

7.1.2 Workflow Panel

This panel shows the building of the workflow. As shown in figure 7.1, it is located

in the center of the application with a large percentage of the user interface,

because it maintains the most of information content of the system.

It visualizes the hierarchy of tasks and subtasks used to solve the problem orga-

nized in different abstraction layers according to their complexity level. Strategies

and corresponding algorithms are shown in rectangular boxes. Reasoning levels

are depicted as pink bounding boxes. This way, the sequences of actions/steps are

organized into groups according to tasks, decision modules or abstraction layer;

each group contains informative feedback that allow the user to run a proper set

of operations.

Right-clicking any box of the workflow, a context-sensitive pop-up menu shows

allowed operations, such as saving results, showing results (when possible) or

using external tools, i.e. Cytoscape, to further process the results. In addiction, it

permits easy reversal of user actions, providing the chance to restart the reasoning

from any point inside the workflow in order to explore alternative paths, if any,

or to select an algorithm block for changing input parameters and re-run it.
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7.1.3 Strategy Panel

Perhaps the Strategy Panel, depicted in the figure 7.2, is the most important

panel of the GUI, because it displays the user perspective of the current state of

decision making process; In other words, this panel reports the operation flow for

the user and it is responsible for the principal interaction with the user.

It can contain a list of suggested strategies and algorithms, that satisfy the

reasoning process of the hybrid architecture. It shows a general description of the

strategy/algorithm proposed by the system, a list of pros related to the evolution

of workflow, some cons (if there are) and a list of bibliographic references related

to the selected strategy/algorithm.

Moreover, if the reasoning process leads the workflow to some possible forks,

this panel shows all the alternative pathways and get the user to make a decision

showing him all the information about the current context.

Each user decision is confirmed with the button “continue”, showed in the

bottom of the figure 7.2; if the user want to change decision on workflow design,

he can exploit the back-tracking feature by means of “back” button, restoring the

state of decision making process at previous step.

Figure 7.2: BORIS Strategy Panel. It suggests strategies/tools for a specific task
and it offers information about them.

7.1.4 System Log

The System Log panel contains events that are logged by the system compo-

nents. These events are obtained by the user-BORIS interaction, and contain
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information about operations, intermediate process, experiments and more.

The BORIS’s system log is a formatted text with no interactive features; the text

is represented as the following:

• System Strategy: red colour and boldface style. It reports each active rule

that has been accepted by the user by means of “continue” button in the

Strategy Panel. Typically, it instances a new task in the Workflow Panel.

• Reasoning Process: blue colour and normal style. It shows the reasoning

behind a rule and gives the user some suggestions related to strategy/tool

has been executed.

• Execution Result: black colour and normal style. It displays result of

external processes, such as algorithms used by selected tools, outputs of

web services, and so on.

Figure 7.3: BORIS System Log panel. It reports information about executed
operations, intermediate process, experiments and more.
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