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Commonly Used Abbreviations

Stochastic Differential Equation - SDE
Fokker-Planck equation - FPE

Fractional Fokker-Planck equation - FFPE
Probability Density Functions - PDF's

Mean First Passage Time - MFPT

Nonlinear Relaxation Time - NLRT

Noise Enhanced Stability - NES

Stochastic Resonance - SR

Signal-to-Noise Ratio - SNR

Spectral Power Amplification - SPA (in Chapter 2)
Single Path Approximation - SPA (in Chapter 3)
Stimulated Raman Adiabatic Passage - STIRAP
Discrete Variable Representation - DVR
Feynman-Vernon functional - FV functional
Non-Interacting Cluster Approximation - NICA
Rotating-Wave Approximation - RWA
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Introduction

In the last two decades, complexity is bringing biology together with mathemat-
ics, engineering, computer science and physics in an interdisciplinary interest. The
complexity is one of the most exciting and fast growing branches of modern science.
This research area is at the forefront in interdisciplinary research and it has an in-
creasingly important impact on a variety of applied subjects ranging from the study
of turbulence and the behavior of the weather, through the investigation of electri-
cal and mechanical oscillations in macroscopic system physics and the emergence of
ordered structures in condensed matter physics, to the physics of nano-structures
and nano-devices, and to the analysis of biological and economic phenomena. Com-
plex system behavior cannot be predicted by standard deterministic linear equations
and their properties are not fully explained by an understanding of its interacting
components parts. These systems can be modelled as open systems in which the
interaction between the components is nonlinear and the interaction with the envi-
ronment is noisy. This intrinsic nonlinearity can give rise to the complex behavior of
the system, which becomes very sensitive to initial conditions, various deterministic
external perturbations, and to fluctuations always present in nature. The perfor-
mance of any complex system depends on a correct information exchange between its
components. In most natural systems, a signal carrying informations is often mixed
with noise. The comprehension of noise role in the dynamics of nonlinear systems
plays a key aspect in the efforts devoted to understand and model so-called complex
systems. Understanding of biological systems indeed may be enhanced by analysis
of their complex nature. One approach to understanding the complexity is to start
with a conceptually simple view of the system and add details that introduce new
levels of complexity. In general the effects of small perturbations and noise, which is

ubiquitous in real systems, can be quite difficult to predict and often yield counterin-



tuitive behavior. Transport in ion-channels, synchronization/coherence in biological
extended systems, virus propagation, forecasting protocols are just a few examples
that illustrate the subtle beneficial synergy between noise and nonlinearity. Com-
plex systems may have extremely rich coherent dynamics due to the environmental
noise and, in specific points of their phase space, are extremely sensitive to external
perturbations.

Usually the contamination by the noise makes it difficult to detect signals, but
in some cases noise induced effects known as stochastic resonance, resonant acti-
vation and noise enhanced stability improve conditions for signal detection when
noise and system parameters become optimal [1]-[4]. Moreover the noise through its
interaction with the nonlinearity of the system can give rise to new phenomena such
as noise induced transitions [5] noise delayed extinction, temporal oscillations [6]
and spatial patterns [7]. The combined action of external deterministic or random
driving forces and the environmental noise can given rise to new phenomena with a
rich scenario of far-from equilibrium effects. To describe complex systems, it is in
fact fundamental to understand the interplay between noise, periodic and random
driving forces and the intrinsic nonlinearity of the system itself [8].

Two kinds of motions can easily be observed in Nature: smooth, regular and
quasi-regular motion, like Newtonian motion of planets, and random, highly irregu-
lar motion, like Brownian motion of small specks of dust in the air. The first kind of
motion can be predicted and consequently, described in the frame of deterministic
approach. The second one demands the statistical approach [9]. The idea of an ef-
fective stochastic motion of a particle in a surrounding heat bath has been a triumph
of statistical approach of complex systems. The description of Brownian motion in
Einstein’s work of 1905 relies on the assumption of the existence of a time-interval
7 , such that the particle’s motion during different 7-intervals is independent. The
coarse-grained version of this motion leads then to the known diffusion equation.
Classical Brownian motion of a particle is distinguished by the linear growth of the

mean-square displacement of its position coordinate x,
(2%(t)) o t.

However, in many cases the Einstein’s assumption is violated, and many systems

exhibit deviations from the linear time dependence. Often, a nonlinear scaling of



the form
<x2(t)> o t°

is observed. In the last 15 years, this type of diffusion, named anomalous diffusion
is being used to describe several phenomena observed in complex systems. From a
probability theory point view, such behavior corresponds to the limiting distribution
of the sum of positive, independent and identically distributed random variables [10].
The noise source generated by this random variable give rises to the Lévy motion,
characterized by Lévy flights, that is extremely long jumps. The length of these
jumps is distributed according to a Lévy stable statistics with a power law tail,
divergence of the second moment and heavy tails. This peculiar property strongly
contradicts the ordinary Brownian motion, for which all the moments of the particle
coordinate are finite. The presence of anomalous diffusion can be explained as a
deviation of the real statistics of fluctuations from the Gaussian law, giving rise to
the generalization of the central limit theorem [11]. Lévy flights have been observed
in many physical, natural and social complex systems, where scale-invariance phe-
nomena take place or can be suspected [12]-[15]. Recently noise-induced ordering
phenomena, such as dynamic hysteresis, stochastic resonance, resonant activation,
and double stochastic resonance phenomenon were observed in a bistable system,
in the presence of Lévy noise [16]-[19]. Of course, anomalous diffusion has a lot of
peculiarities different from those observed in normal Brownian motion [20]. The
main difference from ordinary diffusion consists in replacing the white Gaussian
noise source in the underlying Langevin equation with a Lévy stable noise.
Another important problem within complex systems is the matastability together
with nonequilibrium dynamics. The metastable state is a local minimum in the
potential profile of the physical system considered. The action on the system of
deterministic and/or stochastic driving forces produces typical scenario of out of
equilibrium dynamics. The presence of the noise source in the escape of the system
from a matastable state through a potential barrier could increase the crossing
time and then the lifetime of the system in the metastable state [3, 4]. The first
scientist who studied this problem was Kramers [21]. He proposed to model the
chemical reaction kinetics as the diffusion of a Brownian particle, initially located
in a potential well, across a potential barrier of finite height. Kramers’s theory has

been applied to a much more general range of processes associated with the barrier



crossing of a physical entity experiencing random kicks fueled by its contact to a
thermal bath [22]-[24]. If the random processes in complex systems violate the rules
of Brownian motion, the Kramer’s theory cannot to be applied [25]-[27].

In standard quantum mechanics, instead, the systems mainly deals with closed
physical systems that can be considered isolated from any external environment, the
latter being generically a larger system consisting of (infinitely) many degrees of free-
dom. The time-evolution of closed systems is described by one-parameter groups of
unitary operators embodying the reversible character of the dynamics. On the con-
trary, when a system interacts with an environment in a non-negligible way, it must
be treated as an open quantum system, namely as a subsystem embedded within
environment, exchanging with it energy and entropy, and whose time-evolution is ir-
reversible [28]-[38]. In general, the time-evolution of the system is inextricably linked
to that of the environment. The compound system plus environment is closed and
develops reversibly in time; however, the global time-evolution rarely permits the
extraction of a meaningful dynamics for the system alone. This can be done if
the coupling among subsystem and environment is sufficiently weak, in which case
physically plausible approximations lead to reduced dynamics that involve only the
degrees of freedom of the system and are generated by master equations. Such
reduced dynamics provide effective descriptions of how the environment affects the
time-evolution of the system which, on time-scales that are specific of the given phys-
ical contexts, typically incorporates dissipative and noisy effects. Classical Brownian
motion indicates that, when the typical time-scale of the system is much larger than
the time-scale governing the decay of time-correlations of the environment, then
the environment can be described as an effective source of damping and noise. In
the framework of open quantum systems, this possibility is technically implemented
either by letting the typical variation time of the system, 75, go to infinity, while
the environment correlation time 7x stays finite, or by letting 75 go to zero, while
Tg stays finite [39]. As we shall see, these two regimes give rise to two different pro-
cedures to arrive at a reduced dynamics: the so-called weak coupling and singular
coupling limits.

Since their first appearance, open quantum systems have been providing models
of non-equilibrium quantum systems in diverse fields as chemical-physics, quantum

optics and magnetic resonance. Recently, the rapid development of the theory of



quantum information, communication and computation [40]-[42] has revived the
interest in open quantum systems in relations to their decoherence properties, but
also in their capacity of creating entanglement in multi-partite systems immersed
in certain environments. The observation of coherent dynamics in nanodevices is
an important achievement towards quantum control in solid state devices. In the
last decade superconducting nanocircuits exhibiting the dynamics of single artificial
atoms [43]-[45], two coupled artificial atoms [46, 47| and artificial atoms coupled
to electromagnetic resonators [48, 49] have been demonstrated. This development
opens new perspectives to study quantum phenomena in solid-state devices that
traditionally have been part of quantum optics [50].

The typical open quantum systems in these contexts are n-level systems, like
atoms, photons or neutrons embedded in optical cavities or heat baths consisting of
bosonic or fermionic degrees of freedom.

Focus of this thesis is to analyze the role of the environmental noise in classical
and quantum systems. We focus on two classical systems and two quantum ones. In
particular, we want to pay attention on the role of Lévy noise in a metastable state
and in populations dynamics [51]-[53]. We investigate the effects of low-frequency
quantum noise on a particular nanodevice (the Quantronium) and the role of noise
in an asymmetric quantum bistable system interacting with thermal bath [54, 55].

In the first classical system, we investigate the barrier crossing event in the
presence of Lévy noise, by focusing on the nonlinear relaxation time (NLRT) for
a metastable cubic potential. In the second one, we start to consider two com-
peting species subject to multiplicative a-stable Lévy noise. Studying the species
dynamics, which is characterized by two different regimes, exclusion of one species
and coexistence of both, and analysing the role of the Lévy noise sources, we find
quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of
the species.

The population dynamics is that part of life science that studies the space-time
evolution of certain variables describing the population itself (eg size, age, weight).
All those biological and environmental processes that influence this development
are of paramount importance. Historically this area was of interest in mathematical
biology, just think of the Gompertz, Verhulst and Malthusian models, or the famous
Lotka and Volterra equations [56, 57]. Today, all these models are widely used in



various researche fields. Among the most important are the epidemiological ones,
for the study of viral transmission [58] and the zoological concerning migration and
foraging strategies [59].

Concerning the two open quantum systems, first we propose a way to analyze
low frequency noise in terms of fictitious correlated fluctuations of external parame-
ters, showing that optimizing the trade-off between efficient coupling and protection
against noise may allow to observe coherent population transfer in a particular nano-
device, namely the Quantronium [44, 60]. Recent experiments have demonstrated
coherent phenomena in three-level systems based on superconducting nanocircuits.
This opens the possibility to detect Stimulated Raman Adiabatic Passage (STI-
RAP) [50] in artificial atoms.

Subsequently, we study the relaxation time of an open quantum system with
asymmetric bistable potential and interacting with a thermal reservoir. We obtain
the time evolution of the population distributions in both energy and position eigen-
states of the system, for different values of the coupling strength with the thermal
bath.

The plan of this thesis is as follows. In chapter 1 we give a very short introduction
to stochastic processes and Lévy processes in a mathematical framework. In chapter
2, we analize the effect of Lévy noise in a barrier crossing problem and in a population
dynamics model. Finally, in chapter 3 we investigate the role of the environmental

noise in two open quantum systems.



Chapter 1

Stochastic Processes and Lévy

Processes

In this chapter we introduce the basic mathematical concepts to address the afore-
mentioned research topics, namely the stochastic processes, the Wiener and the Lévy

processes.

1.1 Stochastic Processes

The triple (€2, F, P) is called a probability space if € is a set, F is a family of subset
of 2 such that:

G) e F

(ii) F € F = F¢ € F, where F¢ is the complement of F

(ii1) A Ay,...e F=> A=A eF;

=0

and the probability measure P is a function P : F — [0, 1] such that:
(iv) P(0)=0, P(Q)=1

(v) if Ay, Ay, .. € F and {A;}.°, is disjoint then P <U Ai> =Y P(4).
i=1 i=1
In this given probability space (2, F, P), a random variable X is a function

X : Q) — R". Every random variable induces a probability measure ux on B C R"”
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(Borel set), defined by

and called the distribution of X.

A stochastic process is a parametrized collection of random variables

{Xi}teT

defined on a probability space (€2, F, P) and assuming values in R". The parameter
space T' is usually the half-line [0; +00), but it may also be an interval [a;b]. Note

that for each t € T" fixed we have a random variable
w— Xi(w); w € Q.
On the other hand, fixing w € ) we can consider the function
t— Xy(w); teT

which is called a path of X;. It is simple for the intuition to imagine ¢ as ”time”
and each w as an individual ”particle” (”experiment”). Within picture X;(w) would
represent the position (result) at time ¢ of the particle (experiment) w. The finite-
dimensional distributions of the stochastic process X = X;cr are the measures
fiy..t, defined on R™ k' =1,2 ... by

/’Ltl,---,tk(Fl X FQ X X Fk) = P[th, e ',th]; t; € T. (].].)

Here Fi,..., F} denote Borel sets in R"™. The family of all finite-dimensional
distributions determine many important properties of the process X, therefore, given
a family of probability measures in R™ is important to be able to construct a

corresponding stochastic process (see the Kolmogorov’s extension theorem [61]).

1.1.1 Wiener process

A landmark example of stochastic process is that describing the Brownian motion.
In 1828 the Scottish botanist Robert Brown observed that pollen grains suspended in
liquid performed an irregular motion. The motion was later explained by the random
collisions with the molecules of the liquid. To describe the motion mathematically it

is natural to use the concept of stochastic process X;(w), interpreted as the position
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at time ¢ of the pollen grain w. In this case we have 7,y € R30<t; <ty <--- <t

and the measure (1.1) becomes

frrn(F X By o x ) = | plts,le — 1))
FixFax---XFy
p(ta — t1, |21 — @) - p(th — tho1, [2h-1 — @k|)dw1dy - - - diy (1.2)

where the distribution p(t, |z — y|) is a Gaussian:

2
plt o = o) = 2y exp (<220,

Here, note that the standard deviation of the distribution is v/¢. Indeed all the
processes described by this distribution are characteristic of so-called normal or
Gaussian or Brownian diffusion. Moreover, from Eq. (1.2) we deduce that all the
increment |z; — ;41| are independent each other. If we require that the trajectory
is continuous in R? (see Kolmogorov’s continuity theorem [61]) we have constructed
the so-called Wiener process (Wy)i>o. A very important property of the Wiener

process is that its trajectories are not differentiable at any point for ¢t > 0 [62].

1.2 Lévy Processes and Lévy Distributions

Two important properties are intrinsic to the homogeneous Brownian motion: the
diffusion packet initially concentrated at a point takes later the Gaussian form,
whose width grows in time as t'/2. This kind of diffusion was called the normal dif-
fusion. In 1926 Richardson [63] published the article where he presented empirical
data being in contradiction with the normal diffusion: the size A of an admixture
cloud in a turbulent atmosphere grows in time proportionally to t3/2, that is much
faster than in the normal case (+'/2). This turbulent diffusion was the first example

of superdiffusion processes, when A o< t7 with v > 1/2.

A random process { X (t)}+>0 is called a Markovian process, if for any n > 1 and
hh <th<...<t,<t=PX{) <z|X(t1) =21,....,X(t;) = x,) = P(X(t) <
x| X (t,) = x,). The Markovian property is interpreted as independence of future
from the past for the known present.

A random process with independent increments is called homogeneous or station-
ary, if the random variables X (¢t + 7) — X(¢) = AX have distributions which are

9



independent of t:P(AX < z) = F(z, 7).
{X(t)}: > 0is a Lévy process if, for every t,7 > 0, the increment X (¢t + 7) — X ()
is independent of the process {X(t')}o<r<¢ and has the same law as X (7). In
particular, X (0) = 0.

We will denote the Lévy process L(t). As it follows from the evident decompo-

sition [9]

o= () ()£ ()] =+ [ () -2 (5]

the random variable L(¢) can be divided into the sum of an arbitrary number of inde-

pendent and identically distributed random variables. In other words, the probabil-
ity distribution of L(t) belongs to the class of infinitely divisible distributions [10, 64].
Hence, we can express the second characteristics, i.e. the logarithm of characteristic

function of the random variable L(t) in the Lévy-Khinchine form [65]

In P(k,t) = In(e*F®)

+oo
= t/ (e** —1 —ik sinaj)&f)da:, (1.3)
—00 T

¢(k, 1)

where p(z) > 0 is the canonical measure density. Note that the last term in the
bracket, —tksinz, serves to ensure the convergence of the integral and can be omitted

if the integral converges itself. Choosing

p(x) = 6(x)
and taking into account that
) k? 2
" — 1 —jksing = — ;, x — 0,

we arrive at the normalized Brownian motion (Wiener process) with characteristic

function
~ tk?

Lévy processes that have the scale invariant property are called Lévy flights. The
distributions that describe these processes are called stable distributions and can be

indexed via the parameter a [11, 65].

10



The random process {Y (t)}:+>0 is a stable process if for any positive a,b € R
there are positive number ¢, d € R, such that the independent copies Y7, Y5 of Y are
in relation

aY; +bYy =cY +d.

The symbol = means the equality of distributions of the corresponding random
variables. Moreover if d = 0, the process Y is strictly stable. The random process
{L*P(t)}150 is called a-stable Lévy motion with parameters 0 < o < 2, —1 <
6 <1,if

(i) LP)(0) = 0 almost certainly;
(ii) L@P (t)t>0 is a process with independent increments;
(iii) L@ (t 1) — L@ (t) = 71/2Y@P) at any t and 7 (with Y stable process).

The condition
L(aw@) (t) — Tl/aY(avﬁ)

is the self-similarity condition.

The characteristic function PP (k) of the strictly stable probability distribution
PP (), with parameters a and (3, is given by the formula [11],[66]-[68]

ﬁ(a’ﬁ)(k _ { exp {—|k]0‘ [1 — ifsign(k) tan %” a# 1, (1.5)

exp {—[k| [1 + iBsign(k)2In [k|]} o =1,

The characteristic index « € (0, 2] determines the decreasing rate of the large values
probability for stable distributions. For a = 2 the variance of distribution is finite,
while for a@ < 2 the variance is infinite. Moreover, when o < 1 also the expectation
value does not exists. The parameter § € [—1,1] characterizes the asymmetry of
the distributions: for § = 0 the stable distribution is symmetric.

For a = 1,8 = 0 we find the Cauchy distribution

1
p(L0) - - 1.6
(z) (14 z2?) (1.6)
with the characteristic function
PRO (k) = exp{—|k|}. (1.7)

11



For « = 1/2, = 1 we find an one-side distribution known as the Lévy-Smirnov

distribution [67, 68]

1
V2T

Lévy flights are characterized by many small movements and few large displace-

1
P(l/Q’l)(x) _ 232 exp <_ ) , 1 >0. (1.8)

% =

ments (see Fig. 1.1) which correspond to the parametrized stable distribution (see
Fig.1.2).

1 6 T T T
(b) a=1.5B=0
Or 37
_1 L 0 L
2 -3 S —
5 4 3 -2 -1 01 -6 -3 0 3 6
X X
5 T T 30 T T
(©) a=1p=0 @ a=0.5p=1
20 1
y 0 1 y 10
0 L
5 ‘ ‘ -10 ‘ ‘
-10 -5 0 5 -5 0 5 10
X X

Figure 1.1: Two dimensional trajectories of free diffusion of a particle subjected to
noise sources with Gaussian (o = 2,3 = 0), Cauchy-Lorentz (o = 1,8 = 0), Lévy
(a = 1.5, = 0), and Lévy-Smirnov (o = 0.5, 5 = 1) distributions. The values of

the other parameters are u =0, o = 1.

We underline here only the fact that all members of the set of stable distributions
are characterized by the presence of "heavy’ (power-type) tails and, as a consequence,
of infinite variance, and that concerns all of them, except the Gaussian (normal)
distribution. That is, we want to remark that the whole set of stable laws appear as
limiting distributions in the generalized central limiting theorem. This is, certainly,

the most important advantage for these distributions.
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Figure 1.2: PDF's of stable Lévy distribution for different values of the parameters
a, B, p and o. Namely, (left panel) 0 =1, u =0, =0, and a = 0.5, 1.0, 1.5; (right
panel) c =1, u=0,a =1, and § = 0.2,0.6,1.0

1.2.1 Generalized Central Limiting Theorem

The central limit theorem states that let (X, Xs,...,X,,) be n random variable
independent and identically distributed (i.i.d), with mean p and variation o2, then

the variable sum standardized

" ooyn o\/n

for n large is standard normal distributed S, = N(0,1). The Gaussian distribution
is an attractor in the functional space of probability density functions (pdfs). When
the conditions of independence and finite variance are not satisfied, other limit
theorems must be considered. We can generalize the central limit theorem within
stable distributions [69], accordingly, also the non-Gaussian stable distributions are
attractors in the functional space of pdfs; the Gaussian distribution is the only

stable distribution having all its moments finite (see Fig. 1.3). For more details see
also [70]-[73].
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Figure 1.3: Tllustration scheme of the classes of random processes.

1.2.2 Lévy Flight Superdiffusion

As it was seen above, if & = 2 the Lévy motion becomes the Brownian motion with

characteristic function, see (1.4)
PO (| t) = et (1.9)

obeying the differential equation

OPO) (k. 1)

= —k* PO (k,t 1.10
5 (k1) (1.10)

under initial condition P®9(k,0) = 1. Factor —k? is the Fourier image of the one-
dimensional Laplace operator A; = 9?/0x?. The inverse transformation yields the
partial differential equation

OPEO (z,t)  ?PEO(x,t)

5 92 , (1.11)

with initial condition P39 (x,0) = §(z). For the symmetric Lévy motion with 3 = 0

and arbitrary «, the corresponding expression of the characteristic function reads
PO (1) = e~ tH" (1.12)
and

PO (k1)

5 = —|k|*P@O (k. 1). (1.13)
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Here taking into account that —|k|® is the Fourier image of the Riesz [74] fractional

operator AJ/? = 9° /0|z|*, we arrive at the fractional differential equation

0P (g 1) B 0“P@0) (1)

= 1.14
ot O|z|® (1.14)
The Riesz operator has an integral representation as follows
o 1 +oo 2 — —y) —
O|z|™ K(a) Jo ylte

where
T

['(a+ 1) sin(ra/2)
(with I" gamma function). If the Lévy motion is in a potential U(x), the above Eq.
(1.14) becomes the fractional Fokker-Planck equation (FFPE)

K(a) =

OP@O) (g ) 0 0°P0) (2. 1)

= ——[U’(.I)P] a’x‘a

1.1
ot ox (1.16)

Finally, in the case of the asymmetric Lévy motion, the equation for probability

distribution becomes

OP@P) (gt
oP (@, t) _ DA pleh) (g, 1), (1.17)
ot
This equation contains the Feller fractional space derivative Dg(f‘ﬂ), which is deter-

mined by the relation

A ]
DB f(z) = — Igaaﬁ))
Joree 2@ =B fey)=A=A)f@+y) g,

T
y1+(1

(1.18)

where

A, B) = 14 * tan(ra/2).

A more detailed consideration of fractional differential equation for the description
of Lévy motion can be found in [12],[75]-[82].

The time derivative of the Lévy process is called Lévy noise
@B () = LD (1) (1.19)

This is a stationary random process and has analogy to the Gaussian white noise,

which is the time derivative of the Wiener process. The Lévy process, in fact, is a
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generalized Wiener process. We can write directly the Langevin equation associated
to FPPE (1.16)
X = —U'(z) + £(t) (1.20)

by replacing the white Gaussian noise &(t) = €@ (t) with the symmetric Lévy a-
stable noise £(®(¢). Both of these equations (1.16) and (1.20) for a < 2 describe
the so-called anomalous diffusion, in particular superdiffusion processes. From a
theoretical point of view, the Lévy flights result from a Langevin equation (1.20)
driven by a-stable noise, giving rise to the scaling property Ar(\t) ~ AY/Ar(t),
with A a positive parameter. The exponent 1/« is related to the scaling of the tail
of the probability distribution for the increments of the random walk, P(r — oo) ~
]T\_(Ha). For o < 2 the process is super-diffusive, the probability density function
follows a power law with heavy tails and the generalized cental limit theorem is
valid [70, 72, 73]; for « = 1 the probability density function is a Cauchy-Lorentz
function. For o = 2, the second moment exists and because of the central limit
theorem the random walk reduces, in the continuum limit, to a Gaussian random
process. Lévy flights are a special case of Markovian processes. As a consequence
the Markovian analysis can be used to derive the generalized Kolmogorov equation
directly from the Langevin equation with Lévy noise [9, 83]. We wanted to give
these concepts on anomalous diffusion and its related processes, because all studies
on classical systems addressed in this thesis are concerned specifically with the Lévy

noise and its implications.

16






Chapter 2
Classical System

In this chapter we focus our attention on two classical systems, the first regards the
problem of crossing barrier from a metastable state in the presence of Lévy noise,
the second, instead, the time evolution of two competing species subject to Lévy
noise. Here we follow closely the three recent published papers [84, 85, 86].

In the first system, starting from the backward fractional Fokker-Planck equation
we investigate the barrier crossing event in the presence of Lévy noise, by focusing on
the nonlinear relaxation time. In the follows sections we shortly review some recent
results on barrier crossing problems with different approaches. Then the generalized
equations useful to calculate the nonlinear relaxation time (NRLT') are presented.
The NRLT for free Lévy flights and for a cubic potential profile are obtained.

The second one is a Lotka-Volterra system of two competing species subject to
multiplicative a-stable Lévy noise. The interaction parameter between the species
is a random process which obeys a stochastic differential equation with a generalized
bistable potential in the presence both of a periodic driving term and an additive
a-stable Lévy noise. We study the species dynamics, which is characterized by two
different regimes, exclusion of one species and coexistence of both. Finally, we find
quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of

the competing species, analysing the role of the Lévy noise sources.
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2.1 Barrier crossing with Lévy flights

The problem of escape from a metastable state, first investigated by Kramers [21],
is ubiquitous in almost all scientific areas (see, for example the reviews [3, 23] and
Ref. [4, 87]). Since many stochastic processes do not obey the Central Limit Theo-
rem, the corresponding Kramers escape behavior will differ. An interesting example
is given by the a-stable noise-induced barrier crossing in long paleoclimatic time se-
ries [88, 89]. Another new application is the escape from traps in optical or plasma
systems [90].

The main tool to investigate the barrier crossing problem remains the first pas-
sage times technique. But for anomalous diffusion in the form of Lévy flights this
procedure meets with some difficulties. First of all, the fractional Fokker-Planck
equation describing the Lévy flights is integro-differential, and the conditions at ab-
sorbing and reflecting boundaries differ from those using for ordinary diffusion. Lévy
flights are characterized by the presence of long jumps, and, as a result, a particle

can reach instantaneously a boundary from arbitrary position.

2.1.1 Barrier crossing

The particle escape from a metastable state, and the first passage time probability
density have been recently analyzed for Lévy flights in Refs. [9, 14, 88], [93]-[103].
The main focus in these papers is to understand how the barrier crossing behavior,
according to the Kramers law [21], is modified by the presence of the Lévy noise.
Here we discuss briefly some results on the barrier crossing events with Lévy flights,
recently obtained with different approaches.

The main tools to investigate the barrier crossing problem for Lévy flights are
the first passage times, crossing times, arrival times and residence times. We should
emphasize that the problem of mean first passage time (MFPT) meets with some
difficulties because free Lévy flights represent a special class of discontinuous Marko-
vian processes with infinite mean squared displacement. As already mentioned, the
anomalous diffusion in the form of Lévy flights, for a particle moving in a potential
profile U(z), is described by the fractional Fokker-Planck equation (see 1.16) for the
probability density function W (z,t) [9]
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Due to the integro-differential nature of the equation (2.1), we cannot apply the

(2.1)

usual boundary conditions at the reflecting and absorbing barriers of the system
investigated. The particle, in fact, can reach instantaneously the boundaries from
any position.

The numerical results for the first passage time of free Lévy flights confined
in a finite interval were presented in Ref. [14]. There, the complexity of the first
passage time statistics (mean first passage time and cumulative first passage time
distribution) was elucidated together with a discussion of the proper setup of cor-
responding boundary conditions, that correctly yield the statistics of first passages
for these non-Gaussian noises. In particular, it has been demonstrated by numerical
studies that the use of the local boundary condition of vanishing probability flux in
the case of reflection, and vanishing probability in the case of absorbtion, valid for
normal Brownian motion, no longer apply for Lévy flights. This in turn requires
the use of nonlocal boundary conditions. Dybiec with co-authors in [100] found a
nonmonotonic behavior of the MFPT as a function of the Lévy index a for two
absorbing boundaries, with the maximum being assumed for o = 1, in contrast with
a monotonic increase for reflecting and absorbing boundaries.

According to the Kramers law, the probability distribution of the escape times

from a potential well with the barrier of height Uy, has the exponential form

1 t
&)= e {7} (2.2)
with mean crossing time
Uo
T.=C {—} 2.3
exXp | (2.3)

where C' is some positive prefactor and D is the noise intensity. The barrier crossing
behavior of the classical Kramers problem was investigated, both numerically and
analytically, in Refs. [14], [96]-[100], where the role of the stable nature of Lévy
flight processes on the barrier crossing event was analyzed. Authors considered
Lévy flights in a bistable potential U () by numerical solution of the Langevin

equation associated to the fractional Fokker-Planck equation (2.1)
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i=—U(z) + &9 (1), (2.4)

where £ () is the symmetric Lévy a-stable noise. It was shown that although
the survival probability decays again exponentially as in Eq. (2.2), the mean escape

time T, has a power-law dependence on the noise intensity D

C(a)
D)’

T. ~ (2.5)

where the prefactor C' and the exponent p depend on the Lévy index «. Using the
Fourier transform of the Eq. (2.1)

oW 0\ .
—— = —ikU' | —i— | W = D |k|"W 2.6
e & L 2:6)

the authors derived the mean escape rate for large values of 1/D in the case of
Cauchy stable noise (v = 1) in the framework of the constant flux approximation
across the barrier. The probability law and the mean value of the escape time from
a potential well for all values of the Lévy index a € (0,2), in the limit of small
Lévy driving noise, were also determined in the paper [101] by purely probabilistic
methods. The escape times have the same exponential distribution (2.2). The mean
value depends on the noise intensity D, in accordance with Eq. (2.5) with u(a) =1,
and the pre-factor C' depends on « and the distance between the local extreme of
the potential.

The barrier crossing of a particle driven by symmetric Lévy noise of index o and
intensity D for three different generic types of potentials was numerically investi-
gated in Ref. [98]. Specifically: (i) a bistable potential, (ii) a metastable potential,
and (iii) a truncated harmonic potential, were considered. For the low noise intensity
regime, the result of Eq. (2.5) was recovered. As it was shown, the exponent ()
remains approximately constant, pu ~ 1 for 0 < o < 2; at a = 2 the power-law form
of T, changes into the exponential dependence (2.3). It exhibits a divergence-like
behavior as « approaches 2. In this regime a monotonous increase of the escape
time 7, with increasing « (keeping the noise intensity D constant) was observed.
For low noise intensities the escape time process corresponds to the barrier crossing
by multiple Lévy steps. For high noise intensities, the average escape time curves

collapse into a single curve, for all values of a. At intermediate noise intensities, the
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escape time exhibits non-monotonic dependence on the index «, while still retains
the exponential form of the escape time density.

The first arrival time is an appropriate parameter to analyze the barrier crossing
problem for Lévy flights. If we insert in fractional Fokker-Planck equation (2.1) a
d-sink of strength ¢ (¢) in the origin we obtain the following equation for the non-
normalized probability density function W (z,t)

%—Vf = (5% (U (z) W] + D% —q(t)d (), (2.7)

from which by integration over all space we may define the quantity

d [+oo
) = ——
q(t) )

which is the negative time derivative of the survival probability. According to defi-

W (x,t)dx, (2.8)

nition (2.8), ¢ (¢) represents the probability density function of the first arrival time:
once a random walker arrives at the sink it is annihilated. As it was shown in the
paper [96] for free Lévy flights (U (z) = 0), the first arrival time distribution has a
heavy tail

q(t) ~ 1o (2.9)

with exponent depending on Lévy index «a (1 < o < 2) and differing from universal
Sparre Andersen result [104, 105] for the probability density function of first passage

time for arbitrary Markovian process

p(t) ~ 1732, (2.10)

In the Gaussian case (a = 2), the quantity (2.9) is equivalent to the first passage
time probability density (2.10). From a random walk perspective, this is due to the
fact that individual steps are of the same increment, and the jump length statistics
therefore ensures that the walker cannot hop across the sink in a long jump without
actually hitting the sink and being absorbed. This behavior becomes drastically
different for Lévy jump length statistics: there, the particle can easily cross the
sink in a long jump. Thus, before eventually being absorbed, it can pass by the

sink location numerous times, and therefore the statistics of the first arrival will be
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different from that of the first passage. The result (2.10) for Lévy flights was also

confirmed numerically in the paper [103].

2.1.2 Nonlinear relaxation time with Lévy flights
General equations

The nonlinear relaxation time technique is more suitable for analytical investigations
of Lévy flights temporal characteristics, because does not request a constraint on the
boundary conditions. According to definition, the nonlinear relaxation time (NLRT')

reads

_ JoZ [P (t,z0) — P (00, x0)] dt

T 2.11
($O) P (O7x0) - P (OO, xO) 7 ( )
where P (00, zg) = Jim P (t,x0) and
Lo
P(t,z0) = / W (x,t| o, 0) da (2.12)
L

represents the probability to find a particle in the interval (Lq, Ly) at the time ¢,
if it starts from point x = xy. Let us use the same procedure as for calculating
the first passage time probability density (see [106]). If the random process z (t)
is Markovian, the probability density of transitions obeys the following backward

Kolmogorov’s equation [107]

t .
oW (‘”’at| 0:0) _ 4 (20) W (, 8| 20, 0) (2.13)
with the initial condition
W (z,0]x0,0) =0 (z — o) . (2.14)

Here L+ (o) is the adjoint kinetic operator. After integration with respect to x
from L; to Ly directly in Eq. (2.13) and taking into account Eq. (2.12) we arrive
at [84]

oP (t,l’o)
ot
The Eq. (2.15) should be solved with the initial condition following from Eq. (2.14)

= LT (20) P (t, ) - (2.15)
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P(ONTO) = 1(L1,L2) (x0)7 (216)

where 1(1, 1,y (z) is indicator of the set (L1, Lo).
According to Eq. (2.15) L* (x9) P (00, 20) = 0, and after integration of this
equation with respect to ¢ from 0 to co we obtain (see Eq. (2.16))

IA/+ (IO) Q (xO) =P (OO, IO) - 1(L1,L2) (.I‘O) ) (2'17)

where () (x¢) is the numerator of the expression (2.11), i.e.

Q(ao) = [~ [P (t.z0) = P (o0, z0)] dt. (2.18)
Finally, in accordance with Egs. (2.11) and (2.18) the nonlinear relaxation time can

be calculated as

Q (xo)
1— P (00, 1)
with zg € (Ly, Lo). Although Eqs. (2.17) and (2.19) are a useful tool to analyze
the temporal characteristics of Lévy flights in different potential profiles U (z), ob-

T (zo) = (2.19)

taining the exact analytical results for the generic o parameter, characterizing the
anomalous diffusion, is one of the unsolved problems in this research area. Even for
some particular potential profile, like the cubic one, to derive a general expression
of the NLRT as a function of the Lévy index « is a non trivial problem. In the
next section we derive a general differential equation useful to calculate the NLRT
for arbitrary Lévy index and we find a closed expression [84] for the case of Cauchy

stable noise excitation (o =1).

Lévy flights in a cubic potential

The forward fractional Fokker-Planck equation for Lévy flights in the potential pro-
file U (x) reads

oW (x,t|z9,0) O , , OW (z,t| x0,0)
- D
5 . (U (x) W (x,t] 2,0)] + ER ,

(2.20)

where 0 < o < 2. It is easily to find from Eq. (2.20) the expression for the adjoint

kinetic operator
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aa

L* (a0) = =" D : 221
() (20) d7q + PG ( )
Substituting Eq. (2.21) in Eq. (2.17) we arrive at
d*Q (zo) dQ (zo)
DWO‘O? - (IB(]) TOO =P (OO) - 1(L1,L2) (370) ) (2.22)

because the probability P (0o, zg) does not depend on the initial position of the
particles.

The Fourier transform of Eq. (2.22) gives [84]

[U” <¢d%> — kU’ G%)} Q (k)= DIk|*Q (k) =

e—ikLz _ p—ikLy

= P (00)d (k) + o (2.23)
where
Q (k) = % / ;OO Q (o) e~ 0 d, (2.24)

and we took into account that in accordance with Egs. (2.12) and (2.18) @ (£o0) = 0.
Solving Eq. (2.23) and using the backward Fourier transform, we can calculate

the nonlinear relaxation time as (see Eq. (2.19))
T (I’O) ==

% 1 j O (k) e d, (2.25)

where 2o € (Ly, Ly). It is easily to check from Eq. (2.24) that Q (=k) = Q* (k).
Dividing the integral in Eq. (2.25) on two parts for negative and positive variables

k and using this relation we easily arrive at

T () = %(O@ Re { [Tawm eikXOdk}. (2.26)

As a result, it is sufficient to solve Eq. (2.23) only for positive values of k [84]

d d\] ~ _
[U” <z%> — kU’ <z%>1 Q (k) — Dk“Q (k) =
o—ikLy _ o—ikL

=P (00)0 (k) + 5k ,

(k> 0). (2.27)
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By solving Eq. (2.27) for a particular potential profile U(z), we are able to calculate
the NLRT by using Eq. (2.26), for a particle moving in that potential. However
the general solution of this equation strictly depends on the functional form of the
potential profile U(x), and not for all the potential profiles there is a solution of this
equation.

We now consider two cases: (a) a free anomalous diffusion, and (b) a cubic
potential.

(a) For free Lévy flights (U (x) = 0): P (c0) =0, and from Eq. (2.27) we have

—ikLy —ikLo

(& — €

QW) = D
After substitution of Eq. (2.28) in Eq. (2.26) and evaluation of the integral we find
finally for the case 0 < v < 1

(k> 0). (2.28)

(I‘O - Ll)a + (LQ - xo)a
2DT (o + 1) cos (mar/2)

As it is seen from Eq. (2.29), the nonlinear relaxation time decreases monotonically

T (z0) = (2.29)

with increasing the noise intensity D and has a maximum as a function of initial
position g in the middle point of the interval (Lq, Ly). For Lévy index 1 < o < 2
the nonlinear relaxation time is infinite as for free Brownian motion (« = 2).

(b) Lévy flights in a metastable cubic potential with a sink at x = 400

3

Ulx) = —% + a’z. (2.30)

Substituting this potential in Eq. (2.27) and taking into account that P (co) = 0 we
obtain [84]

d [, dQ (k)
dk%

2 2 . a+1\) N _
—ﬂ7W+(ka—ka )Q (k) =
—ikLs ikl
. ‘ (k > 0). (2.31)
2

To solve Eq. (2.31) we introduce a new function R (k) = kQ (k). After substitution

of this new function, Eq. (2.31) can be rearranged as

o—ikLz _ p—ikLy

27k

&R (k)

W + (CL2 - kaa—l) R(k‘) =

(k> 0). (2.32)
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It is quite difficult to find an analytical solution of this equation for arbitrary Lévy
index . Thus, we limit our further considerations to the case a = 1. Substituting
a =1in Eq. (2.32) and representing its right part in the form of integral, we arrive

at

d*R (k)
dk?
This linear differential equation can be exactly solved, and, as a result, we find (for

- (a2 — iD) R(k) = S e ®dy (k> 0). (2.33)

21 J1,

any k > 0) the finite solution in the form

~ 1 ki i (L2 ey
Q(k): E{Coe Bk ’Yk_}_%/[/ m} (k?>0), (234)

where

1/4 1 D
sin {— arctan <—)] ,
2 a?

cos E arctan (%)} : (2.35)

b )]
)]

Because of Q (0) < 00, the expression in curly brackets of Eq. (2.34) should be equal

1/4

to zero, and we easily find the unknown constant cg

v (L2 dy
= —— _ 2.36
0 2r /1:1 Y2 +1iD — a? ( )

Substitution of Eqgs. (2.34) and (2.36) in Eq. (2.26) gives

1 00 ieikxo Lo e—iky _ e—,ﬁ’k—iwk
T(zo) = — R / dk / dy V. 9.37
(0) = { Can [ y} (2.37)

After changing the order of integration and evaluation of the integral on k we arrive

at
1 L2 (D dy
T == —Inl[A B —_ 2.
(o) = — . {2 n [A(zo, y)] + v2 (-Tan)} 21 DE (2.38)
where
24 (zg —n)?
A(xo,y)zﬂ (70 27) D=y —ad’; (2.39)
(xo—y)
and
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B(zo,y) = arctan <$Oﬁ_ 7) — g sgn(xo — ) - (2.40)

In the following Fig. 2.1 we report the behavior of the nonlinear relaxation time
T(xo), calculated by Eq. (2.38), as a function the initial position of the particle for
different values of the noise intensity D, namely D = 0.07,0.35, 1.0, 3.0, 5.0.
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Figure 2.1: Nonlinear relaxation time, in arbitrary units (a. u.), as a function of the initial
position zq, for five values of the noise intensity D, namely: D = 0.07,0.35,1.0,3.0,5.0.
The values of the parameters are: a =1, L1 = —10 and Lo = +10.

The potential parameter a (see Eq. (2.30)) is @ = 1, and the interval boundaries
are L1 = —10 and Ly = +10. The integration step used to calculate T'(x) from
Eq. (2.38) is Ay = 10~%. For the initial position of the particle we focus on the range
of values around the potential well, that is we consider xy € [—2,+1]. A monotonic
decreasing behavior of the nonlinear relaxation time is shown. The NLRT decreases
with initial positions moving from the left of the minimum (zy = —1) towards the
maximum (xy = +1) of the potential and with increasing noise intensity. An overlap
of the different curves appears near the maximum of the potential. This behavior
could be ascribed to the role of initial positions near the maximum. For initial
positions that are close to the maximum of the potential (zy = 1) the height of

the barrier to cross decreases considerably and the probability of the particle to fall
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back into the potential well increases. For the role of the initial conditions in barrier
crossing, with Gaussian noise, see Refs. [3, 87].

In Fig. 2.2 we report the log-log plot of the behavior of the NLRT as a function
of the noise intensity D, for three initial positions of the particle, namely: xy =
—2.0,—1.0,0. As we can see the decreasing behavior of the NLRT with increasing

noise intensity is recovered (see Ref. [98]).
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Figure 2.2: NLRT (a. u.) as a function of the noise intensity D, for three values of the
initial position of the particle, namely: x¢ = —2.0, —1.0,0. The parameter values are the

same of Fig. 2.1.

2.2 Lévy flights in ecological systems

2.2.1 Some biological considerations of animal behavior

Animal movement and dispersal, which are major drivers of spatio-temporal patterns
in ecosystems, have solicited in ecology questions difficult to answer for two main rea-
sons. First, quantifying the precise distributions of populations interacting in time
and space could be hard. Recent technological advances have to some extent changed
this scenario, opening new perspectives for the future. A second aspect, which rep-

resents, at the moment, a stronger hurdle, is the lack of concepts and/or technical

29



tools for analysing the feedbacks between the properties of macroscopic ecosystems
and their elementary parts. An evolutionary perspective, which takes into account
the time evolution of the system and the contemporary presence of different ”ecolog-
ical” approaches, i.e. behavioural, landscape, and spatial ecology [108]-[110] could
play a key-role in this matter. In particular, the understanding of the evolutionary
components of large-scale and long-term properties of animal movement and disper-
sal allows to establish useful links across different scales, going from individuals to
ecosystems and backwards [111]. Moreover, random fluctuations of environmental
variables in ecosystems increase the unpredictability in resource availability through-
out time. Thus, environmental stochasticity, together with inevitable biological con-
straints, could introduce randomness in many relevant ecological contexts: foraging,
mating, dispersal, habitat colonization, etc [112]. Consequently, it is likely that an
adaptive behaviour has been the response to environmental randomness, playing a
fundamental role in animal survival and contributing to determine the spatiotem-
poral dynamics of processes and patterns in real ecosystems [113]. Random walks
describe stochastic trajectories obtained when the system is uniquely ”driven” by
random forces. However, random walks could participate in dynamics of systems
where deterministic forces are also present. Therefore, it is possible to introduce
stochastic trajectories as results of richer dynamics, where deterministic and ran-
dom components are present. In this context, random walks appear to be essential
tools to model and describe the dynamics of real ecosystems, whose dynamics are af-
fected both by deterministic and random forces. The Lévy flight theory has recently
been borrowed by ecologists from the physical sciences to characterize the spatial
distributions of predators or foragers and also to determine optimal search strate-
gies for foragers looking for sparsely and randomly distributed targets. Models, in
which Lévy noise sources are considered, have been successfully tested in different
foraging animals such as bumble bees (Bombus trifasciatus) [114, 115], wandering
albatrosses (Diomedea exulans) [116]-[119], reindeers (Rangifer tarandus tarandus),
jackals (Canis adustus), grey seals (Halichoerus grypus), spider monkeys (Ateles
geoffroyi) [120]. More recently, non-Gaussian noise has been used to describe the
searching behaviour in the Peruvian anchovy (Engraulis ringens) fishery [121]-[125].
Noise-induced jumping between metastable states separated by potential barriers is

common in physical systems. The time scale to overcome the barrier depends on
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the noise source and potential profile. Most often the noise is Gaussian. However,
non-Gaussian noises distributed with power law tails are found in different physi-
cal and biological systems such as turbulent diffusion, vortex dynamics, population
dynamics, dynamical models and critical phenomena [88, 126]. The distributions
observed appear to be well described by Lévy noise sources.

In this section we focus on the stochastic resonance phenomenon in a model of
population dynamics. In particular, we investigate the stochastic dynamics of two
competing species within the formalism of the generalized Lotka-Volterra equations.
The interaction parameter between the species is a stochastic process which obeys
a stochastic differential equation with a term of additive a-stable Lévy noise, which
mimics the effects that environmental noise produces on the dynamical regime of an
ecosystem [6, 127]. Moreover, we consider the generalized Lotka-Volterra equations
in the presence of multiplicative a-stable Lévy noise, which models the direct inter-
action between species and environment. We analyse the role played by the Lévy
noise on the system dynamics for different values of the index a. According to pre-
vious results obtained in the presence of Gaussian noise, we observe that the noise
could have a constructive role. In particular, the additive noise is responsible for the
generation of quasi-periodic oscillations in the time series of the species densities.
Besides, the multiplicative noise, in the presence of two different dynamical regimes
(coexistence and exclusion), produces the appearance of anticorrelated oscillations

and stochastic resonance phenomenon.

2.2.2 Two Competing Species: Lotka-Volterra Model

Time evolution of two competing species is obtained by using a Lotka-Volterra
model [128, 129] based on two stochastic differential equations in the presence of

multiplicative Lévy noise [130]

W = (e x = (1)) + 7€), (2.41)
V= ey = (02) + yE (), (2.42)

where a is the growth parameter and 7(¢) is the time dependent interaction pa-
rameter between the species. Here £27(t) and £3°(t) are statistically independent

a-stable Lévy noises with zero mean (u = 0) and intensity D equal for the two
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noise sources. The time series for the two populations are obtained setting m = 70
and a = 1. It is known that for v < 1 a coexistence regime takes place, while
for v > 1 an exclusion regime is established. Coexistence of the two species and
exclusion of one of them correspond to stable states of the Lotka-Volterra’s deter-
ministic model [131]. Real ecosystems are open systems, which implies that they
are immersed in a noisy nonstationary environment. Therefore, the interaction pa-
rameter () is affected both by deterministic periodical ”forces”, e.g. temperature,
and random fluctuations of environmental and natural variables such as the tem-
perature itself and food resources, whose variations produce a competition between
the species. Therefore noise together with periodic forces determines the crossing
from one dynamical regime (7 < 1 — coexistence) to the other one (y > 1 — ex-
clusion). This continuous and noisy behaviour of the interaction parameter ~(t) can

be described by the stochastic differential equation

dv(t) (.t | La
i = oy +EP(1), (2.43)

where the time dependent bistable potential (see Fig. 2.3)
U(y.t) = h(y = 1)*/n" = 2h(y = 1)* /5" + Ay cos(wot) (2.44)

represents the effects of deterministic forces, and the term of additive noise fﬁﬂ (t)
mimics the random fluctuations of environmental variables and natural resources.
The oscillating driving force takes into account, for example, periodic variations of
the temperature. In Eqs. (2.43) and (2.44), h = 8 is the height of the potential
barrier, A = 2h and wy = 7w are the amplitude and the frequency of the driving
force, respectively, and n = 0.5. The noise source 5;"5(15) is given by a Lévy process

with zero mean and intensity D..

2.2.3 Deterministic stationary states

In the absence of multiplicative noise (D = 0) and for constant values of the in-
teraction parameter v, Egs. (2.41), (2.42) describe the deterministic dynamics of
two competing species. In these conditions the stationary values of the two species

densities are given by
ot =yt = L (2.45)




0 05 1 15 2
Y

Figure 2.3: Three configurations of the time dependent bistable potential U(,t) of
Eq. (2.44) at times t = 0,0.5,1. The values of the potential parameters are h = 8,
n=0.5 A=2h,wy=m.

In view of studying the system when a richer dynamics takes place, we introduced the
interaction parameter y(t), as a stochastic process governed by Eq. (2.43). Here,
v(t) takes values around the two minima, v = %" = 0.5 (left-side well) and
v =" = 1.5 (right-side well) corresponding to coexistence and exclusion regime,
respectively. As a consequence, from Eq. (2.45) we get two different equilibrium

points

¥ = ' =2/3 (y =0.5 — coexistence),

s = ' =2/5 (y =15 — exclusion).

In order to determine the conditions for which the stationary states given in Eq. (2.45)
correspond to a point of stable equilibrium in the phase space, we perform a sta-
bility analysis. Therefore, we consider the Jacobian matrix of the system given in
Egs. (2.41), (2.42)

ya a

1+y 1+~

J(y) = ( T i ) (2.46)

and obtain the corresponding eigenvalues

_a(y—1)
A\ = — T (2.47)
Xy = —a. (2.48)
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Therefore, for v = 0.5 we get
Al =—a/3, \j = —a, (2.49)

and for v = 1.5
Al =a/b, Ay = —a, (2.50)

where the apices ‘s and ‘u‘ indicate stable and unstable equilibrium, respectively. In
fact, for v = 0.5 the two eigenvalues are negative, which causes the equilibrium point
to be unconditionally stable, while for v = 1.5 one eigenvalue is positive and the
other one negative, which implies that the equilibrium point corresponds to a saddle
point in the phase space. Therefore, the stationary values x5' = y§* = 2/3 obtained
for v = 0.5 (coexistence regime) represent a stable equilibrium point for the Lotka-
Volterra system considered (see Egs. (2.41), (2.42)). Conversely, the stationary
values z3' = yst = 2/5 obtained for v = 1.5 correspond to an unstable equilibrium
(saddle point) and the system tends to exclude one of the two species (exclusion

regime).

2.2.4 Stochastic Resonance

First, we investigate the effect of the noise on the time behaviour of v(¢). Since the
dynamics of the species strongly depends on the value of the interaction parameter,
we initially analyze the time evolution of v(t) for different values of the intensity D.,
and index o, with § = 0, of the Lévy source £27(t) (see Eq. (2.43)).

Specifically, for D, = 0 and 7(0) = 0.5 we obtain a periodical behaviour of v(¢)
in the coexistence region (see Fig. 2.4).  In the presence of non-Gaussian noise
(a # 2), for low noise intensity (D, = 0.5 < h), we can observe the effect of the
noise on the time series of the interaction parameter (see Fig. 2.5). In particular, the
noise is responsible not only for slight perturbations in the oscillating behaviour of
v(t), but also for the appearance of jumps (Lévy flights) between v = 0.5 (left well
of the potential U) and v = 1.5 (right well). These jumps, distributed according to a
Lévy stable statistics, are known as Lévy flights and represent the effect of the heavy
tails which characterize these non-Gaussian distributions. It is also evident how the
distribution of these jumps changes for different values of «. This indicates that

the alternating coexistence/exclusion regime can be modulated by the specific Lévy
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Figure 2.4: Time evolution of the interaction parameter ~(¢), by numerical integra-

tion of Eq. (2.43) with zero noise intensity D..
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Figure 2.5: Time evolution of the parameter 7(t), by numerical integration of
Eq. (2.43) with noise intensity D, = 0.5, for five values of the index o, namely
a=1.6,1.7,18,1.9,2.0, and 5 = 0.
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noise source fj’{‘ﬁ (t), varying both the intensity D, and the parameter a. It is then

interesting to analyse the behaviour of ~(¢) for different levels of noise. Therefore,
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Figure 2.6: Time series of the parameter v(¢) (from Eq. (2.43)), for suitable noise

-0.5

intensities (D, = 5, 5.5 and 6) and different values of the Lévy index o, namely
a=1.6,1.7,1.8,1.9 (blue dots), compared with the Gaussian case (o = 2.0) (orange

lines).

setting again # = 0, we obtain the time evolution of the interaction parameter for
higher noise intensity (D, =~ h). In particular, Fig. 2.6 shows the time series of v(¢)
with D, = 5,5.5,6 and for different values of a (v = 1.6,1.7,1.8,1.9), compared
with those obtained for Gaussian noise (o = 2) [6]. In the figure we see that the
synchronization phenomenon between the Kramers time to overcome the potential
barrier, starting from one of the two minima (see Fig. 2.3), and the periodical
driving force is reduced in the presence of Lévy noise with respect to the Gaussian
case. This indicates that the stochastic resonance effect, which can influence the
dynamics of real ecosystems, results to be different in the presence of non-Gaussian
noise source. A further increase of the noise intensity produces a loss of coherence
and the dynamical behaviour is strongly controlled by the noise (see Fig. 2.7)).

A measure of the SR phenomenon and its intensity [1],[132]-[135] is provided by
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Figure 2.7: Time series of the parameter v(t) (from Eq. (2.43)), for noise intensity
D., = 7.5 and different values of the Lévy index o, namely o = 1.6,1.7,1.8,1.9 (blue

dots), compared with the Gaussian case (o = 2.0) (orange lines).
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Figure 2.8: Signal-to-Noise Ratio of y(t) as a function of the noise intensity D.,, for
differen values of the index « of the symmetrical stable Lévy distribution, namely
a=16,1.7,1.8,1.9,2.0.
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Figure 2.9: Spectral power amplification 1 of v(t) as a function of the noise intensity
D.,, for different values of the index « of the symmetrical stable Lévy distribution,
namely a = 1.6,1.7,1.8,1.9,2.0.
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Figure 2.10: Signal-to-noise ratio and signal power amplification 7 of the parameter
v(t) as a function of the noise intensity D., for o = 1.8 and different values of
the index [ of the stable Lévy distribution, namely § = 0,40.2,+0.5. In the
left panel, red plus, green cross, blue star, pink empty square and light blue full
square represent the SNR values calculated by numerical integration of Eq. (2.43).
The solid lines are the curves obtained by interpolating the numerical data. Each
curve corresponds to the symbols with the same color. In the right panel, the solid
lines have been obtained by connecting the SPA values calculated by numerical

integration of Eq. (2.43).
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the signal-to-noise ratio (SNR)

SNR =

2 I QJrAwS
SN Jdim /Q_Aw (w)dw. (2.51)

Here, [$78% S(w)dw represents the power carried by the signal, while Sy () esti-

mates the background noise level at the driving frequency 2. The SR effect observed
indicates that an optimal level of noise exists for which the response of the system
undergoes resonance-like behaviour as a function of the noise level [1, 132]. In this
condition, it is established a quasi-periodical switching between v = %" = 0.5 and
v =" = 1.5, which is responsible for an alternating coexistence/exclusion regime
in the dynamics of the two populations. Because the SR phenomenon observed af-
fects the time behaviour of (¢), which is a biological parameter responsible for the
interaction of the two species, we name this effect ”biological” stochastic resonance.
In order to measure and better analyse the system response to the noise, we consider
the spectral power amplification (SPA) [1, 132], indicated by n and defined as the
ratio of the power of the output signal sampled at the frequency €2 of the external
driving, to the power of the driving signal. In Figs. 2.8, 2.9, 2.10 we show SNR
and SPA, respectively, as a function of the noise intensity D.. The nonmonotonic
behaviour of the SNR indicates clearly the presence of stochastic resonance, charac-
terized by a maximum whose value decreases as the index « approaches 1 (Cauchy

distribution). Fixed the index «, the asymmetry parameter 3 slightly dirty things.

2.2.5 SR within species dynamics

In this section we analyze the dynamics of the two species densities. In particular,
for different symmetrical (3 = 0) a-stable Lévy distributions, we calculate the noise
intensity D, corresponding to the regime of ”biological” stochastic resonance, that
is the maximum of SNR. Afterwards, in Eq. (2.43) we set D., at this value and
solve numerically Eqs. (2.41), (2.42) for different values of the multiplicative noise
intensity D. The results are shown in Figs. 2.11, 2.12, 2.13, 2.14. In particular,
from panels (a), (b), (c¢) of these figures it is evident that, for the values of index
a considered in our simulations, the multiplicative noise induces anticorrelated pe-
riodical oscillations in the time series of the two species, breaking the symmetric

dynamical behaviour of the ecosystem (compare panels (a) with panels (b) and (c)
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Figure 2.11: ) Panels a, b, ¢: time series of the two species densities = (red lines)
and y (blue lines) obtained from Eqs. (2.41), (2.42) with « = 1.9, f = 0 and D., = 5.
Panel (d): SNR of (x — y)? as a function of the noise intensity D.
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Figure 2.12: Panels a, b, ¢: time series of the two species densities z (red lines) and
y (blue lines) obtained from Egs. (2.41), (2.42) with o = 1.8, § =0 and D, = 5.3.
Panel (d): SNR of (x — y)? as a function of the noise intensity D.
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Figure 2.13: Panels a, b, c: time series of the two species = (red lines) and y (blue
lines) obtained from Eqs. (2.41), (2.42) with o = 1.7, 8 = 0 and D., = 5.5. Panel
(d): SNR of (z — y)? as a function of the noise intensity D.

of Figs. 2.11, 2.12, 2.13, 2.14). Moreover, a multiplicative noise intensity exists that
induces oscillating behaviour with a maximum of anticorrelation between the two
species (see panel (b) of Figs. 2.11, 2.12, 2.13, 2.14). This indicates the presence of
a second SR effect. We check this by calculating the SNR of (z — y)? for different
values of a (see panel (d) in Figs. 2.11, 2.12, 2.13, 2.14). Here, we can observe
the presence of a nonmonotonic behaviour characterized by the presence of a max-
imum. This confirms that the multiplicative noise is responsible for a further SR
phenomenon affecting directly the dynamics of the two species. Because of this
we name this effect "population” stochastic resonance. Finally, to better compare
the SNR curves obtained we show them in one graph (see Fig. 2.15). Here, it is
clear that the maximum of the SNR decreases as a approaches 1, according to the
behaviour of SNR observed for the interaction parameter v (see Fig. 2.8).

In Fig. 2.16 we show the SNR curves obtained, for different values of the index
a and 3 = 0, by setting D., at the value that maximizes the SPA of the parameter

Y.
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Figure 2.14: Time series of the two species z (red lines) and y (blue lines) obtained
from Egs. (2.41), (2.42) with o = 1.6, § = 0 and D, = 5.7. Panel (d): SNR of

(r — y)? as a function of the noise intensity D.
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Figure 2.15: SNR of (z — y)? as a function of the noise intensity D for different

values of the index a.

42



SNR of (x-y)2

-4 -12 -10 -8 -6 -4 -2 0
LogD

Figure 2.16: The SNR of the quantity (x —%)? as a function of the noise intensity D,
for different values of the index o, namely o = 1.6,1.7,1.8,1.9,2.0, and § = 0. Here
we set D., at the value that maximizes the SPA curves of the parameter v(t). Red
plus, green cross, blue star, pink empty square and light blue full square represent
the SNR values calculated by numerical integration of Eqs. (2.41) - (2.43). The
solid lines are the curves obtained by interpolating the numerical data. Each curve

corresponds to the symbols with the same color.
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2.2.6 SR with correlated noise sources

Now we want to consider symmetric Lévy stable distribution and statistically depen-
dent noise sources. We intend to investigate the role of an interdependence between
two different noise sources that influence the dynamics of the system. Motivation
of this is the fact that fluctuations of food resources influence both the species con-
centrations through a multiplicative noise, and the interaction parameter through
an additive noise. In fact, the contemporaneous presence of two noise sources, one
acting directly on the species, the other one affecting the interaction parameter, can
produce a ”global” effect so that the effective multiplicative noise (that represents
fluctuations of species concentrations) can result to be the combination of the addi-
tive noise and other noise sources. By this way, the additive noise (that mimics both
fluctuations of climatic and/or atmospheric variables and food resources) affects di-
rectly not only the behaviour of the interaction parameter but also the dynamics of
the two species. In particular, we consider that each source of multiplicative noise
is obtained as a linear combination of the additive noise £ (see Eq. (2.43)) with a
statistically independent noise source £ (i = x,y). By this way, the multiplicative

noise sources in Eqgs. (2.41), (2.42) can be written as follows

&7 = P&y 1287, (2.52)
&7 = n&TTI-REY (2:53)

The noise sources £ (i = x, y) are a-stable Lévy processes. Due to Eqs. (2.52), (2.53),
each multiplicative noise source &' P s statistically dependent on the additive noise
source fﬁ’ﬁ by a statistical dependence parameter p;. To analyze the system dynam-
ics we set p, = p, = p. By using Egs. (2.52), (2.53) in the Lotka-Volterra model (see
Egs. (2.41), (2.42)), we obtain the time series and the corresponding SNR for differ-
ent values both of the index « and statistical dependence parameter p. The results
are reported in Fig. 2.17. For different combinations of the parameters o and p we
note that the SNR of the square difference (x — y)? mantains its nonmonotonic be-
haviour as a function of the noise intensity. Specifically we note that the effect of the
statistical dependence consists in shifting the maximum of the SNR towards higher
values of the noise intensity, slightly affecting the synchronization phenomenon. For

larger values of the statistical dependence between the noise sources (p = 0.9 in
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Figure 2.17: SNR of the quantity (z — y)? as a function of the noise intensity D
for different values of both the index o and statistical dependence parameter p.
In left panel: a = 2.0, and p = 0.3,0.5,0.7,0.9. In right panel: a = 1.6, and
p = 0.3,0.5,0.9. In both panels, red plus, green cross, blue star and (only for the
top panel) pink empty square represent the SNR values calculated by numerical
integration of Egs. (2.41) - (2.43). The solid lines are the curves obtained by inter-
polating the numerical data. Each curve corresponds to the symbols with the same

color.
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Fig. 2.17) and higher noise intensity all curves, independently on the value of the
index «, collapse in one curve. We can say that, in this range of noise intensity and
for strong statistical dependence between noise sources, the dynamical response of

the system is independent on the index a of the Lévy distribution.
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Chapter 3
Open Quantum Systems

In this final chapter we present our recent results in two open quantum systems [136,
137].

First we propose a way to analyze low frequency noise in terms of fictitious
correlated fluctuations of external parameters. We discuss a specific implementa-
tion, namely the Quantronium setup of a Cooper-pair box, showing that optimizing
the trade-off between efficient coupling and protection against noise may allow to
observe coherent population transfer in this nanodevice. Recent experiments have
demonstrated coherent phenomena in three-level systems based on superconduct-
ing nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic
Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the
main sources of decoherence in these systems, and we study its effect on the transfer
efficiency.

Subsequently, we analyze the dynamics of a quantum particle subject to an asym-
metric bistable potential and interacting with a thermal reservoir. We obtain the
time evolution of the population distributions in both energy and position eigen-
states of the particle, for different values of the coupling strength with the thermal
bath. The calculation is carried out by using the Feynman-Vernon functional under

the discrete variable representation.
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3.1 Quantum Noise in Nanodevices

So far most of the research in this field has focused on the two lowest level of ar-
tificial atoms. In the last few years, it has been proposed that multilevel quantum
coherent effects [50, 138, 139], could be observed in superconducting nanodevices:
various schemes have been proposed to observe electromagnetically induced trans-
parency [140], and selective population transfer by adiabatic passage [141]-[147].
Very recently, few experiments have demonstrated features of multilevel coherence
in such devices, as the Autler-Townes effect [148, 149], coherent population trap-
ping [150, 151], electromagnetically induced transparency [152], preparation and
measurement of three-state superpositions [153].

In studying quantum optical effects in solid state devices, several differences
are encountered with respect to the atomic realm: coupling between subsystems is
larger, but also noise is larger, and often extends over several decades, low-frequency
noise being the most important source of decoherence in many of the solid state
implementations of quantum bits [154, 155]. On the other hand solid state devices
offer several design solutions, and the possibility of tuning by external controls the
spectral properties of the artificial atom [157]. All these elements come into play
in multilevel structures [158], together with new features, as for example selection
rules. Differences between specific designs may become crucial for the successful
implementation of specific protocols.

Here we study coherent population transfer using the STIRAP protocol three-
level artificial atoms. In Sec. 3.1.1 we introduce STIRAP, and discuss the sensitivity
of the transfer efficiency to external parameters. Then we consider a specific imple-
mentation of the three-level artificial atom which is a good model for the Quantron-
ium device [44, 60] and introduce a model for low-frequency charge noise (Sec. 3.1.4).
In Sec. 3.1.7, we propose a way to characterize the effects of low-frequency noise,
reducing the problem to that of the sensitivity of the transfer efficiency to fictitious

correlated external parameters.

3.1.1 Coherent population transfer in three-level atoms

In quantum optics the STIRAP technique is based on a A configuration (Fig. 3.1)

of two hyperfine ground states |0) and |1) and an excited state |2), with ener-
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Figure 3.1: A three-level atom driven by two lasers in the A scheme. The state |2)
may have a large decay probability.

gies Fy, E; and FEs respectively [50, 159]. The system is driven by two classical
laser fields [50, 138], called the Stokes laser {215 = Q4 coswst and the Pump laser
Qo2 = Q, cosw,t. Each laser is nearly resonant with the corresponding transition. In
the usual situations we can treat the laser drive fields in the Rotating-Wave Approx-
imation (RWA) [160]. Moreover, one can introduce a phase transformation of the
atomic basis and express the hamiltonian in a doubly rotating frame, with angular

frequencies given by w; of the driving fields. The effective Hamiltonian reads
- 1
H = §|1)(1] 4 6,]2) (2] + 5(93|2><1| +Q,]2)(0] + h.c.) (3.1)

where we define the detunings 6; = Ey — By — ws, 0, = Ey — Ey — w, and the
two-photon detuning 6 = 9, — 0, = By — By — (w), — wy).
At two-photon resonance, § = 0, the Hamiltonian (3.1) has an eigenstate which

is a superposition of the two lowest atomic levels only

1
D) = Q,0) — Q1)) . 3.2
D) = a0 - 1) (3.2

It is usually referred as the dark state since, despite of the presence of the lasers,
the atom cannot be excited to the state |2) and consequently decay by spontaneous
emission (Fig. 3.1). Instead, the laser fields interfere destructively and, as a result,

the population is coherently trapped. A given dark state can be prepared by an
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appropriate choice of both the Rabi frequencies €2; and the relative phase of the ac
fields.
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Figure 3.2: Ideal STIRAP at two-photon resonance § = 0, obtained by operating
with two pulses in the counterintuitive sequence (top left panel). The system pre-
pared in the state |0) follows the Hamiltonian along the zero-energy adiabatic level
(left lower panel) yielding complete population tranfer (right lower panel, where
P, = |(i|¥(t))[*). In top right panel, the mixing angle of the dark state as a function
of time for the adiabatic evolution. The pump laser is slightly detuned, 6, = —0.2€.

3.1.2 The STIRAP protocol

From Eq. (3.2) it can be seen that by slowly varying the coupling strengths, (%)
and €2,(¢), the dark state can be rotated in the two-dimensional subspace spanned by
|1) and |0). Using adiabatic dynamics in the rotating frame, the STIRAP protocol
implements coherent population transfer between the atomic states [0) — |1) [138].

The system can be prepared in the state |0) by letting €2, = 0 and switchig on
Q,(t) # 0. By slowly switching Q off while €,(¢) is switched on, the population
can be transferred from state |0) to state |1). Finally also €2, is switched off. The
mixing angle of the dark state Eq.(3.2) is defined as 6(t) = 2 arctan|[$2,(t)/Q(1)],
and evolves from 6 = 0 to § = 27 (Fig. 3.2, upper right panel).
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This is the so-called counterintuitive scheme as opposed to the intuitive strategy
where the pump pulse preceeds the Stokes pulse. In this case population transfer
involves, as an intermediate step, population of the excited state |2), which can
undergo spontaneous decay, strongly affecting the population transfer efficiency.
One advantage of STIRAP is that, in the ideal procedure, the state |2) is never
populated [138, 139], therefore it is not sensitive to spontaneuos decay. Moreover,
provided adiabaticity is preserved, STIRAP is in principle insensitive to many details
of the protocol, and in practice it turns out to be insensitive to the precise timing

of the operations.
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Figure 3.3: (left panel) Contour plot of the intensity of the transfer efficiency as a
function of single-photon and two-photon detuning for equal peak Rabi frequencies
k= Qg/Qp = 1 (left panel) and k = 2 (right panel). In axes x, y we have § = 6/
and 5;, = 0,/8, respectively. In both panels, the bright region corresponds to
large efficiency of population transfer (more than 80%). A two-photon detuning
|0] > €Qo/5 determines a substantial decrease of the efficiency. The line corresponds
to correlated detunings, which give an effective description of fluctuation in the
Quantronium (Sec. 3.1.7). Increasing the strength of the Stokes pulses enlarges

asymmetrically the region of large transfer efficiency.
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3.1.3 Sensitivity to parameters

Adiabaticity is critical to achieve high efficiency, therefore much effort has been
devoted in the past to optimization of the pulse shapes [139]. A necessary con-
dition for adiabaticity is |€;/€;] < w; (j = s,p) which suggests that efficiency
can be improved by using large enough Rabi peak frequencies. Formally, they de-
termine a large (Autler-Townes) splitting of the instantaneous eigenstates in the
rotating frame [139, 138]. This splitting prevents unwanted transitions triggered
by off diagonal parts (neglected in the adiabatic approximation) of the Hamilto-
nian in the instantaneous eigenbasis. These non-adiabatic terms are proportional
to O(t) and tend to detrap the population, reducing the transfer efficiency. If we let
Q,(t) = Qo fl(t—7)/T) and Q4(t) = Qo f[(t+7)/T], a positive delay 7 implements
the counterintuitive sequence of STIRAP. For Gaussian pulses, f(x) = e*"?, optimal
choices are 0T > 10 and 7 ~ T [139]. In this paper we use a reduced pulse width
QT =30 and a delay 7= 0.7T.

Sensitivity to detunings

When the two frequencies w, and w, are not exactly resonant with the respective
transitions, the presence of non-zero detunings J; and d, may strongly affect the
efficiency. Actually, the two-photon detuning is the crucial parameter. As it is
shown in Fig. 3.3, small deviations of the two photon detuning ¢ lead to a substantial
decrease of the efficiency, which is less sensitive to single-photon detunings at two-
photon resonance 6 = 0. Actually, phenomena entering non-ideal STIRAP are
qualitatively different according to ¢ vanishing or not, and their interplay leads to
a rich physical picture.

Finite single photon detunings at 6 = 0 do not affect the formation of the dark
state, because the mixing angle does not depend on it. Instead they increase the
nonadiabatic terms [139]. The efficiency is insensitive to small single-photon detun-
ings (6 < Qp, see also Fig. 3.2), while larger ones prevent the adiabatic follow on of
the dark state.

The detuning from two-photon resonance is more detrimental for STIRAP, be-
cause it prevents the exclusive population of the trapped state, which is no longer an

instantaneous eigenstate of the Hamiltonian. A more detailed analysis of the instan-
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Figure 3.4: STIRAP with finite two-photon detuning 6 = 0.2 {2, with the two pulses
in sequence in top left panel. Population transfer occurs due to Zener transitions
between crossing adiabatic levels (lower left panel), and the transfer efficiency is
reduced (lower right panel). In top right panel, the mixing angle as a function
of time. Here K = 2 and 0, = —44. This parametrization being appropriate for

discussing effects of low-frequency noise in the Quantronium (Sec. 3.1.7).
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taneous eigenstates when 0 # 0 shows that there is no adiabatic transfer state pro-
viding an adiabatic connection from the initial to the target state, as does the dark
state for 6 = 0. In this case, the evolution leads to complete population return of the
system to its initial state. The only mechanism which leads to population transfer is
by non-adiabatic transitions between the adiabatic states. Actually for small values
of §, narrow avoided crossings between the instantaneous eigenvalues can occur and
the population can be transferred by Landau-Zener tunneling [139, 138], as shown
in Fig. 3.4.

The above considerations lead to the conclusion that the correlations between
the detunings d5 and ¢, are very important. In fact, strongly correlated fluctuating
detunings, nearly preserving two-photon resonance, still allow large transfer effi-
ciency [161, 162]. This issue becomes very important in the discussion of the effects

of low-frequency noise in solid state nanodevices.

Sensitivity to Rabi frequencies

For ideal STIRAP it is better to have two nearly equal peak Rabi frequencies, i.e.
k= Qg¢/Qp = 1. Indeed if the two maximum Rabi frequencies are different, say
k > 1, while the pulse widths are about the same, the projection of the state vector
onto the adiabatic transfer state is very good initially (because in our case the more
intense pulse occurs first), but necessarily less good in the final stage. Consequently
the transfer efficiency will be small [139].

The situation may be different if finite detuning is considered. In particular in the
right panel of Fig. 3.3 it is shown that the region of great transfer efficiency enlarges
asymmetrically. This happens when the larger pulse occurs during the Zener process
of imperfect STIRAP (the opposite situation is illustrated in Fig. 3.4).

Of course, using large pulse areas, small deviations from the optimal conditions
do not lead to significant drop in transfer efficiency, and in general increasing both
the amplitudes is the convenient strategy to counteract the effect of imperfections.
However, in solid state nanodevices there are restrictions on the amplitude and
symmetry of the coupling to the microwave fields, playing the role of the lasers.
Therefore, operating at k # 1 may give room to further optimize the transfer effi-

ciency.
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E J/2

Figure 3.5: Equivalent circuit for the Quantronium. Here ¢ and C' are the charge
and the capacitance of the superconducting island respectively; C, and V; are the
capacitance and the voltage of the gate; F, is the Josephson energy and ® is the

magnetic flux.
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3.1.4 STIRAP in the Quantronium

We now discuss the implementation of the Hamiltonian (3.1) in the Quantron-
ium [44]. The basic unit of this device consists of a Cooper pair box, namely a
superconducting loop interrupted by two adjacent tunnel junctions with Josephson
energies F;/2 (Fig. 3.5). The two small junctions define the superconducting island
of the box, whose total capacitance is C' and charging energy E¢ = (2¢)?/2C. The
electrostatic energy can be modulated by a gate voltage V, connected to the island

via a capacitance Cy < C' and the Hamiltonian reads
E
Holgg) = Y Ecla — gq5*la) (gl — 7‘](@@ +1[ + h.c), (3.3)
q

where {|¢)} are eigenstates of the number operator ¢ of extra Cooper pairs in the
island. We have defined the reduced gate charge ¢, = C,V,/(2e), which is the
control parameter of the system. Eigenstates of the box are superpositions of charge
eigenstates. The spectrum can be modified by tuning ¢, (Fig.3.6) and the device
is usually operated as a qubit close to the value ¢, = 1/2. This is a symmetry
point for the device Hamiltonian (3.3) and it turns out that it is an optimal working
point where the system is well protected against external noise, allowing to obtain
experimental dephasing times of several hundreds nanoseconds [44, 60].
Manipulation of the quantum state is performed by adding to the dc part of
the gate voltage, ac microwave pulses with small amplitudes ¢, — ¢, + qgc(t). The

resulting Hamiltonian can be written as
Hyoi(t) = Ho(qy) + A(t) G, (3.4)

where A(t) = —2FEcq;°(t). The effective three-level artificial atom Hamiltonian
H(t) =) _ Eilgi) (il + Alt) D_ aij |6:)(¢5] (3.5)
i ij

is obtained by projecting H,,(t) onto the subspace spanned by the three lowest
energy eigenvectors |¢;), ¢ = 0,1,2 of Hy(q,). In Eq. 3.5 ¢;; = (¢:]q|¢;). The
STIRAP protocol can be carried out if we let A(t) = A,(t) coswst + A,(t) coswpyt.
We then use the RWA, by retaining only quasi-resonant off-diagonal and co-rotating

terms of the drive Hamiltonian, which simplifies to

A(t)é — HRWA(t) = %qlg As(t) eiwst ¢1><¢2| + % Jo2 Ap(t) eint‘¢0><¢2| -+ h.C. (36)
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In this approximation the truncated Hamiltonian (3.5) is transformed to the doubly
rotated frame, at angular frequencies ws and w,,. This yields an effective Hamiltonian
H(q,) with the structure of Eq.(3.1), which therefore implements the A configura-
tion. Notice that matrix elements ¢;; = (¢:|q|¢;) play the same role of the dipole
matrix elements in defining the Rabi frequencies, {25 = g2 A5 and Q, = go2 A4,.

The RWA of Eq.(3.6) is justified in the regime where peak Rabi frequencies are
much smaller than the splittings, Q; < |E; — Ej|, which is the usual experimental
regime. In this case the terms neglected are rapidly oscillating in the rotating frame,
and only produce a small and fast modulation in the dynamics. The approximation
is supported by simulations of the full Hamiltonian (3.4), using more than ten energy
levels [144, 145, 163] for the usual operating region near g, = 1/2.

It is worth stressing the dependence of the effective Hamiltonian H (gg) on the
bias charge ¢,. For instance in Eq.(3.1) detunings depend on ¢, via the energies E;
and peak Rabi frequencies via off diagonal matrix elements ¢;; (see Fig. 3.6). In
particular at the symmetry point, ¢, = 1/2, the matrix element gp vanishes and in
general selection rules hold preventing transitions between energy states with the
same parity of the label. The off-diagonal matrix elements ¢;; shown in Fig. 3.6 play
the same role of the dipole matrix elements in atoms. The largest one is qg1, which
provides the coupling for qubit operations. Fields in STIRAP are coupled via g

and qgo. This latter vanishes due to a parity selection rule at the symmetry point
g =1/2.
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Figure 3.6: Left panel: energy spectrum of a Quantronium setup with E; = FE¢.
The splitting E; — Ej in units of E¢ is plotted as functions of ¢4, The first splitting
is given by E;(1/2) = 0.94. Right panel: off-diagonal entries of the Cooper pair

number operator, ¢o1, ¢12 and ggo from top to bottom.
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3.1.5 Broadband noise

Since the nanocircuit is not isolated, the model has to be supplemented with noise
terms. The structure of coupling to noise can be understood considering classical
fluctuations of each of the parameters in the Hamiltonian of Eq. (3.3). For instance
fluctuations of the gate charge can be accounted for by adding a classical stochastic
term q, — g, + 0¢.(t). Physical processes described by these fluctuations are those
leading to a stray electrical polarization of the island, and include effects of voltage
fluctuations of the circuit and effects of switching impurities [154] located in the
oxides and in the substrate close to the device. Since these latter are in practice the
main source of decoherence (circuit fluctuations can be reduced by careful filtering)
for the Quantronium, we will only consider fluctuations of the gate charge, thus
acting on the same port used to drive the system. We may write the resulting

Hamiltonian as

H = Hy(qy) + Hrwa(t) +6H (3.7)

where 0H = —2F¢ 0q,(t) ¢. In general, noise is due to the coupling of the device to
an environment which is itself a quantum system, and the Hamiltonian is obtained
by letting 6H = X q+ H.,,, where H,,, describes the environment and X is an
environment operator. This model allows to treat high-frequency noise by a quantum
optical master equation in the weak coupling regime. However the power spectrum
of noise in the solid state has a large low-frequency component which invalidates
the weak coupling approach. A multistage approach has been proposed [155, 156]
where high and low-frequency noise are separtated, and the latter is treated as
an adiabatic classical field. Formally X = X § — 2E¢ 0q,(t), where X ¢ describes
fast environmental degrees of freedom and dq,(t) is now a classical slow stochastic

process. We let ¢,(t) = ¢, + 0¢,(t) and write the Hamitonian as
H = Hy(qu(t)) + Hrwa(t) + X G+ Hopo. (3.8)

In many cases low-frequency noise with 1/f spectrum, which is the leading contri-
bution of the slow dynamics of ¢,(t), is captured by a Static-Path Approximation
(SPA), that is approximating the stochastic process by a suitably distributed random
variable [60, 155]. In the case of many weakly coupled noise sources, the distribution

of ¢, is Gaussian and is characterized by an energy width o = 2FE 0,. Populations
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and coherences are obtained by averaging over this distribution the entries of the
reduced density matrix of the system. This approach has quantitatively explained
the power law decoherence observed in Quantronium [60] and in phase qubits [164],
and has been recently studied for optimal tuning of multiqubit systems [158].

This point of view provides a simple argument explaining why the symmetry
point ¢, = 1/2 is well protected against external noise. Indeed, since the energy
splitting E; — Ey depends only quadratically on the fluctuations dg, around this
point, energy fluctuations are suppressed. As a consequence, superpositions of the
two lowest energy levels keep coherent, yielding a power law suppression of the

signal [60, 155] and longer dephasing time.

3.1.6 Effective model for low-frequency noise in STIRAP

In order to study STIRAP we project the Hamiltonian (3.8) on the subspace spanned
by the three lowest energy instantaneous eigenvectors of Hy(q,(t)). In doing so we
assume the adiabaticity of the dynamics induced by dq,(t), which allows to neglect
effects of the time-dependence of the eigenvectors. Of course, if we start from the
SPA version of the Hamiltonian (3.8), this condition is automatically verified. We
focus on the system plus drive Hamiltonian, Hy(q.(t)) + Hrw (t), which has in the
rotated frame the same structure of Eq.(3.1). Parameters entering the Hamiltonian
depend, of course, on the realization of the stochastic process. Fluctuations of the

eigenenergies translate in fluctuations of the detunings (we let Eq = 0)

0(¢x) = B1(gz) —wp+ws 5 0p(qr) = E2(qz) — wp (3.9)

Also the effective drive fluctuates due to fluctuations of the charge matrix ele-
ments, for instance Q, = qo2(q.) Ap-

In the regime of validity of the SPA, this analysis shows that the effect of low-
frequency noise in solid-state devices, can be discussed in term of sensitivity of the
transfer efficiency obtained by STIRAP to parameters characterizing an equivalent
drive. This allows to apply several results known from quantum optics to solid state
devices. For instance the large sensitivity to two-photon detuning, translates in the
sensitivity to fluctuations of the lowest splitting, which is then the main figure to be
minimized in order to achieve efficient population transfer in the solid state. Notice

also that, the main steps of the analysis carried out for the Quantronium can also

60



be applied to other solid state implementations devices, as long as decoherence in

the dynamics of the two lowest energy levels is well characterized.

3.1.7 Effects of low-frequency noise in the Quantronium

In this section we will apply the above analysis to discuss the observability of STI-
RAP in the Quantronium, and we will consider a device with E; = Eg, whose
spectral properties are given in Fig. 3.6. An important point is that while dephas-
ing is minimized by operating at the symmetry point ¢, = 1/2, the selection rule
go2 = 0 prevents to implement STIRAP. Therefore, it has been proposed to operate
slightly off the symmetry point.

In these conditions it has been shown that STIRAP allows a substantial coher-
ent population transfer also in the presence of high-frequency noise. Notice that,
while in quantum optical systems STIRAP connects two ground states, in solid state
devices high-frequency noise leads to decay 1 — 0. These processes are well charac-
terized experimentally [60]. In Ref. [144] it has been shown that secular dephasing
between the above two states does not produce relevant effects during population
transfer. A careful analysis [163] has allowed to optimize parameters for STIRAP
in the presence of high-frequency noise, showing that operating at g, = 0.47 already
provides sufficient coupling qgs.

On the other hand, it is known that the effect of low-frequency noise increases
when the system is operated away from the symmetry point [60, 165]. This opens
the question of the trade-off between efficient coupling of the driving fields and
dephasing due to slow excitations in the solid-state. In this work we focus on this
issue and we neglect high-frequency noise.

Another consequence of the selection rule is that, in the vicinity of the symmetry
point, coupling with the drives is asymmetric. At ¢, ~ 0.47 we have qp2 ~ ¢i2/4
(see Fig. 3.6). Since in any case it is convenient to work with the largest pump
pulse Rabi peak frequency €2y, we will fix this value. It can be estimated by writing
Qo = (qo2/q01) Qr ~ Qr/6, where Qp is the maximal angular frequency for Rabi
oscillations between the lowest doublet. Frequences of approximately vgp = 750 —
900 M H z can be achieved in the Quantronium, corresponding to a maximum field
amplitude A, yielding v, = 100 — 150 M Hz. The peak Rabi frequency of the Stokes

field could be chosen as vy = kv, with £ < 4, but we will argue that x = 1 is the

61



1 (a) 1 (b)]
-
P, — \

0 0

0 2 4 6 8 10 0O 2 4 6 8 10
time (units of T)

Population
=

Population
=

1 (o) | 1 )|
5 5 1
g8 |- g8 -
> >
g P N—nu & -
0O 2 4 6 8 10 0 2 4 6 8 10
time (units of T) time (unitsof T)
© a0
5 ﬁ\—’—— 5
= Py 5 P
=} P, — Q P, —
g g
0 0
0O 2 4 6 8 10 0 2 4 6 8 10

time (units of T) time (units of T)

Figure 3.7: Averaged population histories for different values of the fluctua-
tion intensity of the two-photon detuning, os. In panels (a)-(f), we have o5 =
0.05,0.1,0.2,0.4,0.8,1.6 in units of )y, respectively.
related (6, = —5J) and drives have been symmetrized (x = 1) by using a lower

amplitude A, for the Stokes field. For €y = 27 - 10%rad/s the relevant curve is

Here detunings are anticor-

o5 = 0.2 and T = 48ns yielding 60% of population transfer. Slightly increasing
vp = 150M H z one obtains o5 = 0.125 and T' = 30 ns.
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optimal choice.

Fluctuations dq, of the gate charge can be estimated from the dephasing time of
the qubit at the symmetry point. This is due to energy fluctuations o/FE;(1/2) ~
0.01. Therefore fluctuations of gate charge, which are characteristic of the environ-
ment only, are estimated by o, = 0/(2E¢) &~ 3-1073, where we used Ec ~ 15GHz.
Notice that these features may depend on details of the protocol as the total mea-
surement time, but for 1/f noise the dependence is logarithmic and improving the

procedure does not bring essential changes of o,.

6

1
-03 -02-01 0 01 02 03

S-limit

Figure 3.8: Ratio of the maximum drive amplitudes k£ = Qg/Qp as a function
of the two-photon detuning limits, § = & /o, for anticorrelated noise, typical of
Quantronium (6, = —56). The white zone is the region where we have more than
80% of transfer efficiency of STIRAP.

We choose to operate at single and two-photon resonance, 6 = 6, = 0 at
¢, = 0.47. According to Eq.(3.9), fluctuations dg, determine a distribution of
the detuning. In the left panel of Fig. 3.6, we can directly read off fluctuations
of the splitting, which give the estimate Ad = AFE(q,) ~ (0E1/0¢y)q, 0¢, and
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A, = AE5(qx) = (0E2/0qy)q, 045

Therefore, fluctuations of the detunings are anticorrelated, Aéd, = a Ad, where
the ratio of the two derivatives is given by a ~ —5. This corresponds to the lines
drawn in the efficiency diagrams of Fig. 3.3. Using (0FE1/0¢y)q, 0¢x =~ (E;/4),
we find that fluctuations of the two-photon detuning are estimated by o5/Q =~
Ejo./(4Q0) ~ 0/(8Q) ~ 0.1 — 0.2, identifying the region of the efficiency diagrams
explored by the system during the protocol. This estimate suggests that energy
fluctuations in the Quantronium should still allow to observe coherent population.

Fluctuations of the off-diagonal elements can be estimated by the plots in Fig. 3.6
(right panel), yielding figures of ~ (1/4) 0,0y ~ 1073, therefore they can be
neglected. The transfer efficiency is then calculated by averaging the population
histories over the distribution of correlated detunings. Results are shown in Fig. 3.7
for different values of the fluctuation intensity of the two-photon detuning os in
units of €2y. Here detunings are anticorrelated (6, = —50) and drives have been
symmetrized (k = 1), by using a lower amplitude A, for the Stokes field. It is seen
that in standard experimental conditions the low-frequency noise allows from 60%
to more than 90% population transfer in the Quantronium. Notice that even for
os = 0.2 the average population of the intermediate level is very small during the
whole procedure.

Finally we comment about the optimization of the laser amplitudes. In the above
simulations we used x = 1, but it would be possible to use a larger Stokes pulse,
up to k = 4. However this does not improve the efficiency if fluctuations of the
detunings are anticorrelated. As shown in Fig. 3.8, in this case the region of large

efficiency shrinks for increasing x.

3.2 Asymmetric Bistable System

A feature which makes a strong difference between the behaviour of a quantum
system with respect to a classical one is the quantum tunneling. This effect of-
ten occurs in condensed matter physics, such as Josephson junctions and hetero-
nanostructures [166, 167]. In a dissipative quantum system interacting with a ther-
mal bath, the quantum tunneling can play an important role on the relaxation time

from a metastable state [168, 169]. During the last two decades the effects of environ-
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ment on quantum tunneling phenomenon have been intensively studied [38],[169]-
[172]. Commonly, environment is modelled as a number A (usually N' — o0) of
harmonic oscillators considered at thermal equilibrium, i.e. thermal bath, inter-
acting with the quantum system through a bilinear coupling [173]-[177]. In this
context, symmetric and asymmetric quantum bistable systems are good enough
to analyze superconducting quantum bits and decoherence phenomena [178; 179].
Obtaining longer coherence times in such systems, when they interact with noisy
environment, is one of the major requirements in devising and manufacturing de-
vices capable of storing quantum bits. In this respect, a main topic is to know the
properties of a particle subject to an external potential, in the presence of random
fluctuations. It can be also useful to study the changes occurring in the dynam-
ics of a quantum particle affected by noisy perturbations, when different shapes of
the potential profile are used. Potentials which model the interaction with laser
beams have most interesting implications for quantum systems such as the coher-
ent destruction of tunneling [180], the effect of quantum stochastic resonance [181],
and the control and reduction of decoherence in open quantum systems [182]. In
this work, in order to analyze the evolution of a quantum particle subject to time-
independent asymmetric bistable potential and affected by environmental noise, we
use the Caldeira-Leggett model [170], which allows to derive a quantum mechanical
analogue of the generalized Langevin equation. The study is performed by using the

approach of the Feynman-Vernon functional [183] in discrete variable representation
(DVR) [168, 184].

3.2.1 The noise seen as interactions with thermal bath

Our system consists of a quantum particle with mass M, interacting with a ther-
mal bath which plays the role of environment. The dynamics of the particle is
investigated by using the Caldeira-Leggett model [170]. In our analysis ¢ and p are
one-dimensional operators for position and momentum, respectively.

The unperturbed Hamiltonian of the system is

n2

Hy = 5=+ Vo(d) (3.10)

where
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A M?wd . Mw? .
Vo(q) = 64N3q4 - TOCF — e, (3.11)

is the asymmetric bistable potential shown in Fig. 3.9. Here, ¢ and AU are the

asymmetry parameter and the barrier height, respectively, and wqy is the natural

oscillation frequency. In our study we consider only 8 energy eigenstates. In Fig. 3.9

initial position

G A 02 4394950697
position
Figure 3.9: Potential profile V5(q) (see Eq. (3.11)) for AU = 3 and € = 0.5. Energy
levels and corresponding eigenstates considered in our analysis are indicated by
horizontal lines and curves, respectively. The energy eigenvalues are Ey = —2.01,
E, = -092, Fy, =0.11, E3 = 1.08, £, = 1.97, E5 = 2.69, Es = 2.76, F; = 3.27.
By using the DVR-state |q,), eigenvalues of the position operator are obtained and
shown on the horizontal axis: ¢y = —4.17, ¢ = —1.38, ¢o = 1.71, g3 = 3.02,
qs = 4.05, g5 = 4.97, gs = 5.86, g = 6.81. The initial position is gsr+ = 0 (black

circle).

these energy eigenvalues are shown on the vertical axis. In the same figure, on
the horizontal axis we indicate the 8 position eigenvalues, obtained by using the
DVR-state |g,). The black circle marks the initial position of the particle, that
is the system at ¢ = 0 is in a state given by a proper linear combination of the
corresponding 8 eigenstates |g,) considered in our analysis. The curves shown in the

figures are the eigenfunctions related to the 8 energy eigenvalues.

66



In order to describe the dynamics of the particle interacting with environment,

we consider the following Hamiltonian

~

H(t) = Hy(t) + Hp, (3.12)

where

N 1
5= 25

is the Hamiltonian which describes the thermal reservoir and its interaction with

2
P} Cj
Y —|—m3 (x] w2q> ] (3.13)

m;

the particle. As usual, the thermal bath is depicted by an ensemble of A/ harmonic
oscillators with spatial coordinate Z;, momentum p;, mass m;, and frequency w;.
The coefficients ¢; are the coupling constant between system and thermal bath.
We note that, as N' — oo, from Eq. (3.13) a continuous spectral density is
obtained.
In our study we use the Ohmic spectral density characterized by an exponential

cut-off w,
J(w) = nwexp <_w£) . (3.14)

[

Here, n = M~ with ~ the strength of the coupling between system and heat bath.
We note also that w. > wy,w;, 7.

Because of the bilinear coupling between the coordinate ¢ of the system and the
coordinate Z of the thermal bath, this model is the quantum analogue of a classical
system affected by a constant random force [38]. In the next two subsections we

briefly summarize the mathematical approach used in this study.

3.2.2 The Feynman-Vernon theory

In order to make our analysis independent on the properties of the heat bath, we
trace out the degrees of freedom of the reservoir by using the reduced density oper-

ator

plar, qf;t) = /qu/dqéK(qf,q},t;qO,qé,to)ps(qo,qé,to), (3.15)

where the propagator K is given by
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q(t)=qs q'(t)=q} .
Dq [ DIAAT Fevla ) (3.16)
(to)=q q'(to)=q5

K(q5, 4}t qo, 49: to) =/

q

and A[q] = exp ( slg }) with Ss[q] being the classical action functional. In Eq. (3.16),

Frvlg, ¢'] = exp (—WVT[M]) is the Feynman-Vernon (FV) influence functional with

the influence weight functional ¢py[q,¢| depending on the bath correlation func-
tion [38, 183).

3.2.3 Discrete Variable Representation (DVR)

By solving the eigenvalue equation connected with the Hamiltonian Hy (see Eq. (3.10)),
we get the energy eigenstates (see vertical axis in Fig. 3.11). Within the framework
of the discrete variable representation (DVR) [184] it is possible to obtain the basis
{lgu)} of eigenstates of the position operator ¢ (see horizontal axis in Fig. 3.11).

In this representation, using Eq. (3.16), the continuous real-time path integral

given in Eq. (3.15) becomes a discrete path with m transitions at times ty, to, ...t,,

(t)=xm
/ DxClE, X) FrvIEs X Puowo (3.17)

to)=Xo

ROEDS /

povo 7§ (t0)=
where C[¢, x] = A[q]A*[¢] and the influence weight functional of the FV functional
s [185]

m -1 m [—1
orvi&x]l=—=>_> &St )& —i> Y &R — t)x;- (3.18)
I=1 j=0 =1 j=0

Here, the absolute coordinates g; are replaced by the discrete relative coordinates
§i(t) = q;(t) — ¢j(t) and center of mass coordinates x; = ¢;(t) + ¢;(t).

Because we are interested in the evolution of the populations, in Eq. (3.17) we
consider the diagonal terms p,,, ... (t). Applying the non-interacting cluster approx-
imation (NICA) [185], the following master equation (ME) is obtained [168, 169]

frun(®) Z/ dt'H,(t —)p (), p=1,... N, (3.19)

where N is the number of eigenstates and the kernel H, which indicates the cluster

matriz, takes into account of all possible transitions in the DVR paths [168, 169].
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According to the path integral technique based on the Feynman-Vernon the-
ory, using ME corresponds to take into account only the paths connecting diagonal
elements of the reduced density matrix of the position operator ¢ [168, 169].

Within NICA all the intercluster interactions are neglected [185]. By assuming
that the characteristic memory time of the matrix elements of H in Eq. (3.19) is
the smallest time scale of the physical system, we obtain the following Markovian

approzimated master equation [168, 169, 185

puu(t) = 2_: Fuu(t)Pw(t) (3.20)

where the time-dependent rate coefficients are expressed by

D (t) = / drH, (8t — 7). (3.21)
0
By decoupling via a diagonalization procedure the system of equations (3.20)
N
Z (Sil>w€1rn1ﬁ25ﬁ2u = AM5MI/7 (322)
K1,k2=1

where S, are the elements of the transformation matrix and A, the eigenvalues of

the rate matrix [168]. The general solution of the Markov approximated ME is

N
Pun(t) = D7 S (S™1) ™) ps(to). (3.23)

v,k=1
Because of the conservation probability, for the diagonal matrix elements we have [185]
r(t)=— Z [ (1), (3.24)
KF#V
and one eigenvalue is equals zero, A; = 0. The Eq. (3.23) becomes
Puu(t) = pﬁ + Z Z SMV(S_l)uﬁeAu(t_to)pnn(tO)a (3.25)
v=2 k=1

where the first term is the asymptotic population in the discrete variable represen-
tation. In asymptotic regime, the largest time-scale governing the dynamics is given
by [168]

F=min{|R(A,);v=2,...,N}, (3.26)
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where A, are the eigenvalues of the rate matrix and | (A,) | are the non-zero abso-
lute values of the real part of A,.

In the next section we focus our study on the medium-short time behavior of the
system, using the largest A, ! as timescale to analyze the non-equilibrium dynamics

of the quantum particle in the presence of thermal fluctuations.

3.2.4 Relaxation Time

In this section we study the time evolution of our quantum particle taking into
account the 8 energy levels shown in Fig. 3.9. We restrict the study to the 8 lowest
levels of the system, because we are interested in the dynamics of a particle that
can not reach energy levels higher than the relative maximum of the potential. In
particular, we intend to analyze the time behaviour of the populations for different
values of the coupling strength, focusing on the time behaviour of the state |qo) (left
side well of the potential).

By using the DVR-state |g,), as initial condition for the particle we choose the

non-equilibrium position gg.+ = 0. The corresponding state is given by

|Gstart) = c1lq1) + c2|q2) (3.27)

with ¢; = 0.745 and ¢y = 0.667.

By integrating Eq. (3.19) for different values of the parameter 7, which represents
the intensity of the environmental noise, for each eigenstate |g,) we obtain the time
behaviour of the corresponding population pg, = p,, (see Fig. 3.10). Moreover, by a
simple change of basis, we calculate the time evolution of the populations also in the
energy representation (see Fig. 3.11). As one can see from Egs. (3.20), (3.22), for
each value of 1 there are N relaxation times A;l. Here, we consider the maximum
of these relaxation times, and note that this time increases rapidly for larger values
of 1. Therefore, to describe the time evolution of the system for different values of
7, we choose as time scale 7 the largest of the relaxation times obtained for n = 0.01
and calculate the evolution of the system for a maximum time ¢t = 600 7. This choice
allows to follow the transient dynamics of the system for low and intermediate values
of the coupling constant (see panels a, b, ¢ in Figs. 3.10, 3.11). For higher values of
the system can not reach the regime condition, because of the presence of relaxation

times longer than the maximum time chosen to calculate the numerical solution (see
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Figure 3.10: Time evolution of the diagonal elements, p,, (¢ = 0,1,...,7), of the
density matrix in g-representation. The matrix elements p,, are the population
distributions in the eight position eigenstates considered. The time evolution is
obtained for different values of the coupling strength: (a) n = 0.01, (b) n = 0.4, (c)
n=1and (d) n=28.
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panel d in Figs. 3.10, 3.11). This delay in the system dynamics can be explained
by the quantum Zeno effect, responsible for the suppression of the tunnel effect.
Moreover, we observe in Fig. 3.10 a nonmonotonic behaviour of the population pg,
as a function of the time. Finally, as a consequence of the quantum Zeno effect, the
eigenstate |gp) can be maximally populated at different times varying the coupling
strength and, therefore, the value of 1. This could be useful in view of placing a
quantum particle in a given position at a fixed time.

We note that it would be interesting to compare our results with those obtained
in the case of a harmonic oscillator coupled with a thermal bath without any cutoff,
as studied in previous works [186, 187, 188]. On physical grounds we expect that
the time behaviour of the purity of the system state is strictly connected with the
relaxation rates. In our analysis the relaxation rates have been used to determine
the timescale for obtaining the time evolution of the population distributions. More-
over, we found a freezing phenomenon of the state of the system due to the Zeno
effect [189]. Finally, we note that the complete description of the dynamics of our
initial pure state should be obtained by following the time evolution of all elements
of the density matrix as expressed by Eq.( 3.17). This will be subject of future

investigations.
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Conclusions

In the first chapter the mathematical rudiments of stochastic processes and in par-
ticular of Lévy processes, have been presented. The Lévy flights are introduced
as self-similar Lévy processes. After the definition of the strictly stable random
variables, the fractional differential equation for Lévy flight superdiffusion and the
associated Langevin equation with symmetric a-stable Lévy noise are introduced.
The general differential equation useful to calculate the nonlinear relaxation time
for a particle moving in a cubic potential and with an arbitrary Lévy index « is
presented in chapter two. For Cauchy noise (o« = 1) the NLRT as a function of the
noise intensity and the initial position of the potential is calculated. A monotonic
behavior of the NLRT as a function of the initial position of the particle was ob-
tained in this case. For free anomalous diffusion the NLRT decreases monotonically
with the noise intensity as in the presence of the cubic potential.

Moreover, in the same chapter, we presented a study on the role of the Lévy noise
in population dynamics. By using the Lotka-Volterra model in the presence of two
symmetrical non-Gaussian a-stable noise sources, we analyzed the time behaviour of
an ecosystem consisting of two competing species and surrounding environment. In
particular, an additive noise source affects the dynamics of the interaction parameter
between the two species, 7(t), which "moves” along a bistable potential in the
presence of a periodical driving force. Depending on the values of the interaction
parameter (t), coexistence or exclusion regime takes place. By using different a-
stable noise sources, stochastic resonance was always observed, with (t) switching
quasi-periodically between coexistence and exclusion regime. In this condition, we
considered the second noise source, inserting in the Lotka-Volterra equations a term
of multiplicative Lévy noise, whose intensity is indicated by D. For different values

both of the index « and intensity D, we studied the time behaviour of the two
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species densities, x and y, and found that noise is responsible for the generation of
time series characterized by anticorrelated oscillations, whose amplitude is strictly
dependent on the multiplicative noise intensity. To better analyze the response of
the system to the multiplicative noise, we calculated the corresponding signal-to-
noise ratio (SNR) of (z — y)®. The results showed that SNR is characterized by
a nonmonotonic behaviour with a maximum as a function of the noise intensity,
which indicates the presence of a second stochastic resonance phenomenon. Finally,
we observed that the values of this maximum in the SNR and the spectral power
amplification is reduced as the Lévy index « decreases approaching 1 (more super-
diffusive behaviour).

We note that our model is useful to describe physical situations in which the am-
plitude of periodical driving forces, such as those connected with the temperature
oscillations, is weak and therefore unable to produce considerable variations in the
dynamical regime of the ecosystem. The synergetic cooperation between the non-
linearity of the system and the random and periodical environmental driving forces
produces, therefore, a coherent time behaviour of the ecosystem investigated. These
noise-induced effects should be useful to explain the spatio-temporal behaviour of
species whose dynamics is strongly affected by environmental noise characterized by
Lévy distribution [122]-[125].

In the third chapter we started to study the effect of low-frequency noise on the
transfer efficiency of STIRAP, proposing that low-frequency fluctuations of the spec-
trum can be analyzed in terms of fictitious correlated fluctuations of the detunings.
For solid-state noise with large low-frequency component (e.g. for 1/f noise) the
leading effect (static path approximation) is equivalent to consider statistically dis-
tributed detunings and can be discussed by analyzing the sensitivity to parameters
of the protocol. We applied the theory to the Quantronium, showing that corre-
lated fluctuations of the energy splittings have to be considered, and that transfer
efficiency is mainly sensitive to decoherence in the subspace of the two-lowest levels,
which is well characterized experimentally. Selection rules prevent to work at the
symmetry point, where decoherence is minimal. Therefore, the observation of co-
herent population transfer requires optimization of the trade-off between increasing
coupling and greater sensitivity to low-frequency noise. We have shown that this is

indeed possible, given the measured figures of low-frequency noise.

76



Notice that we have used pulses of width 7' = 48 — 30ns. Therefore, the total
time of the protocol ~ 200 — 350 ns is longer than the dephasing time of the qubit,
as determined solely by static inhomogeneities. This dephasing time is smaller of
that at the symmetry point (in the experiment of Ref. [60] the dephasing time for
coherent oscillations dropped from Ty ~ 600 ns at the symmetry point to T;, ~ 50ns
at ¢, = 0.47). This shows that STIRAP is less sensitive to low-frequency noise than
coherent oscillations. Actually, accounting for high frequency noise the process will
be limited by the relaxation 77 > 500 ns.

The analysis we illustrated applies as well to other superconducting nanodevices.
In particular, it could allow to design correlations of fluctuations of the energy
spectrum, which maximize the Zener channel of population transfer (see fig. 3.4).

The second topic presented in the third chapter is the dynamics of a quantum
particle subject to an asymmetric bistable potential and interacting with a noisy
environment. The study was performed exploiting the approach of the Feynman-
Vernon functional [183] within the framework of the discrete variable representa-
tion [168, 169, 184]. By using the Caldeira-Leggett model [170], we described the
transient dynamics of the system for different values of the coupling strength between
the particle and the noisy environment, modelled as a thermal bath. Due to the
quantum Zeno effect, responsible for the suppression of the tunnel effect, a delayed
dynamics of the system was observed for higher values of the coupling strength. We
found also that the metastable state inside the left side well of the potential can be

populated at different times varying the value of the coupling strength.
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