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Introduction

In the last two decades, complexity is bringing biology together with mathemat-

ics, engineering, computer science and physics in an interdisciplinary interest. The

complexity is one of the most exciting and fast growing branches of modern science.

This research area is at the forefront in interdisciplinary research and it has an in-

creasingly important impact on a variety of applied subjects ranging from the study

of turbulence and the behavior of the weather, through the investigation of electri-

cal and mechanical oscillations in macroscopic system physics and the emergence of

ordered structures in condensed matter physics, to the physics of nano-structures

and nano-devices, and to the analysis of biological and economic phenomena. Com-

plex system behavior cannot be predicted by standard deterministic linear equations

and their properties are not fully explained by an understanding of its interacting

components parts. These systems can be modelled as open systems in which the

interaction between the components is nonlinear and the interaction with the envi-

ronment is noisy. This intrinsic nonlinearity can give rise to the complex behavior of

the system, which becomes very sensitive to initial conditions, various deterministic

external perturbations, and to fluctuations always present in nature. The perfor-

mance of any complex system depends on a correct information exchange between its

components. In most natural systems, a signal carrying informations is often mixed

with noise. The comprehension of noise role in the dynamics of nonlinear systems

plays a key aspect in the efforts devoted to understand and model so-called complex

systems. Understanding of biological systems indeed may be enhanced by analysis

of their complex nature. One approach to understanding the complexity is to start

with a conceptually simple view of the system and add details that introduce new

levels of complexity. In general the effects of small perturbations and noise, which is

ubiquitous in real systems, can be quite difficult to predict and often yield counterin-

1



tuitive behavior. Transport in ion-channels, synchronization/coherence in biological

extended systems, virus propagation, forecasting protocols are just a few examples

that illustrate the subtle beneficial synergy between noise and nonlinearity. Com-

plex systems may have extremely rich coherent dynamics due to the environmental

noise and, in specific points of their phase space, are extremely sensitive to external

perturbations.

Usually the contamination by the noise makes it difficult to detect signals, but

in some cases noise induced effects known as stochastic resonance, resonant acti-

vation and noise enhanced stability improve conditions for signal detection when

noise and system parameters become optimal [1]-[4]. Moreover the noise through its

interaction with the nonlinearity of the system can give rise to new phenomena such

as noise induced transitions [5] noise delayed extinction, temporal oscillations [6]

and spatial patterns [7]. The combined action of external deterministic or random

driving forces and the environmental noise can given rise to new phenomena with a

rich scenario of far-from equilibrium effects. To describe complex systems, it is in

fact fundamental to understand the interplay between noise, periodic and random

driving forces and the intrinsic nonlinearity of the system itself [8].

Two kinds of motions can easily be observed in Nature: smooth, regular and

quasi-regular motion, like Newtonian motion of planets, and random, highly irregu-

lar motion, like Brownian motion of small specks of dust in the air. The first kind of

motion can be predicted and consequently, described in the frame of deterministic

approach. The second one demands the statistical approach [9]. The idea of an ef-

fective stochastic motion of a particle in a surrounding heat bath has been a triumph

of statistical approach of complex systems. The description of Brownian motion in

Einstein’s work of 1905 relies on the assumption of the existence of a time-interval

τ , such that the particle’s motion during different τ -intervals is independent. The

coarse-grained version of this motion leads then to the known diffusion equation.

Classical Brownian motion of a particle is distinguished by the linear growth of the

mean-square displacement of its position coordinate x,

〈x2(t)〉 ∝ t.

However, in many cases the Einstein’s assumption is violated, and many systems

exhibit deviations from the linear time dependence. Often, a nonlinear scaling of
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the form

〈x2(t)〉 ∝ ts

is observed. In the last 15 years, this type of diffusion, named anomalous diffusion

is being used to describe several phenomena observed in complex systems. From a

probability theory point view, such behavior corresponds to the limiting distribution

of the sum of positive, independent and identically distributed random variables [10].

The noise source generated by this random variable give rises to the Lévy motion,

characterized by Lévy flights, that is extremely long jumps. The length of these

jumps is distributed according to a Lévy stable statistics with a power law tail,

divergence of the second moment and heavy tails. This peculiar property strongly

contradicts the ordinary Brownian motion, for which all the moments of the particle

coordinate are finite. The presence of anomalous diffusion can be explained as a

deviation of the real statistics of fluctuations from the Gaussian law, giving rise to

the generalization of the central limit theorem [11]. Lévy flights have been observed

in many physical, natural and social complex systems, where scale-invariance phe-

nomena take place or can be suspected [12]-[15]. Recently noise-induced ordering

phenomena, such as dynamic hysteresis, stochastic resonance, resonant activation,

and double stochastic resonance phenomenon were observed in a bistable system,

in the presence of Lévy noise [16]-[19]. Of course, anomalous diffusion has a lot of

peculiarities different from those observed in normal Brownian motion [20]. The

main difference from ordinary diffusion consists in replacing the white Gaussian

noise source in the underlying Langevin equation with a Lévy stable noise.

Another important problem within complex systems is the matastability together

with nonequilibrium dynamics. The metastable state is a local minimum in the

potential profile of the physical system considered. The action on the system of

deterministic and/or stochastic driving forces produces typical scenario of out of

equilibrium dynamics. The presence of the noise source in the escape of the system

from a matastable state through a potential barrier could increase the crossing

time and then the lifetime of the system in the metastable state [3, 4]. The first

scientist who studied this problem was Kramers [21]. He proposed to model the

chemical reaction kinetics as the diffusion of a Brownian particle, initially located

in a potential well, across a potential barrier of finite height. Kramers’s theory has

been applied to a much more general range of processes associated with the barrier
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crossing of a physical entity experiencing random kicks fueled by its contact to a

thermal bath [22]-[24]. If the random processes in complex systems violate the rules

of Brownian motion, the Kramer’s theory cannot to be applied [25]-[27].

In standard quantum mechanics, instead, the systems mainly deals with closed

physical systems that can be considered isolated from any external environment, the

latter being generically a larger system consisting of (infinitely) many degrees of free-

dom. The time-evolution of closed systems is described by one-parameter groups of

unitary operators embodying the reversible character of the dynamics. On the con-

trary, when a system interacts with an environment in a non-negligible way, it must

be treated as an open quantum system, namely as a subsystem embedded within

environment, exchanging with it energy and entropy, and whose time-evolution is ir-

reversible [28]-[38]. In general, the time-evolution of the system is inextricably linked

to that of the environment. The compound system plus environment is closed and

develops reversibly in time; however, the global time-evolution rarely permits the

extraction of a meaningful dynamics for the system alone. This can be done if

the coupling among subsystem and environment is sufficiently weak, in which case

physically plausible approximations lead to reduced dynamics that involve only the

degrees of freedom of the system and are generated by master equations. Such

reduced dynamics provide effective descriptions of how the environment affects the

time-evolution of the system which, on time-scales that are specific of the given phys-

ical contexts, typically incorporates dissipative and noisy effects. Classical Brownian

motion indicates that, when the typical time-scale of the system is much larger than

the time-scale governing the decay of time-correlations of the environment, then

the environment can be described as an effective source of damping and noise. In

the framework of open quantum systems, this possibility is technically implemented

either by letting the typical variation time of the system, τS , go to infinity, while

the environment correlation time τE stays finite, or by letting τE go to zero, while

τS stays finite [39]. As we shall see, these two regimes give rise to two different pro-

cedures to arrive at a reduced dynamics: the so-called weak coupling and singular

coupling limits.

Since their first appearance, open quantum systems have been providing models

of non-equilibrium quantum systems in diverse fields as chemical-physics, quantum

optics and magnetic resonance. Recently, the rapid development of the theory of
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quantum information, communication and computation [40]-[42] has revived the

interest in open quantum systems in relations to their decoherence properties, but

also in their capacity of creating entanglement in multi-partite systems immersed

in certain environments. The observation of coherent dynamics in nanodevices is

an important achievement towards quantum control in solid state devices. In the

last decade superconducting nanocircuits exhibiting the dynamics of single artificial

atoms [43]-[45], two coupled artificial atoms [46, 47] and artificial atoms coupled

to electromagnetic resonators [48, 49] have been demonstrated. This development

opens new perspectives to study quantum phenomena in solid-state devices that

traditionally have been part of quantum optics [50].

The typical open quantum systems in these contexts are n-level systems, like

atoms, photons or neutrons embedded in optical cavities or heat baths consisting of

bosonic or fermionic degrees of freedom.

Focus of this thesis is to analyze the role of the environmental noise in classical

and quantum systems. We focus on two classical systems and two quantum ones. In

particular, we want to pay attention on the role of Lévy noise in a metastable state

and in populations dynamics [51]-[53]. We investigate the effects of low-frequency

quantum noise on a particular nanodevice (the Quantronium) and the role of noise

in an asymmetric quantum bistable system interacting with thermal bath [54, 55].

In the first classical system, we investigate the barrier crossing event in the

presence of Lévy noise, by focusing on the nonlinear relaxation time (NLRT) for

a metastable cubic potential. In the second one, we start to consider two com-

peting species subject to multiplicative α-stable Lévy noise. Studying the species

dynamics, which is characterized by two different regimes, exclusion of one species

and coexistence of both, and analysing the role of the Lévy noise sources, we find

quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of

the species.

The population dynamics is that part of life science that studies the space-time

evolution of certain variables describing the population itself (eg size, age, weight).

All those biological and environmental processes that influence this development

are of paramount importance. Historically this area was of interest in mathematical

biology, just think of the Gompertz, Verhulst and Malthusian models, or the famous

Lotka and Volterra equations [56, 57]. Today, all these models are widely used in
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various researche fields. Among the most important are the epidemiological ones,

for the study of viral transmission [58] and the zoological concerning migration and

foraging strategies [59].

Concerning the two open quantum systems, first we propose a way to analyze

low frequency noise in terms of fictitious correlated fluctuations of external parame-

ters, showing that optimizing the trade-off between efficient coupling and protection

against noise may allow to observe coherent population transfer in a particular nano-

device, namely the Quantronium [44, 60]. Recent experiments have demonstrated

coherent phenomena in three-level systems based on superconducting nanocircuits.

This opens the possibility to detect Stimulated Raman Adiabatic Passage (STI-

RAP) [50] in artificial atoms.

Subsequently, we study the relaxation time of an open quantum system with

asymmetric bistable potential and interacting with a thermal reservoir. We obtain

the time evolution of the population distributions in both energy and position eigen-

states of the system, for different values of the coupling strength with the thermal

bath.

The plan of this thesis is as follows. In chapter 1 we give a very short introduction

to stochastic processes and Lévy processes in a mathematical framework. In chapter

2, we analize the effect of Lévy noise in a barrier crossing problem and in a population

dynamics model. Finally, in chapter 3 we investigate the role of the environmental

noise in two open quantum systems.
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Chapter 1

Stochastic Processes and Lévy

Processes

In this chapter we introduce the basic mathematical concepts to address the afore-

mentioned research topics, namely the stochastic processes, the Wiener and the Lévy

processes.

1.1 Stochastic Processes

The triple (Ω,F , P ) is called a probability space if Ω is a set, F is a family of subset

of Ω such that:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC is the complement of F

(iii) A1, A2, . . . ∈ F ⇒ A :=
∞⋃

i=0

Ai ∈ F ;

and the probability measure P is a function P : F → [0, 1] such that:

(iv) P (∅) = 0, P (Ω) = 1

(v) if A1, A2, . . . ∈ F and {Ai}∞i=1 is disjoint then P

(
∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai).

In this given probability space (Ω,F , P ), a random variable X is a function

X : Ω → Rn. Every random variable induces a probability measure µX on B ⊆ Rn
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(Borel set), defined by

µX(B) = P
(
X−1(B)

)

and called the distribution of X.

A stochastic process is a parametrized collection of random variables

{Xi}t∈T

defined on a probability space (Ω,F , P ) and assuming values in Rn. The parameter

space T is usually the half-line [0; +∞), but it may also be an interval [a; b]. Note

that for each t ∈ T fixed we have a random variable

ω → Xt(ω); ω ∈ Ω.

On the other hand, fixing ω ∈ Ω we can consider the function

t→ Xt(ω); t ∈ T

which is called a path of Xt. It is simple for the intuition to imagine t as ”time”

and each ω as an individual ”particle” (”experiment”). Within picture Xt(ω) would

represent the position (result) at time t of the particle (experiment) ω. The finite-

dimensional distributions of the stochastic process X = Xt∈T are the measures

µt1,...,tk defined on Rnk, k = 1, 2, . . . by

µt1,...,tk(F1 × F2 × · · · × Fk) = P [Xt1 , · · · , Xtk ]; ti ∈ T. (1.1)

Here F1, . . . , Fk denote Borel sets in Rn. The family of all finite-dimensional

distributions determine many important properties of the processX, therefore, given

a family of probability measures in Rnk is important to be able to construct a

corresponding stochastic process (see the Kolmogorov’s extension theorem [61]).

1.1.1 Wiener process

A landmark example of stochastic process is that describing the Brownian motion.

In 1828 the Scottish botanist Robert Brown observed that pollen grains suspended in

liquid performed an irregular motion. The motion was later explained by the random

collisions with the molecules of the liquid. To describe the motion mathematically it

is natural to use the concept of stochastic process Xt(ω), interpreted as the position
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at time t of the pollen grain ω. In this case we have x, y ∈ R3 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk

and the measure (1.1) becomes

µt1,...,tk(F1 × F2 × · · · × Fk) =
∫

F1×F2×···×Fk

p(t1, |x− x1|)
p(t2 − t1, |x1 − x2|) · · ·p(tk − tk−1, |xk−1 − xk|)dx1dx2 · · ·dxk (1.2)

where the distribution p(t, |x− y|) is a Gaussian:

p(t, |x− y|) = (2πt)−3/2 · exp

(
−|x− y|2

2t

)
.

Here, note that the standard deviation of the distribution is
√
t. Indeed all the

processes described by this distribution are characteristic of so-called normal or

Gaussian or Brownian diffusion. Moreover, from Eq. (1.2) we deduce that all the

increment |xi − xi+1| are independent each other. If we require that the trajectory

is continuous in R3 (see Kolmogorov’s continuity theorem [61]) we have constructed

the so-called Wiener process (Wt)t≥0. A very important property of the Wiener

process is that its trajectories are not differentiable at any point for t > 0 [62].

1.2 Lévy Processes and Lévy Distributions

Two important properties are intrinsic to the homogeneous Brownian motion: the

diffusion packet initially concentrated at a point takes later the Gaussian form,

whose width grows in time as t1/2. This kind of diffusion was called the normal dif-

fusion. In 1926 Richardson [63] published the article where he presented empirical

data being in contradiction with the normal diffusion: the size ∆ of an admixture

cloud in a turbulent atmosphere grows in time proportionally to t3/2, that is much

faster than in the normal case (t1/2). This turbulent diffusion was the first example

of superdiffusion processes, when ∆ ∝ tγ with γ > 1/2.

A random process {X(t)}t≥0 is called a Markovian process, if for any n ≥ 1 and

t1 < t2 < . . . < tn < t ⇒ P (X(t) < x|X(t1) = x1, . . . , X(tt) = xn) = P (X(t) <

x|X(tn) = xn). The Markovian property is interpreted as independence of future

from the past for the known present.

A random process with independent increments is called homogeneous or station-

ary, if the random variables X(t + τ) − X(t) = ∆X have distributions which are
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independent of t:P (∆X < x) = F (x, τ).

{X(t)}t ≥ 0 is a Lévy process if, for every t, τ ≥ 0, the increment X(t+ τ) −X(t)

is independent of the process {X(t′)}0≤t′<t and has the same law as X(τ). In

particular,X(0) = 0.

We will denote the Lévy process L(t). As it follows from the evident decompo-

sition [9]

L(t) = L
(
t

n

)
+
[
L
(

2t

n

)
− L

(
t

n

)]
+ · · ·+

[
L
(
nt

n

)
− L

(
(n− 1)t

n

)]

the random variable L(t) can be divided into the sum of an arbitrary number of inde-

pendent and identically distributed random variables. In other words, the probabil-

ity distribution of L(t) belongs to the class of infinitely divisible distributions [10, 64].

Hence, we can express the second characteristics, i.e. the logarithm of characteristic

function of the random variable L(t) in the Lévy-Khinchine form [65]

φ(k, t) ≡ ln P̃ (k, t) = ln〈eikL(t)〉

= t
∫ +∞

−∞
(eikx − 1 − ik sin x)

ρ(x)

x2
dx, (1.3)

where ρ(x) ≥ 0 is the canonical measure density. Note that the last term in the

bracket, −iksinx, serves to ensure the convergence of the integral and can be omitted

if the integral converges itself. Choosing

ρ(x) = δ(x)

and taking into account that

eikx − 1 − ik sin x = −k
2x2

2
, x→ 0,

we arrive at the normalized Brownian motion (Wiener process) with characteristic

function

P̃ (k, t) = exp

{
−tk

2

2

}
. (1.4)

Lévy processes that have the scale invariant property are called Lévy flights. The

distributions that describe these processes are called stable distributions and can be

indexed via the parameter α [11, 65].

10



The random process {Y (t)}t≥0 is a stable process if for any positive a, b ∈ R

there are positive number c, d ∈ R, such that the independent copies Y1, Y2 of Y are

in relation

aY1 + bY2
.
= cY + d.

The symbol
.
= means the equality of distributions of the corresponding random

variables. Moreover if d = 0, the process Y is strictly stable. The random process

{L(α,β)(t)}t≥0 is called α-stable Lévy motion with parameters 0 < α ≤ 2, −1 ≤
β ≤ 1, if

(i) L(α,β)(0) = 0 almost certainly;

(ii) L(α,β)(t)t≥0 is a process with independent increments;

(iii) L(α,β)(t+ τ) − L(α,β)(t)
.
= τ 1/αY (α,β) at any t and τ (with Y stable process).

The condition

L(α,β)(t) = τ 1/αY (α,β)

is the self-similarity condition.

The characteristic function P̃ (α,β)(k) of the strictly stable probability distribution

P (α,β)(x), with parameters α and β, is given by the formula [11],[66]-[68]

P̃ (α,β)(k) =





exp
{
−|k|α

[
1 − iβsign(k) tan πα

2

]}
α 6= 1,

exp
{
−|k|

[
1 + iβsign(k) 2

π
ln |k|

]}
α = 1,

(1.5)

The characteristic index α ∈ (0, 2] determines the decreasing rate of the large values

probability for stable distributions. For α = 2 the variance of distribution is finite,

while for α < 2 the variance is infinite. Moreover, when α < 1 also the expectation

value does not exists. The parameter β ∈ [−1, 1] characterizes the asymmetry of

the distributions: for β = 0 the stable distribution is symmetric.

For α = 1, β = 0 we find the Cauchy distribution

P (1,0)(x) =
1

π(1 + x2)
(1.6)

with the characteristic function

P̃ (1,0)(k) = exp{−|k|}. (1.7)
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For α = 1/2, β = 1 we find an one-side distribution known as the Lévy-Smirnov

distribution [67, 68]

P (1/2,1)(x) =
1√
2π
x−3/2 exp

(
− 1

2x

)
, x ≥ 0. (1.8)

Lévy flights are characterized by many small movements and few large displace-

ments (see Fig. 1.1) which correspond to the parametrized stable distribution (see

Fig.1.2).
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Figure 1.1: Two dimensional trajectories of free diffusion of a particle subjected to

noise sources with Gaussian (α = 2, β = 0), Cauchy-Lorentz (α = 1, β = 0), Lévy

(α = 1.5, β = 0), and Lévy-Smirnov (α = 0.5, β = 1) distributions. The values of

the other parameters are µ = 0, σ = 1.

We underline here only the fact that all members of the set of stable distributions

are characterized by the presence of ’heavy’ (power-type) tails and, as a consequence,

of infinite variance, and that concerns all of them, except the Gaussian (normal)

distribution. That is, we want to remark that the whole set of stable laws appear as

limiting distributions in the generalized central limiting theorem. This is, certainly,

the most important advantage for these distributions.
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Figure 1.2: PDFs of stable Lévy distribution for different values of the parameters

α, β, µ and σ. Namely, (left panel) σ = 1, µ = 0, β = 0, and α = 0.5, 1.0, 1.5; (right

panel) σ = 1, µ = 0, α = 1, and β = 0.2, 0.6, 1.0

1.2.1 Generalized Central Limiting Theorem

The central limit theorem states that let (X1, X2, . . . , Xn) be n random variable

independent and identically distributed (i.i.d), with mean µ and variation σ2, then

the variable sum standardized

S̃n =
Sn − µ

σ
√
n

=
X1 +X2 + · · ·+Xn

σ
√
n

for n large is standard normal distributed S̃n
∼= N(0, 1). The Gaussian distribution

is an attractor in the functional space of probability density functions (pdfs). When

the conditions of independence and finite variance are not satisfied, other limit

theorems must be considered. We can generalize the central limit theorem within

stable distributions [69], accordingly, also the non-Gaussian stable distributions are

attractors in the functional space of pdfs; the Gaussian distribution is the only

stable distribution having all its moments finite (see Fig. 1.3). For more details see

also [70]-[73].
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Figure 1.3: Illustration scheme of the classes of random processes.

1.2.2 Lévy Flight Superdiffusion

As it was seen above, if α = 2 the Lévy motion becomes the Brownian motion with

characteristic function, see (1.4)

P̃ (2,0)(k, t) = e−tk2

, (1.9)

obeying the differential equation

∂P̃ (2,0)(k, t)

∂t
= −k2P̃ (2,0)(k, t) (1.10)

under initial condition P̃ (2,0)(k, 0) = 1. Factor −k2 is the Fourier image of the one-

dimensional Laplace operator ∆1 = ∂2/∂x2. The inverse transformation yields the

partial differential equation

∂P (2,0)(x, t)

∂t
=
∂2P (2,0)(x, t)

∂x2
, (1.11)

with initial condition P (2,0)(x, 0) = δ(x). For the symmetric Lévy motion with β = 0

and arbitrary α, the corresponding expression of the characteristic function reads

P̃ (α,0)(k, t) = e−t|k|α, (1.12)

and
∂P̃ (α,0)(k, t)

∂t
= −|k|αP̃ (α,0)(k, t). (1.13)
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Here taking into account that −|k|α is the Fourier image of the Riesz [74] fractional

operator ∆
α/2
1 = ∂α/∂|x|α, we arrive at the fractional differential equation

∂P (α,0)(x, t)

∂t
=
∂αP (α,0)(x, t)

∂|x|α . (1.14)

The Riesz operator has an integral representation as follows

∂αf(x)

∂|x|α = − 1

K(α)

∫ +∞

0

2f(x) − f(x− y) − f(x+ y)

y1+α
dy, (1.15)

where

K(α) =
π

Γ(α + 1) sin(πα/2)

(with Γ gamma function). If the Lévy motion is in a potential U(x), the above Eq.

(1.14) becomes the fractional Fokker-Planck equation (FFPE)

∂P (α,0)(x, t)

∂t
= − ∂

∂x
[U ′(x)P ]

∂αP (α,0)(x, t)

∂|x|α . (1.16)

Finally, in the case of the asymmetric Lévy motion, the equation for probability

distribution becomes

∂P (α,β)(x, t)

∂t
= D(α,β)

x P (α,β)(x, t). (1.17)

This equation contains the Feller fractional space derivative D(α,β)
x , which is deter-

mined by the relation

D(α,β)
x f(x) = −A(α,β)

K(α)∫+∞
0

2f(x)−(1+β)f(x−y)−(1−β)f(x+y)
y1+α dy,

(1.18)

where

A(α, β) = 1 + β2 tan(πα/2).

A more detailed consideration of fractional differential equation for the description

of Lévy motion can be found in [12],[75]-[82].

The time derivative of the Lévy process is called Lévy noise

ξ(α,β)(t) = L̇(α,β)(t). (1.19)

This is a stationary random process and has analogy to the Gaussian white noise,

which is the time derivative of the Wiener process. The Lévy process, in fact, is a
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generalized Wiener process. We can write directly the Langevin equation associated

to FPPE (1.16)

Ẋ = −U ′(x) + ξα(t) (1.20)

by replacing the white Gaussian noise ξ(t) = ξ(2)(t) with the symmetric Lévy α-

stable noise ξ(α)(t). Both of these equations (1.16) and (1.20) for α < 2 describe

the so-called anomalous diffusion, in particular superdiffusion processes. From a

theoretical point of view, the Lévy flights result from a Langevin equation (1.20)

driven by α-stable noise, giving rise to the scaling property ∆r(λt) ∼ λ1/α∆r(t),

with λ a positive parameter. The exponent 1/α is related to the scaling of the tail

of the probability distribution for the increments of the random walk, P (r → ∞) ∼
|r|−(1+α). For α < 2 the process is super-diffusive, the probability density function

follows a power law with heavy tails and the generalized cental limit theorem is

valid [70, 72, 73]; for α = 1 the probability density function is a Cauchy-Lorentz

function. For α = 2, the second moment exists and because of the central limit

theorem the random walk reduces, in the continuum limit, to a Gaussian random

process. Lévy flights are a special case of Markovian processes. As a consequence

the Markovian analysis can be used to derive the generalized Kolmogorov equation

directly from the Langevin equation with Lévy noise [9, 83]. We wanted to give

these concepts on anomalous diffusion and its related processes, because all studies

on classical systems addressed in this thesis are concerned specifically with the Lévy

noise and its implications.
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Chapter 2

Classical System

In this chapter we focus our attention on two classical systems, the first regards the

problem of crossing barrier from a metastable state in the presence of Lévy noise,

the second, instead, the time evolution of two competing species subject to Lévy

noise. Here we follow closely the three recent published papers [84, 85, 86].

In the first system, starting from the backward fractional Fokker-Planck equation

we investigate the barrier crossing event in the presence of Lévy noise, by focusing on

the nonlinear relaxation time. In the follows sections we shortly review some recent

results on barrier crossing problems with different approaches. Then the generalized

equations useful to calculate the nonlinear relaxation time (NRLT) are presented.

The NRLT for free Lévy flights and for a cubic potential profile are obtained.

The second one is a Lotka-Volterra system of two competing species subject to

multiplicative α-stable Lévy noise. The interaction parameter between the species

is a random process which obeys a stochastic differential equation with a generalized

bistable potential in the presence both of a periodic driving term and an additive

α-stable Lévy noise. We study the species dynamics, which is characterized by two

different regimes, exclusion of one species and coexistence of both. Finally, we find

quasi-periodic oscillations and stochastic resonance phenomenon in the dynamics of

the competing species, analysing the role of the Lévy noise sources.
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2.1 Barrier crossing with Lévy flights

The problem of escape from a metastable state, first investigated by Kramers [21],

is ubiquitous in almost all scientific areas (see, for example the reviews [3, 23] and

Ref. [4, 87]). Since many stochastic processes do not obey the Central Limit Theo-

rem, the corresponding Kramers escape behavior will differ. An interesting example

is given by the α-stable noise-induced barrier crossing in long paleoclimatic time se-

ries [88, 89]. Another new application is the escape from traps in optical or plasma

systems [90].

The main tool to investigate the barrier crossing problem remains the first pas-

sage times technique. But for anomalous diffusion in the form of Lévy flights this

procedure meets with some difficulties. First of all, the fractional Fokker-Planck

equation describing the Lévy flights is integro-differential, and the conditions at ab-

sorbing and reflecting boundaries differ from those using for ordinary diffusion. Lévy

flights are characterized by the presence of long jumps, and, as a result, a particle

can reach instantaneously a boundary from arbitrary position.

2.1.1 Barrier crossing

The particle escape from a metastable state, and the first passage time probability

density have been recently analyzed for Lévy flights in Refs. [9, 14, 88], [93]-[103].

The main focus in these papers is to understand how the barrier crossing behavior,

according to the Kramers law [21], is modified by the presence of the Lévy noise.

Here we discuss briefly some results on the barrier crossing events with Lévy flights,

recently obtained with different approaches.

The main tools to investigate the barrier crossing problem for Lévy flights are

the first passage times, crossing times, arrival times and residence times. We should

emphasize that the problem of mean first passage time (MFPT) meets with some

difficulties because free Lévy flights represent a special class of discontinuous Marko-

vian processes with infinite mean squared displacement. As already mentioned, the

anomalous diffusion in the form of Lévy flights, for a particle moving in a potential

profile U(x), is described by the fractional Fokker-Planck equation (see 1.16) for the

probability density function W (x, t) [9]
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∂W

∂t
=

∂

∂x
[U ′ (x)W ] +D

∂αW

∂ |x|α (2.1)

Due to the integro-differential nature of the equation (2.1), we cannot apply the

usual boundary conditions at the reflecting and absorbing barriers of the system

investigated. The particle, in fact, can reach instantaneously the boundaries from

any position.

The numerical results for the first passage time of free Lévy flights confined

in a finite interval were presented in Ref. [14]. There, the complexity of the first

passage time statistics (mean first passage time and cumulative first passage time

distribution) was elucidated together with a discussion of the proper setup of cor-

responding boundary conditions, that correctly yield the statistics of first passages

for these non-Gaussian noises. In particular, it has been demonstrated by numerical

studies that the use of the local boundary condition of vanishing probability flux in

the case of reflection, and vanishing probability in the case of absorbtion, valid for

normal Brownian motion, no longer apply for Lévy flights. This in turn requires

the use of nonlocal boundary conditions. Dybiec with co-authors in [100] found a

nonmonotonic behavior of the MFPT as a function of the Lévy index α for two

absorbing boundaries, with the maximum being assumed for α = 1, in contrast with

a monotonic increase for reflecting and absorbing boundaries.

According to the Kramers law, the probability distribution of the escape times

from a potential well with the barrier of height U0, has the exponential form

p (t) =
1

Tc
exp

{
− t

Tc

}
(2.2)

with mean crossing time

Tc = C exp
{
U0

D

}
, (2.3)

where C is some positive prefactor and D is the noise intensity. The barrier crossing

behavior of the classical Kramers problem was investigated, both numerically and

analytically, in Refs. [14], [96]-[100], where the role of the stable nature of Lévy

flight processes on the barrier crossing event was analyzed. Authors considered

Lévy flights in a bistable potential U (x) by numerical solution of the Langevin

equation associated to the fractional Fokker-Planck equation (2.1)
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ẋ = −U ′ (x) + ξ(α) (t) , (2.4)

where ξ(α) (t) is the symmetric Lévy α-stable noise. It was shown that although

the survival probability decays again exponentially as in Eq. (2.2), the mean escape

time Tc has a power-law dependence on the noise intensity D

Tc ≃
C(α)

Dµ(α)
, (2.5)

where the prefactor C and the exponent µ depend on the Lévy index α. Using the

Fourier transform of the Eq. (2.1)

∂W̃

∂t
= −ikU ′

(
−i ∂
∂k

)
W̃ −D |k|α W̃ , (2.6)

the authors derived the mean escape rate for large values of 1/D in the case of

Cauchy stable noise (α = 1) in the framework of the constant flux approximation

across the barrier. The probability law and the mean value of the escape time from

a potential well for all values of the Lévy index α ∈ (0, 2), in the limit of small

Lévy driving noise, were also determined in the paper [101] by purely probabilistic

methods. The escape times have the same exponential distribution (2.2). The mean

value depends on the noise intensity D, in accordance with Eq. (2.5) with µ(α) = 1,

and the pre-factor C depends on α and the distance between the local extreme of

the potential.

The barrier crossing of a particle driven by symmetric Lévy noise of index α and

intensity D for three different generic types of potentials was numerically investi-

gated in Ref. [98]. Specifically: (i) a bistable potential, (ii) a metastable potential,

and (iii) a truncated harmonic potential, were considered. For the low noise intensity

regime, the result of Eq. (2.5) was recovered. As it was shown, the exponent µ(α)

remains approximately constant, µ ≈ 1 for 0 < α < 2; at α = 2 the power-law form

of Tc changes into the exponential dependence (2.3). It exhibits a divergence-like

behavior as α approaches 2. In this regime a monotonous increase of the escape

time Tc with increasing α (keeping the noise intensity D constant) was observed.

For low noise intensities the escape time process corresponds to the barrier crossing

by multiple Lévy steps. For high noise intensities, the average escape time curves

collapse into a single curve, for all values of α. At intermediate noise intensities, the
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escape time exhibits non-monotonic dependence on the index α, while still retains

the exponential form of the escape time density.

The first arrival time is an appropriate parameter to analyze the barrier crossing

problem for Lévy flights. If we insert in fractional Fokker-Planck equation (2.1) a

δ-sink of strength q (t) in the origin we obtain the following equation for the non-

normalized probability density function W (x, t)

∂W

∂t
=

∂

∂x
[U ′ (x)W ] +D

∂αW

∂ |x|α − q (t) δ (x) , (2.7)

from which by integration over all space we may define the quantity

q (t) = − d

dt

∫ +∞

−∞
W (x, t) dx, (2.8)

which is the negative time derivative of the survival probability. According to defi-

nition (2.8), q (t) represents the probability density function of the first arrival time:

once a random walker arrives at the sink it is annihilated. As it was shown in the

paper [96] for free Lévy flights (U (x) = 0), the first arrival time distribution has a

heavy tail

q (t) ∼ t1/α−2 (2.9)

with exponent depending on Lévy index α (1 < α < 2) and differing from universal

Sparre Andersen result [104, 105] for the probability density function of first passage

time for arbitrary Markovian process

p (t) ∼ t−3/2. (2.10)

In the Gaussian case (α = 2), the quantity (2.9) is equivalent to the first passage

time probability density (2.10). From a random walk perspective, this is due to the

fact that individual steps are of the same increment, and the jump length statistics

therefore ensures that the walker cannot hop across the sink in a long jump without

actually hitting the sink and being absorbed. This behavior becomes drastically

different for Lévy jump length statistics: there, the particle can easily cross the

sink in a long jump. Thus, before eventually being absorbed, it can pass by the

sink location numerous times, and therefore the statistics of the first arrival will be
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different from that of the first passage. The result (2.10) for Lévy flights was also

confirmed numerically in the paper [103].

2.1.2 Nonlinear relaxation time with Lévy flights

General equations

The nonlinear relaxation time technique is more suitable for analytical investigations

of Lévy flights temporal characteristics, because does not request a constraint on the

boundary conditions. According to definition, the nonlinear relaxation time (NLRT)

reads

T (x0) =

∫∞
0 [P (t, x0) − P (∞, x0)] dt

P (0, x0) − P (∞, x0)
, (2.11)

where P (∞, x0) = lim
t→∞

P (t, x0) and

P (t, x0) =
∫ L2

L1

W (x, t|x0, 0) dx (2.12)

represents the probability to find a particle in the interval (L1, L2) at the time t,

if it starts from point x = x0. Let us use the same procedure as for calculating

the first passage time probability density (see [106]). If the random process x (t)

is Markovian, the probability density of transitions obeys the following backward

Kolmogorov’s equation [107]

∂W (x, t| x0, 0)

∂t
= L̂+ (x0)W (x, t|x0, 0) (2.13)

with the initial condition

W (x, 0|x0, 0) = δ (x− x0) . (2.14)

Here L̂+ (x0) is the adjoint kinetic operator. After integration with respect to x

from L1 to L2 directly in Eq. (2.13) and taking into account Eq. (2.12) we arrive

at [84]

∂P (t, x0)

∂t
= L̂+ (x0)P (t, x0) . (2.15)

The Eq. (2.15) should be solved with the initial condition following from Eq. (2.14)
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P (0, x0) = 1(L1,L2) (x0) , (2.16)

where 1(L1,L2) (x) is indicator of the set (L1, L2).

According to Eq. (2.15) L̂+ (x0)P (∞, x0) = 0, and after integration of this

equation with respect to t from 0 to ∞ we obtain (see Eq. (2.16))

L̂+ (x0)Q (x0) = P (∞, x0) − 1(L1,L2) (x0) , (2.17)

where Q (x0) is the numerator of the expression (2.11), i.e.

Q (x0) =
∫ ∞

0
[P (t, x0) − P (∞, x0)] dt. (2.18)

Finally, in accordance with Eqs. (2.11) and (2.18) the nonlinear relaxation time can

be calculated as

T (x0) =
Q (x0)

1 − P (∞, x0)
. (2.19)

with x0 ∈ (L1, L2). Although Eqs. (2.17) and (2.19) are a useful tool to analyze

the temporal characteristics of Lévy flights in different potential profiles U (x), ob-

taining the exact analytical results for the generic α parameter, characterizing the

anomalous diffusion, is one of the unsolved problems in this research area. Even for

some particular potential profile, like the cubic one, to derive a general expression

of the NLRT as a function of the Lévy index α is a non trivial problem. In the

next section we derive a general differential equation useful to calculate the NLRT

for arbitrary Lévy index and we find a closed expression [84] for the case of Cauchy

stable noise excitation (α = 1).

Lévy flights in a cubic potential

The forward fractional Fokker-Planck equation for Lévy flights in the potential pro-

file U (x) reads

∂W (x, t|x0, 0)

∂t
=

∂

∂x
[U ′ (x)W (x, t| x0, 0)] +D

∂αW (x, t|x0, 0)

∂ |x|α , (2.20)

where 0 < α < 2. It is easily to find from Eq. (2.20) the expression for the adjoint

kinetic operator
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L̂+ (x0) = −U ′ (x0)
∂

∂x0
+D

∂α

∂ |x0|α
. (2.21)

Substituting Eq. (2.21) in Eq. (2.17) we arrive at

D
dαQ (x0)

d |x0|α
− U ′ (x0)

dQ (x0)

dx0
= P (∞) − 1(L1,L2) (x0) , (2.22)

because the probability P (∞, x0) does not depend on the initial position of the

particles.

The Fourier transform of Eq. (2.22) gives [84]

[
U ′′

(
i
d

dk

)
− ikU ′

(
i
d

dk

)]
Q̃ (k) −D |k|α Q̃ (k) =

= P (∞) δ (k) +
e−ikL2 − e−ikL1

2πik
, (2.23)

where

Q̃ (k) =
1

2π

∫ +∞

−∞
Q (x0) e

−ikx0dx0 (2.24)

and we took into account that in accordance with Eqs. (2.12) and (2.18)Q (±∞) = 0.

Solving Eq. (2.23) and using the backward Fourier transform, we can calculate

the nonlinear relaxation time as (see Eq. (2.19))

T (x0) =
1

1 − P (∞)

∫ +∞

−∞
Q̃ (k) eikx0dk, (2.25)

where x0 ∈ (L1, L2). It is easily to check from Eq. (2.24) that Q̃ (−k) = Q̃∗ (k).

Dividing the integral in Eq. (2.25) on two parts for negative and positive variables

k and using this relation we easily arrive at

T (x0) =
2

1 − P (∞)
Re

{∫ ∞

0
Q̃ (k) eikx0dk

}
. (2.26)

As a result, it is sufficient to solve Eq. (2.23) only for positive values of k [84]

[
U ′′

(
i
d

dk

)
− ikU ′

(
i
d

dk

)]
Q̃ (k) −DkαQ̃ (k) =

= P (∞) δ (k) +
e−ikL2 − e−ikL1

2πik
, (k > 0). (2.27)
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By solving Eq. (2.27) for a particular potential profile U(x), we are able to calculate

the NLRT by using Eq. (2.26), for a particle moving in that potential. However

the general solution of this equation strictly depends on the functional form of the

potential profile U(x), and not for all the potential profiles there is a solution of this

equation.

We now consider two cases: (a) a free anomalous diffusion, and (b) a cubic

potential.

(a) For free Lévy flights (U (x) = 0): P (∞) = 0, and from Eq. (2.27) we have

Q̃ (k) =
e−ikL1 − e−ikL2

2πiDkα+1
(k > 0). (2.28)

After substitution of Eq. (2.28) in Eq. (2.26) and evaluation of the integral we find

finally for the case 0 < α < 1

T (x0) =
(x0 − L1)

α + (L2 − x0)
α

2DΓ (α+ 1) cos (πα/2)
. (2.29)

As it is seen from Eq. (2.29), the nonlinear relaxation time decreases monotonically

with increasing the noise intensity D and has a maximum as a function of initial

position x0 in the middle point of the interval (L1, L2). For Lévy index 1 ≤ α < 2

the nonlinear relaxation time is infinite as for free Brownian motion (α = 2).

(b) Lévy flights in a metastable cubic potential with a sink at x = +∞

U (x) = −x
3

3
+ a2x. (2.30)

Substituting this potential in Eq. (2.27) and taking into account that P (∞) = 0 we

obtain [84]

d

dk

[
k2 dQ̃ (k)

dk

]
+
(
k2a2 − iDkα+1

)
Q̃ (k) =

=
e−ikL2 − e−ikL1

2π
(k > 0). (2.31)

To solve Eq. (2.31) we introduce a new function R (k) = kQ̃ (k). After substitution

of this new function, Eq. (2.31) can be rearranged as

d2R (k)

dk2
+
(
a2 − iDkα−1

)
R (k) =

e−ikL2 − e−ikL1

2πk
(k > 0). (2.32)
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It is quite difficult to find an analytical solution of this equation for arbitrary Lévy

index α. Thus, we limit our further considerations to the case α = 1. Substituting

α = 1 in Eq. (2.32) and representing its right part in the form of integral, we arrive

at

d2R (k)

dk2
+
(
a2 − iD

)
R (k) = − i

2π

∫ L2

L1

e−ikydy (k > 0). (2.33)

This linear differential equation can be exactly solved, and, as a result, we find (for

any k > 0) the finite solution in the form

Q̃ (k) =
1

k

{
c0 e

−βk−iγk +
i

2π

∫ L2

L1

e−ikydy

y2 + iD − a2

}
(k > 0), (2.34)

where

β = a

[
1 +

(
D

a2

)2
]1/4

sin
[
1

2
arctan

(
D

a2

)]
,

γ = a

[
1 +

(
D

a2

)2
]1/4

cos
[
1

2
arctan

(
D

a2

)]
. (2.35)

Because of Q̃ (0) <∞, the expression in curly brackets of Eq. (2.34) should be equal

to zero, and we easily find the unknown constant c0

c0 = − i

2π

∫ L2

L1

dy

y2 + iD − a2
. (2.36)

Substitution of Eqs. (2.34) and (2.36) in Eq. (2.26) gives

T (x0) =
1

π
Re

{∫ ∞

0

ieikx0

k
dk
∫ L2

L1

e−iky − e−βk−iγk

y2 + iD − a2
dy

}
. (2.37)

After changing the order of integration and evaluation of the integral on k we arrive

at

T (x0) =
1

π

∫ L2

L1

{
D

2
ln [A(x0, y)] + y2B(x0, y)

}
dy

y2
2 +D2

, (2.38)

where

A(x0, y) =
β2 + (x0 − γ)2

(x0 − y)2
; y2 = y2 − a2 ; (2.39)

and
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B(x0, y) = arctan

(
x0 − γ

β

)
− π

2
sgn(x0 − y) . (2.40)

In the following Fig. 2.1 we report the behavior of the nonlinear relaxation time

T (x0), calculated by Eq. (2.38), as a function the initial position of the particle for

different values of the noise intensity D, namely D = 0.07, 0.35, 1.0, 3.0, 5.0.
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Figure 2.1: Nonlinear relaxation time, in arbitrary units (a. u.), as a function of the initial

position x0, for five values of the noise intensity D, namely: D = 0.07, 0.35, 1.0, 3.0, 5.0.

The values of the parameters are: a = 1, L1 = −10 and L2 = +10.

The potential parameter a (see Eq. (2.30)) is a = 1, and the interval boundaries

are L1 = −10 and L2 = +10. The integration step used to calculate T (x0) from

Eq. (2.38) is ∆y = 10−4. For the initial position of the particle we focus on the range

of values around the potential well, that is we consider x0 ∈ [−2,+1]. A monotonic

decreasing behavior of the nonlinear relaxation time is shown. The NLRT decreases

with initial positions moving from the left of the minimum (x0 = −1) towards the

maximum (x0 = +1) of the potential and with increasing noise intensity. An overlap

of the different curves appears near the maximum of the potential. This behavior

could be ascribed to the role of initial positions near the maximum. For initial

positions that are close to the maximum of the potential (x0 = 1) the height of

the barrier to cross decreases considerably and the probability of the particle to fall
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back into the potential well increases. For the role of the initial conditions in barrier

crossing, with Gaussian noise, see Refs. [3, 87].

In Fig. 2.2 we report the log-log plot of the behavior of the NLRT as a function

of the noise intensity D, for three initial positions of the particle, namely: x0 =

−2.0,−1.0, 0. As we can see the decreasing behavior of the NLRT with increasing

noise intensity is recovered (see Ref. [98]).
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Figure 2.2: NLRT (a. u.) as a function of the noise intensity D, for three values of the

initial position of the particle, namely: x0 = −2.0,−1.0, 0. The parameter values are the

same of Fig. 2.1.

2.2 Lévy flights in ecological systems

2.2.1 Some biological considerations of animal behavior

Animal movement and dispersal, which are major drivers of spatio-temporal patterns

in ecosystems, have solicited in ecology questions difficult to answer for two main rea-

sons. First, quantifying the precise distributions of populations interacting in time

and space could be hard. Recent technological advances have to some extent changed

this scenario, opening new perspectives for the future. A second aspect, which rep-

resents, at the moment, a stronger hurdle, is the lack of concepts and/or technical
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tools for analysing the feedbacks between the properties of macroscopic ecosystems

and their elementary parts. An evolutionary perspective, which takes into account

the time evolution of the system and the contemporary presence of different ”ecolog-

ical” approaches, i.e. behavioural, landscape, and spatial ecology [108]-[110] could

play a key-role in this matter. In particular, the understanding of the evolutionary

components of large-scale and long-term properties of animal movement and disper-

sal allows to establish useful links across different scales, going from individuals to

ecosystems and backwards [111]. Moreover, random fluctuations of environmental

variables in ecosystems increase the unpredictability in resource availability through-

out time. Thus, environmental stochasticity, together with inevitable biological con-

straints, could introduce randomness in many relevant ecological contexts: foraging,

mating, dispersal, habitat colonization, etc [112]. Consequently, it is likely that an

adaptive behaviour has been the response to environmental randomness, playing a

fundamental role in animal survival and contributing to determine the spatiotem-

poral dynamics of processes and patterns in real ecosystems [113]. Random walks

describe stochastic trajectories obtained when the system is uniquely ”driven” by

random forces. However, random walks could participate in dynamics of systems

where deterministic forces are also present. Therefore, it is possible to introduce

stochastic trajectories as results of richer dynamics, where deterministic and ran-

dom components are present. In this context, random walks appear to be essential

tools to model and describe the dynamics of real ecosystems, whose dynamics are af-

fected both by deterministic and random forces. The Lévy flight theory has recently

been borrowed by ecologists from the physical sciences to characterize the spatial

distributions of predators or foragers and also to determine optimal search strate-

gies for foragers looking for sparsely and randomly distributed targets. Models, in

which Lévy noise sources are considered, have been successfully tested in different

foraging animals such as bumble bees (Bombus trifasciatus) [114, 115], wandering

albatrosses (Diomedea exulans) [116]-[119], reindeers (Rangifer tarandus tarandus),

jackals (Canis adustus), grey seals (Halichoerus grypus), spider monkeys (Ateles

geoffroyi) [120]. More recently, non-Gaussian noise has been used to describe the

searching behaviour in the Peruvian anchovy (Engraulis ringens) fishery [121]-[125].

Noise-induced jumping between metastable states separated by potential barriers is

common in physical systems. The time scale to overcome the barrier depends on
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the noise source and potential profile. Most often the noise is Gaussian. However,

non-Gaussian noises distributed with power law tails are found in different physi-

cal and biological systems such as turbulent diffusion, vortex dynamics, population

dynamics, dynamical models and critical phenomena [88, 126]. The distributions

observed appear to be well described by Lévy noise sources.

In this section we focus on the stochastic resonance phenomenon in a model of

population dynamics. In particular, we investigate the stochastic dynamics of two

competing species within the formalism of the generalized Lotka-Volterra equations.

The interaction parameter between the species is a stochastic process which obeys

a stochastic differential equation with a term of additive α-stable Lévy noise, which

mimics the effects that environmental noise produces on the dynamical regime of an

ecosystem [6, 127]. Moreover, we consider the generalized Lotka-Volterra equations

in the presence of multiplicative α-stable Lévy noise, which models the direct inter-

action between species and environment. We analyse the role played by the Lévy

noise on the system dynamics for different values of the index α. According to pre-

vious results obtained in the presence of Gaussian noise, we observe that the noise

could have a constructive role. In particular, the additive noise is responsible for the

generation of quasi-periodic oscillations in the time series of the species densities.

Besides, the multiplicative noise, in the presence of two different dynamical regimes

(coexistence and exclusion), produces the appearance of anticorrelated oscillations

and stochastic resonance phenomenon.

2.2.2 Two Competing Species: Lotka-Volterra Model

Time evolution of two competing species is obtained by using a Lotka-Volterra

model [128, 129] based on two stochastic differential equations in the presence of

multiplicative Lévy noise [130]

dx

dt
= mx(a− x− γ(t)y) + xξα,β

x (t), (2.41)

dy

dt
= my(a− y − γ(t)x) + yξα,β

y (t), (2.42)

where a is the growth parameter and γ(t) is the time dependent interaction pa-

rameter between the species. Here ξα,β
x (t) and ξα,β

y (t) are statistically independent

α-stable Lévy noises with zero mean (µ = 0) and intensity D equal for the two
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noise sources. The time series for the two populations are obtained setting m = 70

and a = 1. It is known that for γ < 1 a coexistence regime takes place, while

for γ > 1 an exclusion regime is established. Coexistence of the two species and

exclusion of one of them correspond to stable states of the Lotka-Volterra’s deter-

ministic model [131]. Real ecosystems are open systems, which implies that they

are immersed in a noisy nonstationary environment. Therefore, the interaction pa-

rameter γ(t) is affected both by deterministic periodical ”forces”, e.g. temperature,

and random fluctuations of environmental and natural variables such as the tem-

perature itself and food resources, whose variations produce a competition between

the species. Therefore noise together with periodic forces determines the crossing

from one dynamical regime (γ < 1 → coexistence) to the other one (γ > 1 → ex-

clusion). This continuous and noisy behaviour of the interaction parameter γ(t) can

be described by the stochastic differential equation

dγ(t)

dt
= −∂U(γ, t)

∂γ
+ ξα,β

γ (t), (2.43)

where the time dependent bistable potential (see Fig. 2.3)

U(γ, t) = h(γ − 1)4/η4 − 2h(γ − 1)2/η2 + Aγ cos(ω0t) (2.44)

represents the effects of deterministic forces, and the term of additive noise ξα,β
γ (t)

mimics the random fluctuations of environmental variables and natural resources.

The oscillating driving force takes into account, for example, periodic variations of

the temperature. In Eqs. (2.43) and (2.44), h = 8 is the height of the potential

barrier, A = 2h and ω0 = π are the amplitude and the frequency of the driving

force, respectively, and η = 0.5. The noise source ξα,β
γ (t) is given by a Lévy process

with zero mean and intensity Dγ.

2.2.3 Deterministic stationary states

In the absence of multiplicative noise (D = 0) and for constant values of the in-

teraction parameter γ, Eqs. (2.41), (2.42) describe the deterministic dynamics of

two competing species. In these conditions the stationary values of the two species

densities are given by

xst = yst =
a

1 + γ
. (2.45)

32



-40

-20

 0

 20

 40

 0  0.5  1  1.5  2

U
(γ

)

γ

time=0
time=0.5

time=1

Figure 2.3: Three configurations of the time dependent bistable potential U(γ, t) of

Eq. (2.44) at times t = 0, 0.5, 1. The values of the potential parameters are h = 8,

η = 0.5, A = 2h, ω0 = π.

In view of studying the system when a richer dynamics takes place, we introduced the

interaction parameter γ(t), as a stochastic process governed by Eq. (2.43). Here,

γ(t) takes values around the two minima, γ = γdown = 0.5 (left-side well) and

γ = γup = 1.5 (right-side well) corresponding to coexistence and exclusion regime,

respectively. As a consequence, from Eq. (2.45) we get two different equilibrium

points

xst
1 = yst

1 = 2/3 (γ = 0.5 → coexistence),

xst
2 = yst

2 = 2/5 (γ = 1.5 → exclusion).

In order to determine the conditions for which the stationary states given in Eq. (2.45)

correspond to a point of stable equilibrium in the phase space, we perform a sta-

bility analysis. Therefore, we consider the Jacobian matrix of the system given in

Eqs. (2.41), (2.42)

J(γ) =


 − a

1+γ
− γa

1+γ

− γa
1+γ

− a
1+γ


 (2.46)

and obtain the corresponding eigenvalues

λ1 =
a (γ − 1)

γ + 1
(2.47)

λ2 = −a. (2.48)
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Therefore, for γ = 0.5 we get

λs
1 = −a/3, λs

2 = −a, (2.49)

and for γ = 1.5

λu
1 = a/5, λu

2 = −a, (2.50)

where the apices ‘s ‘ and ‘u‘ indicate stable and unstable equilibrium, respectively. In

fact, for γ = 0.5 the two eigenvalues are negative, which causes the equilibrium point

to be unconditionally stable, while for γ = 1.5 one eigenvalue is positive and the

other one negative, which implies that the equilibrium point corresponds to a saddle

point in the phase space. Therefore, the stationary values xst
1 = yst

1 = 2/3 obtained

for γ = 0.5 (coexistence regime) represent a stable equilibrium point for the Lotka-

Volterra system considered (see Eqs. (2.41), (2.42)). Conversely, the stationary

values xst
2 = yst

2 = 2/5 obtained for γ = 1.5 correspond to an unstable equilibrium

(saddle point) and the system tends to exclude one of the two species (exclusion

regime).

2.2.4 Stochastic Resonance

First, we investigate the effect of the noise on the time behaviour of γ(t). Since the

dynamics of the species strongly depends on the value of the interaction parameter,

we initially analyze the time evolution of γ(t) for different values of the intensity Dγ

and index α, with β = 0, of the Lévy source ξα,β
γ (t) (see Eq. (2.43)).

Specifically, for Dγ = 0 and γ(0) = 0.5 we obtain a periodical behaviour of γ(t)

in the coexistence region (see Fig. 2.4). In the presence of non-Gaussian noise

(α 6= 2), for low noise intensity (Dγ = 0.5 ≪ h), we can observe the effect of the

noise on the time series of the interaction parameter (see Fig. 2.5). In particular, the

noise is responsible not only for slight perturbations in the oscillating behaviour of

γ(t), but also for the appearance of jumps (Lévy flights) between γ = 0.5 (left well

of the potential U) and γ = 1.5 (right well). These jumps, distributed according to a

Lévy stable statistics, are known as Lévy flights and represent the effect of the heavy

tails which characterize these non-Gaussian distributions. It is also evident how the

distribution of these jumps changes for different values of α. This indicates that

the alternating coexistence/exclusion regime can be modulated by the specific Lévy
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Figure 2.4: Time evolution of the interaction parameter γ(t), by numerical integra-

tion of Eq. (2.43) with zero noise intensity Dγ .
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Figure 2.5: Time evolution of the parameter γ(t), by numerical integration of

Eq. (2.43) with noise intensity Dγ = 0.5, for five values of the index α, namely

α = 1.6, 1.7, 1.8, 1.9, 2.0, and β = 0.
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noise source ξα,β
γ (t), varying both the intensity Dγ and the parameter α. It is then

interesting to analyse the behaviour of γ(t) for different levels of noise. Therefore,
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Figure 2.6: Time series of the parameter γ(t) (from Eq. (2.43)), for suitable noise

intensities (Dγ = 5, 5.5 and 6) and different values of the Lévy index α, namely

α = 1.6, 1.7, 1.8, 1.9 (blue dots), compared with the Gaussian case (α = 2.0) (orange

lines).

setting again β = 0, we obtain the time evolution of the interaction parameter for

higher noise intensity (Dγ ≃ h). In particular, Fig. 2.6 shows the time series of γ(t)

with Dγ = 5, 5.5, 6 and for different values of α (α = 1.6, 1.7, 1.8, 1.9), compared

with those obtained for Gaussian noise (α = 2) [6]. In the figure we see that the

synchronization phenomenon between the Kramers time to overcome the potential

barrier, starting from one of the two minima (see Fig. 2.3), and the periodical

driving force is reduced in the presence of Lévy noise with respect to the Gaussian

case. This indicates that the stochastic resonance effect, which can influence the

dynamics of real ecosystems, results to be different in the presence of non-Gaussian

noise source. A further increase of the noise intensity produces a loss of coherence

and the dynamical behaviour is strongly controlled by the noise (see Fig. 2.7)).

A measure of the SR phenomenon and its intensity [1],[132]-[135] is provided by
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Figure 2.7: Time series of the parameter γ(t) (from Eq. (2.43)), for noise intensity

Dγ = 7.5 and different values of the Lévy index α, namely α = 1.6, 1.7, 1.8, 1.9 (blue

dots), compared with the Gaussian case (α = 2.0) (orange lines).

 0

 10

 20

 30

 0  2  4  6  8

R
 o

f 
γ

Dγ

α=2.0
α=1.9
α=1.8
α=1.7
α=1.6

Figure 2.8: Signal-to-Noise Ratio of γ(t) as a function of the noise intensity Dγ, for

differen values of the index α of the symmetrical stable Lévy distribution, namely

α = 1.6, 1.7, 1.8, 1.9, 2.0.
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Figure 2.10: Signal-to-noise ratio and signal power amplification η of the parameter

γ(t) as a function of the noise intensity Dγ , for α = 1.8 and different values of

the index β of the stable Lévy distribution, namely β = 0,±0.2,±0.5. In the

left panel, red plus, green cross, blue star, pink empty square and light blue full

square represent the SNR values calculated by numerical integration of Eq. (2.43).

The solid lines are the curves obtained by interpolating the numerical data. Each

curve corresponds to the symbols with the same color. In the right panel, the solid

lines have been obtained by connecting the SPA values calculated by numerical

integration of Eq. (2.43).
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the signal-to-noise ratio (SNR)

SNR =
2

SN(Ω)
lim

∆ω→0

∫ Ω+∆ω

Ω−∆ω
S(ω)dω. (2.51)

Here,
∫ Ω+∆ω
Ω−∆ω S(ω)dω represents the power carried by the signal, while SN(Ω) esti-

mates the background noise level at the driving frequency Ω. The SR effect observed

indicates that an optimal level of noise exists for which the response of the system

undergoes resonance-like behaviour as a function of the noise level [1, 132]. In this

condition, it is established a quasi-periodical switching between γ = γdown = 0.5 and

γ = γup = 1.5, which is responsible for an alternating coexistence/exclusion regime

in the dynamics of the two populations. Because the SR phenomenon observed af-

fects the time behaviour of γ(t), which is a biological parameter responsible for the

interaction of the two species, we name this effect ”biological” stochastic resonance.

In order to measure and better analyse the system response to the noise, we consider

the spectral power amplification (SPA) [1, 132], indicated by η and defined as the

ratio of the power of the output signal sampled at the frequency Ω of the external

driving, to the power of the driving signal. In Figs. 2.8, 2.9, 2.10 we show SNR

and SPA, respectively, as a function of the noise intensity Dγ . The nonmonotonic

behaviour of the SNR indicates clearly the presence of stochastic resonance, charac-

terized by a maximum whose value decreases as the index α approaches 1 (Cauchy

distribution). Fixed the index α, the asymmetry parameter β slightly dirty things.

2.2.5 SR within species dynamics

In this section we analyze the dynamics of the two species densities. In particular,

for different symmetrical (β = 0) α-stable Lévy distributions, we calculate the noise

intensity Dγ corresponding to the regime of ”biological” stochastic resonance, that

is the maximum of SNR. Afterwards, in Eq. (2.43) we set Dγ at this value and

solve numerically Eqs. (2.41), (2.42) for different values of the multiplicative noise

intensity D. The results are shown in Figs. 2.11, 2.12, 2.13, 2.14. In particular,

from panels (a), (b), (c) of these figures it is evident that, for the values of index

α considered in our simulations, the multiplicative noise induces anticorrelated pe-

riodical oscillations in the time series of the two species, breaking the symmetric

dynamical behaviour of the ecosystem (compare panels (a) with panels (b) and (c)
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Figure 2.11: ) Panels a, b, c: time series of the two species densities x (red lines)

and y (blue lines) obtained from Eqs. (2.41), (2.42) with α = 1.9, β = 0 and Dγ = 5.

Panel (d): SNR of (x− y)2 as a function of the noise intensity D.
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Figure 2.12: Panels a, b, c: time series of the two species densities x (red lines) and

y (blue lines) obtained from Eqs. (2.41), (2.42) with α = 1.8, β = 0 and Dγ = 5.3.

Panel (d): SNR of (x− y)2 as a function of the noise intensity D.
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Figure 2.13: Panels a, b, c: time series of the two species x (red lines) and y (blue

lines) obtained from Eqs. (2.41), (2.42) with α = 1.7, β = 0 and Dγ = 5.5. Panel

(d): SNR of (x− y)2 as a function of the noise intensity D.

of Figs. 2.11, 2.12, 2.13, 2.14). Moreover, a multiplicative noise intensity exists that

induces oscillating behaviour with a maximum of anticorrelation between the two

species (see panel (b) of Figs. 2.11, 2.12, 2.13, 2.14). This indicates the presence of

a second SR effect. We check this by calculating the SNR of (x − y)2 for different

values of α (see panel (d) in Figs. 2.11, 2.12, 2.13, 2.14). Here, we can observe

the presence of a nonmonotonic behaviour characterized by the presence of a max-

imum. This confirms that the multiplicative noise is responsible for a further SR

phenomenon affecting directly the dynamics of the two species. Because of this

we name this effect ”population” stochastic resonance. Finally, to better compare

the SNR curves obtained we show them in one graph (see Fig. 2.15). Here, it is

clear that the maximum of the SNR decreases as α approaches 1, according to the

behaviour of SNR observed for the interaction parameter γ (see Fig. 2.8).

In Fig. 2.16 we show the SNR curves obtained, for different values of the index

α and β = 0, by setting Dγ at the value that maximizes the SPA of the parameter

γ.
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Figure 2.14: Time series of the two species x (red lines) and y (blue lines) obtained

from Eqs. (2.41), (2.42) with α = 1.6, β = 0 and Dγ = 5.7. Panel (d): SNR of

(x− y)2 as a function of the noise intensity D.
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Figure 2.16: The SNR of the quantity (x−y)2 as a function of the noise intensity D,

for different values of the index α, namely α = 1.6, 1.7, 1.8, 1.9, 2.0, and β = 0. Here

we set Dγ at the value that maximizes the SPA curves of the parameter γ(t). Red

plus, green cross, blue star, pink empty square and light blue full square represent

the SNR values calculated by numerical integration of Eqs. (2.41) - (2.43). The

solid lines are the curves obtained by interpolating the numerical data. Each curve

corresponds to the symbols with the same color.
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2.2.6 SR with correlated noise sources

Now we want to consider symmetric Lévy stable distribution and statistically depen-

dent noise sources. We intend to investigate the role of an interdependence between

two different noise sources that influence the dynamics of the system. Motivation

of this is the fact that fluctuations of food resources influence both the species con-

centrations through a multiplicative noise, and the interaction parameter through

an additive noise. In fact, the contemporaneous presence of two noise sources, one

acting directly on the species, the other one affecting the interaction parameter, can

produce a ”global” effect so that the effective multiplicative noise (that represents

fluctuations of species concentrations) can result to be the combination of the addi-

tive noise and other noise sources. By this way, the additive noise (that mimics both

fluctuations of climatic and/or atmospheric variables and food resources) affects di-

rectly not only the behaviour of the interaction parameter but also the dynamics of

the two species. In particular, we consider that each source of multiplicative noise

is obtained as a linear combination of the additive noise ξα,β
γ (see Eq. (2.43)) with a

statistically independent noise source ξ̄α,β
i (i = x, y). By this way, the multiplicative

noise sources in Eqs. (2.41), (2.42) can be written as follows

ξα,β
x = ρx ξ

α,β
γ +

√
1 − ρ2

x ξ̄
α,β
x , (2.52)

ξα,β
y = ρy ξ

α,β
γ +

√
1 − ρ2

y ξ̄
α,β
y . (2.53)

The noise sources ξ̄α,β
i (i = x, y) are α-stable Lévy processes. Due to Eqs. (2.52), (2.53),

each multiplicative noise source ξα,β
i is statistically dependent on the additive noise

source ξα,β
γ by a statistical dependence parameter ρi. To analyze the system dynam-

ics we set ρx = ρy = ρ. By using Eqs. (2.52), (2.53) in the Lotka-Volterra model (see

Eqs. (2.41), (2.42)), we obtain the time series and the corresponding SNR for differ-

ent values both of the index α and statistical dependence parameter ρ. The results

are reported in Fig. 2.17. For different combinations of the parameters α and ρ we

note that the SNR of the square difference (x− y)2 mantains its nonmonotonic be-

haviour as a function of the noise intensity. Specifically we note that the effect of the

statistical dependence consists in shifting the maximum of the SNR towards higher

values of the noise intensity, slightly affecting the synchronization phenomenon. For

larger values of the statistical dependence between the noise sources (ρ = 0.9 in
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Figure 2.17: SNR of the quantity (x − y)2 as a function of the noise intensity D

for different values of both the index α and statistical dependence parameter ρ.

In left panel: α = 2.0, and ρ = 0.3, 0.5, 0.7, 0.9. In right panel: α = 1.6, and

ρ = 0.3, 0.5, 0.9. In both panels, red plus, green cross, blue star and (only for the

top panel) pink empty square represent the SNR values calculated by numerical

integration of Eqs. (2.41) - (2.43). The solid lines are the curves obtained by inter-

polating the numerical data. Each curve corresponds to the symbols with the same

color.
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Fig. 2.17) and higher noise intensity all curves, independently on the value of the

index α, collapse in one curve. We can say that, in this range of noise intensity and

for strong statistical dependence between noise sources, the dynamical response of

the system is independent on the index α of the Lévy distribution.
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Chapter 3

Open Quantum Systems

In this final chapter we present our recent results in two open quantum systems [136,

137].

First we propose a way to analyze low frequency noise in terms of fictitious

correlated fluctuations of external parameters. We discuss a specific implementa-

tion, namely the Quantronium setup of a Cooper-pair box, showing that optimizing

the trade-off between efficient coupling and protection against noise may allow to

observe coherent population transfer in this nanodevice. Recent experiments have

demonstrated coherent phenomena in three-level systems based on superconduct-

ing nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic

Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the

main sources of decoherence in these systems, and we study its effect on the transfer

efficiency.

Subsequently, we analyze the dynamics of a quantum particle subject to an asym-

metric bistable potential and interacting with a thermal reservoir. We obtain the

time evolution of the population distributions in both energy and position eigen-

states of the particle, for different values of the coupling strength with the thermal

bath. The calculation is carried out by using the Feynman-Vernon functional under

the discrete variable representation.
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3.1 Quantum Noise in Nanodevices

So far most of the research in this field has focused on the two lowest level of ar-

tificial atoms. In the last few years, it has been proposed that multilevel quantum

coherent effects [50, 138, 139], could be observed in superconducting nanodevices:

various schemes have been proposed to observe electromagnetically induced trans-

parency [140], and selective population transfer by adiabatic passage [141]-[147].

Very recently, few experiments have demonstrated features of multilevel coherence

in such devices, as the Autler-Townes effect [148, 149], coherent population trap-

ping [150, 151], electromagnetically induced transparency [152], preparation and

measurement of three-state superpositions [153].

In studying quantum optical effects in solid state devices, several differences

are encountered with respect to the atomic realm: coupling between subsystems is

larger, but also noise is larger, and often extends over several decades, low-frequency

noise being the most important source of decoherence in many of the solid state

implementations of quantum bits [154, 155]. On the other hand solid state devices

offer several design solutions, and the possibility of tuning by external controls the

spectral properties of the artificial atom [157]. All these elements come into play

in multilevel structures [158], together with new features, as for example selection

rules. Differences between specific designs may become crucial for the successful

implementation of specific protocols.

Here we study coherent population transfer using the STIRAP protocol three-

level artificial atoms. In Sec. 3.1.1 we introduce STIRAP, and discuss the sensitivity

of the transfer efficiency to external parameters. Then we consider a specific imple-

mentation of the three-level artificial atom which is a good model for the Quantron-

ium device [44, 60] and introduce a model for low-frequency charge noise (Sec. 3.1.4).

In Sec. 3.1.7, we propose a way to characterize the effects of low-frequency noise,

reducing the problem to that of the sensitivity of the transfer efficiency to fictitious

correlated external parameters.

3.1.1 Coherent population transfer in three-level atoms

In quantum optics the STIRAP technique is based on a Λ configuration (Fig. 3.1)

of two hyperfine ground states |0〉 and |1〉 and an excited state |2〉, with ener-
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Figure 3.1: A three-level atom driven by two lasers in the Λ scheme. The state |2〉
may have a large decay probability.

gies E0, E1 and E2 respectively [50, 159]. The system is driven by two classical

laser fields [50, 138], called the Stokes laser Ω12 = Ωs cosωst and the Pump laser

Ω02 = Ωp cosωpt. Each laser is nearly resonant with the corresponding transition. In

the usual situations we can treat the laser drive fields in the Rotating-Wave Approx-

imation (RWA) [160]. Moreover, one can introduce a phase transformation of the

atomic basis and express the hamiltonian in a doubly rotating frame, with angular

frequencies given by ωi of the driving fields. The effective Hamiltonian reads

H̃ = δ|1〉〈1|+ δp|2〉〈2| +
1

2
(Ωs|2〉〈1|+ Ωp|2〉〈0| + h.c.) (3.1)

where we define the detunings δs = E2 − E1 − ωs, δp = E2 − E0 − ωp and the

two-photon detuning δ = δp − δs = E2 − E1 − (ωp − ωs).

At two-photon resonance, δ = 0, the Hamiltonian (3.1) has an eigenstate which

is a superposition of the two lowest atomic levels only

|D〉 =
1√

|Ωs|2 + |Ωp|2
(Ωs|0〉 − Ωp|1〉) . (3.2)

It is usually referred as the dark state since, despite of the presence of the lasers,

the atom cannot be excited to the state |2〉 and consequently decay by spontaneous

emission (Fig. 3.1). Instead, the laser fields interfere destructively and, as a result,

the population is coherently trapped. A given dark state can be prepared by an
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appropriate choice of both the Rabi frequencies Ωi and the relative phase of the ac

fields.

Figure 3.2: Ideal STIRAP at two-photon resonance δ = 0, obtained by operating

with two pulses in the counterintuitive sequence (top left panel). The system pre-

pared in the state |0〉 follows the Hamiltonian along the zero-energy adiabatic level

(left lower panel) yielding complete population tranfer (right lower panel, where

Pi = |〈i|ψ(t)〉|2). In top right panel, the mixing angle of the dark state as a function

of time for the adiabatic evolution. The pump laser is slightly detuned, δp = −0.2Ω0.

3.1.2 The STIRAP protocol

From Eq. (3.2) it can be seen that by slowly varying the coupling strengths, Ωs(t)

and Ωp(t), the dark state can be rotated in the two-dimensional subspace spanned by

|1〉 and |0〉. Using adiabatic dynamics in the rotating frame, the STIRAP protocol

implements coherent population transfer between the atomic states |0〉 → |1〉 [138].

The system can be prepared in the state |0〉 by letting Ωp = 0 and switchig on

Ωs(t) 6= 0. By slowly switching Ωs off while Ωp(t) is switched on, the population

can be transferred from state |0〉 to state |1〉. Finally also Ωp is switched off. The

mixing angle of the dark state Eq.(3.2) is defined as θ(t) = 2 arctan[Ωp(t)/Ωs(t)],

and evolves from θ = 0 to θ = 2π (Fig. 3.2, upper right panel).
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This is the so-called counterintuitive scheme as opposed to the intuitive strategy

where the pump pulse preceeds the Stokes pulse. In this case population transfer

involves, as an intermediate step, population of the excited state |2〉, which can

undergo spontaneous decay, strongly affecting the population transfer efficiency.

One advantage of STIRAP is that, in the ideal procedure, the state |2〉 is never

populated [138, 139], therefore it is not sensitive to spontaneuos decay. Moreover,

provided adiabaticity is preserved, STIRAP is in principle insensitive to many details

of the protocol, and in practice it turns out to be insensitive to the precise timing

of the operations.
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Figure 3.3: (left panel) Contour plot of the intensity of the transfer efficiency as a

function of single-photon and two-photon detuning for equal peak Rabi frequencies

κ = ΩS/ΩP = 1 (left panel) and k = 2 (right panel). In axes x, y we have δ̃ = δ/Ω0

and δ̃p = δp/Ω0, respectively. In both panels, the bright region corresponds to

large efficiency of population transfer (more than 80%). A two-photon detuning

|δ| ≥ Ω0/5 determines a substantial decrease of the efficiency. The line corresponds

to correlated detunings, which give an effective description of fluctuation in the

Quantronium (Sec. 3.1.7). Increasing the strength of the Stokes pulses enlarges

asymmetrically the region of large transfer efficiency.
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3.1.3 Sensitivity to parameters

Adiabaticity is critical to achieve high efficiency, therefore much effort has been

devoted in the past to optimization of the pulse shapes [139]. A necessary con-

dition for adiabaticity is |Ω̇j/Ωj | ≪ ωj (j = s, p) which suggests that efficiency

can be improved by using large enough Rabi peak frequencies. Formally, they de-

termine a large (Autler-Townes) splitting of the instantaneous eigenstates in the

rotating frame [139, 138]. This splitting prevents unwanted transitions triggered

by off diagonal parts (neglected in the adiabatic approximation) of the Hamilto-

nian in the instantaneous eigenbasis. These non-adiabatic terms are proportional

to θ̇(t) and tend to detrap the population, reducing the transfer efficiency. If we let

Ωp(t) = Ω0 f [(t− τ)/T ] and Ωs(t) = κΩ0 f [(t+ τ)/T ], a positive delay τ implements

the counterintuitive sequence of STIRAP. For Gaussian pulses, f(x) = e−x2

, optimal

choices are Ω0T > 10 and τ ≈ T [139]. In this paper we use a reduced pulse width

Ω0T = 30 and a delay τ = 0.7 T .

Sensitivity to detunings

When the two frequencies ωs and ωp are not exactly resonant with the respective

transitions, the presence of non-zero detunings δs and δp may strongly affect the

efficiency. Actually, the two-photon detuning is the crucial parameter. As it is

shown in Fig. 3.3, small deviations of the two photon detuning δ lead to a substantial

decrease of the efficiency, which is less sensitive to single-photon detunings at two-

photon resonance δ = 0. Actually, phenomena entering non-ideal STIRAP are

qualitatively different according to δ vanishing or not, and their interplay leads to

a rich physical picture.

Finite single photon detunings at δ = 0 do not affect the formation of the dark

state, because the mixing angle does not depend on it. Instead they increase the

nonadiabatic terms [139]. The efficiency is insensitive to small single-photon detun-

ings (δ ≤ Ω0, see also Fig. 3.2), while larger ones prevent the adiabatic follow on of

the dark state.

The detuning from two-photon resonance is more detrimental for STIRAP, be-

cause it prevents the exclusive population of the trapped state, which is no longer an

instantaneous eigenstate of the Hamiltonian. A more detailed analysis of the instan-
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Figure 3.4: STIRAP with finite two-photon detuning δ = 0.2 Ω0, with the two pulses

in sequence in top left panel. Population transfer occurs due to Zener transitions

between crossing adiabatic levels (lower left panel), and the transfer efficiency is

reduced (lower right panel). In top right panel, the mixing angle as a function

of time. Here κ = 2 and δp = −4δ. This parametrization being appropriate for

discussing effects of low-frequency noise in the Quantronium (Sec. 3.1.7).

54



taneous eigenstates when δ 6= 0 shows that there is no adiabatic transfer state pro-

viding an adiabatic connection from the initial to the target state, as does the dark

state for δ = 0. In this case, the evolution leads to complete population return of the

system to its initial state. The only mechanism which leads to population transfer is

by non-adiabatic transitions between the adiabatic states. Actually for small values

of δ, narrow avoided crossings between the instantaneous eigenvalues can occur and

the population can be transferred by Landau-Zener tunneling [139, 138], as shown

in Fig. 3.4.

The above considerations lead to the conclusion that the correlations between

the detunings δs and δp are very important. In fact, strongly correlated fluctuating

detunings, nearly preserving two-photon resonance, still allow large transfer effi-

ciency [161, 162]. This issue becomes very important in the discussion of the effects

of low-frequency noise in solid state nanodevices.

Sensitivity to Rabi frequencies

For ideal STIRAP it is better to have two nearly equal peak Rabi frequencies, i.e.

κ = ΩS/ΩP = 1. Indeed if the two maximum Rabi frequencies are different, say

κ > 1, while the pulse widths are about the same, the projection of the state vector

onto the adiabatic transfer state is very good initially (because in our case the more

intense pulse occurs first), but necessarily less good in the final stage. Consequently

the transfer efficiency will be small [139].

The situation may be different if finite detuning is considered. In particular in the

right panel of Fig. 3.3 it is shown that the region of great transfer efficiency enlarges

asymmetrically. This happens when the larger pulse occurs during the Zener process

of imperfect STIRAP (the opposite situation is illustrated in Fig. 3.4).

Of course, using large pulse areas, small deviations from the optimal conditions

do not lead to significant drop in transfer efficiency, and in general increasing both

the amplitudes is the convenient strategy to counteract the effect of imperfections.

However, in solid state nanodevices there are restrictions on the amplitude and

symmetry of the coupling to the microwave fields, playing the role of the lasers.

Therefore, operating at κ 6= 1 may give room to further optimize the transfer effi-

ciency.
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Figure 3.5: Equivalent circuit for the Quantronium. Here q and C are the charge

and the capacitance of the superconducting island respectively; Cg and Vg are the

capacitance and the voltage of the gate; Eg is the Josephson energy and Φ is the

magnetic flux.
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3.1.4 STIRAP in the Quantronium

We now discuss the implementation of the Hamiltonian (3.1) in the Quantron-

ium [44]. The basic unit of this device consists of a Cooper pair box, namely a

superconducting loop interrupted by two adjacent tunnel junctions with Josephson

energies EJ/2 (Fig. 3.5). The two small junctions define the superconducting island

of the box, whose total capacitance is C and charging energy EC = (2e)2/2C. The

electrostatic energy can be modulated by a gate voltage Vg connected to the island

via a capacitance Cg ≪ C and the Hamiltonian reads

H0(qg) =
∑

q

EC [q − qg]
2|q〉〈q| − EJ

2
(|q〉〈q + 1| + h.c.), (3.3)

where {|q〉} are eigenstates of the number operator q̂ of extra Cooper pairs in the

island. We have defined the reduced gate charge qg = CgVg/(2e), which is the

control parameter of the system. Eigenstates of the box are superpositions of charge

eigenstates. The spectrum can be modified by tuning qg (Fig.3.6) and the device

is usually operated as a qubit close to the value qg = 1/2. This is a symmetry

point for the device Hamiltonian (3.3) and it turns out that it is an optimal working

point where the system is well protected against external noise, allowing to obtain

experimental dephasing times of several hundreds nanoseconds [44, 60].

Manipulation of the quantum state is performed by adding to the dc part of

the gate voltage, ac microwave pulses with small amplitudes qg → qg + qac
g (t). The

resulting Hamiltonian can be written as

Htot(t) = H0(qg) + A(t) q̂, (3.4)

where A(t) = −2ECq
ac
g (t). The effective three-level artificial atom Hamiltonian

H(t) =
∑

i

Ei|φi〉〈φi| + A(t)
∑

ij

qij |φi〉〈φj| (3.5)

is obtained by projecting Htot(t) onto the subspace spanned by the three lowest

energy eigenvectors |φi〉, i = 0, 1, 2 of H0(qg). In Eq. 3.5 qij = 〈φi|q̂|φj〉. The

STIRAP protocol can be carried out if we let A(t) = As(t) cosωst + Ap(t) cosωpt.

We then use the RWA, by retaining only quasi-resonant off-diagonal and co-rotating

terms of the drive Hamiltonian, which simplifies to

A(t)q̂ → HRWA(t) =
1

2
q12 As(t) eiωst|φ1〉〈φ2| +

1

2
q02 Ap(t) eiωpt|φ0〉〈φ2| + h.c. (3.6)
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In this approximation the truncated Hamiltonian (3.5) is transformed to the doubly

rotated frame, at angular frequencies ωs and ωp. This yields an effective Hamiltonian

H̃(qg) with the structure of Eq.(3.1), which therefore implements the Λ configura-

tion. Notice that matrix elements qij = 〈φi|q̂|φj〉 play the same role of the dipole

matrix elements in defining the Rabi frequencies, Ωs = q12 As and Ωp = q02 Ap.

The RWA of Eq.(3.6) is justified in the regime where peak Rabi frequencies are

much smaller than the splittings, Ωi ≪ |Ei − Ej|, which is the usual experimental

regime. In this case the terms neglected are rapidly oscillating in the rotating frame,

and only produce a small and fast modulation in the dynamics. The approximation

is supported by simulations of the full Hamiltonian (3.4), using more than ten energy

levels [144, 145, 163] for the usual operating region near qg = 1/2.

It is worth stressing the dependence of the effective Hamiltonian H̃(qg) on the

bias charge qg. For instance in Eq.(3.1) detunings depend on qg via the energies Ei

and peak Rabi frequencies via off diagonal matrix elements qij (see Fig. 3.6). In

particular at the symmetry point, qg = 1/2, the matrix element q02 vanishes and in

general selection rules hold preventing transitions between energy states with the

same parity of the label. The off-diagonal matrix elements qij shown in Fig. 3.6 play

the same role of the dipole matrix elements in atoms. The largest one is q01, which

provides the coupling for qubit operations. Fields in STIRAP are coupled via q12

and q02. This latter vanishes due to a parity selection rule at the symmetry point

qg = 1/2.

Figure 3.6: Left panel: energy spectrum of a Quantronium setup with EJ = EC .

The splitting Ei −E0 in units of EC is plotted as functions of qg, The first splitting

is given by E1(1/2) = 0.94. Right panel: off-diagonal entries of the Cooper pair

number operator, q01, q12 and q02 from top to bottom.
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3.1.5 Broadband noise

Since the nanocircuit is not isolated, the model has to be supplemented with noise

terms. The structure of coupling to noise can be understood considering classical

fluctuations of each of the parameters in the Hamiltonian of Eq. (3.3). For instance

fluctuations of the gate charge can be accounted for by adding a classical stochastic

term qg → qg + δqx(t). Physical processes described by these fluctuations are those

leading to a stray electrical polarization of the island, and include effects of voltage

fluctuations of the circuit and effects of switching impurities [154] located in the

oxides and in the substrate close to the device. Since these latter are in practice the

main source of decoherence (circuit fluctuations can be reduced by careful filtering)

for the Quantronium, we will only consider fluctuations of the gate charge, thus

acting on the same port used to drive the system. We may write the resulting

Hamiltonian as

H = H0(qg) +HRWA(t) + δH (3.7)

where δH = −2EC δqx(t) q̂. In general, noise is due to the coupling of the device to

an environment which is itself a quantum system, and the Hamiltonian is obtained

by letting δH = X̂ q̂ + Henv, where Henv describes the environment and X̂ is an

environment operator. This model allows to treat high-frequency noise by a quantum

optical master equation in the weak coupling regime. However the power spectrum

of noise in the solid state has a large low-frequency component which invalidates

the weak coupling approach. A multistage approach has been proposed [155, 156]

where high and low-frequency noise are separtated, and the latter is treated as

an adiabatic classical field. Formally X̂ → X̂f − 2EC δqx(t), where X̂f describes

fast environmental degrees of freedom and δqx(t) is now a classical slow stochastic

process. We let qx(t) = qg + δqx(t) and write the Hamitonian as

H = H0(qx(t)) +HRWA(t) + X̂ q̂ +Henv. (3.8)

In many cases low-frequency noise with 1/f spectrum, which is the leading contri-

bution of the slow dynamics of qx(t), is captured by a Static-Path Approximation

(SPA), that is approximating the stochastic process by a suitably distributed random

variable [60, 155]. In the case of many weakly coupled noise sources, the distribution

of δqx is Gaussian and is characterized by an energy width σ = 2EC σx. Populations

59



and coherences are obtained by averaging over this distribution the entries of the

reduced density matrix of the system. This approach has quantitatively explained

the power law decoherence observed in Quantronium [60] and in phase qubits [164],

and has been recently studied for optimal tuning of multiqubit systems [158].

This point of view provides a simple argument explaining why the symmetry

point qg = 1/2 is well protected against external noise. Indeed, since the energy

splitting E1 − E0 depends only quadratically on the fluctuations δqx around this

point, energy fluctuations are suppressed. As a consequence, superpositions of the

two lowest energy levels keep coherent, yielding a power law suppression of the

signal [60, 155] and longer dephasing time.

3.1.6 Effective model for low-frequency noise in STIRAP

In order to study STIRAP we project the Hamiltonian (3.8) on the subspace spanned

by the three lowest energy instantaneous eigenvectors of H0(qx(t)). In doing so we

assume the adiabaticity of the dynamics induced by δqx(t), which allows to neglect

effects of the time-dependence of the eigenvectors. Of course, if we start from the

SPA version of the Hamiltonian (3.8), this condition is automatically verified. We

focus on the system plus drive Hamiltonian, H0(qx(t)) +HRWA(t), which has in the

rotated frame the same structure of Eq.(3.1). Parameters entering the Hamiltonian

depend, of course, on the realization of the stochastic process. Fluctuations of the

eigenenergies translate in fluctuations of the detunings (we let E0 = 0)

δ(qx) = E1(qx) − ωp + ωs ; δp(qx) = E2(qx) − ωp. (3.9)

Also the effective drive fluctuates due to fluctuations of the charge matrix ele-

ments, for instance Ωp = q02(qx)Ap.

In the regime of validity of the SPA, this analysis shows that the effect of low-

frequency noise in solid-state devices, can be discussed in term of sensitivity of the

transfer efficiency obtained by STIRAP to parameters characterizing an equivalent

drive. This allows to apply several results known from quantum optics to solid state

devices. For instance the large sensitivity to two-photon detuning, translates in the

sensitivity to fluctuations of the lowest splitting, which is then the main figure to be

minimized in order to achieve efficient population transfer in the solid state. Notice

also that, the main steps of the analysis carried out for the Quantronium can also
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be applied to other solid state implementations devices, as long as decoherence in

the dynamics of the two lowest energy levels is well characterized.

3.1.7 Effects of low-frequency noise in the Quantronium

In this section we will apply the above analysis to discuss the observability of STI-

RAP in the Quantronium, and we will consider a device with EJ = EC , whose

spectral properties are given in Fig. 3.6. An important point is that while dephas-

ing is minimized by operating at the symmetry point qg = 1/2, the selection rule

q02 = 0 prevents to implement STIRAP. Therefore, it has been proposed to operate

slightly off the symmetry point.

In these conditions it has been shown that STIRAP allows a substantial coher-

ent population transfer also in the presence of high-frequency noise. Notice that,

while in quantum optical systems STIRAP connects two ground states, in solid state

devices high-frequency noise leads to decay 1 → 0. These processes are well charac-

terized experimentally [60]. In Ref. [144] it has been shown that secular dephasing

between the above two states does not produce relevant effects during population

transfer. A careful analysis [163] has allowed to optimize parameters for STIRAP

in the presence of high-frequency noise, showing that operating at qg = 0.47 already

provides sufficient coupling q02.

On the other hand, it is known that the effect of low-frequency noise increases

when the system is operated away from the symmetry point [60, 165]. This opens

the question of the trade-off between efficient coupling of the driving fields and

dephasing due to slow excitations in the solid-state. In this work we focus on this

issue and we neglect high-frequency noise.

Another consequence of the selection rule is that, in the vicinity of the symmetry

point, coupling with the drives is asymmetric. At qg ≈ 0.47 we have q02 ≈ q12/4

(see Fig. 3.6). Since in any case it is convenient to work with the largest pump

pulse Rabi peak frequency Ω0, we will fix this value. It can be estimated by writing

Ω0 = (q02/q01) ΩR ≈ ΩR/6, where ΩR is the maximal angular frequency for Rabi

oscillations between the lowest doublet. Frequences of approximately νR = 750 −
900MHz can be achieved in the Quantronium, corresponding to a maximum field

amplitude Ap yielding νp = 100−150MHz. The peak Rabi frequency of the Stokes

field could be chosen as νs = κνp, with κ ≤ 4, but we will argue that κ = 1 is the
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Figure 3.7: Averaged population histories for different values of the fluctua-

tion intensity of the two-photon detuning, σδ. In panels (a)-(f), we have σδ =

0.05, 0.1, 0.2, 0.4, 0.8, 1.6 in units of Ω0, respectively. Here detunings are anticor-

related (δp = −5δ) and drives have been symmetrized (κ = 1) by using a lower

amplitude As for the Stokes field. For Ω0 = 2π · 108 rad/s the relevant curve is

σδ = 0.2 and T = 48ns yielding 60% of population transfer. Slightly increasing

νp = 150MHz one obtains σδ = 0.125 and T = 30ns.
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optimal choice.

Fluctuations δqx of the gate charge can be estimated from the dephasing time of

the qubit at the symmetry point. This is due to energy fluctuations σ/E1(1/2) ∼
0.01. Therefore fluctuations of gate charge, which are characteristic of the environ-

ment only, are estimated by σx = σ/(2EC) ≈ 3 ·10−3, where we used EC ∼ 15GHz.

Notice that these features may depend on details of the protocol as the total mea-

surement time, but for 1/f noise the dependence is logarithmic and improving the

procedure does not bring essential changes of σx.

 1
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Figure 3.8: Ratio of the maximum drive amplitudes k = ΩS/ΩP as a function

of the two-photon detuning limits, δ̃ = δ/Ω0, for anticorrelated noise, typical of

Quantronium (δp = −5δ). The white zone is the region where we have more than

80% of transfer efficiency of STIRAP.

We choose to operate at single and two-photon resonance, δ = δp = 0 at

qg = 0.47. According to Eq.(3.9), fluctuations δqx determine a distribution of

the detuning. In the left panel of Fig. 3.6, we can directly read off fluctuations

of the splitting, which give the estimate ∆δ = ∆E1(qx) ≈ (∂E1/∂qx)qg
δqx and
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∆δp = ∆E2(qx) ≈ (∂E2/∂qx)qg
δqx.

Therefore, fluctuations of the detunings are anticorrelated, ∆δp = a∆δ, where

the ratio of the two derivatives is given by a ≈ −5. This corresponds to the lines

drawn in the efficiency diagrams of Fig. 3.3. Using (∂E1/∂qx)qg
δqx ≈ (EJ/4),

we find that fluctuations of the two-photon detuning are estimated by σδ/Ω0 ≈
EJσx/(4Ω0) ≈ σ/(8Ω0) ∼ 0.1− 0.2, identifying the region of the efficiency diagrams

explored by the system during the protocol. This estimate suggests that energy

fluctuations in the Quantronium should still allow to observe coherent population.

Fluctuations of the off-diagonal elements can be estimated by the plots in Fig. 3.6

(right panel), yielding figures of ∼ (1/4) σxΩ0 ∼ 10−3Ω0, therefore they can be

neglected. The transfer efficiency is then calculated by averaging the population

histories over the distribution of correlated detunings. Results are shown in Fig. 3.7

for different values of the fluctuation intensity of the two-photon detuning σδ in

units of Ω0. Here detunings are anticorrelated (δp = −5δ) and drives have been

symmetrized (κ = 1), by using a lower amplitude As for the Stokes field. It is seen

that in standard experimental conditions the low-frequency noise allows from 60%

to more than 90% population transfer in the Quantronium. Notice that even for

σδ = 0.2 Ω0 the average population of the intermediate level is very small during the

whole procedure.

Finally we comment about the optimization of the laser amplitudes. In the above

simulations we used κ = 1, but it would be possible to use a larger Stokes pulse,

up to κ = 4. However this does not improve the efficiency if fluctuations of the

detunings are anticorrelated. As shown in Fig. 3.8, in this case the region of large

efficiency shrinks for increasing κ.

3.2 Asymmetric Bistable System

A feature which makes a strong difference between the behaviour of a quantum

system with respect to a classical one is the quantum tunneling. This effect of-

ten occurs in condensed matter physics, such as Josephson junctions and hetero-

nanostructures [166, 167]. In a dissipative quantum system interacting with a ther-

mal bath, the quantum tunneling can play an important role on the relaxation time

from a metastable state [168, 169]. During the last two decades the effects of environ-
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ment on quantum tunneling phenomenon have been intensively studied [38],[169]-

[172]. Commonly, environment is modelled as a number N (usually N → ∞) of

harmonic oscillators considered at thermal equilibrium, i.e. thermal bath, inter-

acting with the quantum system through a bilinear coupling [173]-[177]. In this

context, symmetric and asymmetric quantum bistable systems are good enough

to analyze superconducting quantum bits and decoherence phenomena [178, 179].

Obtaining longer coherence times in such systems, when they interact with noisy

environment, is one of the major requirements in devising and manufacturing de-

vices capable of storing quantum bits. In this respect, a main topic is to know the

properties of a particle subject to an external potential, in the presence of random

fluctuations. It can be also useful to study the changes occurring in the dynam-

ics of a quantum particle affected by noisy perturbations, when different shapes of

the potential profile are used. Potentials which model the interaction with laser

beams have most interesting implications for quantum systems such as the coher-

ent destruction of tunneling [180], the effect of quantum stochastic resonance [181],

and the control and reduction of decoherence in open quantum systems [182]. In

this work, in order to analyze the evolution of a quantum particle subject to time-

independent asymmetric bistable potential and affected by environmental noise, we

use the Caldeira-Leggett model [170], which allows to derive a quantum mechanical

analogue of the generalized Langevin equation. The study is performed by using the

approach of the Feynman-Vernon functional [183] in discrete variable representation

(DVR) [168, 184].

3.2.1 The noise seen as interactions with thermal bath

Our system consists of a quantum particle with mass M , interacting with a ther-

mal bath which plays the role of environment. The dynamics of the particle is

investigated by using the Caldeira-Leggett model [170]. In our analysis q̂ and p̂ are

one-dimensional operators for position and momentum, respectively.

The unperturbed Hamiltonian of the system is

Ĥ0 =
p̂2

2M
+ V̂0(q̂) (3.10)

where
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V̂0(q̂) =
M2ω4

0

64∆U
q̂4 − Mω4

0

4
q̂2 − q̂ǫ, (3.11)

is the asymmetric bistable potential shown in Fig. 3.9. Here, ǫ and ∆U are the

asymmetry parameter and the barrier height, respectively, and ω0 is the natural

oscillation frequency. In our study we consider only 8 energy eigenstates. In Fig. 3.9

E0

E1

E2

E3

E4

E7

q0 q1 q2 q3 q4q5q6q7

en
er

gy

position

E5

E6

initial position

V0(q)

Figure 3.9: Potential profile V0(q) (see Eq. (3.11)) for ∆U = 3 and ǫ = 0.5. Energy

levels and corresponding eigenstates considered in our analysis are indicated by

horizontal lines and curves, respectively. The energy eigenvalues are E0 = −2.01,

E1 = −0.92, E2 = 0.11, E3 = 1.08, E4 = 1.97, E5 = 2.69, E6 = 2.76, E7 = 3.27.

By using the DVR-state |qµ〉, eigenvalues of the position operator are obtained and

shown on the horizontal axis: q0 = −4.17, q1 = −1.38, q2 = 1.71, q3 = 3.02,

q4 = 4.05, q5 = 4.97, q6 = 5.86, q7 = 6.81. The initial position is qstart = 0 (black

circle).

these energy eigenvalues are shown on the vertical axis. In the same figure, on

the horizontal axis we indicate the 8 position eigenvalues, obtained by using the

DVR-state |qµ〉. The black circle marks the initial position of the particle, that

is the system at t = 0 is in a state given by a proper linear combination of the

corresponding 8 eigenstates |qµ〉 considered in our analysis. The curves shown in the

figures are the eigenfunctions related to the 8 energy eigenvalues.
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In order to describe the dynamics of the particle interacting with environment,

we consider the following Hamiltonian

Ĥ(t) = Ĥ0(t) + ĤB, (3.12)

where

ĤB =
N∑

j=1

1

2


 p̂

2
j

mj
+mjω

2
j

(
x̂j −

cj
mjω2

j

q̂

)2

 (3.13)

is the Hamiltonian which describes the thermal reservoir and its interaction with

the particle. As usual, the thermal bath is depicted by an ensemble of N harmonic

oscillators with spatial coordinate x̂j , momentum p̂j, mass mj , and frequency ωj.

The coefficients cj are the coupling constant between system and thermal bath.

We note that, as N → ∞, from Eq. (3.13) a continuous spectral density is

obtained.

In our study we use the Ohmic spectral density characterized by an exponential

cut-off ωc

J(ω) = ηω exp
(
− ω

ωc

)
. (3.14)

Here, η = Mγ with γ the strength of the coupling between system and heat bath.

We note also that ωc ≫ ω0, ωj, γ.

Because of the bilinear coupling between the coordinate q̂ of the system and the

coordinate x̂ of the thermal bath, this model is the quantum analogue of a classical

system affected by a constant random force [38]. In the next two subsections we

briefly summarize the mathematical approach used in this study.

3.2.2 The Feynman-Vernon theory

In order to make our analysis independent on the properties of the heat bath, we

trace out the degrees of freedom of the reservoir by using the reduced density oper-

ator

ρ(qf , q
′
f ; t) =

∫
dq0

∫
dq′0K(qf , q

′
f , t; q0, q

′
0, t0)ρS(q0, q

′
0, t0), (3.15)

where the propagator K is given by
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K(qf , q
′
f , t; q0, q

′
0, t0) =

∫ q(t)=qf

q(t0)=q0

Dq
∫ q′(t)=q′

f

q′(t0)=q′
0

Dq′A[q]A∗[q′]FFV [q, q′] (3.16)

and A[q] = exp
(
iSS [q]

h̄

)
with SS[q] being the classical action functional. In Eq. (3.16),

FFV [q, q′] = exp
(
−φF V [q,q′]

h̄

)
is the Feynman-Vernon (FV) influence functional with

the influence weight functional φFV [q, q′] depending on the bath correlation func-

tion [38, 183].

3.2.3 Discrete Variable Representation (DVR)

By solving the eigenvalue equation connected with the Hamiltonian Ĥ0 (see Eq. (3.10)),

we get the energy eigenstates (see vertical axis in Fig. 3.11). Within the framework

of the discrete variable representation (DVR) [184] it is possible to obtain the basis

{|qµ〉} of eigenstates of the position operator q̂ (see horizontal axis in Fig. 3.11).

In this representation, using Eq. (3.16), the continuous real-time path integral

given in Eq. (3.15) becomes a discrete path with m transitions at times t1, t2, ...tm

ρ̇µmνm
(t) =

∑

µ0ν0

∫ ξ(t)=ξm

ξ(t0)=ξ0
Dξ

∫ χ(t)=χm

χ(t0)=χ0

Dχ C[ξ, χ]FFV [ξ, χ] ρµ0ν0
(3.17)

where C[ξ, χ] = A[q]A∗[q′] and the influence weight functional of the FV functional

is [185]

φFV [ξ, χ] = −
m∑

l=1

l−1∑

j=0

ξlS(tl − tj)ξj − i
m∑

l=1

l−1∑

j=0

ξlR(tl − tj)χj. (3.18)

Here, the absolute coordinates qj are replaced by the discrete relative coordinates

ξj(t) = qj(t) − q′j(t) and center of mass coordinates χj = qj(t) + q′j(t).

Because we are interested in the evolution of the populations, in Eq. (3.17) we

consider the diagonal terms ρµmµm
(t). Applying the non-interacting cluster approx-

imation (NICA) [185], the following master equation (ME) is obtained [168, 169]

ρ̇µµ(t) =
N∑

ν=1

∫ t

t0
dt′Hµν(t− t′)ρνν(t

′), µ = 1, . . . , N, (3.19)

where N is the number of eigenstates and the kernel H, which indicates the cluster

matrix, takes into account of all possible transitions in the DVR paths [168, 169].
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According to the path integral technique based on the Feynman-Vernon the-

ory, using ME corresponds to take into account only the paths connecting diagonal

elements of the reduced density matrix of the position operator q̂ [168, 169].

Within NICA all the intercluster interactions are neglected [185]. By assuming

that the characteristic memory time of the matrix elements of H in Eq. (3.19) is

the smallest time scale of the physical system, we obtain the following Markovian

approximated master equation [168, 169, 185]

ρ̇µµ(t) =
N∑

ν=1

Γµν(t)ρνν(t) (3.20)

where the time-dependent rate coefficients are expressed by

Γµν(t) =
∫ ∞

0
dτHµν(t, t− τ). (3.21)

By decoupling via a diagonalization procedure the system of equations (3.20)

N∑

κ1,κ2=1

(S−1)µκ1
Γκ1κ2

Sκ2ν = Λµδµν , (3.22)

where Sµν are the elements of the transformation matrix and Λµ the eigenvalues of

the rate matrix [168]. The general solution of the Markov approximated ME is

ρµµ(t) =
N∑

ν,κ=1

Sµν(S
−1)µκe

Λν(t−t0)ρκκ(t0). (3.23)

Because of the conservation probability, for the diagonal matrix elements we have [185]

Γνν(t) = −
∑

κ 6=ν

Γκν(t), (3.24)

and one eigenvalue is equals zero, Λ1 = 0. The Eq. (3.23) becomes

ρµµ(t) = ρ∞µµ +
N∑

ν=2

N∑

κ=1

Sµν(S
−1)µκe

Λν(t−t0)ρκκ(t0), (3.25)

where the first term is the asymptotic population in the discrete variable represen-

tation. In asymptotic regime, the largest time-scale governing the dynamics is given

by [168]

Γ ≡ min {|ℜ (Λν) |; ν = 2, . . . , N} , (3.26)
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where Λν are the eigenvalues of the rate matrix and |ℜ (Λν) | are the non-zero abso-

lute values of the real part of Λν .

In the next section we focus our study on the medium-short time behavior of the

system, using the largest Λ−1
ν as timescale to analyze the non-equilibrium dynamics

of the quantum particle in the presence of thermal fluctuations.

3.2.4 Relaxation Time

In this section we study the time evolution of our quantum particle taking into

account the 8 energy levels shown in Fig. 3.9. We restrict the study to the 8 lowest

levels of the system, because we are interested in the dynamics of a particle that

can not reach energy levels higher than the relative maximum of the potential. In

particular, we intend to analyze the time behaviour of the populations for different

values of the coupling strength, focusing on the time behaviour of the state |q0〉 (left

side well of the potential).

By using the DVR-state |qµ〉, as initial condition for the particle we choose the

non-equilibrium position qstart = 0. The corresponding state is given by

|qstart〉 = c1|q1〉 + c2|q2〉 (3.27)

with c1 = 0.745 and c2 = 0.667.

By integrating Eq. (3.19) for different values of the parameter η, which represents

the intensity of the environmental noise, for each eigenstate |qµ〉 we obtain the time

behaviour of the corresponding population ρqµ
≡ ρµµ (see Fig. 3.10). Moreover, by a

simple change of basis, we calculate the time evolution of the populations also in the

energy representation (see Fig. 3.11). As one can see from Eqs. (3.20), (3.22), for

each value of η there are N relaxation times Λ−1
µ . Here, we consider the maximum

of these relaxation times, and note that this time increases rapidly for larger values

of η. Therefore, to describe the time evolution of the system for different values of

η, we choose as time scale τ the largest of the relaxation times obtained for η = 0.01

and calculate the evolution of the system for a maximum time t = 600 τ . This choice

allows to follow the transient dynamics of the system for low and intermediate values

of the coupling constant (see panels a, b, c in Figs. 3.10, 3.11). For higher values of η

the system can not reach the regime condition, because of the presence of relaxation

times longer than the maximum time chosen to calculate the numerical solution (see
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Figure 3.10: Time evolution of the diagonal elements, ρqµ
(µ = 0, 1, ..., 7), of the

density matrix in q-representation. The matrix elements ρqµ
are the population

distributions in the eight position eigenstates considered. The time evolution is

obtained for different values of the coupling strength: (a) η = 0.01, (b) η = 0.4, (c)

η = 1 and (d) η = 2.8.
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Figure 3.11: Time evolution of the diagonal elements, ρ
Eµ

(µ = 0, 1, ..., 7), of the

density matrix in energy representation. The matrix elements ρ
Eµ

are the popula-

tion distributions in the eight energy eigenstates considered. The time evolution is

obtained for different values of the coupling strength: (a) η = 0.01, (b) η = 0.4, (c)

η = 1 and (d) η = 2.8.
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panel d in Figs. 3.10, 3.11). This delay in the system dynamics can be explained

by the quantum Zeno effect, responsible for the suppression of the tunnel effect.

Moreover, we observe in Fig. 3.10 a nonmonotonic behaviour of the population ρq0

as a function of the time. Finally, as a consequence of the quantum Zeno effect, the

eigenstate |q0〉 can be maximally populated at different times varying the coupling

strength and, therefore, the value of η. This could be useful in view of placing a

quantum particle in a given position at a fixed time.

We note that it would be interesting to compare our results with those obtained

in the case of a harmonic oscillator coupled with a thermal bath without any cutoff,

as studied in previous works [186, 187, 188]. On physical grounds we expect that

the time behaviour of the purity of the system state is strictly connected with the

relaxation rates. In our analysis the relaxation rates have been used to determine

the timescale for obtaining the time evolution of the population distributions. More-

over, we found a freezing phenomenon of the state of the system due to the Zeno

effect [189]. Finally, we note that the complete description of the dynamics of our

initial pure state should be obtained by following the time evolution of all elements

of the density matrix as expressed by Eq.( 3.17). This will be subject of future

investigations.

73





Conclusions

In the first chapter the mathematical rudiments of stochastic processes and in par-

ticular of Lévy processes, have been presented. The Lévy flights are introduced

as self-similar Lévy processes. After the definition of the strictly stable random

variables, the fractional differential equation for Lévy flight superdiffusion and the

associated Langevin equation with symmetric α-stable Lévy noise are introduced.

The general differential equation useful to calculate the nonlinear relaxation time

for a particle moving in a cubic potential and with an arbitrary Lévy index α is

presented in chapter two. For Cauchy noise (α = 1) the NLRT as a function of the

noise intensity and the initial position of the potential is calculated. A monotonic

behavior of the NLRT as a function of the initial position of the particle was ob-

tained in this case. For free anomalous diffusion the NLRT decreases monotonically

with the noise intensity as in the presence of the cubic potential.

Moreover, in the same chapter, we presented a study on the role of the Lévy noise

in population dynamics. By using the Lotka-Volterra model in the presence of two

symmetrical non-Gaussian α-stable noise sources, we analyzed the time behaviour of

an ecosystem consisting of two competing species and surrounding environment. In

particular, an additive noise source affects the dynamics of the interaction parameter

between the two species, γ(t), which ”moves” along a bistable potential in the

presence of a periodical driving force. Depending on the values of the interaction

parameter γ(t), coexistence or exclusion regime takes place. By using different α-

stable noise sources, stochastic resonance was always observed, with γ(t) switching

quasi-periodically between coexistence and exclusion regime. In this condition, we

considered the second noise source, inserting in the Lotka-Volterra equations a term

of multiplicative Lévy noise, whose intensity is indicated by D. For different values

both of the index α and intensity D, we studied the time behaviour of the two
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species densities, x and y, and found that noise is responsible for the generation of

time series characterized by anticorrelated oscillations, whose amplitude is strictly

dependent on the multiplicative noise intensity. To better analyze the response of

the system to the multiplicative noise, we calculated the corresponding signal-to-

noise ratio (SNR) of (x − y)2. The results showed that SNR is characterized by

a nonmonotonic behaviour with a maximum as a function of the noise intensity,

which indicates the presence of a second stochastic resonance phenomenon. Finally,

we observed that the values of this maximum in the SNR and the spectral power

amplification is reduced as the Lévy index α decreases approaching 1 (more super-

diffusive behaviour).

We note that our model is useful to describe physical situations in which the am-

plitude of periodical driving forces, such as those connected with the temperature

oscillations, is weak and therefore unable to produce considerable variations in the

dynamical regime of the ecosystem. The synergetic cooperation between the non-

linearity of the system and the random and periodical environmental driving forces

produces, therefore, a coherent time behaviour of the ecosystem investigated. These

noise-induced effects should be useful to explain the spatio-temporal behaviour of

species whose dynamics is strongly affected by environmental noise characterized by

Lévy distribution [122]-[125].

In the third chapter we started to study the effect of low-frequency noise on the

transfer efficiency of STIRAP, proposing that low-frequency fluctuations of the spec-

trum can be analyzed in terms of fictitious correlated fluctuations of the detunings.

For solid-state noise with large low-frequency component (e.g. for 1/f noise) the

leading effect (static path approximation) is equivalent to consider statistically dis-

tributed detunings and can be discussed by analyzing the sensitivity to parameters

of the protocol. We applied the theory to the Quantronium, showing that corre-

lated fluctuations of the energy splittings have to be considered, and that transfer

efficiency is mainly sensitive to decoherence in the subspace of the two-lowest levels,

which is well characterized experimentally. Selection rules prevent to work at the

symmetry point, where decoherence is minimal. Therefore, the observation of co-

herent population transfer requires optimization of the trade-off between increasing

coupling and greater sensitivity to low-frequency noise. We have shown that this is

indeed possible, given the measured figures of low-frequency noise.
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Notice that we have used pulses of width T = 48 − 30ns. Therefore, the total

time of the protocol ∼ 200− 350ns is longer than the dephasing time of the qubit,

as determined solely by static inhomogeneities. This dephasing time is smaller of

that at the symmetry point (in the experiment of Ref. [60] the dephasing time for

coherent oscillations dropped from Tφ ∼ 600ns at the symmetry point to Tφ ∼ 50ns

at qg = 0.47). This shows that STIRAP is less sensitive to low-frequency noise than

coherent oscillations. Actually, accounting for high frequency noise the process will

be limited by the relaxation T1 ≥ 500 ns.

The analysis we illustrated applies as well to other superconducting nanodevices.

In particular, it could allow to design correlations of fluctuations of the energy

spectrum, which maximize the Zener channel of population transfer (see fig. 3.4).

The second topic presented in the third chapter is the dynamics of a quantum

particle subject to an asymmetric bistable potential and interacting with a noisy

environment. The study was performed exploiting the approach of the Feynman-

Vernon functional [183] within the framework of the discrete variable representa-

tion [168, 169, 184]. By using the Caldeira-Leggett model [170], we described the

transient dynamics of the system for different values of the coupling strength between

the particle and the noisy environment, modelled as a thermal bath. Due to the

quantum Zeno effect, responsible for the suppression of the tunnel effect, a delayed

dynamics of the system was observed for higher values of the coupling strength. We

found also that the metastable state inside the left side well of the potential can be

populated at different times varying the value of the coupling strength.
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Introduction, Int. J. Bifur. Chaos 18 (9), 2649-2672 (2008).

79
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potentials: exact results for stationary probability distributions’ Acta Phys. Pol.

B 38, 1745-1758 (2007).

[21] H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).

80



[22] L. S. Pontryagin, A. A. Andronov, and A. A. Vitt, ’On the statistical treatment

of dynamical systems’ Zh. Eksp. Teor. Fiz. 3, 165 (1933).

[23] P. Hänggi, P. Talkner, and M. Borkovec, ’Reaction-rate theory: fifty years after

Kramers’ Rev. Mod. Phys. 62 251-341 (1990).

[24] V. I. Mel’nikov, ’The Kramers problem: Fifty years of development’ Phys. Rep.

209, 1-2 (1991).

[25] J. Klafter and M. F. Shlesinger, ’On the Relationship Among Three Theories of

Relaxation in Disordered Systems’ Proc. Natl. Acad. Sci. U.S.A. 83, 848 (1986).

[26] A. Blumen, J. Klafter, and G. Zumofen, ’in Optical Spectroscopy of Glasses’,

edited by I. Zschokke (Reidel, Amsterdam 1986).

[27] M. O. Vlad, R. Metzler, T. F. Nonnenmacher, and M. C. Mackey, ’Universality

classes for asymptotic behavior of relaxation processes in systems with dynamical

disorder: Dynamical generalizations of stretched exponential’ J. Math. Phys. 37,

2279 (1996).

[28] E.B. Davies, ’Quantum Theory of Open Systems’ (Academic Press, New York

1976).

[29] R. Alicki, ’Invitation to quantum dynamical semigroups’ Lect. Notes Phys. 597

(Springer-Verlag, Berlin 2002).

[30] F. Benatti and R. Floreanini, ’Dissipative Quantum Dynamics’ Lect. Notes

Phys. 622 (Springer-Verlag, Berlin 2003).

[31] H. P. Breuer and F. Petruccione, ’The Theory of Open Quantum Systems’

(Oxford University Press, Oxford 2002).

[32] W. H. Louisell, ’Quantum Statistical Properties of Radiation’ (Wiley, New York

1973).

[33] F. Haake, ’Statistical treatment of open systems by generalized master equations’

Springer Tracts in Mod. Phys. 95, (Springer-Verlag, Berlin 1973).

81



[34] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg, ’Atom-Photon Interac-

tions’ (Wiley, New York 1988).

[35] D. F. Walls and G. J. Milburn, ’Quantum Optics’ (Springer-Verlag, Berlin

1994).

[36] M. O. Scully and M. S. Zubairy, ’Quantum Optics’ (Cambridge University

Press, Cambridge 1997).

[37] C. W. Gardiner and P. Zoller, ’Quantum Noise’ (Springer-Verlag, Berlin 2000).

[38] U. Weiss, ’Quantum Dissipative Systems’ (World Scientific, Singapore 1999).

[39] H. Spohn, ’Kinetic equations from Hamiltonian dynamics: Markovian limits’

Rev. Mod. Phys. 52, 569 (1980).

[40] M. A. Nielsen and I. L. Chuang, ’Quantum Computation and Quantum Infor-

mation’ (Cambridge University Press, Cambridge 2002).

[41] G. Alber et al., ’Quantum Information: An Introduction to Basic Theoretical

Concepts and Experiments’ Springer Tracts in Mod. Phys. 173 (Springer-Verlag,

Berlin 2001).

[42] D. Bouwmeester, A. K. Ekert and A. Zeilinger, ’The Physics of Quantum In-

formation’ (Springer- Verlag, Berlin 2000).

[43] Y. Nakamura, Yu. Pashkin, and J. S. Tsai, ’Coherent control of macroscopic

quantum states in a single-Cooper-pair box’ Nature 398, 786 (1999).

[44] D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Urbina, D. Esteve,

and M. H. Devoret, ’Manipulating the Quantum State of an Electrical Circuit’

Science 296, 886 (2002).

[45] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, ’Coherent

Quantum Dynamics of a Superconducting Flux Qubit’ Science 299, 1869 (2003).

[46] T. Yamamoto, Yu. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai,

’Demonstration of conditional gate operation using superconducting charge

qubits’ Nature 425, 941 (2003).

82



[47] J. B. Majer, F. G. Paauw, A. C. J. ter Haar, C. J. P. M. Harmans, and J. E.

Mooij, ’Spectroscopy on Two Coupled Superconducting Flux Qubits’ Phys. Rev.

Lett. 94, 090501 (2005).

[48] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S.

Kumar, S. M. Girvin and R. J. Schoelkopf, ’Strong coupling of a single photon

to a superconducting qubit using circuit quantum electrodynamics’ Nature 431,

162 (2004).

[49] I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J.

E. Mooij, ’Coherent dynamics of a flux qubit coupled to a harmonic oscillator’

Nature 431, 159 (2004).

[50] M. O. Scully and M. S. Zubairy, ’EM Quantum Optics’ (Cambridge Univ. Press,

Cambridge 1997).

[51] J. M. Smith, ’Animal interactions’ (Cambridge, London 1974).

[52] M. A. Nowak and R. M. May, ’Virus Dynamics: Mathematical Principles of

Immunology and Virology’ (Oxford University Press, 2000).

[53] P. Turchin, ’Complex Population Dynamics: A Theoretical/Empirical Synthe-

sis’ (Princeton University Press, 2003).

[54] C. H. Bennett, D. P. DiVincenzo, ’Quantum information and computation’,

Nature 404, 247-255 (2000).

[55] J. Clarke, F. K. Wilhelm, ’Superconducting quantum bits’, Nature 453, 1031-

1042 (2008).

[56] F. Brauer and C. Castillo-Chavez, ’Mathematical Models in Population Biology

and Epidemiology’ (Springer-Verlag, 2000).

[57] J. M. Smith, ’Mathematical Ideas in Biology’ (Cambridge University Press,

1968).

[58] O. G. Pybus and A. Rambaut, ’Evolutionary analysis of the dynamics of viral

infectious disease’, Nature Reviews Genetics 10, 540-550 (2009).

83



[59] A. Houston, C. Clark, J. McNamara, M. Mangel, ’Dynamic models in be-

havioural and evolutionary ecology’, Nature 332, 29-34 (1988).

[60] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve1, F. Chiarello,

A. Shnirman, Y. Makhlin4, J. Schriefl and G. Schön , ’Decoherence in a super-

conducting quantum bit circuit’ Phys. Rev. B 72, 134519 (2005).

[61] B. Øksendal, ’Stochastic Differential Equations: An Introduction with Applica-

tions’ (Springer, Berlin 2003).

[62] R. Durrett, ’Stochastic calculus. A practical introduction. Probability and

Stochastics Series’ (Richard Durrett Editor, 1996).

[63] L. Richardson, ’Atmospheric diffusion shown on a distance neighbour graph’,

Proc. Roy. Soc. A 110, 709-737 (1926).

[64] A. Ya. Khintchine, ’Limit Distributions for the Sum of Independent Random

Variables’, (O.N.T.I., Moscow 1938) [in Russian].

[65] W. Feller, ’An Introduction to Probability Theory and its Applications’, Vol. 2

(John Wiley & Sons, Inc., NY 1971).

[66] R. Weron, ’On the Chambers-Mallows-Stuck method for simulating skewed sta-

ble random variables’ Statistics & Probability Letters 28 165-171 (1996).
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