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Introduction

Metastability is a peculiarity of many complex systems, ranging from physics

to biology and chemistry. Complex systems are usually open systems which

strongly interact with a noisy environment. These systems can exchange with

the environment energy and materials and this interaction can be modeled as

noise.

Metastable states play a crucial role for example in protein folding dynamics,

Ising spin glasses, complex dynamics of large molecules at surfaces, enhancement

of cellular memory and in dynamics of cellular reactive oxygen species (1). The

lifetime of a metastable state is the main interest in a variety of areas, includ-

ing first-order phase transitions, field theory, chemical kinetics and Josephson

junctions (2, 3, 4).

Scope of the present work is to discuss the behavior of systems which can

be described by the evolution of the position of a fictitious particle subjected

to a deterministic potential which has two stable positions at different energies

(bistability) and is also interacting with a noisy environment.

The discussion will be carried out both for classical and quantum systems

pointing out the differences between the two physical and, accordingly, mathe-

matical frameworks and the different fields of applications.

It is straightforward that a classical description is the proper one in every

case where the evolution of the system under study follows from an Newton-like

equation of motion, as in Langevin equation. Otherwise when we are dealing
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1. INTRODUCTION

with elementary particles, whose undulatory nature cannot be neglected we have

to use a quantum description with a Hamiltonian operator.

1.1 Classical systems

In this thesis we deal with a theoretical model for bistable classical physical

systems in which the interaction with the environment is described by a multi-

plicative noise term, that is the noise amplitude depends on the state variable

of the system considered. Many problems susceptible to be represented by this

model abound not only in physics, but also in biology, ecology, economy and

chemistry.

In statistical physics and in particular in phase transition phenomena an

archetypal model is the Ising model. We will consider bistability and the role

of the multiplicative noise in such a physical system.

1.1.1 Langevin Equation

In 1827, while examining pollen grains and the spores of Mosses and Equisetum

suspended in water under a microscope, Robert Brown observed these minute

particles executing a continuous jittery motion(5). He observed the same motion

in particles of dust, enabling him to rule out the hypothesis that the effect was

due to pollen being alive. However he wasn’t able to explain the origin of the

motion.

In his PhD thesis “The Theory of Speculation” published in 1900 (6), Louis

Bachelier introduced the random walk as a way to model financial markets.

Bachelier indeed anticipated the famous theoretical work published by Einstein in

1905 on the Brownian motion. Since then due to the seminal contributions of A.

Einstein (7), M. Smoluchowski (8) and P. Langevin (9) the usage of the stochas-

tic process has seen a large number of applications and generated the theory of

stochastic processes (10).

The first example of the stochastic differential equation (SDE) was introduced

by Langevin in 1908 to explain the Brownian motion (11), which is observed when

2



1.1 Classical systems

a classical particle is free to move in a fluid like air or water (10). Langevin intro-

ducing the concept of the equation of motion of a random variable, in this case

the position of a Brownian particle, initiated a new train of thought culminating

in a truly dynamical theory of Brownian motion (12).

The interaction with the environment (the molecules of the fluid) is given

by the collisions of the particle with the molecules of the fluid (mpollenparticle �
mfluidparticle). Each collision is deterministic and subjected to the ordinary clas-

sical equation of motion but the global effect can be described with a differential

equation with a randomly fluctuating contribute. This means that when we study

the evolution of the system at the mesoscopic level we take into account all the

microscopic collisions of the particle with the environment by considering in the

dynamical equation of our system a stochastic term which we call noise.

This interaction with the environment, usually has the effect to disorder the

system. However, often such interaction can give rise to counterintuitive phenom-

ena and several examples are found in nature in which the noise has a constructive

role.

One of these is the stochastic resonance, which consists of an enhancement

of sensitivity of a nonlinear system to external periodic forcing due to random

fluctuations (13, 14, 14, 15, 16, 17, 18).

Another effect manifesting the constructive role of noise in physical systems

is the resonant activation (19, 20, 21, 22). In this phenomenon a cooperative

interplay beetween the barrier fluctuations and the thermal noise-induced bar-

rier crossing events occurs. The crossing barrier process is strongly correlated

with potential fluctuations and the average escape time exhibits a minimum at a

resonant fluctiation rate (23).

Furthermore it can be found that the noise can have a stabilization effect on

the metastable system, this is the noise enhanced stability (NES) phenomenon

(24, 25, 26). The lifetime of the metastable state has a non monotonic behavior

as a function of the noise intensity.

3



1. INTRODUCTION

1.1.2 Multiplicative noise

The noise added into the system because of the interaction with the environment

may be dependent or independent by the state variable of the system. When we

are dealing with noise whose intensity is independent on the state of the system

we call it additive noise. A typical case of additive noise is the thermal noise or

the thermal fluctuations always present in natural systems.

Otherwise, when the coupling with the environment is such that the noise

intensity depends on the state variable of the system we have a multiplicative

noise. Typical examples of stochastic differential equations with multiplicative

noise are those governing the population dynamics.

As well as the additive noise, also the multiplicative noise is involved in many

scientific areas, not only in physics. Examples are in population dynamics, where

the noise can break the symmetry of two or more interacting species (27) creating

ordered patterns, or in phase transition phenomena, in the study of the decaying

of false vacuum states (28) as well as in condensed matter (29).

Many studies have been performed with the goal of investigating the math-

ematical features related with the multiplicative noise and its relationship with

phase transition (30, 31).

In the last decade the role of the multiplicative noise has been investigated in

nonequilibrium phase transition phenomena (30, 32, 33, 34).

The functional form of the noise factor g(x) (where x is the order parameter)

depends on the physical system under investigation.

In many cases the pure multiplicative contribution has been used in the form

g(x) = x. In a birth-dead process the functional form is given by g(x) =
√

1 + x;

in the Hongler’s model (35) g(x) = 1+x2+o(x2), in noise-induced nonequilibrium

phase transitions g(x) = 1+x2 Ref.(32, 33). Distinct contribution of two separate

noise sources, pure additive and pure multiplicative, have been also investigated

(36).

It has been noted (29, 37) that the qualitative behavior of a system of the

Ising spin model can be well represented by a undimensional Langevin equation

driven by a multiplicative noise intensity represented by the square root of a

4



1.1 Classical systems

polynomial, g(x) =
√
D + µx2, where D represent the thermal contribution and

µ is an environmental coupling factor.

1.1.3 Mean First Passage Time

In the study of a system whose dynamics is subjected to stochastic driving forces

it might be of interest to know how long the system remains in a certain region

of values of the state phase, with peculiar boundary conditions.

The usual boundary conditions used are: absorbing and reflecting barriers(10).

We have the case of an absorbing barrier when, if the particle reaches the frontier,

it is not more considered, i.e. it goes out of the subpace of interest.

We have absorbing barrier at some values of the order parameter when the

particle is removed from the system when it reaches these boundaries.

Otherwise, when the particle reaches the boundary, and it is thrown back into

the region under observation we have the case of a reflecting barrier. In term of a

probability density function P (x, t) we can say that for an absorbing barrier we

have P (x, t) = 0 while for a reflecting boundary condition we have ∂P (x,t)
∂x

= 0.

A very important physical example occurs when the evolution of the system

can be described by a bistable potential. In this case the particle starts its motion

at a point a, near one of the two wells of the potential, and we are interested in

how much time is needed in order to reach a point b near the second well of the

potential. This is the case, for example, of a chemical reaction A → B where A

and B are two chemical species. In fact we can model this kind of reaction by

the chemical concentration parametero of one of the two chemical species (say

B). The reaction starts when is present only the species A (point a in the state

space) and diffuses towards the presence of only the chemical species B (point b).

The mean reaction time is well described by the well known formula for the

mean first passage time (MFPT)

T (a→ b) =
2π√

|U ′′(a)U ′′(b)|
e

2(U(a)−U(b))
D (1.1)

obtained by Kramers and published in 1940 (38). In the Eq.1.1 U(x) is the

function describing the potential profile of the system and ∆U = U(a) − U(b) is

the height of the potential barrier that the Brownian particle has to cross.

5



1. INTRODUCTION

The Eq.1.1 is a particular case of the more general formula for the MFPT

T (x) =
2

D

∫ b

x

dx′ exp

[
2U(x′)

D

] ∫ x′

a

dx′′ exp

[
−2U(x′′)

D

]
(1.2)

where D is the noise intensity. For ∆U >> D and by retaining in the double

integral of the Eq.1.2 only the main contributions of both integrals (which are

around the a and b) and using the parabolic approximation (10, 38) we get Eq.1.2

from Eq.1.1.

It is worthy to note that this linearization procedure neglects all the possible

effects due to the full potential profile which is viceversa considered in the general

formula of the Eq.1.2.

1.2 Open Quantum systems

In classical mechanics a particle is described by the equation of motion given

by the second principle of dynamics which at each time gives one and only one

position in space. Because of this reason the particle has a completely determined

trajectory.

In quantum mechanics the motion of a particle is described by a partial linear

differential equation whose variable is a wave function. The square modulus of

this wavefuntion gives for each volume of space the probability for the particle

to be found there. This means that the particle loses the possibility to follow a

trajectory being not zero the probability to be detected not only in a monodi-

mensional curve (the classical trajectory) but in each point of a certain volume.

However, quantum mechanics contains the classical mechanics as limiting case

(h −→ 0) but needs to interact with a classical system to make experimental

forecasts.

This interaction causes the collapsing of the state of the system to an eigen-

state of that observable. A measurement of that observable will give us the eigen-

value corresponding to that eigenstate. The classical system which acts this way

is commonly called “observer” and this process is the measurement in quantum

world.
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The loss of the possibility for the particle to follow a trajectory means that

if the particle is found at a time tA in a point in the space A in a later time tB

might be detected in a point B without the possibility for the observer to say

what (if any) points are reached by the particle for times t such as tA < t < tB.

We see that the particle reached the point B starting from the point A without

following any trajectory.

This is a feature which makes a strong difference between the behavior of a

quantum system with respect to a classical one, when a particle should cross a

finite potential barrier (quantum tunnel effect).

This effect often occurs in condensed matter physics, such as Josephson junc-

tions and hetero-nanostructures (39, 40). In a dissipative quantum system inter-

acting with a thermal bath, the quantum tunneling can play an important role

on the relaxation time from a metastable state (41). During the last decades the

effects of environment on quantum tunnelling phenomenon have been intensively

studied (41, 42, 43, 44, 45).

In this context, symmetric and asymmetric quantum bistable systems are

good enough to analyze superconducting quantum bits and decoherence phe-

nomena (46, 47). Obtaining longer coherence times in such systems, when they

interact with noisy environment, is one of the major requirements in devising and

manufacturing devices capable of storing quantum bits.

In this respect, a main topic is to know the properties of a particle subject

to an external potential, in the presence of random fluctuations. It can be also

useful to study the changes occurring in the dynamics of a quantum particle

affected by noisy perturbations, when different shapes of the potential profile

are used. Potentials which model the interaction with laser beams have many

interesting implications for quantum systems such as the coherent destruction of

tunneling (48), the effect of quantum stochastic resonance (49), and the control

and reduction of decoherence in open quantum systems (50).

1.2.1 Caldeira-Leggett model

Commonly an environment in quantum world is modelled as a number N (usually

N → ∞) of harmonic oscillators considered at thermal equilibrium, i.e. a thermal

7



1. INTRODUCTION

bath, interacting with the quantum system through a bilinear coupling (51, 52,

53, 54, 55).

In the chapter 3, in order to analyze the evolution of a quantum particle

subject to time-independent asymmetric bistable potential and affected by envi-

ronmental noise, the Caldeira-Leggett model (42) is used, which allows to derive a

quantum mechanical analogue of the generalized Langevin equation through the

modelization of the noisy environment as an ensemble of harmonic oscillators.

The total Hamiltonian contains information about all the degrees of freedom

of the system and the environment.

1.2.2 The Feynman-Vernon approach

A key approach to modelize the noise in quantum systems is the Feynmann-

Vernon analysis. In the framework of Feynman’s space-time formulation of the

non-relativistic quantum mechanics, the behavior of a system, which is coupled to

other external quantum systems, can be calculated in terms of its own variables

only.

If the behavior of a quantum system is to be investigated when it is coupled

to one or more measuring instruments or, more general, to a system which can be

defined as the universe (environment) the behavior of the environment in itself

is not of primary interest and, in addition, if the environment is a measuring

instrument is not possible to describe it as a quantum system at all beacuse

of the formulation of quantum machanics. However its effects are capable of

perturbing the characteristics of the evolution of the system being observed.

A more concrete example is the case of an atom in an excited state which

interacts with the electromagnetic field in a lossy cavity resonator. Because of

the coupling, there will be energy exchange between the field and the atom until

equilibrium is reached, letting the atom go to a state which is in general different

from the state in which the atom would go if it is not coupled to any external

disturbances (i.e. its original excited state). The cavity field, although not of

central interest, thus influences the behavior of the atom and it is necessary to

be taken in account.

8



1.2 Open Quantum systems

With the method developed by Feynman and Vernon in (56) is possible to

include all the effect of the degrees of freedom of the environment in a functional,

called “phase influence functional”, and to express the system evolution as an

integral which is function only of the system coordinates.

The difficulty is then to solve this integral which, in general, is not solvable. By

a method called Discrete Variable Representation (DVR) (41, 57) it is possible

to reduce the integration to a sum of infinite terms and calculate the evolution

with the approximation needed by the problem.

In chapter 3 this approach is applied to a bistable asymmetric potential which

resembles the kind of potential studied classically in chapter 2 in order to point

out the differences and the similarities of this two cases.

This kind of potential is found in quantum system in several cases as reported

in (41). In a macroscopic sample of molecular magnets consisting of a large

number of chemically identical magnetic clusters of same magnetic size (regularly

arranged on a crystal lattice) the evolution of magnetization can be affected by

this kind of potential. These molecules have usually a large spin quantum number,

typically S ' 10 and experiments indicate a strong uniaxial magnetocrystalline

anisotropy which let the spin doubly degenerate along the c-axis of the crystal

(the projection may span from −S to +S) and generates an energy barrier for

the reversal of the magnetization. This configuration can be described by a

set of two-fold degenerate excited states corresponding to the spin projection

−(S − 1) ≤ ms ≤ S − 1 in a double well potential (41, 58, 59). Within the

appropriate conditions the spin can tunnel through the anisotropy barrier.

A such material is known as Mn12-acetate and possess a tunneling barrier

of ∆U
kB

≤ 62Ko. Its tunneling of magnetization is studied in (60, 61, 62) being

revealed as quantum steps in hysteresis loop for specific values of an external

magnetic field. Another such material studied (63, 64, 65, 66) is known as Fe8

which has the anisotropy barrier (∆U
kB

≤ 22Ko) three times smaller than the

Mn12-acetate enhancing the tunneling effect by several order of magnitude.

Another class of physical situations where a double well potential configuration

affects the evolution of the systems is when we deal with the magnetic flux in

superconducting quantum interference devices (SQUID) (67, 68, 69, 70, 71, 72,

73, 74, 75). The equation of motion for the flux dynamics is similar to that of

9
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a particle moving in a double well potential with dissipation which its lowest

well corresponding to one of the two fluxoid states. For suitable conditions the

transition between the states may occur via a tunnel effect through the potential

barrier.

In (67) an incoherent tunneling in a macroscopic two-state system has been

recognized while in (68) the experimental results have been explained as a reso-

nant tunneling between two quasi degenerate states localized in different fluxoid

wells.

1.2.3 Noise in solid state physics

Another important case when we have to deal with noise in quantum system

is in solid state physics when we can’t modelize the noisy environment with a

bath composed by a series of harmonic oscillators. This is the case if low-energy

excitations determine memory effects (76). In solid state physics this is a typical

situation where in general additional statistical information is required in order

to characterize the effect of the environment on the system dynamics.

In solid state devices we have to deal with broadband and structured noise

which means that the noise spectrum extends non-monotonically to several decades

with, sometimes, few resonances. Low-frequency noise is the most important

source of decoherence in many of the solid state implementations of quantum

bits (76, 77, 78).

The observation of coherent dynamics in nanodevices is an important achieve-

ment towards quantum control in solid state devices. In the last decade su-

perconducting nanocircuits exhibiting the dynamics of single ‘artificial atoms’

(39, 79, 80), two coupled artificial atoms (81, 82) and artificial atoms coupled to

electromagnetic resonators (83, 84) have been demonstrated.

This development opens new perspectives to study quantum phenomena in

solid-state devices that traditionally have been part of quantum optics (85) as the

phenomenon of the coherent population trapping (86) which is a key feature to

obtain a stimulated coherent emission of electromagnetic radiation by an atom.

So far most of the research in this field has focused on the two lowest level

of artificial atoms. In the last few years, it has been proposed that multilevel
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quantum coherent effects (85, 87, 88) could be observed in superconducting nan-

odevices: various schemes have been proposed to observe electromagnetically in-

duced transparency (89), and selective population transfer by adiabatic passage

(90, 91, 92, 93, 94, 95).

Very recently, few experiments have demonstrated features of multilevel coher-

ence in such devices, as the Autler-Townes effect (96, 97), coherent population

trapping (98) electromagnetically induced transparency (99), preparation and

measurement of three-state superpositions (100).

In studying quantum optical effects in solid state devices, several differences

are encountered with respect to the atomic realm: coupling between subsystems

is larger, but also noise is larger, and often extends over several decades, low-

frequency noise being the most important source of decoherence in many of the

solid state implementations of quantum bits (76, 77, 78).

On the other hand solid state devices offer several design solutions, and the

possibility of tuning by external control the spectral properties of the artificial

atom (101). All these elements come into play in multilevel structures (102),

together with new features, as for example selection rules. Differences between

specific designs may become crucial for the successful implementation of specific

protocols.

A protocol which is largely used in this field is the so called STIRAP protocol

which is described in section 4.2. In chapter 4 the effect of broadband noise on

the sensitive parameters of this protocol used for coherent population transfer is

discussed.

11
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2

Classical systems

2.1 Brownian motion

Albert Einstein in 1905 published in Annalen der Physik (7) a paper where

he, for the first time, described correctly this motion and used it in order to

demonstrate indirectly the existence of elementar particles which constitute the

matter (atoms and molecules).

Einstein in this paper was the first to connect the mathematical description

of Brownian motion to physical quantities. In his work, in order to describe the

motion of little particles in a fluid, he restricted himself to one dimension for the

principle of the indipendence of the coordinate.

He supposed that in a time interval τ , which is chosen in such a way that

evolution in the interval [t−τ, t] is indipendent from the trajectory in the interval

[t, t + τ ], the fraction dN of the N particles suspended in the fluid that have a

variation of position (in one dimension) within ∆ and ∆ + d∆ is given by the

equation

dN = Nϕ(∆)d∆ (2.1)

and ϕ(∆) is the distribution of probability for a particle of being subjected to

such a collision that the particle a displacement ∆. This distribution is supposed

to be symmetric around zero which means that the probability for the particle to

go forward is the same probability to go backward.

13



2. CLASSICAL SYSTEMS

For the definition of ϕ(∆) and the particular choice of τ we can argue that the

number of particles which are in the interval [x, x+ dx] at time t+ τ is given by

the number of particles which were at time t in position x and had a displacement

∆. Being ν = f(x, t) the number of particle per volume unity we can write for

the number of particles in the x-dimension

f(x, t+ τ)dx = dx

∫ ∆=∞

∆=−∞
f(x+ ∆)ϕ(∆)d∆ (2.2)

If we expand in power series both sides of the equation 2.2 we obtain

f(x, t+ τ) = f(x, t) + τ
∂f(x, t)

∂t
+
τ 2

2!

∂2f(x, t)

∂t2
+ · · · (2.3)

for the left side and

f(x+ ∆, t) = f(x, t) + ∆
∂f(x, t)

∂x
+

∆2

2!

∂2f(x, t)

∂x2
+ · · · (2.4)

for the right side. We put this expansion in Eq.2.2 retaining only the first order

for the derivative in t and the second order for the derivative in x, which are

the terms that deliver the first non zero terms of the expansions we put in the

equation. Remembering the normalization condition∫ +∞

−∞
ϕ(∆)d∆ = 1 (2.5)

and the condition ϕ(x) = ϕ(−x) and letting

D =
1

τ

∫ +∞

−∞

∆

2!
d∆ (2.6)

we have
∂f(x, t)

∂t
= D

∂2f(x, t)

∂x2
(2.7)

which is the equation of the diffusion and D is the coeffient of the diffusion. In

order to fully indentify the form of the function we have to choose the boundary

conditions that comes from the physical situation and namely

f(x, t) = 0

∫ +∞

−∞
f(x, t)dx = N (2.8)
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2.1 Brownian motion

From Eq.2.7 and Eq.2.8 we obtain the functional form of the f(x, t) which, for

the unidimensionall motion, is given by

f(x, t) =
N√

4πDt
e−

x2

4Dt (2.9)

Extending the discussion to the 3-dimensional space we have

f(~x, t) =
N

(4πDt)
3
2

e−
x2

4Dt (2.10)

and then

〈~x(t)〉 = 0 (2.11)

〈~x2(t)〉 = 6Dt (2.12)

In his paper Einstein showed also that it is possible to write

D = 6
kBT

γ
t (2.13)

where γ is the friction coefficent of the fluid whereinto the particles are moving.

The Eq.2.2 is a special form of the Chapman-Kolmogorov equation which rules

all the stochastic processes.

Moreover it has to be noted that the Einstein’s assumption that it is only

necessary to know the initial position at time t and not its previous history in

order to describe the motion is now well known as Markov postulate.

The theoretical approach by Paul Langevin in 1908 was much more direct,

because he wrote the Newton equation of a particle in motion in a fluid with a

friction coefficent α due to viscosity and a random fluctuating force term η(t) as

follows

m
d~x(t)

dt
= −α~x(t) + η(t) (2.14)

with

〈η(t)〉 = 0 (2.15)

〈~x(t)η(t)〉 = 0. (2.16)
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Langevin observed that at the equilibrium we have

〈1
2
mv2〉 =

3

2
kBT (2.17)

and then obtained indipendently the Eq.2.12. The Eq.2.14 is the first example of

a stochastic differential equation.

2.2 Stochastic processes

A stochastic process is a time-dependent random variable (X(t)), whose evolution

has to be described probabilistically (10, 28)

The starting point for the analysis of stochastic processes is the assumption

that a set of joint probabilities exists p(x1, t1;x2, t2;x3, t3;x4, t4;x5, t5;x6, t6; . . .)

that describes completely the system. In terms of these joint probability density

functions, we can define conditional probability densities

p(x1, t1;x2, t2; . . . |y1, τ1;y2, τ2; . . .) =
p(x1, t1;x2, t2; . . . ;y1, τ1;x2, τ2; . . .)

p(y1, τ1;y2, τ2; . . .)
(2.18)

The knowledge of all the possible joint probabilities defines the so called separa-

ble stochastic processes. The simplest kinds of stochastic process is the case of

Bernoulli trials for which the probability law is the same at all times or the case

of the complete indipendence.

The next most important simple stochastic process is the Markov process in

which the condition probability at time t + τ is completely determined by the

knowledge of the condition at time t, i.e. we must require that the condition

p(x1, t1;x2, t2; . . . |y1, τ1;y2, τ2; . . .) = p(x1, t1;x2, t2; . . . |y1, τ1) (2.19)

(where t1 ≥ t2 ≥ . . . ≥ τ1 ≥ τ2 ≥ . . .) is fulfilled. It is straightforward that

if we know the probability p(x1, t1;x2, t2) with t1 ≥ t2 we know the conditional

probability density at every time.

If we want to know the probability density for a stochastic process (the motion

of a Brownian particle for instance) to have, at time t1, for the stochastic variable
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2.2 Stochastic processes

X the value x1 assuming that at the previous time t2 the variable X had the value

x2 we have to start from the law of the probability concepts.

If we have the probability for three probabilistic mutually exclusive events

(A,B, C) and we want to know the joint probability of only two (A,B) of these

exclusive events we have to sum over all the possible realization of the event C

i.e.

P (A ∩B) =
∑

C

P (A ∩B ∩ C) (2.20)

In case of continous variables we have

p(x1, t1;x3, t3) =

∫
dx2p(x1, t1;x2, t2|x3, t3) (2.21)

=

∫
dx2p(x1, t1|x2, t2;x3, t3)p(x2, t2;x3, t3)

with t1 6= t2 6= t3.

In the case of a Markov process in the last term of Eq.2.22 there is no depen-

dence from t3 in the p(x1, t1|x2, t2;x3, t3) term.

Therefrom we can write

p(x1, t1;x3, t3) =

∫
dx2p(x1, t1|x2, t2)p(x2, t2;x3, t3) (2.22)

which is the Chapman-Kolmogorov equation.

A typical Markovian process is the random walk, in fact the position a time

t + τ depends only on the position at time t, i.e. x(t + τ) = x(t) ± l where l is

the discrete step of the walk and we take the minus sign if the walker goes to the

left and plus if goes to the right. Because the probability to jump to the left is

equal to the probability to jump to the right for the probility we can write

P (n, (N +1)τ |n′, N ′τ) =
1

2
[P (n+1, Nτ |n′, N ′τ)+P (n− 1, Nτ |n′, N ′τ)]. (2.23)
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2.2.1 Overdamped motion

The classical equation of motion reads

d2x

dt2
=

1

m

∑
i

Fexti (2.24)

The external forces Fexti can be conservative, with a related potential function,

or not conservative, which may be friction or viscous forces or, according to

Langevin, random forces. By explicitly writing all these forces we have

m
d2x

dt2
= −dU

dx
+ γ

dx

dt
+ ξ(t). (2.25)

This is the so called underdamped Langevin equation which in the massless

limit ( m
γ<<1

<< 1) gives the overdamped Langevin equation

dx

dt
= −dU

dx
+ ξ(t) (2.26)

2.3 Functional approach

The Langevin equation of a general system driven by a noise is given by the

following SDE
dx(t)

dt
= f(x(t)) + g(x(t))ξ(t) (2.27)

where f(x(t)) and g(x(t)) are arbitrary deterministic functions of the order pa-

rameter x(t) and ξ(t) is a random force. In this work ξ(t) is a Gaussian white

noise with the usual statistical properties

〈ξ(t)ξ(t+ τ)〉 = 2Dδ(τ) (2.28)

and

〈ξ(t)〉 = 0 (2.29)

Using the Eq. 2.27 and the relation

P (x, t) =

∫ +∞

−∞
dx(t)P (x(t))δ(x− x(t)) = 〈δ(x− x(t))〉 (2.30)
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it is possible connect the probability density function with the mean value of the

delta function calculated at a position x.

For the derivative of the probability density function then we can write

∂P (x, t)

∂t
=

∂

∂t
〈δ(x− x(t))〉

=
∂

∂x
〈δ(x− x(t))[−ẋ(t)]〉 (2.31)

and by using Eq.2.27, we have for the time derivative of the probability distribu-

tion function P (x, t)

∂P (x, t)

∂t
= − ∂

∂x
f(x)〈δ(x− x(t))〉 − ∂

∂x
g(x)〈δ(x− x(t))ξ(t)〉 (2.32)

To obtain a simpler and clearer equation we can use the methods of the functional

analysis.

In this framework we use the Furutsu-Novikov formula (103) in order to split

the correlation formula which is expressed by the last term of equation 2.32.

For an arbitrary functional F(t), this formula reads

〈F(t)δ(x− x(t))〉 = D

〈
δ

δF(t)
δ(x− x(t))

〉
(2.33)

where δ
δF(t)

is the operator of the functional derivative with respect to the generic

functional F(t). The functional chain rule gives

δ

δF(t)
δ(x− x(t)) =

∂δ(x− x(t))

∂x(t)

[
− δx(t)

δF(t′)

]
(2.34)

In order to evaluate the last functional derivative we formally integrate the

Eq.2.27

x(t) =

∫ t

0

[f(x(τ)) + g(x(τ))ξ(τ))] dτ (2.35)

and then
δx(t)

δξ(t′)
=

∫ t

0

dτ

[
δf(x(τ))

δξ(t′)
+

δ

δξ(t′)
(g(x(τ))ξ(τ))

]
(2.36)

Using the fact the functional derivative of a function is the usual derivative and

for the functional chain rule we have

δx(t)

δξ(t′)
=

∫ t

0

[
∂f(x)

∂x

δx(τ)

δξ(t′)
+
∂g(x)

∂x

δx(τ)

δξ(t′)
ξ(t) + g(x)

δξ(τ)

δξ(t′)

]
dτ (2.37)
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By considering that the future part of the trajectory can’t affect the previous

part, otherwise the causality principle would be violated, we have

δF [ξ(t)]

δ(ξ(t′))
= 0 (2.38)

with t′ > t and F [ξ(t)] any arbitrary functional which may be function the

random function ξ(t). In particular for Gaussian noise we have F [ξ(t)] = ξ(t).

The integration of the first and second term of Eq.2.37, because of Eq.2.38,

gives zero as t′ → t.

If 0 < t′ < t the third term gives∫ t

0

g(x(τ))
δξ(τ)

δξ(t′)
dτ =

∫ t

0

g(x(τ))δ(τ − t′)dτ = g(x(t)). (2.39)

With these results the Eq. 2.34 becomes

〈δ(x− x(t))ξ(t′)〉 = −D
∂

∂x
[〈δ(x− x(t))〉 g(x)] (2.40)

The Eq.2.32 gives the general Fokker-Planck equation for arbitrary deterministic

functions f(x) and g(x). In the case of a Gaussian white noise, the Fokker-Planck

equation is

∂P (x, t)

∂t
= − ∂

∂x
[f(x)P (x, t)] + D

∂

∂x

[
g(x)

∂

∂x
[g(x)P (x, t)]

]
(2.41)

It can be interesting to point out that because we obtained this equation using

the usual rules of calculus this is the FP equation according to Stratonovich

(10, 104).

If we interpret the Langevin equation 2.27 in the Ito sense, that is according

to the Ito calculus (105, 106), the Eq.2.41 has to be written

∂P (x, t)

∂t
= − ∂

∂x
[f(x)P (x, t)] + D

∂2

∂x2
[g2(x)P (x, t)] (2.42)

We can switch to the Ito (10) form by means of the following substitutions in

Eq.2.27:

fI(x) = fS(x) +
1

2
gS(x)

∂

∂x
gS(x) (2.43)

gI(x) = gS(x) (2.44)

Comparing the Eq.2.41 and Eq.2.42 we can see that if g(x) is a constant, the two

forms coincide.
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2.3.1 Asymptotic Probability Density Function

The Eq.2.41 has the form of a continuity equation where the current term has

the form

JP = f(x)P (x, t) + D

[
g(x)

∂

∂x
[g(x)P (x, t)]

]
(2.45)

which is the term of probability current.

In order to obtain the asymptotic distribution (t→ ∞) we set the equilibrium

condition
∂Pst(x, t)

∂t
= 0 (2.46)

and so we have

∂JP

∂x
=

∂

∂x

[
[f(x)Pst(x, t = ∞)] − D

[
g(x)

∂

∂x
[g(x)P (x, t = ∞)]

]]
= 0 (2.47)

which can be integrated once in the space of coordinate x becoming

f(x)Pst(x) − Dg(x)
d

dx
[g(x)Pst(x)] = J(x, t = ∞) = A = 0 (2.48)

where the partial derivation can be replaced by the total derivative as long as the

P (x) doesn’t anymore depend on time.

The formal solution of this equation is then

Pst(x) = N exp

[∫ x

0

f(x′) − Dg(x)g′(x′)

Dg2(x′)
dx′

]
= N exp

[∫ x

0

f(x′)

Dg2(x′)
dx′ −

∫ x

0

g′(x′)

g(x′)
dx′

]
(2.49)

which gives

Pst(x) = N exp

(∫
A − f(x′)

Dg2(x′)
dx− ln(g(x))

)
(2.50)

The costant A in Eq. 2.48 is the value of the probability current at t = ∞ which

has to be zero because then the system is in equilibrium (it’s in a stationary

state), so, as a result, we have the asymptotic probability density (see Eq. 2.51)

Pst(x) =
N

g(x)
exp

(
−

∫
f(x′)

Dg2(x′)
dx′

)
(2.51)

Where the value of N is given by the normalization condition∫ +∞

−∞
Pst(x)dx = 1 (2.52)
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and then

N =

(∫ +∞

−∞

1

g(x′)
exp

(
−

∫
f(x′′)

Dg2(x′′)
dx′′

)
dx′

)−1

(2.53)

2.3.2 The polynomial potential

Now we apply the latter results to a system governed by a potential described by

a polynomial

U(x) = −
n∑

i=0

aix
i (2.54)

then

f(x) = −du
dx

=
n−1∑
i=0

(i+ 1)ai+1x
i (2.55)

If we take

g(x) =

√√√√ m∑
j=0

bjxj (2.56)

the integral in Eq.2.51 becomes∫
f(x)

g2(x)
dx =

∫ ∑n−1
i=0 (i+ 1)ai+1x

i∑m
j=0 bjx

j
dx (2.57)

We can write (if n ≥ m)

f(x)

g2(x)
= pn−m(x) +

R(x)

g2(x)
(2.58)

where pn−m(x) =
∑n−m

i=0 αix
i is the polynomial quotient (degree n − m) and

R(x) =
∑r

i=0 βix
i is polynomial rest (r < m). The Eq.2.57 becomes then∫
f(x)

g2(x)
dx =

∫
pn−m(x)dx+

∫ ∑r
i=0 βix

i∑m
j=0 bjx

j
dx

=

∫
pn−m(x)dx+

r∑
i=0

βi

∫
xi∑m

j=0 bjx
j
dx (2.59)

From this equation we see that the positions of the minima and of the maxima

are depending on the functional form of g(x). Only if g(x) is a constant (case of

additive noise) the minima and the maxima of the effective potential not change

their position (28).
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2.4 Physical models

It has been noted (29, 37) that the qualitative behavior of a system of the Ising

spin model can be well represented by an overdamped Langevin equation driven

by a multiplicative noise intensity represented by the square root of a polynomial,

g(x) =
√
D + µx2, where D represent the thermal contribution and the µ is an

environmental coupling factor.

The aim of this section is to investigate the role played by the two parameters

in both the stationary probability distribution functions (PDF) and the non

equilibrium stability features of the Ising spin model.

The Fokker-Planck equation for a system affected by a multiplicative noise has

been evaluated by functional analysis technique applied in the case of a delta-

correlated Gaussian noise. Then the stationary PDF (t 7−→ ∞) in the presence

of a bistable asymmetric potential is obtained.

By considering an initial unstable state, the mean first passage time to reach

a boundary close to the global minimum of a strongly asymmetric double well

potential, is numerically evaluated. The system shows the presence of an increase

of stability in both the parameters (pure multiplicative and pure additive noise

and mixed), in a particular choice of their intervals. This confirms that a suitable

presence of noise can always stabilize the system. In Refs.(107, 108, 109, 110) it

is possible to find an analysis for a system in an unstable initial state of a cubic

potential in the presence of additive Gaussian noise.

It is found that the presence of multiplicative noise increases the lifetime of

a metastable state with a non monotonic behavior with maxima as a function of

both D and µ noise intensity parameters.

In a bidimensional square spin lattice with periodic boundary conditions the

spins of the atoms interact between themselves and with external field. This

interaction may be represented by the Ising Hamiltonian

H = −
∑
ij

sisj − h
∑

i

si (2.60)

where the sum runs over all nearest-neighbors pairs and h is the external magnetic

field. It has been noticed (29, 37) that the system can be described by an over-

damped unidimensional Langevin equation with a multiplicative Gaussian white
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noise because the fluctuations increase with the value of the order parameter.

The noise intensity is then modelled by

g(x) =
√
D + µx2 (2.61)

where D is the strength of thermal noise, µ is the non equilibrium parameter and

x is the order parameter.

The potential has the polynomial form (see Fig.2.1)

U(x) = −A

4
x4 − B

3
x3 − C

2
x2 − Fx− E. (2.62)
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Figure 2.1: Deterministic potential V (x)

Because of the relation

f(x) = −dU(x)

dx
, (2.63)

the integral of the exponential function of Eq.2.51 becomes:∫
f(x)

g2(x)
dx =

∫
(αx+ β)dx+

∫
γx+ ε

D + µx2
dx

=
α

2
x2 + βx+

γ

2µ
ln |D + µx2|

+
ε√
Dµ

arctan

(√
µ

D
x

)
+ C (2.64)

24



2.4 Physical models

with

α =
A

µ
(2.65)

β =
B

µ
(2.66)

γ = C − AD

µ
(2.67)

ε = F − BD

µ
(2.68)

D = 1 (2.69)

A calculation of the integral for more general polynomials f(x) and g2(x) is

outlined in the previous section. The Eq.2.51 can be written in the same form

obtained in the case of additive noise

Pst(x) = Ne−
Veff (x)

D

where

Veff =
α

2
x2 + βx+

γ

2µ
ln

(
|D + µx2|

)
+

+
ε√
Dµ

arctan

(√
µ

D
x

)
+D ln(

√
D + µx2) =

=
α

2
x2 + βx+

(
D +

γ

2µ

)
ln

(√
D + µx2

)
+

+
ε√
Dµ

arctan

(√
µ

D
x

)
(2.70)

is the probabilistic potential describing the stationary behavior of the system.

The new states that eventually appear in this probabilistic potential give rise to

the noise-induced phase transition (28).

In the simplified Ising spin dynamics here studied (see Ref.(29)) the system is

driven by the following asymmetric bimodal (quartic) potential

V (x) = 4x4 + 2x3 − 8x2 − 6x (2.71)

i.e. the potential of Eq.2.62 with the choice of the parameters A = −16, B = −6,

C = 16, F = 6. The graph is plotted in Fig.2.2. The potential presents two
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minima: the lowest (stable) located at x = 1, the highest at x = −1, and the

maximum at x = −3/8.

Examples of the potential Veff with these parameters are also shown in Fig.2.2

for D = 0.32 and µ = 5. We note a shift in the position in the extrema of the

PDF and the potential profile. This is a general feature of the potential Veff (x)

in the case of multiplicative noise.

The shift of the position of the extrema is due to the term ln(g(x)) as shown

in Eq.2.70.
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Figure 2.2: Deterministic potential V (x) and comparison with the effective po-
tential Veff (x) for D = 0.32 and µ = 0.5. The role played by the µ parameter is
to change the concavity of the potential. Also wee can see that the position of the
maximum of the “multiplicative” PDF has a little shift with the respect to the
“deterministic” PDF corresponding to V (x)

If g(x) is a constant, the positions of the extrema of
∫ f(x)

g2(x)
dx are the same of

the Veff (x) and the positions of the maxima of the PDF are coincident with the

minima of the deterministic potential V (x). From the Eq.2.70 is clear that the

maxima of the PDF match with the minima of Veff making clear the usefulness

of this definition.

26



2.4 Physical models

In Fig.2.3 are reported the stationary PDFs calculated using Eq. 2.70 for

µ = 1 and various thermal noise intensities. We see that the increase of the

parameterD doesn’t change the position of the maxima and that the distributions

tend to enlarge. Moreover the right maximum of PDF decreases while the left

maximum increases, according to the trend of the dimensionless effective potential

(see the inset) which become flatter and flatter by increasing D.

Something analogous appears in Fig.2.4, where Pst(x) for D = 1 and increas-

ing values of µ are plotted. As in the case of the increase of the D parameter, also

in this case the effective potential becomes flatter and flatter and the stationary

distributions tend to loose the left minimum by increasing the µ. In this case

we observe also a shift in the position which depends on the contribution of the

”g(x)” factor within Veff .
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Figure 2.3: Effective potential Veff (x) with D = 0.5 and (from left to right)
µ = 0.5, µ = 10 and µ = 50
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Figure 2.4: Effective potential Veff (x) with D = 0.5 and the PDF calculated
(from left to right) for µ = 0.5, µ = 10 and µ = 50

2.5 Mean First Passage Time in unstable state

In order to explore the features of D and µ parameters we performed a series of

simulations that show a non monotonic behavior for the mean escape time of a

stochastic system subjected to a bistable asymmetric potential. This potential

has two minima which corresponds to two state where the system can reside (see

Fig.2.2).

We start our simulations by choosing for the system the initial unstable con-

dition at x = −0.25, just on the right of the maximum. We put an absorbing

barrier at x = 0.99.

We investigate the mean first passage time (MFPT) seen as a function the

two parameters D and µ. In these simulations the MFPT can be seen as equal

to the mean escape time (MET) because we choose to stop them at the first

moment the fictitous particle reaches the 97% of the depth of the deeper well.

This can be considered as the mean lifetime of the metastable state, that is the

left minimum of the potential profile.
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2.5 Mean First Passage Time in unstable state

As time of observation it is used 750000 arbitrary units and the number of

realizations is chosen 500000.

The results show that there is a nonmonotonicity of the MET in both the

parametersD and µ. In Fig.2.5 it is shown the behavior of the MET as a function

of the parameter D for five different values of the parameter µ chosen in order to

better show another feature of this particular system. We observe that for every

value of µ we have the same nonmonotonic trend with a maximum. It is clear

from Fig.2.5 that the maximum for each curve is in a different position, i.e. it

comes for a different value of D.
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Figure 2.5: Plot of the behavior of the MFPT as function of D for several values
of the parameter µ as shown in the legend

In particular we can see that for incresing µ the value of the parameter D

which gives the maximum for the mean lifetime of the metastable state tends to

zero and, at the same time, the value of the MET at the maximum becomes

lower and lower.

In Fig.2.6 the behavior of lifetime τ is shown as a function of µ for several

values of the parameter D. In this plot it is possible to see that the lifetime τ
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shows a nonmonotonic behavior also as a function of the parameter µ, with fixed

parameter D. This means that we can observe a sort of islands defined by certain

set of the parameters D and µ where the lifetime of the metastable state increases

with the respect to the deterministic lifetime.
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Figure 2.6: Plot of the behavior of the MFPT as function of µ for several values
of the parameter D as shown in the legend

In Fig. 2.7 a 3D plot of the mean lifetime is shown, where is also visible the

nonmonotonicity of the lifetime vs. the two parameters.

In Fig. 2.8 it is shown a color map of the MFPT where we can see clearly

this behavior.

In Fig.2.9 the positions of the maxima are plotted. We can see clearly this

feature and that the position of the maxima for increasing µ decreases and for

µ > 0.18 we observe no more maxima, that is the lifetime decreases reaching very

small values and the nonmonotonicity of the behavior vanishes.

It is possible to conclude that the nonmonotonicity of the the mean lifetime

of the metastable state vs. the parameters D and µ gives rise to islands of

enhancement of the stability of the metastable state (NES islands). In these
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2.5 Mean First Passage Time in unstable state

Figure 2.7: 3D plot of mean lifetime for both D and µ from 0 to 0.5

Figure 2.8: Map of mean lifetime for both D and µ range from 0 to 0.3
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Figure 2.9: Plot of the position of the maxima in the plane (D,µ) found for
fixed D. For D > 0.3 we are out of the islands of enhancement of stability and
the mean lifetime of the metastable state is of the same order of magnitude of the
fluctuations.

32
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islands the MET is greater than deterministic deacy time of the system from

unstable initial position.
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Figure 2.10: The Probability Density Function calculated for D = 0.225 and
µ = 0.1 for different values of time ranging from t = 0 to t = 20. The red line
is the delta function which is the pdf at t = 0, in the following temporal step the
pdf widens (green line) and then it goes towards its stationary shape with the its
principal maximum at x = 1 (the lower energy state) and its secondary maximum
at x = −1 (the higher energy state)

In Fig.2.10 is shown the time behavior of the probability density function

P (x(t)), calculated through numerical simulations, for D = 0.225, µ = 0.1 and

different values of time ranging from t = 0 to t = 20. This (PDF) moves from the

initial condition, which is obviously a delta function because all the particles are

in the same positions, towards the stationary PDF, which exhibits two maxima.

The calculation of the mean lifetime of the metastable state obtained through

the use of numerical simulations has two main problems:

• the number of the realizations cannot be infinite
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• for each realization the observation time cannot be infinite

This means that each numerical evaluation is affected by these systematic errors.

The first error affects the evaluation of the lifetime, which is dependent on the

number of realizations. This error can be minimized by increasing of the number

of realizations, until then lifetime doesn’t depends anymore from this number.

The second error has the effect to lower the value of the average lifetime of

the metastable state, understimating the MET. This error can be minimized

by increasing the observation time until the number of trapped particles, that is

the number of particles that at the end of the observation time are still in the

metastable state, is a very low number compared to the number of realizations.

Figure 2.11: 3D graph of the number of the trapped particles at the end of the
simulation time as function of D and µ for 750000 realizations.

In Fig. 2.11 the number of trapped particles as function of the two parameters

is shown. It is possible to note that we find trapped particles for the same range

of parameters where we find the monotonicity. The highest number of trapped

particles is 2 giving a percentage of trapped particles which is 0,0004 % .
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2.5 Mean First Passage Time in unstable state

Moreover it is possible to note that the behavior of the number of the trapped

particles as a function of the two parameters is nonmonotonic too and we can

conclude that the nonmonotonicity of the lifetime is not an artefact coming out

from the numerical evaluation.

2.5.1 Other initial conditions

In the previous paragraph it waas shown the nonmonotonic behavior of MET

for the initial condition x0 = −0.25. Here we present the results of simulations

performed for other initial conditions, namely x0 = −0.1 and x0 = −0.225.
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Figure 2.12: Plot of the behavior of the MET as function of D for several values
of the parameter µ as shown in the legend. The initial condition is x0 = −0.225

In Fig. 2.12 the plot of the lifetime as function of D and for several values of

µ (the same set of values of Fig.2.5) and for the initial condition x0 = −0.225 is

shown. It’s possibile to note that the nonmonotonicity is still present.

In Fig. 2.13 the plot of the lifetime as function of µ, for several values of D

(the same set of values of Fig.2.5) and for the initial condition x0 = −0.225 is
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shown. It’s possibile to note that also in this case the nonmonotonic behavior is

still present.
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Figure 2.13: Plot of the behavior of the MET as function of µ for several values
of the parameter D as shown in the legend. The initial condition is x0 = −0.225

However the lowering of the maxima values has to be pointed out. The greater

value of the maxima for the D-plots is near 120 for x0 = −0.25 while for x0 =

−0.225 its value is near 50 and it is present for very small values of µ for both

cases.

In order to study how the initial condition affects the behavior of the lifetime

of the metastable state seen as function of µ we have to compare the Fig.2.6 with

Fig.2.13. In Fig.2.6 we can observe that have two strong maxima of a similar

intensity (τ ∼ 100) for the valuesD = 0.16 andD = 0.12. In the graph in Fig.2.13

(x0 = −0.225) the maximum of the curve plotted for D = 0.16 has the value of

80 while the maximum for D = 0.12 has the value of 20. The nonmonotonic

behavior of the average lifetime is still present with these initial conditions and

as shown in calculations non here reported the NES island disappers.
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2.6 Ising model

By chosing as initial condition x0 = 0.1, we obtain the graphs shown in

Fig.2.14 left panel (τ as function of D) and in Fig.2.14 right panel (τ as function

of µ).

2.6 Ising model

In Section 2.4 it is pointed out that a physical example of a system which can is

affected by the presence of multiplicative noise is a ferromagnetic sample described

by means of the Ising model (37, 111). Here we recall the main features of

this model. In the Ising model of a m-dimensional material, a regular lattice

arrangement of Nm molecules in space is considered. This model can be used for

three kind of physical system (112):

1. magnets

2. mixtures of two kind of molecules

3. mixtures of molecules and holes

that can be oriented either up or down relative to the direction of an externally

applied field

The Ising model can describe all those three kinds of materials if we suppose

that to each node of the lattice is represented with a two-valued variable that can

be oriented either up or down. The up and down value represents

1. up and down position of a molecule with a 1
2

spin relative to the direction

of an externally applied field

2. molecule species A or B

3. node occupied by a molecule or not (hole)

A configuration of the lattice is a particular set of all the values of the spins and

this means that there will be 2Nm
different configurations. Another fundamental

assumption is that the molecules exert short range forces on each other. Each

molecule interacts only with its neighbours and then its interaction energy is
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Figure 2.14: Plot of the behavior of the MET as function of D for several values
of the parameter µ as shown in the legend (upper panel). Plot of the behavior of
the MET as function of µ for several values of the parameter D as shown in the
legend (lower panel). The initial condition is x0 = −0.1
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higher if the node has a characteristic value different from the one of the majority

of its nearest neighbours. By minimizing the energy this model tends naturally

to make neighboring spins have the same orientation.

This means that we can have

1. spontaneous magnetization

2. phase separation (molecules of the same kind gather)

3. condensation of molecules in a portion of space

For the physical system of the kind 1 the interaction energy is given by the

term

E = −~µ· ~Btot (2.72)

where µ̇ is the magnetic dipole moment and Ḃtot the magnetic field present in

that node. The magnetic field that affects the dynamics of the spin in the i-th

node is the sum of the external one and the ones generated by every spins in the

lattice. Using the approximation of the nearest neighbors we take into account

only the interaction with the spin that are far away in the lattice from the node

considered just one step away in every direction.

The general Hamiltonian for a 3-dimensional lattice is then

H = −J
∑
i,j

(SixSjx + SiySjy + λSizSjz) +D
∑

i

S2
iz +B

∑
i

Siz (2.73)

where J is the strength of the interaction between spins, λ accounts for an ex-

change anisotropy, D accounts a single ion anisotropy and B is the external

magnetic field. The sum runs over the nearest neighbor pairs and this means

that the spin in the (i, j) position interacts with all the spins which have at least

an index that differ by an unity (i.e. i± 1 or j ± 1 or both).

For a classical ferromagnet we have to set λ = 1 and D = 0 and J > 0 (J < 0

is for an antiferromagnet) and then the 2.73 becomes

H = −J
∑
i,j

(SixSjx + SiySjy + SizSjz) +B
∑

i

Siz (2.74)
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In 1925 Ising (113) started the study of this kind of model finding a solution

for a 1-dimensional lattice and showing that for this case there is no spontaneous

magnetization. In 1944 Onsanger (114) found an exact solution for the case of a

2-dimensional lattice showing that there is a phase transition. In the 1952 Yang

(115) used the Onsanger solution as modified by Kaufman (116, 117) to calculate

the spontaneous magnetization.

2.7 Metastability in Ising model

From the early times the Ising model, because of its complexity, is a system that

can be studied through numerical simulation of its behavior also in order to check

the approximations done in analytical investigations (118).

The main approach to the numerical simulations of the Ising model is the

MonteCarlo method. In this protocol time evolution proceeds by a stochastic

dynamics which consists of single spin flips. For each spin flip (at the i-th node)

we have the transition rate given by

ω(s→ s′, i) = p+ (1 − p)F (β∆E) (2.75)

where s and s′ are the configurations before and after the spin flip, ∆E is the

variation of the energy due to the change of the configuration and, as usual,

β = 1
kBT

. The parameter p is a transition rate which is indipendent from the

temperature. This means that Eq.2.75 represents the transition rate of a single

spin which is in contact with two thermal baths. One of this is at temperature

T = 1
βkB

with a probability 1−p and the second one is at infinite temperature with

probability p. This protocol is a way to block equilibrium. The bath at finite

temperature captures the dynamics generated by the thermal processes which

occurs at temperature T, the second bath (the one at infinite temperature) mimics

any nonequilibrium process induced by, random impurities, rapidly diffusing local

defects and quantum tunnelling (37, 119, 120)

In the Eq.2.75 the function F (x) gives the probability of flipping. Useful

choices are the so called Glauber rate

FG(x) =
1

1 − eβ∆E
(2.76)
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or the so called Metropolis rate

FM(x) = min(1, e−β∆E) (2.77)

The different rates do not affect the results in most situations only for very high

temperatures differences appear(121). In the case of very high temperatures the

Metropolis algorithm gives a transition probability near to 1 for ∆E > 0 (see

2.77) and then the spin will flip on every cycle and thus the system will oscillates

between two states. The Glauber algorithm for T −→ ∞ gives a transition

probability which approaches 1
2
. This means that for the above cited limiting case

the Metropolis rate becomes non ergodic while Glauber algorithm is ever ergodic

(121). However by using the Glauber rate the simulation times became longer.

Because of the ergodicity property we choose the Glauber rate our simulations.

Moreover it has to be pointed out that if we don’t want to deal with boundary

effects it possible to wrap the n-dimensional lattice on a (n + 1)-dimensional

torus. These are called periodic boundary conditions and this means that the

row (column) nearest neighbor of the spins which are in the last position of a

row (of a column) is the first one of the row (column). This protocol eliminates

boundary effects but the system is still characterized by the lattice size being the

maximum value of the correlation length is half the size of the lattice.

2.7.1 Simulations for the Ising model

With the prescriptions stated above, simulations for a square lattice composed

by 1000x1000 two valued spins are carried out with different values of the non-

equilibrium parameter p. This allows to show how the evolution of the sample

depends on this parameter.

The sample is subjected to an external field h = −0.1 and each spin has

a dipole moment µ = 0.6· 10−3 in the same units. The initial condition is an

uniform magnetization with all the spins up. The lifetime of the metastable state

“spin up” is defined as the time needed by the sample in order to reach a state

with a global magnetization equal to 0.1.

Putting the absorbing barrier for the Brownian particle which corresponds to

the order parameter ’state of the magnetization’ at the value of 0.1 reflects the
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arbitrary choice to consider the system in the metastable state “spin up” only

when it has a strong magnetization. This is a similar choice to the one done in

section 2.5 where the absorbing barrier is put at 99% of the well depth.

The temperature is measured in terms of the reduced temperature kBT
J

where

kB is Boltzmann constant, T is the temperature and J is costant of coupling

between the spins.

In fig.2.15 the lifetime of the metastable state as function of the temperature of

the sample for a non equilibrium parameter P = 0.001 is shown. A nonmonotonic

behavior vs. the temperature with the maximum at T = 0.5 is found.
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Figure 2.15: Behavior of the time needed to the sample to reach the level of
magnetization of 0.1 starting from an uniform magnetization (all spins up) and for
the nonequilibrium parameter value p = 0.001

In fig.2.16 the average lifetime of the metastable state as a function of the

temperature of the sample for a lower value of the nonequilibrium parameter

P = 0.00001 is shown. A nonmonotonic behavior with a maximum for T = 0.3

is found.
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2.7 Metastability in Ising model

It is interesting to note that, as in the case of the simulations discussed in the

section 2.5, we have a nonmonotonic behavior and the position of the maximum

is depending on the value of the nonequilibrium parameter. The Fig.2.15 and

Fig.2.16 has to be compared with the Fig.2.5 and Fig.2.12 which show a similar

trend.
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Figure 2.16: Behavior of the time needed to the sample to lose magnetization
starting from an uniform magnetization for the nonequilibrium parameter value
p = 0.00001

These results are in agreement with those theoretical results discussed in the

previous sections of this chapter.
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3

Open quantum systems

3.1 Introduction

In this chapter, in order to analyze the evolution of a quantum particle subjected

to time-independent asymmetric bistable potential and affected by environmental

noise, we use the Caldeira-Leggett model,(42) which allows to derive a quantum

mechanical analogue of the generalized Langevin equation. The study is per-

formed by using the approach of the Feynman-Vernon functional(56) in Discrete

Variable Representation (DVR)(41, 57).

3.2 The Model

Our physical model consists of a quantum particle with mass M , interacting

with a thermal bath which plays the role of environment. The dynamics of this

quantum particle is investigated by using the Caldeira-Leggett model(42). In

our analysis q̂ and p̂ are one-dimensional operators for position and momentum,

respectively.

The unperturbed Hamiltonian of the system is

Ĥ0 =
p̂2

2M
+ V̂0(q̂) (3.1)

where
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3. OPEN QUANTUM SYSTEMS

V̂0(q̂) =
M2ω4

0

64∆U
q̂4 − Mω4

0

4
q̂2 − q̂ε, (3.2)

is the asymmetric bistable potential shown in Fig.3.1. Here, ε and ∆U are the

asymmetry parameter and the barrier height, respectively, and ω0 is the natural

oscillation frequency. In our study we consider the lower eigenstates in order to

study the dinamics of the system depending on the specific shape of the potential.

This kind of potential is the same of the classical case studied in the previous

chapter but in this case the dynamics of the system has another channel which

may be used. This channel is the tunnel effect that is a typical behavior in the

quantum world. The particle described with a wavefunction and whose position

given by a probability density function extendend across the whole space has the

possibility to pass through the potential barrier even when it has an energy lower

than the potential barrier.

In Fig.3.1 these lower energy eigenvalues are shown on the vertical axis. In

the same figure, on the horizontal axis the 8 position eigenvalues are displayed,

obtained by using the DVR-state |qµ〉. The black circle marks the initial position

of the particle, that is the system at t = 0 is in a state given by a proper linear

combination of the 8 eigenstates |qµ〉 considered in this analysis. The curves shown

in the figures are the eigenfunctions corresponding to the 8 energy eigenvalues.

In order to describe the dynamics of the particle interacting with environment,

we consider the following Hamiltonian

Ĥ(t) = Ĥ0(t) + ĤB, (3.3)

where

ĤB =
N∑

j=1

1

2

[
p̂2

j

mj

+mjω
2
j

(
x̂j −

cj
mjω2

j

q̂

)2
]

(3.4)

is the Hamiltonian which describes the thermal reservoir and its interaction with

the particle. As usual in the Caldeira-Leggett model, the thermal bath is depicted

by an ensemble of N harmonic oscillators with spatial coordinate x̂j, momentum

p̂j, mass mj, and frequency ωj. The coefficients cj are the coupling constant

between system and thermal bath. We note that, as N → ∞, from Eq.(3.4)
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E0

E1
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E3

E4

E7

q0 q1 q2 q3 q4q5q6q7

en
er

gy

position

E5

E6

initial position

V0(q)

Figure 3.1: Potential profile V0(q) (see Eq.(3.2)) for ∆U = 3 and ε = 0.5. Energy
levels and corresponding eigenstates considered in our analysis are indicated by
horizontal lines and curves, respectively. The energy eigenvalues are E0 = −2.01,
E1 = −0.92, E2 = 0.11, E3 = 1.08, E4 = 1.97, E5 = 2.69, E6 = 2.76, E7 = 3.27.
By using the DVR-state |qµ〉, eigenvalues of the position operator are obtained
and shown on the horizontal axis: q0 = −4.17, q1 = −1.38, q2 = 1.71, q3 = 3.02,
q4 = 4.05, q5 = 4.97, q6 = 5.86, q7 = 6.81. The initial position is qstart = 0 (black
circle).
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a continuous spectral density is obtained. Being the reservoir described as an

ensemble of harmonic oscillators the effects of the thermal bath on the system

under study can be fully characterized by a spectral density(76).

An example of a physical case when the previous assumption cannot be made

is discussed in chapter 4 and solved through the static path approximation (SPA).

For a reservoir made of harmonic oscillators we can write the spectral density

in a very general way as follows

J(ω) =
π

2

N∑
j=1

cj
mjωj

δ(ω − ωj) (3.5)

and for N −→ ∞ the spectral density might be considered as a function of ω.

Our starting point is the generalized Langevin equation for linear memory-

friction force and additive noise (45)

Mq̈(t) +
∂V (q)

∂q
+M

∫ t

−∞
dt′γ(t− t′)q̇(t′) = ξ(t). (3.6)

In Eq.3.6 the random force ξ(t) has the usual statistical properties

〈ξ(t)〉ρR(0) = 0 (3.7)

〈ξ(t)ξ(t′)〉ρR(0) = MkBTγ(t− t′), (3.8)

where the function γ(t− t′) is the damping kernel and the average is taken with

respect to the canonical classical equilibrium density operator of the unperturbed

reservoir which reads

ρR(t0) =
(
tr exp(−βĤB(t = 0))

)−1

exp(−βĤB(t = 0) (3.9)

where, as usual, β = 1
kBT

. It might interesting to point out that the previous

Eq.3.8 is the classical fluctuation-dissipation theorem.

In this context the connection between the damping kernel and the spectral

density is established as follows (see (45))

γ(t) = Θ(t)
2

πM

∫ ∞

0

dω
J(ω)

ω
cos(ωt) (3.10)
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which inverted gives

J(ω) = Mω

∫ ∞

0

dtγ(t) cos(ωt) (3.11)

or, in term of the Laplace trasform

J(ω) = lim
ε→0+

= Mω
[γ(ε+ iω) + γ(ε− iω)]

2
(3.12)

From these results we have that in the Markovian limit, which corresponds to the

dissipation in the Ohmic regime, where the damping is frequency indipendent

(i.e. γ(ω) = γ) the spectral density is given by (42)

J(ω) = ηω (3.13)

A first generalization of this kind of dissipation law is the following

J(ω) ∝ ωs (3.14)

If we choose s < 1 we say that we are dealing with a sub-ohmic case and for s > 1

we have a super-ohmic case.

In this study the spectral density used is the Ohmic one, whose functional law

is Eq.3.13. The problem in using this kind of spectral density is given by its growth

without limits for increasing ω. In order to avoid this ’ultraviolet catastrophe’ in

calculations, the spectral density used is characterized by an exponential cut-off

with a cutting frequency ωc as follows

J(ω) = ηω exp

(
− ω

ωc

)
. (3.15)

Here, as in the previous equations η = Mγ and γ is the strength of the coupling

between system and thermal bath. It also to be noted that ωc � ω0, ωj, γ.

Because of the bilinear coupling between the coordinate q̂ of the system and

the coordinate x̂ of the thermal bath, this model is the quantum analogue of

a classical system affected by a constant random force(45). In the next two

subsections the mathematical approach to this problem is outlined.
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3.2.1 The Feynman-Vernon approach

In order to make our analysis independent by the internal degrees of freedom of

the thermal bath, we have to trace out the degrees of freedom of the reservoir by

using the reduced density operator

ρ(qf , q
′
f ; t) =

∫
dq0

∫
dq′0K(qf , q

′
f , t; q0, q

′
0, t0)ρS(q0, q

′
0, t0), (3.16)

where the propagator K is given by

K(qf , q
′
f , t; q0, q

′
0, t0) =

∫ q(t)=qf

q(t0)=q0

Dq

∫ q′(t)=q′f

q′(t0)=q′0

Dq′A[q]A∗[q′]FFV [q, q′] (3.17)

and

A[q] = exp

(
i
SS[q]

~

)
(3.18)

with SS[q] being the classical action functional.

In Eq.(3.17), FFV [q, q′] = exp
(
−φFV [q,q′]

~

)
is the Feynman-Vernon (FV) influ-

ence functional with the influence weight functional φFV [q, q′] which is depending

on the bath correlation function(45).

It is customary in this kind of calculation, in order to simplify the approach

to the physical intuition, to trasform the influence functional in the framework

of the relative coordinate

ξj(t) = qj(t) − q′j(t) (3.19)

and of the center of mass

χj(t) = qj(t) + q′j(t) (3.20)

In this system of coordinates the Feynmann-Vernon influence weight functional

reads

φFV =

∫ t

t0

dt′
∫ t′

t0

dt′′[ξ(t′)S(t′ − t′′)ξ(t′′) + iξ(t′)R(t′ − t′′)χ(t′′)]
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+ ξ(t)

∫ t′

t0

dt′[ξ(t′)S(t− t′) + iχ(t′)R(t− t′)] +

+ ξ(t0)

[
ξ(t)S(t− t0) −

∫ t

t0

dt′ξ(t′)S(t′ − t0)

]
+ iχ(t0)

[
ξ(t)R(t− t0) −

∫ t

t0

dt′ξ(t′)R(t′ − t0)

]
(3.21)

where S(t) is the real part of the bath correlation function and R(t) is the imag-

inary one.

The functional form of the bath correlation function is given by the relation

Q(t) = S(t) + iR(t) =
1

π

∫ ∞

0

dω
J(ω)

ω2
[coth

~ωβ
2

(1 − cosωt) + i sinωt] (3.22)

This functional form is a general result of the fluctuation-dissipation theorem

(45) and therefore is indipendent of the model (bath of harmonic oscillators or

whatever) chosen to describe the reservoir.

3.2.2 Discrete Variable Representation

By solving the eigenvalue equation connected with the Hamiltonian Ĥ0 (see

Eq.(3.1)), we get the energy eigenstates (see vertical axis in Fig.3.2). If we choose

to change the base of the eigenstates going from the energy representation to the

position one we put ourselves in the natural framework to discuss about the local-

ization of the quantum particle. Because of this transformation it is possible to

obtain the basis {|qµ〉} of eigenstates of the position operator q̂ and in horizontal

axis in Fig.3.2 the eigenvalues of these eigenstates are shown.

Within the framework of the discrete variable representation (DVR)(41, 57)

the dynamics in the DVR basis is described by a quantum mechanical path q(t)

which the system follows during its evolution in time. If we focus our attention

to the N lower eigenstates, the integration over the double infinity of differentials

in Eq.3.16 simplifies greatly becoming a sum of N terms.

The system starts at time t = t0 in the state q(t = t0) = q0 and evolves via

m jumps between the M discrete states into the final state q(t = tm) = qm . The

full time interval splits into m short time intervals such that the jumps happen

at times t = tj. The intermediate states are labeled by q
j
, where j = 1, ..., N is
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the quantum state index, and j = 1, ...,m1 denotes the time index, i.e. the time

when the j-th jumps happens. The full path q(t) becomes then a sequence of

constant path segments which can be written as

q(t) = −qµ0Θ(t− t1) +
m−1∑
j=1

qµj
[Θ(t− tj) − Θ(t− tj+1)] + qµmΘ(t− tm), (3.23)

where Θ(t) is the Heaviside function. In the relative and center of mass coordi-

nates the previous equation, written for the paths q(t) and q′(t), becomes

ξ(t) = −ξµ0ν0Θ(t− t1) +
N−1∑
j=1

ξµj ,νj
[Θ(t− tj) − Θ(t− tj+1)] + ξµNνN

Θ(t− tN)

(3.24)

and

χ(t) = −χµ0ν0Θ(t− t1) +
N−1∑
j=1

χµj ,νj
[Θ(t− tj) − Θ(t− tj+1)] + χµNνN

Θ(t− tN).

(3.25)

Thus the double path integral over the m-state paths q(t) and q′(t) in Eq. 3.16

is rewritten as an integral over a single path that jumps between the M2 states

of the reduced density matrix in the (q, q′)-plane. The total number m of jumps

is given by the sum of the number of jumps for the paths q and q′ and then, as a

result, using Eq.(3.17), the continuous real-time path integral given in Eq.(3.16)

becomes a discrete path with m transitions at times t1, t2, ...tm which, using the

definitions Eq. 3.19 and 3.20, becomes

ρµmνm(t) =
∑
µ0ν0

∫ ξ(t)=ξm

ξ(t0)=ξ0

Dξ

∫ χ(t)=χm

χ(t0)=χ0

DχC[ξ, χ]FFV [ξ, χ] ρµ0ν0 (3.26)

where C[ξ, χ] = A[q]A∗[q′] and the influence weight functional of the FV func-

tional is
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φFV [ξ, χ] = −
m∑

l=1

l−1∑
j=0

ξlS(tl − tj)ξj − i

m∑
l=1

l−1∑
j=0

ξlR(tl − tj)χj. (3.27)

The path given in Eq.3.23 rewritten according to the definitions Eq.3.19 and

Eq.3.20 can be split in the two kind of subpaths (see Eq. 3.24 and Eq. 3.24) as

follows

q(t) = q(t) − q(t′) + q(t′) + q(t) = ξ(t) + χ(t). (3.28)

The system may be in a state where ξ(t) = 0 and χ(t) 6= 0 or a state where

ξ(t) 6= 0 and χ(t) 6= 0. The first kind of states is called sojourn and the second

kind of states is called blip. The chains of the consecutive blip states are called

clusters. From the definition Eq. 3.19 it is clear that the sojourns are the diagonal

states of the density matrix in the DVR representation while the blip are the

off-diagonal states.

The main advantage in going in the DVR representation is that the functional

integration over all the possible continuous paths turns into a discrete sum (with

infinite terms) over all possible path configurations in the DVR basis and an

integration over all intermediate times. If we are interested in the evolution of

the populations, in Eq.(3.26) we have to consider the diagonal terms ρµmµm(t).

A complete calculation of these elements in the DVR gives the following

exact form which is calculated for a M -level system which follows a path with N

transitions (41)

ρµNµN
(t) =

m∑
µ0,ν0=1

∞∑
N=1

∫ t

t0

D [tj]
∑
µjνj

exp{i
N−1∑
j=0

∫ tj+1

tj

dt′

×
[
Eµj

(t′) − Eνj
(t′)

]
}

N−1∏
j=0

(−1)δj

(
i

2

)N

∆j

× exp{
N∑

l=1

l−1∑
j=0

ξlS(tl − tj)ξj + i
N∑

l=1

l−1∑
j=0

ξlR(tl − tj)χj} (3.29)

where the Kronecker symbol is 0 for a transition which allows the second index

change while is 1 for a transition that changes the first index. In the previous
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Eq.3.29 the probabilities of transitions towards/from the off-diagonal states are

∆µi+1µi
=

2

~
〈qµi+1

|H0|qµi
〉 (3.30)

and the energies of the diagonal states

Eµi
(t) =

1

~
〈qµi

|HS|qµi
〉 (3.31)

3.2.3 Approximations used

The 3.29 contains an infinite sum over all the (infinite) possible paths that the

system might follow. In order to calculate the diagonal terms of the density

matrix we have to reduce the number of the levels and of the paths taken into

account to the relevant ones. For this reason it is necessary to state what kind of

approximations we should use.

3.2.3.1 NIBA

The lower level of approximation, which is used in the spin-boson problem (so

termed because only 2 levels are taken into account), is the non-interacting blip

approximation (NIBA) (42). In this approximation are retained in a approximate

calculation only the interactions between the sojourns and the neighboring blips

neglecting all the interactions between the off-diagonal states (blips).

The NIBA can be used when the physical system is subjected to an Ohmic

damping for high temperatures and large dissipation strenghts. Within these

conditions the average blip length, that is the time the system spends in this

state, is small compared to the average sojourn length. From the Eq.3.29 it is

possible to see that the contribution of each step of the discrete paths increases

with its length and so the contributions from blip-blip and and blip-sojourn can

be not taken into account. The long blips are exponentially inhibited by the

intrablip interactions.

3.2.3.2 IBCA

An improved approximation is the so called interacting blip chain approximation

(IBCA) (122). In this improved approximation the interactions taken into ac-

count are those of all nearest neighbor pairs and the full interactions of the nearest
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neighbor sojorn-blip pairs. It has the same range of validity of the NIBA but in

an extended range of parameters.

3.2.3.3 NICA

If we look at Eq.3.28 it is possible to see that, in the time intervals when the

system is following a subpath which is composed only by off-diagonal states (i.e.

from a sojurn to another one), the sum of the weights are zero. For this reason

these subpaths (which are called clusters) can be considered in the calculations

as neutral objects (the ξ contribution for each cluster is zero) that don’t inter-

fere with each other. In the influence phase functional the contributions of the

interactions between a blip from a cluster and a blip of another cluster is then

neglected(123). This approximation is called non interacting cluster approxima-

tion (NICA).

3.2.3.4 gNICA

Following such way of thinking in Ref.(41) it is suggested a step further, that is

to neglect all the intercluster interactions in the influence phase, by taking into

account all the intracluster interactions and the interactions of a cluster with the

preceding sojourn. Moreover, the interaction of any subpath, which a system

that starts from a off-diagonal state follows before to reach the first sojourn, can

be considered. This is called generalized non interacting cluster approximation

(gNICA).

Again this approximation is valid if the system has an average sojourn length

longer than the average cluster length. The interactions of the near cluster van-

ishes exponentially. For a number of levels M > 2 being non zero the off diagonal

terms 3.30 the condition to fulfill becomes

∆max = max{∆1,∆2, ....} . γ (3.32)

The previous condition means that the maximum energy gap between the level

must be less than the intensity of the coupling constant.
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3.2.4 Master Equation

Applying the generalized Non-Interacting Cluster Approximation described above

we get the following master equation (ME)

ρ̇µµ(t) =
N∑

ν=1

∫ t

t0

dt′Hµν(t− t′)ρνν(t
′) + Iµ(t− t0), µ = 1, . . . , N, (3.33)

where N is the number of eigenstates. The kernel

Hµν(t− t′) =
∞∑

m=1

∫ t

t0

D [tj]
∑
µjνj

exp{i
m−1∑
j=0

∫ tj+1

tj

dt′

×
[
Eµj

(t′) − Eνj
(t′)

]
}

m−1∏
j=0

(−1)δj

(
i

2

)m

∆j

× exp{
m∑

l=1

l−1∑
j=0

ξlS(tl − tj)ξj + i
m∑

l=1

l−1∑
j=0

ξlR(tl − tj)χj},(3.34)

gives the contribution of the cluster matrix and takes into account of all possible

transitions in the DVR paths (41). The term

Iµ(t− t0) =
m∑

µ0,ν0=1µ0 6=ν0

ρµ0ν0

∞∑
N=1

∫ t

t0

D [tj]
∑

(µjνj)µj 6=νj

exp{i
N−1∑
j=0

∫ tj+1

tj

dt′

×
[
Eµj

(t′) − Eνj
(t′)

]
}

N−1∏
j=0

(−1)δj

(
i

2

)N

∆j

× exp{
N∑

l=1

l−1∑
j=0

ξlS(tl − tj)ξj + i
N∑

l=1

l−1∑
j=0

ξlR(tl − tj)χj} (3.35)

where ρµ0ν0 are the initial off diagonal term of the density matrix, takes into

account the contribution of the first semicluster. For a off-diagonal starting

condition this contribution is non zero only for long time, otherwise if the sys-

tem for t = t0 is in a diagonal condition the ρµ0ν0 are identically zero and then

Iµ(t− t0) = 0.

According to the path integral technique based on the Feynman-Vernon the-

ory, using ME corresponds to take into account only the paths connecting diag-

onal elements of the reduced density matrix of the position operator q̂(41).
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Within gNICA we neglect all intercluster interactions. Moreover, it is as-

sumed that the characteristic memory time τmem of the matrix elements of H

in Eq.(3.33) is the smallest time scale of the problem (Markovian limit. By this

assumption we obtain the following Markovian approximated master equation

ρ̇µµ(t) =
N∑

ν=1

Γµν(t)ρνν(t) (3.36)

with the time-dependent rate coefficients

Γµν(t) =

∫ ∞

0

dτHµν(t, t− τ). (3.37)

Since the diagonal elements ρµµ(t) obey Eq.(3.36), the long-time dynamics is

ruled by a single exponential decay. Thus, Eq.(3.36) is a set of coupled ordinary

first-order differential equations, which can be decoupled via a diagonalization

procedure. The diagonalized rate matrix reads

N∑
κ1,κ2=1

(S−1)µκ1Γκ1κ2Sκ2ν = Λµδµν , (3.38)

where Sµν denotes the element of the transformation matrix and Λµ the eigen-

values of the rate matrix. The general solution of the Markov approximated ME

is

ρµµ(t) =
N∑

ν,κ=1

Sµν(S
−1)µκe

Λν(t−t0)ρκκ(t0). (3.39)

Because of the conservation probability, for the diagonal matrix elements holds

the condition

Γνν(t) = −
∑
κ 6=ν

Γκν(t). (3.40)

This condition implies that one eigenvalue equals zero, i.e. Λ1 = 0. Therefore,

ρµµ(t) = ρ∞µµ +
N∑

ν=2

N∑
κ=1

Sµν(S
−1)µκe

Λν(t−t0)ρκκ(t0), (3.41)

with

ρ∞µµ =
N∑

κ=1

Sµ,1(S
−1)1,κρκκ(t0) (3.42)
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being the asymptotic population of the DVR-state |qµ〉. The rate which deter-

mines the dynamics over the largest time-scale is the quantum relaxation rate

Γ ≡ min {|< (Λν) |; ν = 2, . . . , N} , (3.43)

where Λν are the eigenvalues of the rate matrix and |< (Λν) | are the non-zero

absolute values of the real part of Λν .

In the section 3.4 the analysis is focused on the medium-short time behavior

of the system, using the largest Λ−1
ν as timescale to analyze the non-equilibrium

dynamics of the quantum particle in the presence of thermal fluctuations.

In Fig.3.2 it is shown the first four global states < q | ψ1 >, . . . , < q | ψ4 > a

for barrier height EB = ∆U/~ω0 = 1.4 and asymmetry parameter ε = 0.23. The

corresponding potential profile has a metastable state on the left well.

The quantum relaxation rate Γ as a function of the asymmetry parameter

is reported in Fig.3.3 for different temperatures. There are many overlapping

regions where is visible a nonmonotonic behavior of Γ as a function of the tem-

perature. We can distinguish two different nonmonotonic behaviors: one with

a maximum, reported in Fig.3.4, and the other one with a small minimum, this

last one corresponds to the noise enhanced stability effect revealed in classical

metastable systems.

3.3 Quantum Zeno effect

Before analyzing the results obtained by the method described applied to a dis-

sipative quantum system subjected to a bistable potential it can be worthy to

recall briefly an effect that can seem very strange but can result to be very useful.

This effect may be used in controlling the evolution of the state of a quantum

system. The problem we have to deal with in controlling quantum device is the

fact that every system, which is in connection with a noisy environment, during

its evolution loses its coherence. For this reason it becomes necessary designing a

decoherence-free subspace of a Hilbert space which can be used to maintain, for

the time needed, the state of quantum computing device ’frozen’(124).

This effect is named after the greek philosopher Zeno of Elea author of the

famous arrow paradox and briefly it consists in a ’freezing’ of a quantum state
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Figure 3.2: The first four global states < q | ψ1 >, . . . , < q | ψ4 > for barrier
height EB = ∆U/~ω0 = 1.4 and bias ε = 0.23.
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Figure 3.3: Quantum relaxation rate Γ as a function of the asymmetry parameter
ε for different temperatures T . The barrier height is EB = 1.4 and the number of
energy levels is M = 4.The bath parameters are η = 0.1 and ωc = 10.0.
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when it interacts in certain ways (for example during a measurement process)

with another (quantum or classical) system.

In Ref.(125) is shown a simple proof which gives an idea of this effect. Being

the quantum system in a initial state |φ〉 and its Hamiltonian is Ĥ, the state at

a time t is

exp(
−iĤt

~
)|φ〉 (3.44)

Then the probability P (t) of finding the system in the initial state after a time

t0 is

P (t) = |〈φ| exp(
−iĤt0

~
)|φ〉|2 ∼= 1 − (∆H)2t20

~
(3.45)

with

∆H = 〈φ|Ĥ2|φ〉 −
(
〈φ|Ĥ2|φ〉

)2

(3.46)

If this probability is measured at t = t0/2 we have

P (t0/2) = 1 − (∆H)2(t0/2)2

~
(3.47)

After a further period of t0/2 we have

P (t0) =

[
1 − (∆H)2(t0/2)2

~

]2

= 1 − (∆H)2t0
~

+
(∆H)4(t0/2)4

~2
(3.48)

which, if is fulfilled the condition t0 << 1, leads to the conclusion that the prob-

ability of decay 1 − P (t0) in the case we do a measurement at t0/2 is multiplied

by a factor 1
2
. If the system is subjected to a number n equally spaced measure-

ments the probability of decay is reduced by a factor n. Then letting n −→ ∞,

the probability of decay goes to zero and the system freezes to its initial system.

In the above cited paper of Facchi et al. (124) the authors point out that this

effect is not restricted to the measurement process but we can freeze a system

in a state, or an interesting subspace of the state space of the system, through

the right kind of interaction with another system. They show that this type of

control can be achieved through three kinds of interaction:

• Quantum Zeno Control (frequent measurements)
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• Quantum Dynamical Decoupling (the system is coupled with another sys-

tem with a periodic Hamiltonian with a small period)

• Strong Continous Coupling (The system is continously coupled, i.e. we have

a sort of infinitely quick detection)

The coupling with a noisy environment (thermal bath) can be seen as a par-

ticular case of the third case.

3.4 Results

In this section we study the time evolution of our quantum particle taking into

account the 8 energy levels shown in Fig.3.1. The analysis is restricted to the 8

lowest levels of the system, because the study is oriented towards the dynamics

of a particle that can not reach energy levels higher than the relative maximum

of the potential. In particular, the attention is put on to the analysis of the

time behavior of the populations for different values of the coupling strength,

focusing on the time behavior of the state |q0〉 (left side well of the potential).

The approximation used in thius calculation is the gNICA (see section 3.2.3.4).

By using the DVR-state |qµ〉, as initial condition for the particle is chosen

the non-equilibrium position qstart = 0. The corresponding state is given by

|qstart〉 = c1|q1〉 + c2|q2〉 (3.49)

with the coefficents c1 = 0.745 and c2 = 0.667 and all the other coefficients are

zero.

By integrating Eq.(3.33) for different values of the parameter η, which repre-

sents the intensity of the environmental noise, for each eigenstate |qµ〉 the time

behavior of the corresponding population ρqµ ≡ ρµµ (see Fig.3.5) is obtained.

Moreover, by a simple change of basis, it is possible to calculate the time evolu-

tion of the populations also in the energy representation (see Fig.3.6).

It has to be noted that because of the method of calculation the order of

approximation of the energy plots is lower than the order of approximation of

the position plots. This is due to the fact that the trasformation is done by a
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matrix product of the density matrix, with the trasformation matrix. Because

the off-diagonal elements of the density matrix in position representation aren’t

calculated, the diagonal elements of the position density matrix are of zero order

of approximation as well as the energy eigenvalues obtained.

Moreover it is necessary to note that the gNICA must satisfy the relation

expressed in Eq.3.32 to furnish reliable results. For the bistable system under

investigations the condition 3.32 becomes γ & ∆max = 1.09. In these calculations,

normalized constants are used and therefore the relation γ = η (see Eq.3.15)

holds. In the results presented, this condition is fulfilled for the panels (b) (c)

and (d) of the Fig.3.5 and Fig.3.6. For the panel (a) of both figures it can be

said that, as noted in (41), if the number of levels is moderately small (M ≤ 10)

the gNICA is still useful for numerical purposes.

As one can see from Eqs.(3.36),(3.38), for each value of η there are N relax-

ation times Λ−1
µ . In order to set the time scale where to observe the behavior, it

is convenient to consider the maximum of these relaxation times. A calculation

shows that this time increases rapidly for larger values of η.

Therefore, to describe the time evolution of the system for different values

of η, we choose as time scale τ the largest of the relaxation times obtained for

η = 0.01 and calculate the evolution of the system for a maximum time t = 600 τ .

This choice allows to follow the transient dynamics of the system for low and

intermediate values of the coupling constant (see panels (b), (c) and (d) in

Figs.3.5,3.6). For higher values of η the system can not reach the regime condition,

because of the presence of relaxation times longer than the maximum time chosen

to calculate the numerical solution (see panel (d) in Figs.3.5,3.6). This delay in

the system dynamics can be explained by the quantum Zeno effect, responsible

for the suppression of the tunnel effect. Moreover, in Fig.3.5 a nonmonotonic

behavior of the population ρq0 as a function of the time is detectable. Finally, as

a consequence of the quantum Zeno effect, it is possible to say that the eigenstate

|q0〉 can be maximally populated at different times through the variation of the

coupling strength and, therefore, the value of η. This could be an useful protocl

in view of placing a quantum particle in a given position at a fixed time.

It would be interesting to compare these results with those obtained in the

case of a harmonic oscillator coupled with a thermal bath without any cutoff,
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Figure 3.5: Time evolution of the diagonal elements, ρqµ (µ = 0, 1, ..., 7), of the
density matrix in q-representation. The matrix elements ρqµ are the population
distributions in the eight position eigenstates considered. The time evolution is
obtained for different values of the coupling strength namely (a) η = 0.01, (b)
η = 0.4, (c) η = 1 and (d) η = 2.8.
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Figure 3.6: Time evolution of the diagonal elements, ρEµ
(µ = 0, 1, ..., 7), of the

density matrix in energy representation. The matrix elements ρEµ
are the popu-

lation distributions in the eight energy eigenstates considered. The time evolution
is obtained for different values of the coupling strength, namely (a) η = 0.01, (b)
η = 0.4, (c) η = 1 and (d) η = 2.8.
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as studied in previous papers (126, 127, 128). On physical grounds it can be

said that the time behavior of the purity of the system state might be strictly

connected with the relaxation rates. In this analysis the relaxation rates have

been used to determine the timescale in order to obtain the time evolution of the

population distributions.

Moreover, by increasing the strength of the coupling, a freezing phenomenon

of the state of the system due to the Zeno effect can be found (129).

3.5 Full density matrix

Finally, it has to be noted that the complete description of the dynamics of our

initial state should be obtained by following the time evolution of all elements of

the density matrix as expressed by Eq.(3.26) and this will be subject of future

investigations.

The ρii terms are the population of the i-th eigenstate while the ρij (with

i 6= j) terms are called the decoherences.

A possible starting point in order to obtain the full density matrix with all

its elements (populations and decoherences) might be to consider that in the

gNICA the evolution of the system may start from an off-diagonal state to ends

in a diagonal state which is the final state. If we want to construct all the elements

of the density matrix we have to follow the paths (the number of paths will be

the order of approximation of the results) that end on the off diagonal term we

seek for.

This procedure will make us able to discuss the purity of the system which is

defined as the trace of the square of the density matrix ρ that is the main issue

for the stability of a quantum device.
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4

Noise in solid state device

4.1 Introduction

In this chapter the coherent population transfer is studied using the STIRAP

protocol on three-level artificial atoms. In Sec.4.2 the STIRAP protocol is in-

troduced, and also the sensitivity of the transfer efficiency to external parameters

discussed. Then a specific implementation of three-level artificial atom based on

the Quantronium design (79, 130) is considered and a model for low-frequency

charge noise (Sec.4.3) is introduced. In Sec. 4.4, a way to characterize the ef-

fects of low-frequency noise, reducing the problem to that of the sensitivity of the

transfer efficiency to fictitious correlated external parameters, is proposed.

4.2 Coherent population transfer in three-level

atoms

In quantum optics the STIRAP technique is based on a Λ configuration (Fig.4.1)

of two hyperfine ground states |0〉 and |1〉 and an excited state |2〉, with energies

E0, E1 and E2 respectively(85). The system is driven by two classical laser fields

(85, 87), called the Stokes laser Ω12 = Ωs cosωst and the Pump laser Ω02 =

Ωp cosωpt.

Each laser is nearly resonant with the corresponding transition. In the usual

situations we can treat the driving laser fields in the rotating-wave approximation
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(RWA). Moreover, one can introduce a phase transformation of the atomic basis

and express the hamiltonian in a doubly rotating frame, with angular frequencies

given by ωi of the driving fields. The effective Hamiltonian reads as follows

H̃ = δ|1〉〈1| + δp|2〉〈2| +
1

2
(Ωs|2〉〈1| + Ωp|2〉〈0| + h.c.) (4.1)

where the single photon detunings are defined as follows

δs = E2 − E1 − ωs (4.2)

δp = E2 − E0 − ωp (4.3)

and the two-photon detuning is

δ = δp − δs = E2 − E1 − (ωp − ωs) (4.4)

At two-photon resonance, δ = 0, the Hamiltonian (4.1) has an eigenstate

which is a superposition of the two lowest atomic levels only

|D〉 =
1√

|Ωs|2 + |Ωp|2
(Ωs|0〉 − Ωp|1〉) . (4.5)

It is usually referred as the dark state since, despite of the presence of the lasers,

the atom cannot be excited to the state |2〉 and consequently decay by sponta-

neous emission (Fig.4.1). Instead, the laser fields interfere destructively and, as a

result, the population is coherently trapped. A given dark state can be prepared

by an appropriate choice of both the Rabi frequencies Ωi and the relative phase

of the ac fields.

Figure 4.1: A three-level atom driven by two lasers tuned to two trasintions in
the Λ scheme. The state |2〉 may have a large decay probability.
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4.2 Coherent population transfer in three-level atoms

Figure 4.2: Ideal STIRAP at two-photon resonance δ = 0, obtained by operating
with two pulses in the counterintuitive sequence (top left panel). The system
prepared in the state |0〉 follows the Hamiltonian along the zero-energy adiabatic
level (left lower panel) yielding complete population tranfer (right lower panel,
where Pi = |〈i|ψ(t)〉|2). In top right panel, the mixing angle of the dark state as
a function of time for the adiabatic evolution. The pump laser is slightly detuned,
δp = −0.2Ω0.
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4.2.1 The STIRAP protocol

From Eq.(4.5) it can be seen that by slowly varying the coupling strengths,

Ωs(t) and Ωp(t), the dark state can be rotated in the two-dimensional subspace

spanned by |1〉 and |0〉. Using adiabatic dynamics in the rotating frame, the

STIRAP protocol implements coherent population transfer between the atomic

states |0〉 → |1〉(87).

The system can be prepared in the state |0〉 by letting Ωp = 0 and switchig on

Ωs(t) 6= 0. By slowly switching Ωs off while Ωp(t) is switched on, the population

can be transferred from state |0〉 to state |1〉. Finally also Ωp is switched off. The

mixing angle of the dark state Eq.(4.5) is defined as θ(t) = 2 arctan[Ωp(t)/Ωs(t)],

and evolves from θ = 0 to θ = 2π (Fig.4.2, upper right panel).

This is the so-called counterintuitive scheme as opposed to the intuitive strat-

egy where the pump pulse preceeds the Stokes pulse. In this case population

transfer involves, as an intermediate step, population of the excited state |2〉,
which can undergo spontaneous decay, strongly affecting the population transfer

efficiency. One advantage of STIRAP is that, in the ideal procedure, the state

|2〉 is never populated,(87, 88) therefore it is not sensitive to spontaneuos decay.

Moreover, provided adiabaticity is preserved, STIRAP is in principle insen-

sitive to many details of the protocol, and in practice it turns out to be insensitive

to the precise timing of the operations.

4.2.2 Sensitivity to parameters

Adiabaticity is critical to achieve high efficiency, therefore much effort has been

devoted in the past to optimization of the pulse shapes (88). A necessary con-

dition for adiabaticity is |Ω̇j/Ωj| � ωj (j = s, p), which suggests that efficiency

can be improved by using large enough Rabi peak frequencies. Formally, they de-

termine a large (Autler-Townes) splitting of the instantaneous eigenstates in the

rotating frame (87, 88). This splitting prevents unwanted transitions triggered by

off diagonal parts (neglected in the adiabatic approximation) of the Hamiltonian

in the instantaneous eigenbasis. These non-adiabatic terms are proportional to

θ̇(t) and tend to detrap the population, reducing the transfer efficiency.
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Figure 4.3: (left panel) Contour plot of the intensity of the transfer efficiency as
a function of single-photon and two-photon detuning for equal peak Rabi frequen-
cies κ = ΩS/ΩP = 1 (left panel) and k = 2 (right panel). In axes x, y we have
δ̃ = δ/Ω0 and δ̃p = δp/Ω0, respectively. In both panels, the bright region corre-
sponds to large efficiency of population transfer (more than 80%. A two-photon
detuning |δ| & Ω0/5 determines a substantial decrease of the efficiency. The line
corresponds to correlated detunings, which give an effective description of fluctu-
ation in the Quantronium (Sec.4.4). Increasing the strength of the Stokes pulses
enlarges asymmetrically the region of large transfer efficiency.
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If we consider

Ωp(t) = Ω0 f [(t− τ)/T ] (4.6)

Ωs(t) = κΩ0 f [(t+ τ)/T ], (4.7)

a positive delay τ give rise to the counterintuitive sequence of STIRAP. For

Gaussian pulses,

f(x) = e−x2

(4.8)

optimal choices are Ω0T > 10 and τ ≈ T (88). Here a reduced pulse width

Ω0T = 30 and a delay τ = 0.7T are used.

4.2.2.1 Sensitivity to detunings

When the two frequencies ωs and ωp are not exactly resonant with the respective

transitions, the presence of non-zero detunings δs and δp may strongly affect

the efficiency. Actually, the two-photon detuning is the crucial parameter. As

it is shown in Fig.4.3, small deviations of the two photon detuning δ lead to

a substantial decrease of the efficiency, which is less sensitive to single-photon

detunings at two-photon resonance δ = 0. Actually, phenomena entering non-

ideal STIRAP are qualitatively different according to δ vanishing or not, and

their interplay leads to a rich physical picture.

Finite single photon detunings at δ = 0 do not affect the formation of the

dark state, because the mixing angle does not depend on it. Instead they increase

the nonadiabatic terms(88). The efficiency is insensitive to small single-photon

detunings (δ . Ω0, see also Fig.4.2), while larger ones prevent the adiabatic follow

on of the dark state.

The detuning from two-photon resonance is more detrimental for STIRAP,

because it prevents the exclusive population of the trapped state, which is no

longer an instantaneous eigenstate of the Hamiltonian. A more detailed analysis

of the instantaneous eigenstates when δ 6= 0 shows that there is no adiabatic

transfer state providing an adiabatic connection from the initial to the target

state, as does the dark state for δ = 0. In this case, the evolution leads to complete

population return of the system to its initial state. The only mechanism which

leads to population transfer is by non-adiabatic transitions between the adiabatic
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Figure 4.4: STIRAP with finite two-photon detuning δ = 0.2Ω0, with the
two pulses in sequence in top left panel. Population transfer occurs due to Zener
transitions between crossing adiabatic levels (lower left panel), and the transfer
efficiency is reduced (lower right panel). In top right panel, the mixing angle as a
function of time. Here κ = 2 and δp = −4δ. This parametrization being appropriate
for discussing effects of low-frequency noise in the Quantronium (Sec.4.4).
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states. Actually for small values of δ, narrow avoided crossings between the

instantaneous eigenvalues can occur and the population can be transferred by

Landau-Zener tunneling(87, 88), as shown in Fig.4.4.

The above considerations lead to the conclusion that the correlations between

the detunings δs and δp are very important. In fact, strongly correlated fluctuat-

ing detunings, nearly preserving two-photon resonance, still allow large transfer

efficiency(131, 132). This issue becomes very important in the discussion of the

effects of low-frequency noise in solid state nanodevices.

4.2.2.2 Sensitivity to Rabi frequencies

For ideal STIRAP it is better to have two nearly equal peak Rabi frequencies,

i.e. κ = ΩS/ΩP = 1. Indeed if the two maximum Rabi frequencies are different,

say κ > 1, while the pulse widths are about the same, the projection of the state

vector onto the adiabatic transfer state is very good initially (because in our case

the more intense pulse occurs first), but necessarily less good in the final stage.

Consequently the transfer efficiency will be small(88).

The situation may be different if finite detuning is considered. In partic-

ular in the right panel of Fig.4.3 it is shown that the region of great transfer

efficiency enlarges asymmetrically. This happens when the larger pulse occurs

during the Zener process of imperfect STIRAP (the opposite situation is illus-

trated in Fig.4.4).

Of course, using large pulse areas, small deviations from the optimal conditions

do not lead to significant drop in transfer efficiency, and in general increasing both

the amplitudes is the convenient strategy to counteract the effect of imperfections.

However, in solid state nanodevices there are restrictions on the amplitude and

symmetry of the coupling to the microwave fields, playing the role of the lasers.

Therefore, operating at κ 6= 1 may give room to further optimize the transfer

efficiency.
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4.3 STIRAP in the Quantronium

In this section the implementation of the Hamiltonian (4.1) in the Quantronium(79)

is discussed. The basic unit of this device consists of a Cooper pair box, namely a

superconducting loop interrupted by two adjacent tunnel junctions with Joseph-

son energies EJ/2 (Fig.4.5).

The two small junctions define the superconducting island of the box, whose

total capacitance is C and charging energy EC = (2e)2/2C. The electrostatic

energy can be modulated by a gate voltage Vg connected to the island via a

capacitance Cg � C and the Hamiltonian reads

H0(qg) =
∑

q

EC [q − qg]
2|q〉〈q| − EJ

2
(|q〉〈q + 1| + h.c.), (4.9)

where {|q〉} are eigenstates of the number operator q̂ of extra Cooper pairs in the

island. It is useful to have defined the reduced gate charge qg = CgVg/(2e), which

is the control parameter of the system. Eigenstates of the box are superpositions

of charge eigenstates. The spectrum can be modified by tuning qg (Fig.4.6) and

the device is usually operated as a qubit close to the value qg = 1/2. This is a

symmetry point for the device Hamiltonian (4.9) and it turns out that it is an

optimal working point where the system is well protected against external noise,

allowing to obtain experimental dephasing times of several hundreds nanoseconds

(79, 130).

Manipulation of the quantum state is performed by adding to the dc part of

the gate voltage, ac microwave pulses with small amplitudes qg → qg + qac
g (t).

The resulting Hamiltonian can be written as

Htot(t) = H0(qg) + A(t) q̂, (4.10)

where A(t) = −2ECq
ac
g (t). The effective three-level artificial atom Hamiltonian,

which reads

H(t) =
∑

i

Ei|φi〉〈φi| + A(t)
∑
ij

qij |φi〉〈φj| (4.11)

is obtained by projecting Htot(t) onto the subspace spanned by the three lowest

energy eigenvectors |φi〉, i = 0, 1, 2 of H0(qg). In Eq.4.11 we have, as usual,

qij = 〈φi|q̂|φj〉 (4.12)
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4. NOISE IN SOLID STATE DEVICE

The STIRAP protocol can be carried out if we choose for the amplitude of the

stimulating laser field

A(t) = As(t) cosωst+ Ap(t) cosωpt. (4.13)

Moreover, it is useful to use the RWA. By retaining only quasi-resonant off-

diagonal and co-rotating terms, The Hamiltonian simplifies to

A(t)q̂ → HRWA(t) =
1

2
q12As(t) eiωst|φ1〉〈φ2| +

1

2
q02Ap(t) eiωpt|φ0〉〈φ2| + h.c.(4.14)

In this approximation the truncated Hamiltonian (4.11) is transformed to the

doubly rotated frame, at angular frequencies ωs and ωp. This yields an effective

Hamiltonian H̃(qg) with the structure of Eq.(4.1), which therefore gives rise the

Λ configuration. Notice that matrix elements qij = 〈φi|q̂|φj〉 play the same role

of the dipole matrix elements in defining the Rabi frequencies, Ωs = q12As and

Ωp = q02Ap.

The RWA of Eq.(4.14) is justified in the regime where peak Rabi frequencies

are much smaller than the splittings, Ωi � |Ei − Ej|, which is the usual exper-

imental regime. In this case the terms neglected are rapidly oscillating in the

rotating frame, and only produce a small and fast modulation in the dynamics.

The approximation is supported by simulations of the full Hamiltonian (4.10),

using more than ten energy levels (93, 94, 133) for the usual operating region

near qg = 1/2.

It is worth stressing the dependence of the effective Hamiltonian H̃(qg) on

the bias charge qg. For instance in Eq.(4.1), the detunings depend on qg via the

energies Ei and peak Rabi frequencies via off diagonal matrix elements qij (see

Fig.4.6). In particular at the symmetry point, qg = 1/2, the matrix element q02

vanishes and selection rules hold, preventing transitions between energy states

with the same parity of the label. The off-diagonal matrix elements qij shown in

Fig.4.6 play the same role of the dipole matrix elements in atoms. The largest

one is q01, which provides the coupling for qubit operations. Fields in STIRAP

are coupled via q12 and q02. This latter vanishes due to a parity selection rule at

the symmetry point qg = 1/2.
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Figure 4.5: Equivalent circuit for the Quantronium. Here q and C are the charge
and the capacitance of the superconducting island respectively; Cg and Vg are the
capacitance and the voltage of the gate; Eg is the Josephson energy and Φ is the
magnetic flux.
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Figure 4.6: Left panel: energy spectrum of a Quantronium setup with EJ = EC .
The splitting Ei−E0 in units of EC is plotted as functions of qg, The first splitting
is given by E1(1/2) = 0.94. Right panel: off-diagonal entries of the Cooper pair
number operator, q01, q12 and q02 from top to bottom.
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4. NOISE IN SOLID STATE DEVICE

4.3.1 Broadband noise

Since the nanocircuit is not isolated, the model has to be supplemented with noise

terms. The structure of coupling to noise can be understood considering classical

fluctuations of each of the parameters in the Hamiltonian of Eq.(4.9).

For instance fluctuations of the gate charge can be accounted for by adding a

classical stochastic term qg → qg + δqx(t). Physical processes described by these

fluctuations are those leading to a stray electrical polarization of the island, and

include effects of voltage fluctuations of the circuit and effects of switching impu-

rities (77), located in the oxides and in the substrate close to the device. Since

these latter are in practice the main source of decoherence (circuit fluctuations

can be reduced by careful filtering) for the Quantronium, here only fluctuations

of the gate charge will be considered, thus acting on the same gate used to drive

the system. Thus we may write the resulting Hamiltonian as

H = H0(qg) +HRWA(t) + δH (4.15)

where δH = −2EC δqx(t) q̂. In general, noise is due to the coupling of the device

to an environment which is itself a quantum system, and the Hamiltonian is

obtained by letting δH = X̂ q̂+Henv, where Henv describes the environment and

X̂ is an environment operator. This model allows to treat high-frequency noise

by a quantum optical master equation in the weak coupling regime. However the

power spectrum of noise in the solid state has a large low-frequency component

which invalidates the weak coupling approach.

A multistage approach has been proposed (76, 78) where high and low-frequency

noise are separated, and the latter is treated as an adiabatic classical field. For-

mally X̂ → X̂f − 2EC δqx(t), where X̂f describes fast environmental degrees of

freedom and δqx(t) is now a classical slow stochastic process. In order to carry

out the calculations it is useful to let qx(t) = qg +δqx(t) and write the Hamitonian

as

H = H0(qx(t)) +HRWA(t) + X̂ q̂ +Henv. (4.16)

In many cases low-frequency noise with 1/f spectrum, which is the leading contri-

bution of the slow dynamics of qx(t), is captured by a static-path approximation

(SPA), that is approximating the stochastic process by a suitably distributed
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4.3 STIRAP in the Quantronium

random variable (76, 78, 130). In the case of many weakly coupled noise sources,

the distribution of δqx is characterized by an energy width σ = 2EC σx.

Populations and coherences are obtained by averaging over this distribution

the entries of the reduced density matrix of the system. This approach has

quantitatively explained the power law decoherence observed in Quantronium

(130) and in phase qubits (134), and has been recently studied for optimal tuning

of multiqubit systems (102).

This point of view provides a simple argument explaining why the symmetry

point qg = 1/2 is well protected against external noise. Indeed, since the energy

splitting E1 −E0 depends only quadratically on the fluctuations δqx around this

point, energy fluctuations are suppressed. As a consequence, superpositions of

the two lowest energy levels keep coherent, yielding a power law suppression of

the signal (76, 78, 130) and longer dephasing time.

4.3.2 Effective model for low-frequency noise in STIRAP

In order to study STIRAP we project the Hamiltonian (4.16) on the subspace

spanned by the three lowest energy instantaneous eigenvectors ofH0(qx(t)). In do-

ing so the adiabaticity of the dynamics induced by δqx(t) is assumed, which allows

to neglect effects of the time-dependence of the eigenvectors. Of course, if we start

from the SPA version of the Hamiltonian (4.16), this condition is automatically

verified. The focus is on the system plus drive Hamiltonian, H0(qx(t))+HRWA(t),

which has in the rotated frame the same structure of Eq.(4.1).

Parameters entering the Hamiltonian depend, of course, on the realization of

the stochastic process. Fluctuations of the eigenenergies translate in fluctuations

of the detunings (letting E0 = 0)

δ(qx) = E1(qx) − ωp + ωs δp(qx) = E2(qx) − ωp. (4.17)

Also the effective drive fluctuates due to fluctuations of the charge matrix ele-

ments, for instance Ωp = q02(qx)Ap.

In the regime of validity of the SPA, this analysis shows that the effect of

low-frequency noise in solid-state devices can be discussed in term of sensitivity

of the transfer efficiency obtained by STIRAP to parameters characterizing an
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4. NOISE IN SOLID STATE DEVICE

equivalent drive. This allows to apply several results known from quantum optics

to solid state devices.

For instance the large sensitivity to two-photon detuning, translates in the

sensitivity to fluctuations of the lowest splitting, which is then the main charac-

teristic to be minimized in order to achieve efficient population transfer in the

solid state. Notice also that, the main steps of the analysis carried out for the

Quantronium can also be applied to other solid state implementations devices,

as long as decoherence in the dynamics of the two lowest energy levels is well

characterized.

4.4 Effects of low-frequency noise in the Quantro-

nium

In this section the above analysis will be applied to discuss the observability of

STIRAP in the Quantronium, and it will be considered a device with EJ =

EC , whose spectral properties are given in Fig.4.6. An important point is that

while dephasing is minimized by operating at the symmetry point qg = 1/2, the

selection rule q02 = 0 prevents to give rise STIRAP. Therefore, it has been

proposed to operate slightly off the symmetry point.

In these conditions it has been shown that STIRAP allows a substantial

coherent population transfer also in the presence of high-frequency noise. Notice

that, while in quantum optical systems STIRAP connects two ground states, in

solid state devices high-frequency noise leads to decay 1 → 0. These processes

are well characterized experimentally (130).

In Ref.(93, 94) it has been shown that secular dephasing between the above

two states does not produce relevant effects during population transfer. A careful

analysis (133) has allowed to optimize parameters for STIRAP in the presence

of high-frequency noise, showing that operating at qg = 0.47 already provides

sufficient coupling q02.

On the other hand, it is known that the effect of low-frequency noise increases

when the system is operated away from the symmetry point (130, 135). This

opens the question of the trade-off between efficient coupling of the driving fields
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4.4 Effects of low-frequency noise in the Quantronium

and dephasing due to slow excitations in the solid-state. Here this issue is focuesd

and the high-frequency noise is neglected.

Another consequence of the selection rule is that, in the vicinity of the sym-

metry point, coupling with the drives is asymmetric. At qg ≈ 0.47 we have

q02 ≈ q12/4 (see Fig.4.6). Since in any case it is convenient to work with the

largest pump pulse Rabi peak frequency Ω0, this value is chosen.

It can be estimated by writing

Ω0 = (q02/q01)ΩR ≈ ΩR/6 (4.18)

where ΩR is the maximal angular frequency for Rabi oscillations between the low-

est doublet. Frequencies of approximately νR = 750− 900MHz can be achieved

in the Quantronium, corresponding to a maximum field amplitude Ap yielding

νp = 100 − 150MHz. The peak Rabi frequency of the Stokes field could be

chosen as νs = κνp, with κ ≤ 4, but it can be argued that κ = 1 is the optimal

choice.

Fluctuations δqx of the gate charge can be estimated from the dephasing

time of the qubit at the symmetry point. This is due to energy fluctuations

σ/E1(1/2) ∼ 0.01. Therefore fluctuations of gate charge, which are characteristic

of the environment only, are estimated by σx = σ/(2EC) ≈ 3 · 10−3, where

EC ∼ 15GHz is used. Notice that these features may depend on details of the

protocol as the total measurement time, but for 1/f noise the dependence is

logarithmic and improving the procedure does not bring essential changes of σx.

Here choose to operate at single and two-photon resonance, δ = δp = 0 at

qg = 0.47. According to Eq.(4.17), fluctuations δqx determine a distribution of

the detuning. In the left panel of Fig.4.6, we can directly read off fluctuations of

the splitting, which give the estimate

∆δ = ∆E1(qx) ≈ (∂E1/∂qx)qg δqx (4.19)

∆δp = ∆E2(qx) ≈ (∂E2/∂qx)qg δqx (4.20)

Therefore, fluctuations of the detunings are anticorrelated, ∆δp = a∆δ, where

the ratio of the two derivatives is given by a ≈ −5. This corresponds to the lines
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Figure 4.7: Averaged population histories for different values of the fluctua-
tion intensity of the two-photon detuning, σδ. In panels (a)-(f), we have σδ =
0.05, 0.1, 0.2, 0.4, 0.8, 1.6 in units of Ω0, respectively. Here detunings are anticor-
related (δp = −5δ) and drives have been symmetrized (κ = 1) by using a lower
amplitude As for the Stokes field. For Ω0 = 2π · 108 rad/s the relevant curve is
σδ = 0.2 and T = 48ns yielding 60% of population transfer. Slightly increasing
νp = 150MHz one obtains σδ = 0.125 and T = 30ns.
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drawn in the efficiency diagrams of Fig.4.3. Using (∂E1/∂qx)qg δqx ≈ (EJ/4), the

fluctuations of the two-photon detuning are estimated by

σδ/Ω0 ≈ EJσx/(4Ω0) ≈ σ/(8Ω0) ∼ 0.1 − 0.2 (4.21)

identifying the region of the efficiency diagrams explored by the system during

the protocol. This estimate suggests that energy fluctuations in the Quantronium

should still allow to observe coherent population transfer.

Fluctuations of the off-diagonal elements can be estimated by the plots in

Fig. 4.6 (right panel), yielding figures of ∼ (1/4)σxΩ0 ∼ 10−3Ω0, therefore they

can be neglected. The transfer efficiency is then calculated by averaging the

population histories over the distribution of correlated detunings. Results are

shown in Fig. 4.7 for different values of the fluctuation intensity of the two-

photon detuning σδ in units of Ω0. Here detunings are anticorrelated (δp = −5δ)

and drives have been symmetrized (κ = 1), by using a lower amplitude As for the

Stokes field. It is seen that in standard experimental conditions the low-frequency

noise allows from 60% to more than 90% population transfer in the Quantronium.

Notice that even for σδ = 0.2 Ω0 the average population of the intermediate level

is very small during the whole procedure.

Finally it is time to comment about the optimization of the laser amplitudes.

In the above simulations it is used κ = 1, but it would be possible to use a

larger Stokes pulse, up to κ = 4. However this does not improve the efficiency if

fluctuations of the detunings are anticorrelated. As shown in Fig.4.8, in this case

the region of large efficiency shrinks for increasing κ.
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Figure 4.8: Ratio of the maximum drive amplitudes k = ΩS/ΩP as a function
of the two-photon detuning limits, δ̃ = δ/Ω0, for anticorrelated noise, typical of
Quantronium (δp = −5δ). The white zone is the region where we have more than
80% of transfer efficiency of STIRAP.
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Conclusions

5.1 Classical systems

Each system which has an interaction with an external environment whose influ-

ence in not predictable is subjected to what we call ǹoisè.

This kind of influence is represented by a stochastic force which can be de-

pendent (multiplicative noise) or not (additive noise) by the state variable of the

system. The dynamics of the system, interacting with a noisy environment, by a

generalized Langevin equation.

In chapter 2 a functional approach is used in order to obtain from a Langevin

equation the Fokker-Planck equation, whose solution is the probability density

function (PDF) of the system under study.

In the same chapter 2 it is shown that in the case of multiplicative noise we can

find a nonmonotonic behavior of the mean escape time from a metastable state

as a function of the parameters that characterize the noise intensity. The results

of the simulations pointed out (see Sec.2.5) that it is possible to find some ranges

of parameters that makes the noise intensity capable to enhance the stability of

the metastable state.

Also it is possible to find more than one maximum in the graph of the average

lifetime of the metastable state, whose position depends on both the parameters.

Moreover, the maxima are depending on both the parameters D and µ giving rise

to NES islands.
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In section 2.7 the Ising model is presented as a physical example for a nonequi-

librium system. A series of simulations, which were carried out using the Monte-

carlo algorithm, are also discussed. Each spin in the Ising model has a probability

of change its orientation which is depending on the temperature and on the mag-

netization of the nearest neighbors.

The rate used in these simulation is the one proposed by Glauber (121) which

has the property of being ergodic also for T −→ ∞ . In the simulations the

metastable state chosen as initial condition is the state with all the spin up.

Results for different values of the non equilibrium parameter p are reported.

The simulations show that the average lifetime of the metastable state is de-

pending on both the parameter p (nonequilibrium parameter) and the parameter

T (reduced Temperature). Moreover, the behavior of the average lifetime, seen as

a function of T, is nonmonotonic and shows, for certain values of p, a maximum

whose position depends on the value of the non equilibrium parameter. This re-

sult is in agreement with the model discussed in the previous sections of chapter

2.

5.2 Quantum systems

The dynamics of a quantum particle subject to an asymmetric bistable potential

and interacting with a noisy environment has been analyzed (Chap. 3). The

study is performed exploiting the approach of the Feynman-Vernon functional(56)

within the framework of the discrete variable representation(41, 57). By using

the Caldeira-Leggett model(42), the analysis of the transient dynamics of the

system, for different values of the coupling strength between the particle and the

noisy environment, modelled as a thermal bath, it is performed.

For a asymmetric bistable potential (reported in Fig. 3.2) it is found (see Sec.

3.2.4) that there are many overlapping regions where is visible a nonmonotonic

behavior of Γ as a function of the temperature. It is possible to distinguish two

different nonmonotonic behaviors: one with a maximum, reported in Fig.3.4, and

the other one with a minimum.

Due to the quantum Zeno effect (see Sec.3.3), responsible for the slowering of

the tunnel effect, a delayed dynamics of the system is observed for higher values of
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the coupling strength. It is shown (Sec. 3.4) also that the metastable state inside

the left side well of the potential can be populated at different times varying the

value of the coupling strength.

In the chapter 4 the effect of low-frequency noise on the transfer efficiency of

STIRAP is studied, proposing that low-frequency fluctuations of the spectrum

can be analized in terms of fictitious correlated fluctuations of the detunings. For

solid-state noise with large low-frequency component (e.g. for 1/f noise) the lead-

ing effect (SPA approximation) is equivalent to consider statistically distributed

detunings and can be discussed by analizing the sensitivity to parameters of the

protocol.

Then the theory has been applied to the Quantronium, showing that corre-

lated fluctuations of the energy splittings have to be considered, and that transfer

efficiency is mainly sensitive to decoherence in the subspace of the two-lowest lev-

els, which is well characterized experimentally. Selection rules prevent to work at

the symmetry point, where decoherence is minimal. Therefore, the observation

of coherent population transfer requires optimization of the trade-off between in-

creasing coupling and greater sensitivity to low-frequency noise. In chapter 4 it

is shown that this is indeed possible, given the measured figures of low-frequency

noise.

Notice that pulses of width T = 48 − 30ns are used . Therefore, the total

time of the protocol ∼ 200 − 350ns is longer than the dephasing time of the

qubit, as determined solely by static inhomogeneities. This dephasing time is

smaller off the symmetry point (in the experiment of Ref(130). the dephasing

time for coherent oscillations dropped from Tφ ∼ 600ns at the symmetry point

to Tφ ∼ 50ns at qg = 0.47).

This shows that STIRAP is less sensitive than coherent oscillations technique

to low-frequency noise. Actually, accounting for high frequency noise the process

will be limited by the relaxation T1 & 500 ns.

This analysis applies as well to other superconducting nanodevices. In partic-

ular, it could allow to design correlations of fluctuations of the energy spectrum,

which maximize the Zener channel of population transfer.
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A.1 Paper on ISI journals

P. Caldara, A. La Cognata, D. Valenti, B. Spagnolo, M. Berritta, E. Paladino,

G. Falci, “Quantum Relaxation Time in Asymmetric Bistable Potential“, Inter-

national Journal of Quantum Information (in press) (2011)

A. La Cognata, P.Caldara, D. Valenti, B. Spagnolo, A. D’Arrigo, E. Paladino, G.

Falci, ”Effect of broadband noise on adiabatic passage in superconducting nanocir-

cuits“ International Journal of Quantum Information (in press) (2011)

A.2 Proceedings

B. Spagnolo, G. Augello, P. Caldara, A. Fiasconaro, A. La Cognata, N. Pizzolato,

D. Valenti, A. A. Dubkov and A. L. Pankratov, ”Noise stabilization effects in

models of interdisciplinary physics“, J. Phys: Conf. Ser. 174 (2009) 012037

B. Spagnolo, A. Fiasconaro, N. Pizzolato, D. Valenti, D. Persano Adorno, P.
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stochastic models and noise induced effects, American Institute of Physics Vol.
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