
Asynchronous Byzantine Reliable Broadcast

With a Message Adversary

Timothé Albouy, Davide Frey, Michel Raynal, François Taïani

Univ Rennes, IRISA, CNRS, Inria, 35042 Rennes, France

{timothe.albouy,michel.raynal,francois.taiani}@irisa.fr, davide.frey@inria.fr

Abstract

This paper considers the problem of reliable broadcast in asynchronous authenticated systems, in

which n processes communicate using signed messages and up to t processes may behave arbitrarily

(Byzantine processes). In addition, for each message m broadcast by a correct (i.e., non-Byzantine)

process, a message adversary may prevent up to d correct processes from receiving m. (This mes-

sage adversary captures network failures such as transient disconnections, silent churn, or message

losses.) Considering such a “double” adversarial context and assuming n > 3t + 2d, a reliable

broadcast algorithm is presented. Interestingly, when there is no message adversary (i.e., d = 0), the

algorithm terminates in two communication steps (so, in this case, this algorithm is optimal in terms

of both Byzantine tolerance and time efficiency). It is then shown that the condition n > 3t + 2d
is necessary for implementing reliable broadcast in the presence of both Byzantine processes and a

message adversary (whether the underlying system is enriched with signatures or not).

Keywords: Asynchronous system, Byzantine processes, Churn, Message adversary, Message losses,

Message-passing, Message signatures, Reliable broadcast, Transient disconnection.

1 Introduction

Reliable broadcast Introduced in the mid-eighties, Reliable Broadcast is a fundamental communi-

cation abstraction that lies at the center of fault-tolerant asynchronous distributed systems. Formally

defined in [7, 8], it allows each process to broadcast messages in the presence of process failures, with

well-defined delivery properties1 . In turn, these properties make it possible to design provably correct

distributed software for upper-layer applications based on such a broadcast abstraction.

Intuitively, reliable broadcast guarantees that the non-faulty processes deliver the same set of mes-

sages, which includes at least all the messages they broadcast. This set may also contain messages

broadcast by faulty processes. The fundamental property of reliable broadcast lies in the fact that no two

non-faulty processes deliver different sets of messages [9, 24].

When some processes may suffer from Byzantine failures [20], designing a reliable broadcast com-

munication abstraction that tolerate such failures is far from trivial. Such an algorithm is called Byzantine-

tolerant reliable broadcast (BRB) and we say that a process brb-broadcasts and brb-delivers messages.

The most famous BRB algorithm is due to Bracha [7] (1987). For an application message, this algorithm

gives rise to three sequential communication steps and up to (n− 1)(2n+ 1) implementation messages

sent by correct processes. This algorithm requires n > 3t, which is optimal in terms of fault tolerance.

1The term delivery refers here to the application layer where a process receives and processes the content of an application

message (see Section 2.1).

1

Recent works related to reliable broadcast Due to its fundamental nature, BRB has been addressed

by many authors. Here are a few recent results. Similarly to Bracha’s algorithm, all these algorithms

assume an underlying fully connected reliable network.

• The versatility dimension of Bracha’s algorithm has been analyzed in [18, 25].

• Addressing efficiency issues, the BRB algorithm presented in [19] implements the reliable broad-

cast of an application message with only two communication steps and up to n2 − 1 implemen-

tation messages sent by correct processes. The price to pay for this gain in efficiency is a weaker

t-resilience, namely t < n/5. Hence, this algorithm and Bracha’s algorithm differ in their trade-

off between t-resilience and message/time efficiency.

• Scalable BRB is addressed in [17]. The goal of this work is to avoid paying the O(n2) message

complexity price. To this end, the authors use a non-trivial message-gossiping approach which

allows them to design a sophisticated BRB algorithm satisfying probability-dependent properties.

• BRB in dynamic systems is addressed in [16] (dynamic means that a process can enter and leave

the system at any time). In their article, the authors present an efficient BRB algorithm for such

a context. This algorithm assumes that, at any time, there are at least two times more correct

processes than Byzantine ones in the system.

• An efficient algorithm for BRB with long inputs of b bits using lower costs than b single-bit in-

stances is presented in [21]. This algorithm, which assumes t < n/3, achieves the best possible

communication complexity of Θ(nb) input sizes. This article also presents an authenticated ex-

tension of this solution.

The work presented in this paper2 goes beyond the previous proposals by considering the conjunc-

tion of two types of adversary: as in the above works, processes may be Byzantine, but in addition a

message adversary may also remove implementation messages between correct processes. More pre-

cisely, this work addresses the problem of fault-tolerant reliable broadcast in asynchronous n-process

message-passing systems enriched with message signatures, in which up to t processes are Byzantine,

and a message adversary that may prevent up to d non-Byzantine processes from delivering an imple-

mentation message broadcast by a non-Byzantine process. This dual fault model originated from our

research on the reconciliation of local process states in distributed Byzantine-tolerant money transfer

systems (a.k.a. cryptocurrencies), in which processes become temporarily disconnected. Several re-

searchers have indeed pointed out the fundamental role that broadcast abstractions play in Byzantine

money transfer systems (see, for instance, [5, 11, 12, 13, 15, 16]). This crucial role naturally leads

to considering how Byzantine broadcast can be expanded to more volatile and dynamic settings, thus

motivating our proposal to combine traditional Byzantine faults with a message adversary.

The paper is made up of 5 sections.

• Section 2 defines the computing model and the Message Adversary-Tolerant Byzantine Reliable

Broadcast communication abstraction (or MBRB for short).

• Section 3 presents a signature-based algorithm implementing the MBRB abstraction, proves it is

correct, and evaluates its cost. When there is no message adversary, this algorithm is optimal from

both Byzantine resilience and the number of communication steps3.

2A very preliminary version of this work appeared in [3].
3The signature-free BRB algorithm described in [7] is optimal with respect to Byzantine resilience (t < n/3), but requires

three communication steps, while the signature-free BRB algorithm described in [19] is optimal with respect to the number of

communication steps (2) but is not with respect to Byzantine resilience (it requires t < n/5).

2

Acronyms Meaning

BRB Byzantine-tolerant reliable broadcast

MA Message adversary

MBRB Message adversary- and Byzantine-tolerant reliable broadcast

Notations Meaning

n number of processes in the network

t upper bound on the number of Byzantine processes

d power of the message adversary

c effective number of correct processes in a run (n− t ≤ c ≤ n)

ℓ minimal nb of correct processes that mbrb-deliver a message

λ time complexity of MBRB

µ message complexity of MBRB

Table 1: Acronyms and notations

• Section 4 shows that the condition n > 3t + 2d is necessary and sufficient for implementing the

MBRB communication abstraction (be the underlying system enriched with signatures or not).

• Finally, Section 5 concludes the article.

2 Computing Model and MBRB Abstraction

2.1 Computing Model

Process model The system is composed of n asynchronous sequential processes denoted p1, ..., pn.

Each process pi has an identity, and all the identities are different and known by all processes. To

simplify, we assume that i is the identity of pi.
Regarding failures, up to t processes can be Byzantine, where a Byzantine process is a process

whose behavior does not follow the code specified by its algorithm [20, 22]. Let us notice that Byzantine

processes can collude to fool the non-Byzantine processes (also called correct processes). Let us also

notice that, in this model, the premature stop (crash) of a process is a Byzantine failure.

Moreover, given an execution, c denotes the number of processes that effectively behave correctly

in that execution. We always have n − t ≤ c ≤ n. While this number remains unknown to correct

processes, it is used in the following to analyze and characterize (more precisely than using its worse

value n− t) the guarantees provided by the proposed algorithms.

Communication model The processes communicate through a fully connected asynchronous point-

to-point communication network. Although this network is assumed to be reliable—in the sense that it

neither corrupts, duplicates, nor creates messages—it may nevertheless lose messages due to the actions

of a message adversary (defined below).

Let MSG be a message type and v the associated value. A process can invoke the unreliable operation

broadcast MSG(v), which is a shorthand for “for all i ∈ {1, · · · , n} do send MSG(v) to pj end for”. It is

assumed that all the correct processes invoke broadcast to send messages. As we can see, the operation

broadcast MSG(v) is not reliable. As an example, if the invoking process crashes during its invocation,

an arbitrary subset of processes receive the message implementation message MSG(v). Moreover, due

to its very nature, a Byzantine process can send messages without using the macro-operation broadcast.

From a terminology point of view, at the system/network level, we say that messages are broadcast

and received. Moreover, a message generated by the algorithm is said to be an implementation message

(imp-message in short), while a message generated by the application layer is said to be an application

message (app-message in short).

3

Message adversary The notion of a message adversary (MA) was implicitly introduced in [27] (under

the name transient faults and ubiquitous faults) and then used (sometimes implicitly) in many works

(e.g., [2, 10, 26, 28, 29]). A short tutorial on message adversaries is presented in [23].

Let d be an integer constant such that 0 ≤ d < c. The communication network is under the control

of an adversary which eliminates imp-messages sent by processes, so that these imp-messages appear as

being lost. More precisely, when a correct process invokes broadcast MSG(v), the message adversary is

allowed to arbitrarily suppress up to d copies of the imp-message MSG(v) that were intended to correct

processes. This means that, despite the fact the sender is correct, up to d correct processes may miss the

imp-message MSG(v)4.

As an example, consider a set D of correct processes, where 1 ≤ |D| ≤ d, such that during some

period of time, the adversary suppresses all the imp-messages sent to them. It follows that, during this

period of time, this set of processes appears as a set of correct processes that are (unknowingly) input-

disconnected from the other correct processes. Depending on the message adversary, the set D may

vary with time. Let us notice that d = 0 corresponds to the weakest possible message adversary: it

corresponds to a classical static system where some processes are Byzantine but no imp-message is lost

(the network is fully reliable).

Let us remark that this type of message adversary is stronger, and therefore covers, the more specific

case of silent churn, in which processes (nodes) may decide to disconnect from the network. While

disconnected, such a process silently pauses its algorithm (a legal behavior in our asynchronous model),

and is implicitly moved (by the adversary) to the D adversary-defined set. Upon coming back, the node

resumes its execution, and is removed from D by the adversary.5

Informally, in a silent churn environment, a correct process may miss imp-messages sent by other

processes while it is disconnected from the network. The adjective “silent” in silent churn expresses the

fact that no notification is sent on the network by processes whenever they leave or join the system: there

is no explicit “attendance list” of connected processes, and processes are given no information on the

status (connected/disconnected) of their peers. In this regard, the silent churn model diverges from the

classical approach when designing dynamic distributed systems, in which processes send imp-messages

on the network notifying their connection or disconnection [16]. The silent churn model is a good

representation of real-life large-scale peer-to-peer systems, where peers leaving the network typically

do so in a completely silent manner (i.e., without warning other peers).

Let us also observe that silent churn allows us to model input-disconnections due to process mo-

bility. When a process moves from one location to another, the sender’s broadcasting range may not

be large enough to ensure that the moving process remains input-connected. An even more prosaic

example would be one where a user simply turns off their device, or disable its Internet connection,

preventing it from receiving or sending any further imp-messages. In this context, we consider that the

message adversary removes all the incoming imp-messages from the corresponding process until the

device reconnects.

Let us mention that the loss of imp-messages caused by a message adversary may be addressed using

a reliable unicast protocol. These protocols were originally introduced to provide reliable channels on

top of an unreliable network subject to imp-message losses. The principle is simple: the sender keeps

sending idempotent imp-messages at regular intervals through an unreliable channel until it receives

an acknowledgement from the receiver. This principle notoriously lies at the core of the Transmission

Control Protocol (TCP), although with important practical adaptations, as TCP uses timeouts to close a

malfunctioning or otherwise idle connection, typically after a few minutes.

But because there is no way to detect that a process has crashed or disconnected in an asynchronous

4A close but different notion was introduced by Dolev in [14] (and explored in subsequent works, such as [6]) which

considers static k-connected networks. If the adversary selects statically for each correct sender d correct processes that do not

receive this sender’s imp-messages, the proposed model includes Dolev’s model with k = n− d.
5So the notion of a message adversary implicitly includes the notion of imp-message omission failures.

4

environment, an ideal reliable unicast protocol (i.e. one that keeps on re-transmitting until success) needs

to treat disconnected processes the same way as slow processes or as if there were packet losses in the

network: the sender will thus potentially send infinitely many imp-messages to a disconnected receiver.

To overcome this issue, some works leverage causal dependencies to avoid resending old imp-messages:

if an acknowledgement is received by the sender for a given imp-message, then it can stop resending

the imp-messages that causally precede this imp-message and that have not been acknowledged yet

(e.g. [13]). However, this approach still assumes that eventually, every communication channel lets

some imp-messages pass, which is not always the case in our model, where the message adversary can

permanently sever up to d channels.

Digital signatures We assume the availability of an asymmetric cryptosystem to sign data (in practice,

imp-messages) and verify its authenticity. We assume signatures are secure, and therefore that the

computing power of the adversary is bounded. Every process in the network has a public/private key

pair. We suppose that the public keys are known to everyone, and that the private keys are kept secret

by their owner. Everyone also knows the mapping between any process’ identity i and its public key.

Additionally, we suppose that each process can produce at most one signature per imp-message.

The signatures are used to cope with the net effect of the Byzantine processes and the fact that imp-

messages broadcast (sent) by correct processes can be eliminated by the message adversary. A notewor-

thy advantage of signatures is that, despite the unauthenticated nature of the point-to-point communi-

cation channels, signatures allow correct processes to verify the authenticity of imp-messages that have

not been directly received from their initial sender, but rather relayed through intermediary processes.

Signatures provide us with a network-wide non-repudiation mechanism: if a Byzantine process issues

two conflicting imp-messages to two different subsets of correct processes, then the correct processes

can detect the malicious behavior by disclosing to each other the Byzantine signed imp-messages.6

2.2 Message Adversary-Tolerant Byzantine Reliable Broadcast (MBRB)

This paper introduces a new broadcast abstraction we have called Message Adversary-Tolerant Byzantine

Reliable Broadcast (MBRB for short.) The MBRB communication abstraction is composed of two

matching operations, denoted mbrb_broadcast and mbrb_deliver. It considers that an identity (i, sn)
(sender identity, sequence number) is associated with each app-message, and assumes that any two

app-messages mbrb-broadcast by the same correct process have different sequence numbers. Sequence

numbers are one of the most natural ways to design “multi-shot” reliable broadcast algorithms, that is,

algorithms where the broadcast operation can be invoked multiple times with different app-messages.

When, at the application level, a process pi invokes mbrb_broadcast(m, sn), where m is the app-

message and sn the associated sequence number, we say pi “mbrb-broadcasts (m, sn)”. Similarly, when

pi invokes mbrb_deliver(m, sn , j), where pj is the sender process, we say pi “mbrb-delivers (m, sn , j)”.

We say that the app-messages are mbrb-broadcast and mbrb-delivered (while, as said previously, the

imp-messages algorithm are broadcast and received).

Correctness specification Because of the message adversary, we cannot always guarantee that an

app-message mbrb-delivered by a correct process is eventually mbrb-delivered by all correct processes.

Hence, in the MBRB specification, we introduce a variable ℓ which indicates the strength of the global

delivery guarantee of the primitive: if one correct process mbrb-delivers an app-message then ℓ correct

processes eventually mbrb-deliver this app-message.7 The MBRB-broadcast abstraction is defined by

the following properties:

6The fact that the algorithm uses signed imp-messages does not mean that MBRB-broadcast requires signatures to be

implemented, see [4].
7If there is no message adversary (i.e., d = 0), we should have ℓ = c ≥ n− t.

5

• Safety:

– MBRB-Validity (no spurious message). If a correct process pi mbrb-delivers an app-message

m from a correct process pj with sequence number sn , then pj mbrb-broadcast m with

sequence number sn .

– MBRB-No-duplication. A correct process pi mbrb-delivers at most one app-message m
from a process pj with sequence number sn .

– MBRB-No-duplicity. No two different correct processes mbrb-deliver different app-messages

from a process pi with the same sequence number sn .

• Liveness:

– MBRB-Local-delivery. If a correct process pi mbrb-broadcasts an app-message m with

sequence number sn , then at least one correct process pj eventually mbrb-delivers m from

pi with sequence number sn .

– MBRB-Global-delivery. If a correct process pi mbrb-delivers an app-message m from a

process pj with sequence number sn , then at least ℓ correct processes mbrb-deliver m from

pj with sequence number sn .

It is implicitly assumed that a correct process does not use the same sequence number twice. Let

us observe that, since at the implementation level the message adversary can always suppress all the

imp-messages sent to a fixed set D of d processes, the best-guaranteed value for ℓ is c− d. Furthermore,

let us notice that the constraint n > 2d prevents the message adversary from partitioning the system.

Performance metrics In addition to the correctness specification, we define two metrics that capture

the performance of an algorithm implementing the MBRB specification: λ and µ, which respectively

denote the communication step complexity and the imp-message complexity of the algorithm. They are

defined as follows:

• MBRB-Time-cost. If a correct process pi mbrb-broadcasts an app-message m with sequence

number sn , then ℓ correct processes mbrb-deliver m from pi with sequence number sn in at most

λ communication steps.

• MBRB-Message-cost. The mbrb-broadcast of an app-message by a correct process pi entails the

sending of at most µ imp-messages by correct processes.

Byzantine Reliable Broadcast (BRB) If ℓ = c (obtained when d = 0), the previous specification

boils down to Bracha’s seminal specification [7], which defines the Byzantine reliable broadcast (BRB)

communication abstraction. Hence, the BRB abstraction is a sub-case of MBRB.

3 A Signature-based Algorithm Implementing the MBRB Abstraction

This section presents Algorithm 1, which implements the MBRB communication abstraction in an asyn-

chronous setting under the constraint n > 3t+2d > 0. When considering d = 0, this algorithm provides

both t-tolerance optimality (as in [7]) and step optimality (as in [19]): it only assumes n > 3t, and guar-

anteed mbrb-delivery of an app-message in only two communication steps8. It follows that signatures

can help save one communication step compared to classical signature-free BRB algorithms that assume

t < n/3. Algorithm 1 fulfills the MBRB-Global-delivery property with ℓ = c − d under the following

assumption:

• mbrb-Assumption: n > 3t+ 2d.

8Signature-based BRB in only two communication steps is a known result [1], however, to the best of our knowledge, no

existing BRB algorithm tolerates message adversaries as well as ours.

6

3.1 Preliminaries

Implementation message types The algorithm uses only one imp-message type, BUNDLE, that carries

the signatures backing a given app-message m, along with m’s content, sequence number, and emitter.

BUNDLE imp-messages propagate through the network using controlled flooding.

Local data structures Each (correct) process saves locally the valid signatures (i.e., the signed fixed-

size digests of a certain data) that it has received from other processes using BUNDLE imp-messages.

Each signature “endorses” a certain app-message (m, sn , j). When certain conditions are met (described

below), a process further broadcasts in a BUNDLE imp-message all signatures it knows for a given triplet

(m, sn , j). A correct process pi saves at most one signature for a given triplet (m, sn , j) per signing

process pk.

Time measurement For the proofs related to MBRB-Time-cost (Lemmas 7-10), we assume that the

duration of local computations is negligible compared to that of imp-message transfer delays, and con-

sider them to take zero time units. As the system is asynchronous, the time is measured under the

traditional assumption that all the imp-messages have the same transfer delay.

3.2 Algorithm

At a high level, Algorithm 1 works by producing, forwarding, and accumulating witnesses of an initial

mbrb-broadcast operation, until a large-enough quorum is observed by at least one correct process, at

which point this quorum is propagated in one final unreliable broadcast operation.

Witnesses take the form of signatures for a given triplet (m, sn , i), where m is the app-message,

sn its associated sequence number and i the identity of the sender pi (which also produces a signature

for (m, sn , i)). Signatures serve to ascertain the provenance and authenticity of these propagated BUN-

DLE imp-messages, thus providing a key ingredient to tolerate the limited reliability of the underlying

network. They also authenticate the invoker of the mbrb_broadcast operation, and finally, in the last

phase of the algorithm, they allow the propagation of a cryptographic proof that a quorum has been

reached, thereby ensuring that enough correct processes eventually mbrb-deliver the app-message that

was mbrb-broadcast.

operation mbrb_broadcast(m, sn) is

(1) save signature for (m, sn , i) by pi;
(2) broadcast BUNDLE(m, sn , i, {all saved signatures for (m, sn, i)}).

when BUNDLE(m, sn, j, sigs) is received do

(3) if
(

(−, sn, j) not already mbrb-delivered

∧ sigs contains the valid signature for (m, sn, j) by pj
)

then

(4) save all unsaved valid signatures for (m, sn, j) of sigs;

(5) if
(

(−, sn, j) not already signed by pi
)

then

(6) save signature for (m, sn , j) by pi;
(7) broadcast BUNDLE(m, sn, j, {all saved signatures for (m, sn, j)})
(8) end if;

(9) if
(

strictly more than n+t

2
signatures for (m, sn , j) are saved

)

then

(10) broadcast BUNDLE(m, sn, j, {all saved signatures for (m, sn, j)});
(11) mbrb_deliver(m, sn , j)
(12) end if

(13) end if.

Algorithm 1: A signature-based implementation of the MBRB communication abstraction (code for pi)

In more detail, when a (correct) process pi invokes mbrb_broadcast(m, sn), it builds and signs the

7

triplet (m, sn , i) to guarantee its non-repudiation, and saves locally the resulting signature (line 1). Next,

pi broadcasts the BUNDLE imp-message containing the signature that it just produced (line 2).

When a correct process pi receives a BUNDLE(m, sn , j, sigs) imp-message, it first checks if no app-

message has already been mbrb-delivered for the given sequence number sn and sender pj , and if pj
signed the app-message (line 3). If this condition is satisfied, pi saves all the new valid signatures inside

the sigs set (line 4). Next, pi creates and saves its own signature for (m, sn , j) and then broadcasts it

in a BUNDLE imp-message, if it has not already done so previously (line 5-8). Finally, if pi has saved

a quorum of strictly more than n+t
2 signatures for the same triplet (m, sn , j), it broadcasts a BUNDLE

imp-message containing all these signatures and mbrb-delivers the triplet (lines 9-12).9

Remark The reader can notice that the system parameters n and t appear in the algorithm, whereas

the system parameter d does not. Naturally, they all explicitly appear in the proof.

3.3 Algorithm proof

This section proves the correctness and performance properties of MBRB.

Theorem 1. If the mbrb-Assumption is satisfied, Algorithm 1 implements the mbrb-broadcast of an

app-message by a correct process with the following guarantees:

• ℓ = c− d correct processes,

• λ =















2 if d <
c−⌊n+t

2
⌋

⌊n+t
2

⌋+1

3 if d < c−
√

c× n+t
2

> 3 otherwise















communication steps,

• µ = 2n2 imp-messages.

The proof follows from the next lemmas.

Lemma 1 (MBRB-Validity). If a correct process pi mbrb-delivers m from a correct process pj with

sequence number sn , then pj has previously mbrb-broadcast m with sequence number sn .

Proof. If a correct process pi mbrb-delivers (m, sn , j) (where pj is correct) at line 11, then it has passed

the condition at line 3, which means that it must have witnessed a valid signature for (m, sn , j) by pj .
Since signatures are secure, the only way to create this signature is for pj to execute the instruction at

line 1, during the mbrb_broadcast(m, sn) invocation.

Lemma 2 (MBRB-No-duplication). A correct process pi mbrb-delivers at most one app-message from

a process pj with a given sequence number sn .

Proof. This property derives trivially from the condition at line 3.

Lemma 3 (MBRB-No-duplicity). No two different correct processes mbrb-deliver different app-messages

from a process pi with the same sequence number sn .

9The pseudo-code presented in Algorithm 1 favors readability, and is therefore not fully optimized. For instance, in some

cases, a process might unreliably broadcast exactly the same content at lines 7 and 10. This could be avoided by either using

an appropriate flag, or by tracking and preventing the repeated broadcast of identical BUNDLE imp-messages.

8

Proof. Let us consider two correct processes pa and pb which respectively mbrb-deliver (m, sn , i) and

(m′, sn , i). Due to the condition at line 9, pa and pb must have saved (and thus received) two sets Qa

and Qb containing strictly more than n+t
2 signatures for (m, sn , i) and (m′, sn , i), respectively. We thus

have |Qa| >
n+t
2 and |Qb| >

n+t
2 .

As we have |A∩B| = |A|+ |B|−|A∪B| ≥ |A|+ |B|−n > 2× n+t
2 −n = t, A and B have at least

one correct process pk in common, which must have signed both (m, sn , i) and (m′, sn, i). But before

signing (m, sn , i) at line 1 or 6, pk checks that it did not sign a different app-message from the same

sender and with the same sequence number, whether it be implicitly during a brb_broadcast(m, sn)
invocation or at line 5. Thereby, m is necessarily equal to m′.

Lemma 4 (MBRB-Local-delivery). If a correct process pi mbrb-broadcasts an app-message m with

sequence number sn , then at least one correct process pj mbrb-delivers m from pi with sequence number

sn .

Proof. If a correct process pi mbrb-broadcasts (m, sn), then it broadcasts its own signature sig i for

(m, sn , i) in a BUNDLE(m, sn , i, {sig i}) message at line 2. As pi is correct, it does not sign an-

other triplet (m′, sn, i) where m′ 6= m, therefore it is impossible for a correct process to mbrb-deliver

(m′, sn , i) at line 11, because it cannot pass the condition at line 3.

Let us denote by K the set of correct processes that receive a message BUNDLE(m, sn , i, {sig i, ...})
at least once. The first one of such BUNDLE messages that a process of K receives can be the one pi
initially broadcast at line 2, but it can also be a BUNDLE message broadcast by a correct process at lines 7

or 10, or it can even be a BUNDLE message sent by a Byzantine process. In any case, the first time the

processes of K receive such a BUNDLE message, they pass the condition at line 3, and they also pass

the condition at line 5, except for pi if it belongs to K . Consequently, each process pk of K necessarily

broadcasts its own signature sigk for (m, sn , i) in a BUNDLE(m, sn , i, {sigk, sig i, ...}) message.

By construction of the algorithm, the set K of correct processes that receive a

BUNDLE(m, sn , i, {sig i, ...}) message is equal to the set of correct processes pk that broadcast

a BUNDLE(m, sn , i, {sigk, sig i, ...}). By the definition of the message adversary, a message

BUNDLE(m, sn , i, {sigk, sig i, ...}) broadcast by a correct process pk is eventually received by at least

c− d correct processes. Hence, the minimum number of signatures for (m, sn , i) made by processes of

K that is also received by processes of K globally is |K|(c − d). It follows that a given process of K
individually receives on average the distinct signatures of at least |K|(c − d)/|K| = c− d processes of

K .

From mbrb-Assumption, we have 3t + 2d < n ⇐⇒ n + 3t + 2d < 2n ⇐⇒ n + t <
2n − 2t − 2d ⇐⇒ n+t

2 < n − t − d ≤ c − d (as n − t ≤ c). As a result, at least one process pj of

K (ergo one correct process) receives a set S (in possibly multiple BUNDLE messages) of strictly more

than n+t
2 valid distinct signatures for (m, sn, i). When pj receives the last signature of S, there are two

cases:

• Case if pj does not pass the condition at line 3.

As processes of K are correct, then when they broadcast a BUNDLE(m, sn , i, sigs) message, they

necessarily include sig i in sigs , which implies that sig i is necessarily in S. Therefore, if pj does

not pass the condition at line 3, it is because pj already mbrb-delivered some (−, sn , i). But let

us remind that, as pi is correct, it is impossible for pj to mbrb-deliver anything different from

(m, sn , i). Therefore, pj has already mbrb-delivered (m, sn, i).

• Case if pj passes the condition at line 3.

Process pj then saves all signatures of S at line 4, and after it passes the condition at line 9 (as

|S| > n+t
2) and finally mbrb-delivers (m, sn , i) at line 11.

9

Lemma 5 (MBRB-Global-delivery). If a correct process pi mbrb-delivers an app-message m from pj
with sequence number sn , then at least ℓ = c − d correct processes mbrb-deliver m from pj with

sequence number sn .

Proof. If a correct process pi mbrb-delivers (m, sn , j) at line 11, it must have saved a set sigs of strictly

more than n+t
2 valid distinct signatures because of the condition at line 9. Let us remark that sigs

necessarily contains the signature for (m, sn , i) by pi because of the condition at line 3. Additionally, pi
must also have broadcast BUNDLE(m, sn , i, sigs) at line 10, that, by definition of the message adversary,

is received by a set K of at least c− d correct processes. For each process pk of K:

• If pk does not pass the condition at line 3, it is necessarily because it has already mbrb-delivered

some (−, sn , j) at line 11. But because of MBRB-No-duplicity, pk has necessarily mbrb-delivered

(m, sn , j).

• If pk passes the condition at line 3, then it saves all signatures of sigs at line 4 and then passes the

condition at line 9 and finally mbrb-delivers (m, sn , j) at line 11.

Therefore, all processes of K (which, as a reminder, are at least c− d = ℓ) necessarily mbrb-deliver

(m, sn , j) at line 11.

Lemma 6. c− d >
⌊

n+t
2

⌋

.

Proof. We have the following:

c− d ≥ n− t− d =
2n− 2t− 2d

2
, (by definition of c)

>
n+ 3t+ 2d− 2t− 2d

2
, (by mbrb-Assumption)

>
n+ t

2
≥

⌊n+ t

2

⌋

.

Lemma 7. If a correct process pi mbrb-broadcasts (m, sn), then at least c− d−
⌊

d⌊n+t
2

⌋

c−d−⌊n+t
2

⌋

⌋

correct

processes mbrb-deliver (m, sn , i) at most two communication steps later.

Proof. If a correct process pi mbrb-broadcasts (m, sn), then it broadcasts its own signature sig i for

(m, sn , i) in a BUNDLE(m, sn , i, {sig i}) imp-message at line 2. Let us denote by K the set of correct

processes that receive this BUNDLE(m, sn, i, {sig i}) imp-message from pi during the same communi-

cation step, and let k be the number of processes in K , such that c− d ≤ k = |K| ≤ c (by definition of

the message adversary). By construction of the algorithm, every process px of K passes the condition at

line 3, and therefore broadcasts a BUNDLE(m, sn, i, {sigx, sig i}) imp-message, whether it be at line 2

for pi, or at line 7 for any other process of K .

Let A and B define two partitions of the set of all correct processes (A ∪ B is the set of all correct

processes, and A ∩ B = ∅). A denotes the set of correct processes that receive strictly more than
n+t
2 signatures for (m, sn, i) from processes of K two communication steps after pi mbrb-broadcast

(m, sn), while B denotes the set of remaining correct processes of K that receive at most n+t
2 signatures

for (m, sn , i) from processes of K two communication steps after pi mbrb-broadcast (m, sn). Let ℓ2
be the size of A: ℓ2 = |A|. By construction, |B| = c − ℓ2. Let sA and sB respectively denote the

number of signatures for (m, sn , i) from processes of K received by processes of A and B at most

two communication steps after pi mbrb-broadcast (m, sn). Figure 1 represents the distribution of such

signatures among processes of K , sorted by decreasing number of signatures received. Each processes

of A can receive at most k signatures (that is, all signatures) from processes of K , while each process

10

received

signatures

correct

processes

k

ℓ2A

sA

⌊

n+t
2

⌋

= q

cB

sB

Figure 1: Distribution of signatures among processes of A and B two communication steps after pi
mbrb-broadcast (m, sn)

of B can receive at most ⌊n+t
2 ⌋ signatures from processes of K two communication steps after pi mbrb-

broadcasts (m, sn). For the sake of simplicity, we use q in the place of ⌊n+t
2 ⌋ in some parts of this

proof.

From these observations, we infer the following inequalities:

ℓ2k ≥ sA,

(c− ℓ2)q ≥ sB.

By the definition of the message adversary, a BUNDLE(m, sn , i, {sigx, sig i}) imp-message broad-

cast by a correct process px is eventually received by at least c− d correct processes. As a consequence,

in total, the minimum number of signatures for (m, sn , i) collectively received by correct processes as

a result of broadcasts by processes in K in the first two asynchronous communication steps is k(c− d).
We thus have:

sA + sB ≥ k(c− d).

By combining the previous inequalities, we obtain:

ℓ2k + (c− ℓ2)q ≥ k(c− d),

ℓ2k + cq − ℓ2q ≥ k(c− d),

ℓ2k − ℓ2q ≥ k(c− d)− cq,

ℓ2(k − q) ≥ k(c− d)− cq. (1)

By Lemma 6, we know that k ≥ c− d >
⌊

n+t
2

⌋

= q, so we can rewrite (1) into:

ℓ2 ≥
k(c − d)− cq

k − q
. (2)

Let us define a function f such that f(k) = k(c−d)−cq
k−q

. As we seek the lowest guaranteed value for

ℓ2, we want to find the minimum of f on k ∈ [c− d, c]. To this end, let us first study the derivative of f .

The image f(k) is of the form u
v

, so we have:

f ′(k) =
u′v − uv′

v2
=

(c− d)(k − q)− (k(c − d)− qc)

(k − q)2
,

=
(c− d)(k − q)− k(c− d) + qc

(k − q)2
=

qc− q(c− d)

(k − q)2
=

qd

(k − q)2
.

11

As q and d are by definition positive, we know that f ′(k) = qd
(k−q)2

is positive, or null when d = 0.

Therefore, f is monotonically increasing on k ∈ [c − d, c], and the minimum value for ℓ2 can be found

when k is also minimum, that is, when k = c− d. Thus, when we replace k by c− d in (2), we obtain:

ℓ2 ≥
(c− d)(c − d)− cq

c− d− q
=

(c− d)(c− d− q)− qd

c− d− q
,

≥ c− d−
qd

c− d− q
. (3)

Let us denote by ℓ2,min the minimum number of correct processes that receive a quorum of strictly

more than n+t
2 valid distinct signatures for (m, sn , i) two communication steps after pi mbrb-broadcast

(m, sn), such that ℓ2,min ≤ ℓ2 = |A|. As the right hand side of (3) is not always an integer, we have:

ℓ2,min =
⌈

c− d−
qd

c− d− q

⌉

= c− d+
⌈

−
qd

c− d− q

⌉

,

= c− d−
⌊ qd

c− d− q

⌋

, (as ∀ x ∈ R, ⌈−x⌉ = −⌊x⌋)

= c− d−
⌊ d⌊n+t

2 ⌋

c− d− ⌊n+t
2 ⌋

⌋

. (by definition of q)

Hence, at least ℓ2,min = c − d −
⌊

d⌊n+t
2

⌋

c−d−⌊n+t
2

⌋

⌋

processes of K receive strictly more than n+t
2 valid

distinct signatures for (m, sn , i) two communication steps after pi mbrb-broadcasts (m, sn). For every

process pa of A:

• If pa does not pass the condition at line 3 after receiving the last signature of the quorum in

a BUNDLE imp-message, it is necessarily because pa already mbrb-delivered some (−, sn , i),
because processes of K are correct and all their BUNDLE imp-messages include the signature for

(m, sn , i) by pi. But let us remind that, as the sender pi is correct, it is impossible for pa to mbrb-

deliver anything different from (m, sn , i). Therefore, pa has already mbrb-delivered (m, sn , i) at

line 11.

• If pa passes the condition at line 3 after processing the last BUNDLE(m, sn , i, {sig i, sigx}) imp-

message of the quorum from a process px, then pa saves the signature sigx at line 4, and after

it passes the condition at line 9 (as it has saved strictly more than n+t
2 signatures) and finally

mbrb-delivers (m, sn , i) at line 11.

Therefore, all processes of A, which are at least ℓ2,min = c − d −
⌊

d⌊n+t
2

⌋

c−d−⌊n+t
2

⌋

⌋

, mbrb-deliver

(m, sn , i) at line 11 at most two communication steps after pi mbrb-broadcast (m, sn).

Lemma 8. If a correct process pi mbrb-broadcasts (m, sn) and d < c−
√

c× n+t
2 , then at least c− d

correct processes mbrb-deliver (m, sn , i) at most three communication steps later.

Proof. Let us assume that a correct process pi mbrb-broadcasts (m, sn) and that d < c −
√

c× n+t
2 .

Process pi must unreliably broadcast a first BUNDLE(m, sn, i, {sig i}) imp-message (where sig i is the

signature of (m, sn , i) by pi) at line 2. This initial imp-message is received by at least (c− d− 1) other

correct processes, due to our assumption on the message adversary. This counts for a first communica-

tion step.

In the second communication step, each process pj of these (c − d − 1) correct processes unre-

liably broadcasts its own BUNDLE(m, sn, i, {sig j, sig i}) imp-message (where sigj is the signature of

(m, sn , i) by pj) at line 7. At the end of the second communication step, in total, at least (c− d) distinct

12

signatures for (m, sn , i) have been created and unreliably broadcast by correct processes (counting that

of pi), resulting in at least (c− d)2 receptions of said signatures by correct processes. As there are c cor-

rect processes, this means that, on average, each correct process has received at least
(c−d)2

c
signatures

by the end of the second communication step, and that at least one correct process, pk, receives (and

saves at line 4) at least this number of signatures.

From the Lemma hypothesis d < c−
√

c× n+t
2 and using simple algebraic transformations, we can

derive
(c−d)2

c
> n+t

2 . Therefore, pk reaches a quorum of signatures, that is, it passes the condition at

line 9 and unreliably broadcast this quorum of signatures at line 10, two communication steps after the

mbrb-broadcast of (m, sn) by pi. By definition of the message adversary, this quorum of signatures is

received by c−d correct processes, which save it at line 4 and thus pass the condition at line 9 and finally

mbrb-deliver (m, sn, i) at line 11, three communication steps after the mbrb-broadcast of (m, sn) by

pi.

Lemma 9 (MBRB-Time-cost). If a correct process pi mbrb-broadcasts an app-message m with se-

quence number sn , then ℓ = c− d correct processes mbrb-deliver m from pi with sequence number sn

at most

λ =















2 if d <
c−⌊n+t

2
⌋

⌊n+t
2

⌋+1

3 if d < c−
√

c× n+t
2

> 3 otherwise















communication steps later.

Proof. Let us consider a correct process pi that mbrb-broadcasts (m, sn). By exhaustion:

• Case where d <
c−⌊n+t

2
⌋

⌊n+t
2

⌋+1
.

By Lemma 7, at least c − d −
⌊

d⌊n+t

2
⌋

c−d−⌊n+t
2

⌋

⌋

correct processes mbrb-deliver (m, sn , i) two com-

munication steps after pi has mbrb-broadcast (m, sn). We have:

d <
c− ⌊n+t

2 ⌋

⌊n+t
2 ⌋+ 1

, (case assumption)

d
⌊n+ t

2

⌋

+ d < c−
⌊n+ t

2

⌋

, (as ⌊n+t
2 ⌋+ 1 > 0)

d
⌊n+ t

2

⌋

< c− d−
⌊n+ t

2

⌋

,

d⌊n+t
2 ⌋

c− d− ⌊n+t
2 ⌋

< 1, (as c− d > ⌊n+t
2 ⌋ by Lemma 6)

⌊

d⌊n+t
2 ⌋

c− d− ⌊n+t
2 ⌋

⌋

≤ 0,

c− d−

⌊

d⌊n+t
2 ⌋

c− d− ⌊n+t
2 ⌋

⌋

≥ c− d = ℓ.

Hence, ℓ correct processes mbrb-deliver (m, sn , i) at most two communication steps after pi has

mbrb-broadcast (m, sn).

• Case where d < c−
√

c× n+t
2 .

Lemma 8 applies and at least c − d = ℓ correct processes mbrb-deliver (m, sn , i) at most three

communication steps after pi has mbrb-broadcast (m, sn).

13

Lemma 10 (MBRB-Message-cost). The mbrb-broadcast of an app-message by a correct process pi
entails the sending of at most µ = 2n2 imp-messages by correct processes.

Proof. The broadcast of an imp-message by a correct process at line 2 entails its forwarding by at most

n− 1 other correct processes at line 7. As each broadcast by correct process corresponds to the sending

of n imp-messages, then at most n2 imp-messages are sent in a first step.

In a second step, at least one correct process reaches a quorum of signatures and passes the condition

at line 9, and then broadcasts this quorum of signatures at line 10. Upon receiving this quorum, every

correct process also passes the condition at line 9 (if it has not done it already) and broadcasts the imp-

message containing the quorum at line 10. Hence, at most n2 imp-messages are also sent in this second

step, which amounts to a maximum of µ = 2n2 imp-messages sent in total.

An additional property The reader can check from the previous proofs that the algorithm satisfies

the following MBRB-delivery property. If there is a set K of k correct processes, 1 ≤ k ≤ d, such

that there is a finite time τ after which the message adversary never eliminates the imp-messages sent

to them, then, after τ , each process of K mbrb-delivers all the app-messages mbrb-broadcast by correct

processes.

4 A Tightness Bound

Definition An algorithm implementing a broadcast communication abstraction is event-driven if, as

far as the correct processes are concerned, only (i) the invocation of the broadcast operation that is

provided to the application by the broadcast communication abstraction, or (ii) the reception of an imp-

message—sent by a correct or a Byzantine process—can generate the sending of imp-messages (using

the underlying unreliable network-level broadcast operation).

Theorem 2 (MBRB-Necessary-condition). When n ≤ 3t + 2d, there is no event-driven (signature-

free or signature-based) algorithm implementing the MBRB communication abstraction on top of an

n-process asynchronous system in which up to t processes may be Byzantine and where a message

adversary may suppress up to d copies of each imp-message broadcast by a correct process.10

Proof. Without loss of generality the proof considers the case n = 3t + 2d. Let us partition the n
processes into five sets Q1, Q2, Q3, D1, and D2, such that |D1| = |D2| = d and |Q1| = |Q2| = |Q3| =
t.11 So, when considering the sets Q1, Q2, and Q3, there are executions in which all the processes of

either Q1 or Q2 or Q3 can be Byzantine, while the processes of the two other sets are not.

The proof is by contradiction. So, assuming that there is an event-driven algorithm A that builds

the MBRB-broadcast abstraction for n = 3t + 2d, let us consider an execution E of A in which the

processes of Q1, Q2, D1, and Q2 are not Byzantine while all the processes of Q3 are Byzantine.

Let us observe that the message adversary can isolate up to d processes by preventing them from

receiving any imp-messages. Without loss of generality, let us assume that the adversary isolates a set of

d correct processes not containing the sender of the app-message. As A is event-driven, these d isolated

processes do not send imp-messages during the execution E of A. As a result, no correct process can

expect imp-messages from more than (n − t − d) different processes without risking being blocked

forever. Thanks to the mbrb-Assumption n = 3t + 2d, this translates as “no correct process can expect

imp-messages from more than (2t+ d) different processes without risking being blocked forever”.

In the execution E, the (Byzantine) processes of Q3 simulate the mbrb-broadcast of an app-message

such that this app-message appears as being mbrb-broadcast by one of them and is mbrb-delivered as

10Let us recall that the underlying communication operation offered by the system is an unreliable broadcast defined in

Section 2.1.
11For the case n < 3t+ 2d, the partition is such that min(|Q1|, |D2|) ≤ d and min(|Q1|, |Q2|, |Q3|) ≤ t.

14

the app-message m to the processes of Q1 (hence the processes of Q3 appear, to the processes of Q1,

as if they were correct) and as the app-message m′ 6= m to the processes of Q2 (hence, similarly to

the previous case, the processes of Q3 appear to the processes of Q2 as if they were correct). Let us

call m-messages (resp., m′-messages) the imp-messages generated by the event-driven algorithm A that

entails the mbrb-delivery of m (resp., m′). Moreover, the execution E is such that:

• concerning the m-messages: the message adversary suppresses all the m-messages sent to the

processes of D2, and asynchrony delays the reception of all the m-messages sent to Q2 until some

time τ defined below.12 So, as |Q1 ∪D1 ∪Q3| = n− t− d = 2t+ d, Algorithm A will cause the

processes of Q1 and D1 to mbrb-deliver m.13

• concerning the m′-messages: the message adversary suppresses all the m′-messages sent to the

processes of D1, and the asynchrony delays the reception of all the m′-messages sent to Q1 until

time τ . As previously, as |Q2 ∪ D2 ∪ Q3| = n − t − d = 2t + d, Algorithm A will cause the

processes of Q2 and D2 to mbrb-deliver m′.

• Finally, the time τ occurs after the mbrb-delivery of m by the processes of D1 and Q1, and after

the mbrb-delivery of m′ by the processes of D2 and Q2.

It follows that different non-Byzantine processes mbrb-deliver different app-messages for the same

mbrb-broadcast (or a fraudulent simulation of it) issued by a Byzantine process (with possibly the help

of other Byzantine processes). This contradicts the MBRB-No-Duplicity property, which concludes the

proof of the theorem.

Theorem 3 (Algorithm optimality). Considering an asynchronous n-process system in which up to t
processes can be Byzantine and where a d-message adversary can suppress imp-messages, Algorithm 1

is optimal with respect to the pair of values 〈t, d〉.

Proof. Theorem 2 has shown that the condition n > 3t+2d is necessary, while Algorithm 1 has shown

that this condition is sufficient (Theorem 1).

5 Conclusion

This article has presented a new communication abstraction (denoted MBRB) that extends Byzantine

reliable broadcast (as defined by Bracha and Toueg [7, 8]) to systems where, at the underlying imple-

mentation level, an adversary may suppress some subset of implementation messages used by the pro-

cesses to co-operate. From a practical point of view, this kind of message loss captures phenomena such

as silent churn, input-disconnection, etc. A signature-based algorithm implementing the corresponding

Byzantine-tolerant reliable broadcast in the presence of a message adversary has been presented and

proven correct. This algorithm assumes n > 3t+2d (where n is the number of processes, t is the maxi-

mum number of Byzantine processes, and d is an upper bound on the power of the message adversary),

which has been shown to be a necessary and sufficient condition. message adversary),

When there is no message adversary, this algorithm is optimal from both Byzantine resilience and

the number of communication steps. These properties are also satisfied in other circumstances including

a message adversary whose power d is restricted to some well-defined threshold.

12Equivalently, we could also say that asynchrony delays the reception of all the m-messages sent to D2 ∪Q2 until time τ .

The important point is here that, due to the assumed existence of Algorithm A, the processes of Q1 and and D1 mbrb-deliver

m with m-messages from at most 2t+ d different processes.
13Let us notice that this is independent from the fact that the processes in Q3 are Byzantine or not.

15

Acknowledgments

This work was partially supported by the French ANR projects ByBloS (ANR-20-CE25-0002-01) and

PriCLeSS (ANR-10-LABX-07-81) devoted to the modular design of building blocks for large-scale

Byzantine-tolerant multi-users applications. The authors want to thank Colette Johnen, Elad Schiller,

and Stefan Schmid for their kind invitation to participate in the SSS 2021 conference.

References

[1] Abraham I., Nayak K., Ren L., and Xiang Z., Good-case latency of Byzantine broadcast: a

complete categorization. Proc. 40th ACM Symposium on Principles of Distributed Computing

(PODC’21), ACM Press, pp. 331-341 (2021) (arXiv:2102.07240v2)

[2] Afek Y. and Gafni E., Asynchrony from synchrony. Proc. Int’l Conference on Distributed Comput-

ing and Networking (ICDCN’13), Springer LNCS 7730, pp. 225-239, (2013)

[3] Albouy T., Frey D., Raynal M., and Taïani F., Byzantine-tolerant reliable broadcast in the presence

of silent churn (Invited Talk). Proc. 23th Int’l Symposium on Stabilization, Safety, and Security of

Distributed Systems (SSS’21) Springer LNCS 13046, pp. 21-33 (2021)

[4] Albouy T., Frey D., Raynal M., and Taïani F., kℓ-cast: on the foundations of Byzantine reliable

broadcast in the presence of message adversaries. (May 2022) (arXiv:2204.13388)

[5] Auvolat A., Frey D., Raynal M., and Taïani F., Money Transfer Made Simple: a Specification, a

Generic Algorithm, and its Proof. Bulletin of the EATCS, 132 (2020)

[6] Bonomi S., Decouchant J., Farina G., Rahli V., and Tixeuil S., Practical Byzantine Reliable Broad-

cast on Partially Connected Networks. 41th IEEE International Conference on Distributed Com-

puting Systems, ICDCS 2021, IEEE, pp. 506-516 (2021)

[7] Bracha G., Asynchronous Byzantine agreement protocols. Information & Computation, 75(2):130-

143 (1987)

[8] Bracha G. and Toueg S., Asynchronous consensus and broadcast protocols. Journal of the ACM,

32(4):824-840 (1985)

[9] Cachin Ch., Guerraoui R., and Rodrigues L., Reliable and secure distributed programming,

Springer, 367 pages, ISBN 978-3-642-15259-7 (2011)

[10] Charron-Bost B., and Schiper A., The heard-of model: computing in distributed systems with

benign faults. Distributed Computing, 22(1):49-71 (2009)

[11] Cohen S., and Keidar I., Tame the Wild with Byzantine Linearizability: Reliable Broadcast,

Snapshots, and Asset Transfer. Proc. 35rd Int’l Symposium on Distributed Computing (DISC’21),

pp. 18:1-18:18 (2021)

[12] Collins D., Guerraoui R., Komatovic J., Kuznetsov P., Monti M., Pavlovic M., Pignolet Y.-A.,

Seredinschi D.-A., Tonkikh A., and Xygkis A., Online Payments by Merely Broadcasting Mes-

sages. Proc. 50th Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works (DSN 2020), pp. 26-38 (2020)

[13] Danezis G., Kokoris-Kogias L., Sonnino A., and Spiegelman A., Narwhal and Tusk: a DAG-based

mempool and efficient BFT consensus. Proc. 17th European Conference on Computer Systems

(EUROSYS’22), ACM Press, pp. 34-50 (2022)

16

[14] Dolev D., The Byzantine generals strike again. Journal of Algorithms, 3:14-20 (1982)

[15] Guerraoui R., Kuznetsov P., Monti M., Pavlovic M., and Seredinschi D.-A., The Consensus Num-

ber of a Cryptocurrency. Proc. 38th ACM Symposium on Principles of Distributed Computing

(PODC’19), ACM Press, pp. 307-316 (2019)

[16] Guerraoui R., Komatovic J., Kuznetsov P., Pignolet P.A., Seredinschi D.-A., and Tonkikh A., Dy-

namic Byzantine reliable broadcast. Proc. 24th Int’l Conference on Principles of Distributed Sys-

tems (OPODIS’20), LIPIcs Vol. 184, Article 23, 18 pages (2020)

[17] Guerraoui G., Kuznetsov P., Monti M., Pavlovic M., and Seredinschi D.-A., Scalable Byzan-

tine reliable broadcast. Proc. 33rd Int’l Symposium on Distributed Computing (DISC’19), LIPIcs

Vol. 146, Article 22, 16 pages (2019)

[18] Hirt M., Kastrato A., and Liu-Zhang C.-D., Multi-threshold asynchronous reliable broadcast and

consensus. Proc. 24th Int’l Conference on Principles of Distributed Systems (OPODIS’20), LIPICs

Vol. 184, Article 6, 16 pages (2020)

[19] Imbs D. and Raynal M., Trading t-resilience for efficiency in asynchronous Byzantine reliable

broadcast. Parallel Processing Letters, Vol. 26(4), 8 pages (2016)

[20] Lamport L., Shostack R., and Pease M., The Byzantine generals problem. ACM Transactions on

Programming Languages and Systems, 4(3)-382-401, (1982)

[21] Nayak K., Ren L., Shi E., Vaidya N.H., and Xiang Z., Improved extension protocols for Byzantine

broadcast and agreement. Proc. 34rd Int’l Symposium on Distributed Computing (DISC’20), LIPIcs

Vol. 179, Article 28, 16 pages (2020)

[22] Pease M., Shostak R., and Lamport L., Reaching agreement in the presence of faults. Journal of

the ACM, 27:228-234 (1980)

[23] Raynal M., Message adversaries. Encyclopedia of Algorithms, Springer (2015)

[24] Raynal M., Fault-tolerant message-passing distributed systems: an algorithmic approach.

Springer, 480 pages, ISBN 978-3-319-94140-0 (2018)

[25] Raynal M., On the versatility of Bracha’s Byzantine reliable broadcast algorithm. Parallel Process-

ing Letters, 31(3), 2150006 (9 pages) (2021)

[26] Raynal M. and Stainer J., Synchrony weakened by message adversaries vs asynchrony restricted by

failure detectors. Proc. 32nd ACM Symposium on Principles of Distributed Computing (PODC’13),

ACM Press, pp. 166-175 (2013)

[27] Santoro N. and Widmayer P., Time is not a healer. Proc. 6th Annual Symposium on Theoretical

Aspects of Computer Science (STACS’89), Springer LNCS 349, pp. 304-316 (1989)

[28] Santoro N. and Widmayer P., Agreement in synchronous networks with ubiquitous faults. Theoret-

ical Computer Science, 384(2-3): 232-249 (2007)

[29] Tseng L., Zhang Q., Kumar S., and Zhang Y., Exact Consensus under Global Asymmetric Byzan-

tine Links. Proc. 40th IEEE International Conference on Distributed Computing Systems (ICDCS

2020), pp. 721-731 (2020)

17

